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Note on Partial Fractions and Determinants.
By Professor H. W. TUurRNBULL.
(Recetved 22nd December 1926. Read 4th February 1927.)

INTRODUCTION.

In looking for a compact way of writing down the partial
fraction formula in general, with repeated factors, I noticed how the
expansion of a determinant by its top or bottom row suggested a
method. The following gives a formula perfectly easy to write down
in any given case where the factors of the denominator of the fraction
are known. Incidentally it gives, as a determinant, the integral of a
rational fraction f(z)/@Q(x) where f(x) and @Q(x) are polynomials, Q(x)
having higher order.

Most probably the results are not new, but they cannot readily
be traced. I find hints of allied things in Sir Thomas Muir’s History
of Determinants, Vol. I p. 339, Jacobi (1841); II 175, 181, 183;
ITI 133, 144, 152, 154.

The method seems fruitful, and the matter might be pursued
further, for instance in dealing with complex roots of @Q(x) = 0, and
in deriving algebraic identities as in §2 for the case of repeated
factors.

§1. If we expand by the method of partial fractions when a, b, ¢
are unequal we find
b—clc—ajla—-b) _c—b a—c+b—-a
(z—a)(zx—b(x—¢c) xz—a zx—b zx—c’

whence
1 _’ 1 1 1 |., 1 1 1
(x—a)(x—0)(x —¢c) a b ¢ Yila b ¢
’ 1 1

r—a x—b xr—c

Furtherif b=a + h and A—>0, a * ¢, we obtain

1 ] 1 1 ST U SR
(x —a)(x—c) a a-+h ¢ |Tla a+b ¢
1 1 1 a? (a + h)? c?

x—a r—a—h z—c¢
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Subtract the first column from the second in each determinant, and
divide each by A; then the limit is

1 0 1 1 0 1
a 1 c “ija 1 ¢
1 1 1 a? 2a c?

xt—a (xt—a)® x—c

On expanding the first determinant by its last row, we have the
partial fractions of the left hand expression. This simple device is
perfectly general, leading at once to a compact formula for partial
fractions of

/(@) f (@)

Qr) (2 —ay)(x—a,) ... (x—ay)

where f(x) is a polynomial in z of degree less than =, having no
common factor with Q(z).

The general formula is

1 1 1 1 1 1
al aq ay - a, a, Ay
f (@) a,® a,’? az® a,? a,? ay?

—s == T | e s s s 3 s s e a v a s s e s e 2 s e e e i | e = e e s e n v vae e e e e n0r os 1
Q(x) n-2 n-2 n-2 n-2 n-2 n-2 ( )
a,” - 22 el Ay ay a e Oy
flay) S lay) o S (an) at=t oal L. a,mt

T —a; T — Ay r—a

So the theory of partial fractions is closely related to that of alter-
nants, the name given to determinants like this second one A, which
is readily seen to have 4n (n — 1) linear factors. In fact

A = (a,— ay) (a3—ay) ... (a,,— ay) (an— a,)

X (@g— @g) ... (@y-1— ay) {(ap— ay)

.................. (2)

For A vanishes if a;=a;, (i + j) because two columns are then equal;
the dimensions agree; and the coefficient of the chief term

a,az® ... aq,"!

is unity in both the determinant and the product.
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The proof of (1) is now immediate by the method of partial
fractions. Thus if the left side of (1) is written

- Ja:)
& A —a)
then
A= (a;— a)) (a— ay) ... (@— a; 1) (@;— a;sy) ... (Gi— a,).
In particular A4,={(e¢,—a,) ... (¢,— a,-;) which is precisely the
quotient of A divided by the cofactor of f(ig in the other deter-
X —ay
minant, since this cofactor is the alternant of the first n — 1
quantities a,, a,, a3 ... . Symmetry shews that all the coefficients
will agree in the same way.
CoroLLARY. We immediately integrate g»((—';i; and obtain
j‘ fx)dx _|1 ce e, 1
(r—a){x—a,) ... (x—a) a, ce ey, ay
a,? ., ay?
a"t .. ..., a,"?
flay) log (2 — ay), ..., fla,) log{z — a,)
where A is the alternant ' 1 «, a,2 ... a,"']|.

HomoGgENEOUS PRroDpUCTS.
§2. If in (1) we take v = 1 and f(x) = 1, and then expand both
Y

sides in ascending powers of y, we obtain on the left

¥ _ 2 nip
T Y e vy sy S R
where ,H, is the sum of homogeneous products of a,, a,, ... a, of
degree p. But on the right of (1) the coefficient of y"+» in the last
row gives
AR AR A A N A S

This leads to the well known result!

1 1 1 1
"HP = a; ce. Qy a, cos Ay

a12 a,? a12 a® ¢

aln— 2 ann -2 aln -1 a"n -1

an+p—l . an"+19‘1

1 History, I, p. 339. Jacobi (1841).
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For example

1 1 1 1 1 1 1 1}

a b c d|7la b ¢ d|=0a"+b4c*+d?
Laz b2 ¢ d2 a? b2 ¢? d2 4-ab + ac + ad 4 be 4 bd + cd.
|as b5 ¢5 d° a® b® ¢ d?

REPEATED FacTORs IN @ (x).

§ 3. The method of limits yields a result immediately. Thus, as
in the case first explained, we should have, if f(z) is a cubic in «,

f () 1 0 1 1y 1 o0 11
(z—a)l(x—D)(x—¢c) | a 1 b ¢ “la 1 b ¢
a? 2a b2 c? a* 2a b% c?

f(a) <f(a) >' f&)y  fle) a® 3a® b3 c?

‘x—~b xz—c¢

x—a x—a
Here <i(‘l)> denotes — o fla) ie f(a) + f(a)
r—a dax—a  x—a (x —a)?

If now b=a -+ h and 2—>0 we obtain, in each third column, linear
multiples of the previous columns. So A2 is the first power of 4 in
the resulting development of both determinants in ascending powers

2
of h. If (¢)" denotes ga—f we therefore obtain

f (=) ] 1 0 0 1 1 0 0 1
(x—a)@(x—c) | a 1 0 c ’* a 1 0 ¢
a? 2a 1 c? ia? 20 1 ¢?
f(a) (@) f (a fle) | a® 3a? 3a c?

<x —a)’ ( > ! X

2
r—a —c|

Manifestly the same argument, assumed for k — 1 repetitions of
(x — a), will apply for k, by making the next factor tend to equality
with x — a. Thus the k' entry in the last row will be

SO _Jath) _J@ gl B
a

z—b x—a—h zxz—a T — '\ — a

(k)

In both determinants the k* column will then involve linear multiples
of all preceding columns. So these may be discarded. After
cancelling »* and then making k& = 0 we obtain a definite result. So
the theorem is true by induction. It can then be extended to cover
cases when several sets of repeated factors occur.

https://doi.org/10.1017/50013091500007331 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500007331

53
If in the above example we multiply each third column by 2! we
obtain a pair of determinants easier to form but not quite so easy to
compute. It gives the rule: if (x —a) is a factor occurring k times in

Q (z), but not k -+ 1 times, form k columns of each determinant by k — 1
successive differentiations of the normal column as found when k = 1.

Since
(f(a) )' _ f'@) fla)
x—a z—a (x —a)?’
fla)\" _ f(a) | 2f (@) 2f (a)
<FE> T z—a + (x——a)2+ (x —a)®
fla) )'"_ [ (@) + 3f" (a) 6f" () 3!f(a) eto
<x—ar T 2—a (x—a)? (z—a)p (x—a)’

We can easily derive the usual partial fractions by picking out the
necessary terms from the determinants. Omne further example is

appended :—
(x) .
(= ama{ —hre—o) 5
1 0 0 1 1
a 1 0 b 1 ¢
a? 2a 1 b2 2b c?
ad 3a? 3a b3 3b2 c3
at 4a3 6a? bt 453 ct
s@ (J@y LSy S L0y 1@,
z—a’ \z—a/’ 20\x—a/ x2—-b \x—b/ x—c
~ 1 0 0 1 0 1 ;
ta 1 0 b 1 c
} a® 2a 1 br 26 ¢? [
| a® 3a? 3a b  3b2 ¢3!
a* 4a’® 6a2 b4 4bH3 ct
a’ Ba* 10a® b5 51 ¢t

These determinants, and all such, simplify by replacing row, by

—1
row,— (g — a row, _ 1+ <q > >a2 row, _g— ... —{—)2a?" 'row,

where in the upper determinant ¢ =4, 3, 2 in succession, and in the

lower, ¢ = 5, 4, 3, 2.

AN=(b—a)(c—a)d(c—Db)>

Then the denominator becomes?

1 ¢f. Muir.
type of determinant.

Historg IV, p. 178.
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The first five rows of the numerator become

1 0 0 1 0 1
01 0 (b—a) 1 (¢ —a)
0 01 (b—a) 2(b—a) (c—a)?
0 0 0 (b—a)® 3(b—a)? (c—a)
0 0 0 (b—a) 4(—a) (c—a)
If for example the partial fraction involving (x — a)~? is required we
have at once 4,/(x — a)?, where
1 . | . 1 P A
.1 . (b—a) )
.o 1 (b—a)? 20b—a) (c—a)?
(b—a)® 3(b—a) (c—a)
. . b—a)} 4(b—-a)® (c—a)
@ f@) . C
_f(a)(3a —b — 2) f'(a)
(b—a)(c—a)} ' (b—a)(c—a)

a
|
|
|
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