ON PROJECTIVE CHARACTERS OF PRIME DEGREE
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All groups G considered in this paper are finite and all representations of G are
defined over the field of complex numbers. The reader unfamiliar with projective
representations is referred to [9] for basic definitions and elementary resuits.

0. Introduction. Let Proj(G, «) denote the set of irreducible projective characters
of a group G with cocycle a. In a previous paper [3] the author showed that if G is a
(p, a)-group, that is the degrees of the elements of Proj(G, a) are all powers of a prime
number p, then G is solvable. However Isaacs and Passman in [8] were able to give
structural information about a group G for which (1) divides p° for all & € Proj(G, 1),
where 1 denotes the trivial cocycle of G, and indeed classified all such groups in the case
¢ = 1. Their results rely on the fact that G has a normal abelian p-complement, which is
false in general if G is a (p, a)-group; the alternating group A, providing an easy
counter-example for p =2.

The aim of this paper is to at least give a full classification of p-groups G whose
irreducible projective characters with cocycle « all have degree p. In Section 1 we shall
show that a (p, @)-group G which does not possess a normal abelian p-complement may
be considered unusual, and we shall assume thereafter that G does have such a
complement. Under this assumption Isaacs and Passman’s results for ordinary characters
still hold for projective characters, and our interest is focussed on the necessary changes
in the corresponding proofs.

In Section 2 we obtain the following theorem which is the exact analogue of Theorem
IT of [8].

TueoreM 1. Let p be an odd prime number, and G be a group with a normal abelian
p-complement. Then every irreducible projective character of G with cocycle « has degree
dividing p if and only if

(i) G is abelian and the cohomology class of « is trivial; or
(ii) G has an abelian normal subgroup A with the cohomology class of «a, trivial of
minimal index p; or

(iii) G/U is a group of order p> and exponent p, where U denotes the set of a-regular
elements of G contained in the centre Z(G) of G.

The case p =2 is exceptional and is dealt with in Section 3. Let C,, and D, denote the
cyclic group of order n and the dihedral group of order 2n respectively. Then with
notation as above our results culminate in the following theorem.

THEOREM 2. Let p=2, and G be a group with a normal abelian 2-complement.
Suppose every irreducible projective character of G with cocycle « has degree dividing 2.
Then G satisfies (i), (ii), or (iii) of Theorem 1 or

(iv) U=Z(G) and G/U=C, x G, X C, X Cy, or Dy X C,, or

R=(x,y,z:x*=y*=z2*=1,xy=yx,yz=zy,xz=zx"y).
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1. Prime power degrees. Let [a] denote the cohomology class of the cocycle « in
the Schur multiplier M(G) of the group G. We start by noting that the degrees of
projective representations are unaffected under projective equivalence, so that if G is a
(p, @)-group then it is also a (p, B)-group for [B] = [«a]. Thus in what follows it is no loss
to assume that the cocycle « under consideration is a class-preserving cocycle, such that
o([@]) =n if and only if & is the trivial cocycle of G. We also state and use without
further reference the fact that o([«]) divides (1) for all & € Proj(G, «). Finally for the
remainder of this paper let p be a fixed prime number. -

DeriniTiON 1.1. A group G is said to have p.r.x.(e, ) (projective representation
exponent e) if there exists a cocycle a of G such that E(1) divides p® for all
& € Proj(G, o).

For convenience we quote, summarize, and generalize 2.4, 2.7 and 2.8 of [8], and
2.2, 2.3, 2.4, and Theorem B of [3], the proofs where needed can easily be derived from
those given in the relevant paper.

Lemma 1.2. Let G have p.r.x.(e, @), NG, § e Proj(N, an), and I5(8) denote the

inertia group of § in G. Then
(i) N has p.r.x.(e, an);

(i) if G/N is non-abelian, then N has p.r.x.(e — 1, ay);

(iil) I5(&)/N has p.r.x.(e, B) for some cocycle B of 1;(§)/N, and [G :15(8)] divides
p*.

LemMa 1.3. Let N =G with G/N a p-group. Suppose G has p.r.x.(e, «) and N has
p.r.x.(e —1, ay). Then F has p.r.x.(e — 1, an), where F is the inverse image in G of the
Frattini subgroup of G/N.

Lemma 1.4, Let G have p.r.x.(e, «), L =G such that [G:L) is coprime to p, and
E eProj(L, ;). Then { extends to G.

THEOREM 1.5. Let G have p.r.x.(e, «). Then G is solvable and has abelian Hall
p'-subgroups.

LemMma 1.6. Let G have p.r.x.(e, ) and suppose G has a normal abelian p-
complement. Let H <K < G with K/H an abelian group of order coprime to p. Then

(i) K has p.r.x.(e, ak);

(ii) if H has p.r.x.(f, ay), then K has p.r.x.(f, ax).

Our next aim is to relate the results on projective and ordinary representation
exponents, the following proposition providing the crucial link.

ProposiTioN 1.7. Let G have p.r.x.(e, @), p® =min{&(1): § € Proj(G, )}, and sup-
pose G has a normal abelian p-complement. Then G has p.r.x.(e + a, a") for any integer
n.

Proof. Let S be a Sylow p-subgroup of G, and § € Proj(S, as) of minimum degree.
Then (1) = p° by Proposition 1 of [2]. Now since S is a PM-group there exists a subgroup
T of S with [S:T]=p“ and A € Proj(T, a7) with A° = ¢.

Let N be the normal abelian p-complement of G, then by 1.6(i) TN has
p.r.x.(e, ary), and so by 1.4 A extends to u € Proj(TN, ay). Thus [a7y] =[1], so that G
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is a (p, o")-group for any integer n by Theorem 2 of [11], and since [G:TN]=p* it
follows that G has p.r.x.(e +a, a").
The above result allows us to generalize Theorem I of [8] as follows.

THEOREM 1.8. Let G have p.r.x.(e, «) and suppose G has a normal abelian
p-complement. Then G has a series of subgroups

ApRA2...2A4,=G,

such that A, is abelian, [a,] =[1], and A;/A;_, is an elementary abelian p-group with not
more than 2(i + a) + 1 generators; where p® = min{§(1): & € Proj(G, a)}. Hence G has an

abelian subgroup A, with [a,,] = [1] whose index divides p°©*?**?),

Proof. We proceed by induction on e, noting that if A is a subnormal subgroup of G
then min{{(1): ¢ € Proj(A, «,)} divides p“. Thus it suffices to prove that there exists a
normal subgroup A._; of G, such that A,_, has p.rx.(e—1,a, ) and G/A,_, is an
elementary abelian p-group of order <p>¢*a+!,

Suppose G is abelian. Then Proj)(G, «) all have the same degree. Let U denote the
set of a-regular elements of G and § € Proj(G, «). Then U has p.r.x.(0, ay), &, = §(21)A
for some 4 € Proj(U, ay), and §(g) =0 for g € G — U. Thus [ay] =[1] and [G: U] =p“. If
U =G there is nothing to prove, whereas if U<G we may let A,_, be a maximal
subgroup of G with U=<A,_,<G. Then [G:A._i]=p, and A,_, has p.rx.(e—1, ay,_,)
from above.

Suppose G is non-abelian. Let N<IG be maximal such that G/N is non-abelian and
set G = G/N. Let H be the inverse image in G of the normal abelian p-complement of G.
Then N has p.r.x.(e — 1, ay) by 1.2, and H has p.r.x.(e — 1, ay) by 1.6.

Case 1: H=H/N is a non-trivial subgroup of G.

In this case G is a Frobenius group with an abelian Frobenius complement, G’ is the
Frobenius kernel and is an elementary abelian group. It follows that G' < H, and H is
both a maximal abelian normal subgroup of G and a g-group for some prime q # p. By
2.9 of [8] and 12.3 of [7] we conclude that H = G'. Now it follows from 12.4 of [7] that if
¢ e Proj(H, ay), then [G:H]E(1) is the degree of an element of Proj(G, ). Thus
[G:H]=p"

Finally let A,_, be the inverse image in G of the Frattini subgroup of G/H. Then by
1.3 A,_, has p.rx.(e—1, @4, ), and G/A._, is an elementary abelian p-group of order
=p°.

Case 2: G is a p-group.

In this case let A,_, be the inverse image in G of the Frattini subgroup of G. Then by 1.3
A, has prx.(e—1,a,,_). Also by Case 2 p. 451 of [8] and 1.7, G/A,_, is an
elementary abelian p-group of order <p€*a+1,

We now state a derivative of the theorem which we shall use in Section 2.

CoroLLarY 1.9. Let G have p.r.x.(e, a), and suppose G has a normal abelian
p-complement and an abelian Sylow p-subgroup. Then G has a series of subgroups

Ap2A,=...94,=0G,

such that A, is abelian, [a, ) =[1], and A,/A;_, is an elementary abelian p-group with not
more than i generators. Hence G has an abelian subgroup A, with [a 4] = [1] whose index
divides p** V"2,
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Proof. The result follows from the proof of 1.8 by strengthening the inductive
hypothesis and noting that Case 2 of that proof cannot occur.

Let G have p.r.x.(e, ). Then the previous two results have relied on the assumption
that G has a normal abelian p-complement. The last two results in this section deal with
the circumstances under which this assumption is tenable.

It is convenient in what follows to call a group H an F-group if H is a Frobenius
group of order p'q, where g is a prime number such that q divides p'—1, and the
Frobenius kernel of H is an elementary abelian group of order p’.

Lemma 1.10. Let G be an F-group with Frobenius kernel S, and suppose G is a
(p, @)-group. Then Proj(G, o) consists of q-extensions of the unique element of
Proj(s, as).

Proof. Let § e Proj(S, as). Then it follows from 12.4 of [7] that £(1)*=|S|. Also &
extends to G by 1.4.

To illustrate the above lemma we may take p =2 and then A, is the only example of
an F-group which also has p.r.x.(1, @), for [a] the non-trivial element of M(A,). We also
note for future reference that if a is a cocycle of a group G such that |Proj(G, a)| =1,
then G is said to be of a-central type.

If N is a normal subgroup of a group G, we shall let inf denote the inflation
homomorphism from M(G/N) into M(G).

ProrosiTioN 1.11. Let G be a group of minimal order which has p.r.x.(e, a) but does
not possess a normal abelian p-complement. Let K<IG be maximal such that G/K is
non-abelian. Then G/K is an F-group for 1=<i<2a, where p°=min{§(1):E€
Proj(G, a)}.

In particular if a =1, then either G/K is an F,-group which has p.r.x.(1, B) for some
cocycle B of G/K with inf([B]) = [«], or G/K is an F-group.

Proof. Let L/K =(G/K)'. Then by 12.3 and 12.4 of [7] and 1.5, all the non-linear
irreducible ordinary characters of G/K have equal degree f, G/K is a Frobenius group
with an abelian Frobenius complement of order f and an elementary abelian Frobenius
kernel L/K; also if { € Proj(L, a;) then V({) =<K and [L:K] divides §(1)?, where V(&)
denotes the vanishing-off subgroup of &. Thus [L: K] divides p* and f divides [L: K] - 1.
Now let T be a maximal normal subgroup of G containing L. Then by 1.2, T and hence
T/K have normal abelian p-complements. Since f is coprime to p, it follows that T =L
and f = g for some prime q =[G : L]

It remains to show that if a =1 and G/K is an F-group, then G/K has p.r.x.(1, 8)
for some cocycle B of G/K with inf([8]) =[a]. Let § € Proj(G, &) with §(1) = p. Then
&, =¢ for some {eProj(L,w.), since [G:L]=gq. However, the inner product
(Ck, Ex) =p?since V(&) =K, and so & = pA for some A € Proj(K, ak). Thus Ig(A) = G,
and the desired result follows from 1.2 and 1.10.

2. Prime degree. Throughout Section 2 we shall assume that G is a group having
p.r.x.(1, @) and a normal abelian p-complement.

DEermniTION 2.1. A subgroup A of G is said to be special if
(i) A is an abelian normal subgroup of G such that [a,] = [1];
(if) G/A is an elementary abelian p-group;
(i) if A <B, then either B is non-abelian or B is abelian but [a] # [1].
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It is convenient to call the special subgroup A more-special if A <B implies B is
non-abelian, and less-special otherwise. We note that with the assumptions made above
1.8 yields a special subgroup of G of index dividing p°.

LemMA 2.2. Suppose p is odd, and let A be a special subgroup of G. Then each
element a € A has C,(a)=A or G, where C,(a)= {x € Cs(a): a(a, x) = a(x, a)}.

Proof. If aeA, then A=C,(a) since [as]=[1]. Thus the result is trivial if
[G:A]l=p.

Now suppose a € A with A <C,(a)<G. Choose x € C,(a)— A and y € G — C,(a),
and set K = (A, x,y). By (ii) of 2.1 it is clear that [K: A} =p>. Since x ¢ A, B= (A, x) is
either non-abelian or is abelian with [ap]#[1]. In either case there exists b € A with
x ¢ C,(b). Let Z denote the element z € G viewed as an element of the twisted group
algebra CG,. Then u=(%)"'(b) " 'xb and v = ()~ '(a)"'ya are non-identity elements of
CA,,. Now by working in CAa, the proof of 3.3 of [8] carries over to our situation to give
a contradiction, provided that 1+ uv # u + v. However writing ¥ = cw and v = kZ, where
w =[x, b], z=[y,a] and c, k are pth roots of unity; we have that 1+ uv =u + v if and
onlyifz7'=w=z#1,k=-c,p=2,and a(w,w)=1.

We note in the context of 2.2 that if A is more-special then replacing C,(a) by Cs(a)
in the proof yields that Cs(a) = A or G for each a € A, provided that 1+ uv # u + v. This
observation coupled with the lemma allows us to describe the a-regular elements of a
special subgroup of G. Let U = {z € Z(G):z is a-regular}, the reader may refer to [12]
for various characterizations of U.

Lemma 2.3. Let A be a special subgroup of G and suppose [G:A}#p. Then
ANZ(G)=U. In particular if A is more-special then U = Z(G).

Proof. Clearly U <A by definition of A, and also Z(G) <A if A is more-special.
Let K = AN Z(G). Then by 2.2 (and its proof in the case p =2) eacha € K has C,(a) = A
or G. Let AeProj(K, ag), then A* =1 if and only if a(a,x)= a(x,a) for all a e K.
Thus I5(4) = ﬂK C.(a)=Aor G. If I;(A) = A, then A has [G : A] conjugates. Since G has

p.r.x.(1, @) we conclude that K = U.

For the rest of this section we shall assume that if A is a special subgroup of G then
C.(a) = A or G for each a € A, we shall also assume that C;(a) = A or G for eachae A
when A is more-special. Of course these assumptions are certainly valid for p #2 by 2.2,
and will be discussed in detail for p =2 in Section 3.

ProposiTioN 2.4. Let A be a special subgroup of G and suppose [G:A]#p. Then
every element of A is a-regular if A is more-special, whereas the elements of U are the
a-regular elements of A if A is less-special.

Proof. Suppose ae€ A—U. Then C,(a)=A. However using 2.3 we have that
Cg(a) = A if A is more-special, whereas A < Cs(a) if A is less-special.

We next show that U has index p in a special subgroup A with [G:A]>p. This will
enable us to classify G/U in subsequent results.

PropoSITION 2.5. Let A be a special subgroup of G of index p'.
(@) Ift>1o0rt=1and A is less-special, then [A:U] =p.
(b) If t =1 and A is more-special, then p |Z(G)| |G'| =|G].
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Proof. Suppose first that A is less-special. Let B be an abelian group with [B:A] =p.
Then [ap] #[1], so that all elements of Proj(B, a) have degree p and vanish on B — A.
Let T denote the set of az-regular elements of B. Then since B is abelian it follows as in
the proof of 1.8 that [A:T]=p, and all elements of Proj(B, &;) are non-zero exactly on
T. From 2.4 (or trivially if B=G) we conclude that T = U, since every element of
Proj(G, @) restricts irreducibly to B.

Now suppose A is more-special. Suppose also ¢ > 1. Then by 1.8 of [3], 2.3, 2.4, and
the proof of 3.5 of [8] we obtain the equation

UI(p' =) =|Al(p" ' =)+ k(p'—p""), (1)

where k is the number of G-invariant elements of Proj(A, a,). Suppose k =0, then
p~' —1 divides p‘ — 1, which is impossible. Thus there exists a G-invariant element of
Proj(A, a,). Let O be the Sylow p-subgroup of A, then it follows from 1.2 that G/Q has
p-r.x.(1, B) for some cocycle B of G/Q such that inf([8]) = [a]. The proof of 3.4 of [8],
and 1.9 now yield that the normal abelian p-complement of G is central. Thus since
[A:U] is a power of p, we obtain from (1) that [A: U] = p. Suppose now ¢ =1. Then G is
non-abelian and has p.r.x.(1, 1), so that (b) is just 3.5(b) of [8]. (Note: the proof of 3.5(b)
of [8] is independent of the assumption that G is a p-group.)

LeMMA 2.6. Suppose A is a special subgroup of G of minimal index p', where t > 1 or
t=1 and A is less-special. Then
(i) G/U has exponent p;
(ii) G/T is abelian for any T with U<T 2G;
(ii) if G/U is non-abelian, then A/U=(G/U)' is the unique minimal normal
subgroup of G/U.

Proof. (i) Suppose there exists an element x of order p? in G/U. Then x? e A — U,
so that A is a proper subgroup of (x, U) since [A:U]=p by 2.5. But (x, U) is a special
subgroup of G, contrary to the minimality of [G : A].

(ii) Suppose there exists T<IG with U < T such that G/T is non-abelian. Then T is
abelian with [ar] =[1] by 1.2. Let F be the inverse image in G of the Frattini subgroup of
G/T. Then F is abelian with [af] = [1] by 1.3, but [G : F] <[G : A] by 2.5, a contradiction.

(iii) If G/U is non-abelian, then by (ii) U is a maximal normal subgroup of G such
that G/U is non-abelian. Thus (G/U)’ = A/U is the unique minimal normal subgroup of
G.

We can now prove Theorem 1, noting that the proof we shall give still holds in the
case p =2, provided that all special subgroups of G of minimal index satisfy the
assumptions of this section.

Proof of Theorem 1. Let A be a special subgroup of G of minimal index p’, so that
t=5by 1.8. If t=0or 1, then G satisfies (i) or (ii) respectively. Also if [a] =[1], then G
satisfies (i), (ii) or (iii) by Theorem II of [8]. So suppose ¢ >1 and [a] # [1]. Then by 2.5
and 2.6, G/U has exponent p and order p"*', and if G/U is non-abelian (so p #2) it must
be an extra-special p-group of order p> or p°, since in this case Z(G/U) is cyclic.

Stage 1: If t =3, G/U is not elementary abelian.

Let x € G — U. Then (x, U) is a special subgroup of G, so that C,(x) = A from 2.2.
Thus every a-regular conjugacy class of G contains either 1 or p’ elements. Let u = |U)|
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and [r] temporarily denote the integral part of the real number r. Then G has at most
u+[(IG| = u)/p'l=u+[u(p™' = 1)/p’] a-regular conjugacy classes. But we know that G
has exactly |G|/p*=up’™' a-regular conjugacy classes, since G has p.r.x.(1, &) and
[@] #[1]). So we certainly require that 1+p~(p*'—1)=p''ie. p'—1=p*(p'2-1),
which is clearly impossible for ¢ = 3.

Stage 2: G/U is not an extra-special group of order p°.

Let G=G/U and Z=A/U. Then from the proof of 3.3.6 of [10], inf: M(G/Z)—
M(G) is a surjection with kernel of order p. Let B be a cocycle of G/Z such that
ker(inf) = ([B]) and B” =1. Then by V.16.14 of [6] only the identity element of G/Z is
B'-regular for 1=i=p-1. Now each £eProj(G,a) has &,=pA for some Ae
Proj(U, ay). It follows from 1.2 both that there exist cocycles & of G/U with [&] inflated
to G equal to [a], and that G/U has p.r.x.(1, &) for each such &. Similarly, since every
element of Z is @-regular, there exist cocycles 'y for 0=<i=<p — 1 with mf([y]) = [&] for
which G/Z has p.r.x.(1, B'y). We thus require that G/Z contains exactly p> B'y-regular
elements for each i with0=i=<p -1

Let G/Z = (x,) X. .. X (x4), and B(x;, ;) = w*’, where o is a non-trivial pth root of
umty Let C be the skew -symmetric_matrix whose (i,j)th entry is c; for j>i. Then
x5, * is B-regular if and only if Cb =0 in Z;, where b=[b,,... 4] Now since no
non- tnv1al element of G/Z is B-regular we have that C has rank 4, and so there exists
M e GL(4, p) with

01 00
-1 0 00

T M =
MC 0 0 01
0 0 -1 0

Let D be the matrix constructed from y in the same way, then we require that
MTDM +iMTCM has rank 2 for 0<i<p —1. So if

0 a b c
- 0 d e
MDm=| "¢ :
-b -d 0 f
-c —e —f 0

we must have that (@ +i)(f+i)+be—cd=0 for 0=i=p-—1. Setting i =—a gives
be —cd =0, and we are left with (a + i)(f +i) =0 for 0=<i=<p — 1, which is impossible
for p=3.

Stages 1 and 2 thus yield that G/U is of type (iii).

The converse statement in the theorem is proved in essentially the same way as that
of Theorem II of [8].

As an immediate and perhaps surprising corollary of Theorem 1 we obtain the
following stronger version of 1.7.

CoROLLARY 2.7. Let p be odd and let G have p.r.x.(1, &). Suppose G has a normal
abelian p-complement. Then G has p.t.x.(1, a") for any integer n.

To conclude this section we note that if we allow p =2 in the matrix calculations of
stage 2 above, then we find that the extra-special 2-groups G of order 32 have p.r.x.(1, a)
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for 10 cohomology classes out of the 32 in M(G). Since these groups are not classified by
Theorem 1 (with p =2), they provide counter-examples to the results of 2.2 and will be
dealt with in the following section.

3. Degree two. In this section we shall deal exclusively with a group G having
p-r.x.(1, @) and a normal abelian p-complement which is not classified by Theorem 1. In
particular then p =2, and we can assume that there exists a special subgroup A of G of
minimal index 2°>2, with an element a € A such that either A<C,(a)<G or A is
more-special and A < Cg(a) < G. With this notation fixed for the duration of this section
we can now prove.

ProposiTiON 3.1. A is more-special and G /A is an elementary abelian group of order

Proof. Let C(a) denote C,(a) or if A is more-special C;(a). Then we may treat the
two separate possibilities above simultaneously. Now the proof of 2.2 yields for all
xeC(a)—A, all ye G—C(a), and all b € A with x ¢ C(b), that z7'=w =2z #1, where
w=[x,b] and z =[y, a]. If C(a)= C,(a) this gives that a is a-regular, and then that A
must be more-special, otherwise we can obtain that z or w =1 respectively. Thus A is
more-special and C(a) = Cs(a).

Now for any choice of y;,y,€ G — Cg(a) we must have that [y, a] =[y,, 4] i.e.
13" € Cg(a), so that [G:Cg(a)] =2. By 2.5 of [8] there exists a subgroup T of G of
index 2 with A <T, such that T has p.r.x.(1, @) and [a;]=[1]. Clearly A is a special
subgroup of T, so that by 3.3 of [8] or 2.2 C,,(a) = Cr(a) =A or C,(a)=Cr(a)=T.

In the former case there exists g € G — T with g € C5(a), and since gZe T we have
that g>€ A. Thus in this case it follows that C,(a) = Cg(a)=(A,g) or C,(a)=A and
CG(a) = <A’ g)

In the latter case we conclude by 2.3 that C,(a) = Cs(a) = T. In this case if T is the
unique subgroup of G satisfying 2.5 of [8] then T must be abelian, contrary to the fact
that A is more-special. So we may let S be another subgroup of G of index 2 with the
same properties as 7. Then as before Cs(a) = A or S. Since ST = G, we must have that
Cs(a) = A, and the desired results follows as in the first case.

By 3.1 each element b of A is classified into one of four types according to whether 1.
beU=Z(G);2. Co(b)=A=Cg(b); 3. Co(b)=A and [G : Cx(b)] =2; 4. C,(b) = Ci(b)
and [G:Cg(b)] =2. Let z, r, s, and ¢ denote respectively the number of elements of each
type contained in A. Also let ¢, t,, and ¢, be the number of elements of type 4 centralized
by ,=(A,x), L=(A,y), and Ty= (A, xy) respectively; where G/A = (Ax, Ay) and
Cs(a) = (A, x). Using this notation we now show.

ProrosiTioN 3.2. (i) G/U has order 16 and exponent 2 or 4.
(ii) G/U has p.r.x.(1, B) for any cocycle B of G/U with inf([B]) =[]
(iii) G/U is of y-central type for some cocycle y of G/U with inf([y]) = [1].

Proof. We first note by 3.1 that A is a special subgroup of 7; of index 2 with respect
to the trivial cocycle of T;, so that from 3.5 of 8] |A| = |Z(T)| |T;| for 1 <=i=<3.

Case 1: A contains an element of type 3.

We may assume for notational convenience that a is of type 3. Now the number of
x-invariant elements of Proj(A4, &,) is 0, since a is not a-regular. Let A € Proj(A, a,), then
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we may assume without loss of generality that I;(A) = T,. If this is true for all elements of
Proj(A, a,) then T, is abelian, contrary to the fact that A is more-special. So there exists
A’ € Proj(A, a,) with I(A') = T;. Now let b be any type 3 element, then by the arguments
above Cg(b)=T,. So by 1.8 of [4], 0 =2z — s +¢,; and similarly by considering y and xy,
22+t +t=|A|l=z+r+s+t,sothat z=r+s+¢,. Thusr+2¢,=0, and hence r =t¢, =
0, z =y, and |Z(T})| =2z.

We now consider Tj. We note from the proof of 3.1 that [x', b] is the same element
woforder2forallbeA—Z(T)) and allx' € T, — A. Let ¢,d € A, then

1, ifc,deZ(T))orc,d¢Z(Th);

=]
[ex, dx] w, otherwise.

Similar calculations show that [cx, d] or [c,dx] is 1 or w, and hence T is the group of
order 2 generated by w. Thus [A: U] =4.

Case 2: A contains no element of type 3.

In this case every element of A is a-regular, and a is of type 4. As in the proof of 3.1
we have for ¢ a type 4 element that for all x' € Cs(c) — A, all y' € G ~ Cs(c), and all
b e A with x' ¢ C5(b), that z7'=w =2z #1; where w=[x',b] and z ={y’, c]. Suppose ¢
has C;(c) = T, then it follows that for any type 2 element ‘b’ that [y, b] =[x, b], so that
xy~'e Cg(b)=A, a contradiction. We obtain a similar contradiction if we assume that
Cg(c) = Ty. Thus either r =0, or all type 4 elements ¢ have Cg(c) = T;.

Now |A|=z+r+¢, and A contains z +£~+é conjugacy classes of G. Suppose G
fixes k elements and has m orbits of length 2 in its action on Proj(A, ). Then
IA|=k +2m, and it follows from 1.8 of [4] that k+m =2z +£+§. Thus k=2 -2,
and so z 2%. Now |Z(T)| =z +t; and U = Z(T;), so that z divides ¢, for 1 =i <3. Thus z

divides ¢ and hence r. We conclude that r =0, z, or 2z.

Suppose r =0. Then as in Case 1 we may now show that T has order 2 for 1 <i<3.
Soz+t =t +1;, z+t,=t,+t;3, z+t3=1t, + t,, and hence adding we obtain that ¢t = 3z.
Thus [A: U] =4.

Suppose now r >0. Then |Z(T;)| =z +¢. If r =2z, then |A| =3z +¢. So z + ¢ divides
2z, and since z divides t we conclude that ¢ = z. Thus [A: U] = 4. Finally if r = z, then we
obtain similarly that z + ¢ divides z, which is impossible.

We have thus proved that G/U has order 16, also G/U has p.r.x.(1, 8) for any
cocycle B of G/U with inf([§]) = [@] from 1.2. Now since A is a more-special subgroup of
G of minimal index 4 and [A: U] #2, we have that G has p.r.x.(2, 1) but not p.r.x.(1,1)
by 3.5 of [8] and 2.3. Thus there exists a cocycle y of G/U with inf([y]) =[1] for which
G/U is of y-central type. Finally suppose Ug has order 8 in G/U. Then (U, g) is special
and has index 2 in G, contrary to the definition of A. Thus G/U has exponent 2 or 4.

We can now immediately proceed to classify G/U, and hence prove Theorem 2. The
proof we shall give actually contains additional information about the various cohomology
classes of G/U.

Proof of Theorem 2. Suppose firstly that G/U is abelian. Then by 3.2, G/U has
exponent 2 or 4 and order 16, so G/U=C, X C, X C, X C,, or C; X Cy, or C; x C, X C,.
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Suppose G/U =C, X C, X C, X C,. The set of skew-symmetric 4 X 4 matrices over Z,
consists of 1 matrix of rank 0, 28 of rank 2, and 35 of rank 4. These correspond as in the
proof of Theorem 1 to 1, 28, and 35 cohomology classes of G/U for which G/U has
minimal p.r.x. 0, 1, and 2 respectively.

Suppose G/U =C, x C,. Then M(G/U)=C,. Now consider inf: M(G/U)— M(G).
We have that [a] =inf([8]) for some [B] e M(G/U), and so ker(inf) must be of order 2,
since G does not have p.r.x.(1,1). Thus [B] has order 4, and G/U is of B-central type,
contrary to 3.2(ii).

Finally suppose G/U =C,x C, X C,. Then by 5.4 of [12] the set of elements which
are y-regular for all cocycles of G/U is isomorphic to C,. Thus in this case G/U is not of
y-central type for any cocycle y of G/U, contrary to 3.2(iii). Alternatively Lemma 2 of [1]
also gives this resuit.

Now suppose G/U is non-abelian. Then again since G/U has exponent 4 and order
16 we have that G/U is isomorphic to one of the following five (non-isomorphic) groups:
1. D4 X C,; 2. R, as in the statement of Theorem 2; 3. Q X C,, Q the quaternion group; 4.
(x,y,z2:x*=y2=22=1,xy=yx, zx =xz, yz = zx’y); 5. C4x C,.

In Case 1, M(D4x C))=C, X C, X C, from p. 378 of [13]. Here we may consider
normal cocycles y of Dy X C, as in Proposition 1 of [13], and show that the elements of
order 4 in D, are y-regular for exactly 6 classes [y] of M(D, X C,). For these classes
D, x C, cannot be of y-central type and so must have p.r.x.(1, y). It follows that D, x C,)
has p.r.x. 1 for 6 cohomology classes of Dy X C,, and has minimal p.r.x. 2 for the
remaining 2 classes.

In Case 2, M(R)=C, X C, from p. 378 of [13], and from [5] R has p.r.x. 1 for 3
cohomology classes of R and has minimal p.r.x. 2 for the remaining class.

In Cases 3, 4, or 5 we may consider groups of order 32 with centre of order 2 (see
[14]), and we conclude by using 3.5 of [12] that G/U is not of y-central type for any
cocycle y of G/U, contrary to 3.2(iii).

Finally we give examples to show that groups satisfying Theorem 2 do exist, noting
that examples satisfying Theorem 1 have already been given on p. 456 of [8].

ExampLEs 1. Let G be either of the extra-special 2-groups of order 32. Then G has
an ordinary character of degree 4 by V.16.14 of [6]. We indicated at the end of Section 2
how to show that G has p.r.x.(1, &) for 10 cohomology classes [«] out of the 32 in M(G).
Also for any such class [a], U= Z(G), so that G/U is elementary abelian of order 16.

2. Let G be either of the groups G,, G, of order 32 described in [5]. Then from [5]
G/Z(G)=R, and G has both an ordinary character of degree 4 and p.r.x.(1, a) for the
unique non-trivial cohomology class of G. Also U = Z(G) for [«].

3. Let G be either of the two groups of order 32 with G/Z(G) =D, x C,. Then G" is
cyclic of order 4 from [14]. Also G has an ordinary character of degree 4 by using 3.5 of
[8], or since G has 11 conjugacy classes from [14]. It follows that the kernel of the
inflation homomorphism from G/Z(G) into G has order 2. Now from the proof of
Theorem 2 exactly four classes of M(D, X C,) will inflate to give two classes [«] of M(G)
for which G has p.r.x.(1, @). Lastly U = Z(G) for both such [«].
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