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CHARACTERISATIONS OF DERIVATIONS
ON SOME O P E R A T O R ALGEBRAS

Wu JING, SHUIE LU AND PENGTONG LI

Some conditions under which a derivation on some operator algebras can be com-
pletely determined by the action on operators of zero product are given.

In recent years there has been considerable interest in studying which linear map-
pings on operator algebras are derivations ([1, 5, 6, 7, 8]). It is the aim of this note
to give conditions under which a derivation of some operator algebras can be completely
determined by the action on operators of product-zero.

Before proceedings let us fix some notation. In what follows X will be a (real or
complex) Banach space. We denote by B(X) the algebra of all bounded linear operators
on X, and F(X) denotes the algebra of all finite rank operators in B(X). Recall that a
standard operator algebra is any subalgebra of B(X) which contains F(X). The usual
notation Lot A will denote the lattice of invariant subspaces for a subset A C B(X),
and Alg £ will denote the algebra of bounded linear operators leaving invariant every
member of a family £ of subspaces. The subset A is reflexive if A = ref A, where
ref A - {T e B{X) : Tx 6 [Ax],x € X} and [•] denotes the norm closure. A nest M in
X is a family of closed subspaces of X totally ordered by inclusion containing {0} and
X, and the closed linear span and intersection of every subfamily. The associated nest
algebra is Alg AT = {T e B{X) :TN C N,N € Af}.

For a lattice £ of subspaces of X, if N € £, define AL = V{M € £ : N % M) and
N+ = A{M € £ : M % N}. We also define 0_ = 0 and X+ = X.

For a subset N C X, NL = {/ € X* : f(N) = {0}}, where X* is the dual space of
X. If both i £ l and f e X* are nonzero, the rank one operator u \—> f(u)x is denoted
by x ® / .

The following lemma will get repeated use.

LEMMA 1 . ([9]) If £ is a subspace lattice, then x®f G Alg£ if and only if there
exists an element L € £ such that x € L and f € (L-)"1.

Let us begin with two key lemmas.

LEMMA 2 . Let A be an algebra containing identity I and S : A —> A be a linear
map with the property that S(AB) = 8{A)B + A6(B) holds for every pair A,B e A with
AB = 0. Then for eaci idempotent P € A, we have
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(1) PS(I) = 6(I)P = P6{I)P = P6(P)P and

(2) 5(P2) = S(P)P + PS(P) - PS(I)P.

PROOF: For any idempotent P 6 A, it is obvious that P(I - P) = (I - P)P = 0.
Then we have

(1) 0 = 6(P(I - P)) = 6(P)(I -P) + PS(I -P) = 6{P) - 8{P)P + P6(I) - PS(P)

and

(2) 0 = <5((/ - P)P) = 6(1 - P)P + (I - P)S(P) = 6(I)P - S(P)P + 6(P) - PS(P).

Comparing equalities (1) and (2), we arrive at

P5(I) =

Since P is idempotent, then we get PS(I) = 5(I)P = P6{I)P.

Multiplying equation (1) by P from the left, we have P5(P)P = P6(I).

Now equality (1) becomes

5{P2) - 5(P) = 5{P)P + P6(P) - P8(I) = 6{P)P + P6{P) - P5(I)P. Q

LEMMA 3 . Suppose that A and 6 are the same as in Lemma 2. Then for any
idempotent P in A and arbitrary A € A, we have

(1) S(PA) = 5(P)A + P6(A) - P5{I)A and

(2) S(AP) = 6{A)P + A8{P) - A6(I)P.

PROOF: We only prove (1), and (2) goes similarly.

Obviously, P(I - P)A = (I - P)PA = 0. Then we have

0 = 6(P(I - P)A)

(3) = 6(P) (A - PA) + PS{A - PA)

= 6(P)A - 6(P)PA + PS(A) - PS(PA)

and

0 = 8((I-P)PA)

(4) = 6{I - P)PA + (I~ P)S(PA)

= 6(I)PA - 8{P)PA + 6{PA) - PS{PA).

Comparing (3) and (4), and using Lemma 2, we obtain

6{PA) = 6{P)A + P5{A) - P5(I)A. Q

Now we are in a position to prove our main results.
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THEOREM 4 . Let M be a von Neumann algebra in Hilbert space H, and 5 : M
—¥ A4 be a linear map for which 5(AB) = 6(A)B + A5(B) holds for any pair A, B € A4.
with AB = 0. If 6 is norm continuous, then 5(AB) = 5(A)B + A6(B)-A6(I)B holds for
every A, B G M. Particularly, if 5 satisfies 8(1) — 0 additionally, then 8 is a derivation.

P R O O F : We notice that the linear span of all projections (that is, self-adjoint idem-
potents) of M is norm dense in M (see [2]). By Lemma 3, the theorem goes easily. D

THEOREM 5 . Let AlgA/" be a nest algebra in Hilbert space H. Suppose that 8 :
AlgA/" -> AlgJV is a linear map with the property that 6(AB) - 8(A)B + A8(B) holds
for any pair A,Be Alg Af with AB = 0. Tien for arbitrary A and B in Alg A/", we have
8(AB) = 8(A)B + A8(B) - A8(I)B. Furthermore, if 8(1) = 0 add i t iona l then 8 is a
derivation.

PROOF: Notice that every rank one operator in Alg Af can be represented as a linear
combination of at most four idempotents in Alg Af (see [4]) and every finite rank operator
in Alg Af can be written as a finite sum of rank one operators in Alg Af (see [3]). Then by
Lemma 3, we get that for arbitrary A G AlgA/" and any finite rank operator F G Alg A/"

8(AF) = 8(A)F + AS(F) - A8(I)F.

Now, for any pair A,Be AlgAf and any finite rank operator F G AlgA/", on the one
hand, we have

8(ABF) = 8(AB)F + AB8(F) - AB8(I)F.

On the other hand,

S(ABF) = 8(A)BF + A8(BF) - A8(I)BF

= 8(A)BF + A8(B)F + ABS(F) - AB8(I)F - A8(I)BF.

These two expressions imply

[8(AB) - (8(A)B + A8(B) - A6(I)B)] F = 0.

Therefore (since U{JV e Af : AL ^ H) is dense in H) 8(AB) = 8(A)B + A6(B)
- A8(I)B. D

Now we turn our attention to the algebras in Banach spaces.

THEOREM 6 . Let B be a standard operator algebra in Banach space X containing
the identity operator I, and 8 : B -* B be a linear map such that 8(AB) — 8(A)B + AS(B)
for any pair A, B € B with AB = 0. Then 8(AB) = 6(A)B+A8(B)-A6(I)B,VA, B € B.
Moreover, if in addition 8(1) = 0, then 8 is a derivation.

PROOF: Since every rank one operator in F(X) can be represented as a linear
combination of at most two rank one idempotents and every finite rank operator in F(X)
is a finite sum of rank one operators, we get that S(AF) = 8(A)F + A8(F) — A8(I)F
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holds for any A e B and any F € F(X). With the same argument as in the proof of
Theorem 5, we obtain

S(AB) = 6(A)B + A6(B) - A8(I)B

for every A,B &B. D

Unfortunately, whether every rank one operator in a nest algebra AlgTV in Banach
space X can be represented as a finite linear combination of idempotents in Alg.V is
uncertain. So Theorem 5 can't be generalised to the Banach space case. But we do have
the following theorem.

THEOREM 7 . Let 1Z be a unital reflexive algebra in Banach space X such that
0+ / 0 or X- ^ X in LatiZ. Suppose that 8 : 1Z —> V. is a linear mapping satisfying
5{AB) = 6{A)B + A5(B) for any pair A, B e H with AB = 0. Then 5{AB) = 8{A)B +
A8{B) - AS(I)B holds for arbitrary A and B in H. Furthermore, ifS{I) = 0 additionally,
then S is a derivation.

P R O O F : Suppose that X- =£ X.

We claim that S(AF) = S(A)F + A6(F) - A5{I)F holds for any A € U and any
rank one operator F € ~R of the form F = x® f with x € X and / € ( ^ - ) x -

We only need to treat the case where f(x) = 0 since, otherwise, F is a scalar multiple
of an idempotent. Suppose that f(x) — 0.

We can choose y e X such that f(y) = 1. Then ytSsfeU, and both (x + y) <g> /
and y <S> f are idempotent. By Lemma 3, we have

6(A(x + y) ® / ) = 5{A){x + y) ® / + AS({x + y)®f)- A5(I){x + y)®f

and
8(Ay ®f)= 8{A)y <g> / + A6(y ® f) - A8(I)y ® / .

Hence 6(Ax <g> / ) = 8{A)x <g> / + A8(x <g> / ) - A8{I)x ® f.

The argument in the preceding paragraph works even if x ^ X_.

Therefore for any pair A,Be1Z and any x 6 X, f £ (-X-)1, we have

8{ABx ® / ) = 8{AB)x ® f + ABS(x ® f) - AB8(I)x ® f

and

8{ABx ® f) = 8{A)Bx ®f + AS(Bx ® f) - A8{I)Bx ® f

= 8{A)Bx ®f + A8(B)x ®f + AB8(x ® f)

-ABS(I)x ®f- A8(I)Bx ® f.

These two equalities yield

U{AB) - (8(A)B + A8(B) - A6{I)B)]x® f = 0.

https://doi.org/10.1017/S0004972700040077 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040077


[5] Derivations on operator algebras 231

This is true for every x G X, so

6(AB) = S(A)B + A6(B) - AS{I)B

for every A,BeTZ.

For the case of 0+ ^ 0, using equation 6(PA) = 5(P)A + PS(A) - P6(I)A in Lemma
3 and an argument similar to the one above, we can infer that

x ® / \S(AB) - (6(A)B + A6(B) - A6(I)B)\ = 0

for any x € Q+,f € X* and any A, B G 72. Since / G X* is arbitrary, thus for any pair
A, B G 72 we have

8{AB) = 6{A)B + A6(B) - A6(I)B. Q

Particularly, we can generalise Theorem 5 partially as follows.

THEOREM 8 . Let Alg M be a nest algebra in Banach space X such that 0+ ^ 0 or
X- 7̂  X in N'. Suppose that 6 : Alg AT —> Alg N is a linear mapping with the property
that 6{AB) = 5{A)B + AS{B) holds for any pair A,B e AlgM with AB = 0. T ien for
arbitrary A and B in Alg AT we have 6(AB) = S(A)B + y«(.B) - A6(I)B. Moreover, if
6(1) = 0 additionally, then S is a derivation.

R E M A R K 9. It should be mentioned that <5(7) in Theorems 4, 5, 6, 7 and 8 is in the
commutants of the associated algebras M, Alg M, B, 11 and Alg M respectively. For
example, let <$ and TZ be as in Theorem 7, and suppose that X- ^ X in LatTZ. By
Lemma 2 and with the similar argument in the proof of Theorem 7, we can infer that
S(I)x ® / = x 0 f6(I) holds for any a; € A" and / € (X_)x. Then for arbitrary ,4 6 72.
we have (*(/)A)x ® / = J ( / ) (Ax ® / ) = (Ac <g> /)<$(/) = X(s ® / « ( / ) ) = A(6{I)x ® / )
= (A6(I))x ® / . This is true for all x G X, hence <$(/),4 = A5(7), that is 6(1) G 72', the
commutant of 72. Thus the result 8(AB) = 6(A)B + A6(B) - A5(I)B coincides with the
condition that 5(AB) = 6(A)B + A6(B) when AB = 0.
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