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All groups G considered in this paper are finite and all representations of G are
defined over the field of complex numbers. The reader unfamiliar with projective
representations is referred to [9] for basic definitions and elementary results.

0. Introduction. Let Proj(G, a) denote the set of irreducible projective characters
of a group G with cocycle a. In a previous paper [3] the author showed that if G is a
(p, cr)-group, that is the degrees of the elements of Proj(G, a) are all powers of a prime
number p, then G is solvable. However Isaacs and Passman in [8] were able to give
structural information about a group G for which £(1) divides pe for all §eProj(G, 1),
where 1 denotes the trivial cocycle of G, and indeed classified all such groups in the case
e = l. Their results rely on the fact that G has a normal abelian p-complement, which is
false in general if G is a (p, ar)-group; the alternating group A4 providing an easy
counter-example for p = 2.

The aim of this paper is to at least give a full classification of p -groups G whose
irreducible projective characters with cocycle a all have degree p. In Section 1 we shall
show that a (p, <*)-group G which does not possess a normal abelian p -complement may
be considered unusual, and we shall assume thereafter that G does have such a
complement. Under this assumption Isaacs and Passman's results for ordinary characters
still hold for projective characters, and our interest is focussed on the necessary changes
in the corresponding proofs.

In Section 2 we obtain the following theorem which is the exact analogue of Theorem
II of [8].

THEOREM 1. Let p be an odd prime number, and G be a group with a normal abelian
p-complement. Then every irreducible projective character of G with cocycle a has degree
dividing p if and only if

(i) G is abelian and the cohomology class of a is trivial; or
(ii) G has an abelian normal subgroup A with the cohomology class of aA trivial of

minimal index p; or
(iii) G/U is a group of order p3 and exponent p, where U denotes the set of a-regular

elements of G contained in the centre Z(G) of G.

The case p = 2 is exceptional and is dealt with in Section 3. Let Cn and Dn denote the
cyclic group of order n and the dihedral group of order 2n respectively. Then with
notation as above our results culminate in the following theorem.

THEOREM 2. Let p = 2, and G be a group with a normal abelian 2-complement.
Suppose every irreducible projective character of G with cocycle a has degree dividing 2.
Then G satisfies (i), (ii), or (iii) of Theorem 1 or

(iv) U = Z(G) and G/U = Q> x Q, x Q, x C2, or £>4 x Q , or
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1. Prime power degrees. Let [or] denote the cohomology class of the cocycle a in
the Schur multiplier M(G) of the group G. We start by noting that the degrees of
projective representations are unaffected under projective equivalence, so that if G is a
(p, ar)-group then it is also a (p, )3)-group for [/3] = [a]. Thus in what follows it is no loss
to assume that the cocycle a under consideration is a class-preserving cocycle, such that
0([o-]) = n if and only if ex" is the trivial cocycle of G. We also state and use without
further reference the fact that o([a]) divides §(1) for all £eProj(G, a). Finally for the
remainder of this paper let p be a fixed prime number.

DEFINITION 1.1. A group G is said to have p.r.x.(e, or) (projective representation
exponent e) if there exists a cocycle a of G such that §(1) divides pe for all

For convenience we quote, summarize, and generalize 2.4, 2.7 and 2.8 of [8], and
2.2, 2.3, 2.4, and Theorem B of [3], the proofs where needed can easily be derived from
those given in the relevant paper.

LEMMA 1.2. Let G have p.r.x.(e, a-), N^G, f 6 Proj(JV, aN), and /G(£) denote the
inertia group of £ in G. Then

(i) N has p.r.x.(e, aN);
(ii) if GIN is non-abelian, then N has p.r.x.(e — 1, aN);
(Hi) /C(£)/W has p.r.x.(e,/3) for some cocycle /3 o//G(£)/N, and [G:/G(£)] divides

LEMMA 1.3. Let N^G with G/N a p-group. Suppose G has p.r.x.(e, a) and N has
p.r.x.(e - 1, aN). Then F has p.r.x.(e - 1, aN), where F is the inverse image in G of the
Frattini subgroup of G/N.

LEMMA 1.4. Let G have p.r.x.(e, a), L<G such that [G.L] is coprime to p, and
£ e Proj(L, aL). Then £ extends to G.

THEOREM 1.5. Let G have p.r.x.(e, a). Then G is solvable and has abelian Hall
p'-subgroups.

LEMMA 1.6. Let G have p.r.x.(e,ar) and suppose G has a normal abelian p-
complement. Let H^K^G with K/H an abelian group of order coprime to p. Then

(i) K has p.r.x.(e, aK);
(ii) if H has p.r.x.(/, aH), then K has p.r.x.(/, aK).

Our next aim is to relate the results on projective and ordinary representation
exponents, the following proposition providing the crucial link.

PROPOSITION 1.7. Let G have p.r.x.(e, a), p" = min{£(l):§eProj(G, a)}, and sup-
pose G has a normal abelian p-complement. Then G has p.r.x.(e + a, a") for any integer
n.

Proof. Let 5 be a Sylow p-subgroup of G, and £ e Proj(S, as) of minimum degree.
Then £(1) =p" by Proposition 1 of [2]. Now since 5 is a PM-group there exists a subgroup
T of 5 with [S:T]= pa and A e Proj(7\ ov) with Xs = £.

Let N be the normal abelian p-complement of G, then by 1.6(i) TN has
p.r.x.(e, aTN), and so by 1.4 A extends to fi e Proj(TAf, aTN). Thus [aTN] = [1], so that G
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is a (p, <*")-group for any integer n by Theorem 2 of [11], and since [G:TN]=pa it
follows that G has p.r.x.(e + a, a").

The above result allows us to generalize Theorem I of [8] as follows.

THEOREM 1.8. Let G have p.r.x.(e, a) and suppose G has a normal abelian
p-complement. Then G has a series of subgroups

such that Ao is abelian, [aAo] = [1], and AJAt-x is an elementary abelian p-group with not
more than 2(i + a) + 1 generators; where p" = min{£(l): £ e Proj(G, a-)}. Hence G has an
abelian subgroup Ao with [aAo] = [1] whose index divides pe(e+2a+2\

Proof. We proceed by induction on e, noting that if A is a subnormal subgroup of G
then min{£(l): £eProj(.<4, aA)} divides p". Thus it suffices to prove that there exists a
normal subgroup Ae_x of G, such that Ae_x has p.r.x.(e — 1, <xAe_,) and GlAe_x is an
elementary abelian p-group of order <p2(<!+a)+1.

Suppose G is abelian. Then Proj(G, a-) all have the same degree. Let U denote the
set of ar-regular elements of G and § e Proj(G, a). Then U has p.r.x.(0, av), fy = §(l)A
for some A e Pro](U, ary), and £(g) = 0 for g e G - U. Thus [«-„] = [1] and [G: U] = p . If
U = G there is nothing to prove, whereas if U<G we may let Ae_x be a maximal
subgroup of G with U^Ae_x<G. Then [G:/le_i] =p, and Ae_{ has p.r.x.(e - 1, aAel)
from above.

Suppose G is non-abelian. Let N<1G be maximal such that GIN is non-abelian and
set G = GIN. Let H be the inverse image in G of the normal abelian p-complement of G.
Then N has p.r.x.(e — 1, aN) by 1.2, and H has p.r.x.(e — 1, aH) by 1.6.

Case 1: H = H/N is a non-trivial subgroup of G.
In this case G is a Frobenius group with an abelian Frobenius complement, G' is the
Frobenius kernel and is an elementary abelian group. It follows that G' <H, and H is
both a maximal abelian normal subgroup of G and a <?-group for some prime q i=p. By
2.9 of [8] and 12.3 of [7] we conclude that H = G'. Now it follows from 12.4 of [7] that if
t e Proj(//, aH), then [G://]£(l) is the degree of an element of Proj(G, a-). Thus
[G:H]sp'.

Finally let Ae_{ be the inverse image in G of the Frattini subgroup of G/H. Then by
1.3 Ae_i has p.r.x.(e — l,aA_), and G/Ae_i is an elementary abelian p-group of order
<pe.

Case 2: G is a p-group.
In this case let Ae_x be the inverse image in G of the Frattini subgroup of G. Then by 1.3
y4e_! has p.r.x.(e — 1, aAr ,). Also by Case 2 p. 451 of [8] and 1.7, G M t . , is an
elementary abelian p-group of order <p2(e+o)+1.

We now state a derivative of the theorem which we shall use in Section 2.

COROLLARY 1.9. Let G have p.r.x.(e, or), and suppose G has a normal abelian
p-complement and an abelian Sylow p-subgroup. Then G has a series of subgroups

such that Ao is abelian, [o^J = [1], and AjA^i is an elementary abelian p-group with not
more than i generators. Hence G has an abelian subgroup Ao with [aAo] = [1] whose index
divides pe(e+1)/2.
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Proof. The result follows from the proof of 1.8 by strengthening the inductive
hypothesis and noting that Case 2 of that proof cannot occur.

Let G have p.r.x.(e, a). Then the previous two results have relied on the assumption
that G has a normal abelian p-complement. The last two results in this section deal with
the circumstances under which this assumption is tenable.

It is convenient in what follows to call a group H an Frgxowp if H is a Frobenius
group of order p'q, where q is a prime number such that q divides p' — 1, and the
Frobenius kernel of H is an elementary abelian group of order p'.

LEMMA 1.10. Let G be an Frgroup with Frobenius kernel S, and suppose G is a
(p, a)-group. Then Proj(G,ar) consists of q-extensions of the unique element of
Proj(5, as).

Proof. Let £ e Proj(5, as). Then it follows from 12.4 of [7] that £(1)2 = |5|. Also £
extends to G by 1.4.

To illustrate the above lemma we may take p = 2 and then A^ is the only example of
an i^-group which also has p.r.x.(l, a), for [a] the non-trivial element of M(A4). We also
note for future reference that if or is a cocycle of a group G such that |Proj(G, a)\ = 1,
then G is said to be of ar-central type.

If N is a normal subgroup of a group G, we shall let inf denote the inflation
homomorphism from M(G/N) into M(G).

PROPOSITION 1.11. Let G be a group of minimal order which has p.r.x.(e, a) but does
not possess a normal abelian p-complement. Let K<\G be maximal such that G/K is
non-abelian. Then G/K is an Frgroup for l < / < 2 a , where p" = min{§(l):£e
Proj(G, *)}.

In particular if a = 1, then either G/K is an F2-group which has p.r.x.(l, j8) for some
cocycle /S of G/K with inf([/J]) = [a], or G/K is an Frgroup.

Proof. Let L/K = (G/K)'. Then by 12.3 and 12.4 of [7] and 1.5, all the non-linear
irreducible ordinary characters of G/K have equal degree / , G/K is a Frobenius group
with an abelian Frobenius complement of order / and an elementary abelian Frobenius
kernel L/K; also if £eProj(L, aL) then K(£)< K and [L:K] divides £(1)2, where K(£)
denotes the vanishing-off subgroup of £. Thus [L: K] divides p2" and / divides [L: K] - 1.
Now let T be a maximal normal subgroup of G containing L. Then by 1.2, T and hence
T/K have normal abelian p-complements. Since / is coprime to p, it follows that T = L
and / = q for some prime q = [G: L].

It remains to show that if a = 1 and G/K is an i^-group, then G/K has p.r.x.(l, /3)
for some cocycle )3 of G/K with inf([)3]) = [a]. Let £eProj(G, a-) with §( l )=p . Then
§L = £ for some £ e Proj(L, aL), since [G:L] = q. However, the inner product
UK, IK) =P2 since F(£) < K, and so ZK=pX for some A e Proj(/C, aK). Thus /G(A) = G,
and the desired result follows from 1.2 and 1.10.

2. Prime degree. Throughout Section 2 we shall assume that G is a group having
p.r.x.(l, a) and a normal abelian p-complement.

DEFINITION 2.1. A subgroup A of G is said to be special if
(i) A is an abelian normal subgroup of G such that [aA] = [1];

(ii) G/A is an elementary abelian p-group;
(iii) if A < B, then either B is non-abelian or B is abelian but [aB] # [1].
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It is convenient to call the special subgroup A more-special if A < B implies B is
non-abelian, and less-special otherwise. We note that with the assumptions made above
1.8 yields a special subgroup of G of index dividing p5.

LEMMA 2.2. Suppose p is odd, and let A be a special subgroup of G. Then each
element aeA has Ca(a) = AorG, where Ca{a) = {x e CG(a): a(a,x) = a(x, a)}.

Proof. If aeA, then A < Ca(a) since [aA] = [1]. Thus the result is trivial if

Now suppose aeA with A < Ca(a) < G. Choose x e Ca(a) - A and v e G - Ca(a),
and set K= (A,x,y). By (ii) of 2.1 it is clear that [K:A] = p2. Since x$A, B = (A,x) is
either non-abelian or is abelian with [a-B]=£[l]. In either case there exists beA with
x $ Ca{b). Let z denote the element z eG viewed as an element of the twisted group
algebra CGa. Then u = ( i ) " 1 ^ ) " 1 ^ and v = (y)~\a)~lya are non-identity elements of
CAaA. Now by working in CAaA the proof of 3.3 of [8] carries over to our situation to give
a contradiction, provided that 1 + uv =£ u + v. However writing u = cw and v = kz, where
w = [x, b], z = [y, a] and c, k are pth roots of unity; we have that 1 + uv = u + v if and
only if z~l = w = zi=\, k = —c, p = 2, and a(w, w) = 1.

We note in the context of 2.2 that HA is more-special then replacing Ca(a) by Cc(a)
in the proof yields that Cc(a) = A or G for each aeA, provided that 1 + uv ¥= u + v. This
observation coupled with the lemma allows us to describe the cr-regular elements of a
special subgroup of G. Let U = {z eZ(G):z is ar-regular}, the reader may refer to [12]
for various characterizations of U.

LEMMA 2.3. Let A be a special subgroup of G and suppose [G:A]¥=p. Then
A n Z(G) = U. In particular if A is more-special then U = Z(G).

Proof. Clearly U<A by definition of A, and also Z{G)<A if A is more-special.
Let K = A D Z(G). Then by 2.2 (and its proof in the case p = 2) each a e K has Ca(a) = A
or G. Let Ae Pro)(K, aK), then Xx = A if and only if a{a, x) = a(x, a) for all a e K.
Thus /G(A) = Pi Ca(a) =A or G. If 7C(A) =A, then A has [G:A] conjugates. Since G has

aeK

p.r.x.(l, a) we conclude that K = U.
For the rest of this section we shall assume that if A is a special subgroup of G then

Ca(a) = A or G for each aeA, we shall also assume that CG(a) = A or G for each aeA
when A is more-special. Of course these assumptions are certainly valid for p =£2 by 2.2,
and will be discussed in detail for p = 2 in Section 3.

PROPOSITION 2.4. Let A be a special subgroup of G and suppose [G:A]¥:p. Then
every element of A is a-regular if A is more-special, whereas the elements of U are the
a-regular elements of A if A is less-special.

Proof. Suppose aeA-U. Then Ca(a) = A. However using 2.3 we have that
CG(fl) = A it A is more-special, whereas A<CG(a) it A is less-special.

We next show that U has index p in a special subgroup A with [G :A] >p. This will
enable us to classify G/U in subsequent results.

PROPOSITION 2.5. Let A be a special subgroup of G of index p'.
(a) If t > l or t = l and A is less-special, then [A :U]= p .
( b ) Ift = landAis more-special, then p \Z(G)\ \G'\ = \G\.
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Proof. Suppose first that A is less-special. Let B be an abelian group with [B :A]=p.
Then [aB] # [1], so that all elements of Proj(B, aB) have degree p and vanish o n f l - A
Let T denote the set of a-B-regular elements of B. Then since B is abelian it follows as in
the proof of 1.8 that [A : T] = p, and all elements of Proj(B, aB) are non-zero exactly on
T. From 2.4 (or trivially if B = G) we conclude that T = U, since every element of
Proj(G, a) restricts irreducibly to B.

Now suppose A is more-special. Suppose also t > 1. Then by 1.8 of [3], 2.3, 2.4, and
the proof of 3.5 of [8] we obtain the equation

\U\ (p1 - 1) = \A\ (p-1 - 1) + kip'-p'-1), (1)

where k is the number of G-invariant elements of Proj(/4, aA). Suppose k = 0, then
p'~l - 1 divides p' — 1, which is impossible. Thus there exists a G-invariant element of
Proj(>l, aA). Let Q be the Sylow p-subgroup of A, then it follows from 1.2 that G/Q has
p.r.x.(l, fi) for some cocycle 6 of G/Q such that inf([/3]) = [<*]. The proof of 3.4 of [8],
and 1.9 now yield that the normal abelian p-complement of G is central. Thus since
[A : U] is a power of p, we obtain from (1) that [A :U]=p. Suppose now t = 1. Then G is
non-abelian and has p.r.x.(l, 1), so that (b) is just 3.5(b) of [8]. (Note: the proof of 3.5(b)
of [8] is independent of the assumption that G is a p-group.)

LEMMA 2.6. Suppose A is a special subgroup of G of minimal index p', where t > 1 or
t = \ and A is less-special. Then

(i) G/U has exponent p;
(ii) GIT is abelian for any T with U<T^G;

(iii) // G/U is non-abelian, then A/U = (G/U)' is the unique minimal normal
subgroup of G/U.

Proof, (i) Suppose there exists an element x of order p2 in G/U. Then xp eA — U,
so that A is a proper subgroup of {x, U) since [A: U] =p by 2.5. But (x, U) is a special
subgroup of G, contrary to the minimality of [G :A\.

(ii) Suppose there exists T<G with U <T such that G/T is non-abelian. Then T is
abelian with [aT] = [1] by 1.2. Let Fbe the inverse image in G of the Frattini subgroup of
G/T. Then F is abelian with [aF] = [1] by 1.3, but [G:F]< [G:A] by 2.5, a contradiction.

(iii) If G/U is non-abelian, then by (ii) U is a maximal normal subgroup of G such
that G/U is non-abelian. Thus (G/U)' = A/U is the unique minimal normal subgroup of
G.

We can now prove Theorem 1, noting that the proof we shall give still holds in the
case p = 2, provided that all special subgroups of G of minimal index satisfy the
assumptions of this section.

Proof of Theorem 1. Let A be a special subgroup of G of minimal index p', so that
t < 5 by 1.8. If t = 0 or 1, then G satisfies (i) or (ii) respectively. Also if [a] = [1], then G
satisfies (i), (ii) or (iii) by Theorem II of [8]. So suppose t> 1 and [a] ̂  [1]. Then by 2.5
and 2.6, G/U has exponent p and order p'+l, and if G/U is non-abelian (so p =£2) it must
be an extra-special p-group of order p3 or p5, since in this case Z(G/U) is cyclic.

Stage 1: If t > 3, G/U is not elementary abelian.
Let x e G - U. Then (x, U) is a special subgroup of G, so that Ca(x)=A from 2.2.

Thus every a-regular conjugacy class of G contains either 1 or p' elements. Let u = \U\

https://doi.org/10.1017/S0017089500008387 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008387


PROJECTIVE CHARACTERS OF PRIME DEGREE 317

and [r] temporarily denote the integral part of the real number r. Then G has at most
u + [(|G| — u)lp'] = u + [u{p'+x — \)lp'] a--regular conjugacy classes. But we know that G
has exactly \G\/p2 = up'~l ar-regular conjugacy classes, since G has p.r.x.(l, a) and
[a]#[ l ] . So we certainly require that 1 + p~'(p'+l - l ) ^ p ' ~ ' i.e. p' - 1 >p'+l(p'-2- 1),
which is clearly impossible for t > 3.

Stage 2: G/U is not an extra-special group of order p5.
Let G = G/U and Z = A/U. Then from the proof of 3.3.6 of [10], inf:M(G/Z)->

M(G) is a surjection with kernel of order p. Let j5 be a cocycle of G/Z such that
ker(inf) = <[/3]> and /8P = 1. Then by V.16.14 of [6] only the identity element of G/Z is
/3'-regular for l < i < p —1. Now each %ePro)(G,a) has ^,u = pk for some Ae
Proj(£/, ay). It follows from 1.2 both that there exist cocycles a of G/£/ with [a] inflated
to G equal to [a], and that G/U has p.r.x.(l, or) for each such dr. Similarly, since every
element of Z is d--regular, there exist cocycles p"y for 0 s i < p - 1 with inf([y]) = [dr] for
which G/Z has p.r.x.(l, /3'y)- We thus require that G/Z contains exactly p2 J3'y-regular
elements for each i with 0 s i <p - 1.

Let G/Z = (JTI) x . . . x (x4), and f}(Xj,Xj) = toc", where to is a non-trivialpth root of
unity. Let C be the skew-symmetric matrix whose (i,y)th entry is c,y for j>L Then
jet1 • • • x%4 is j8-regular if and only if Cb = 0 in Z*, where & = [6,,. . . , &4]

r. Now since no
non-trivial element of G/Z is ^-regular we have that C has rank 4, and so there exists
MeGL(4,p) with

0 1 0 0"

MTCM =
- 1 0 0 0

0 0 0 1
0 0 - 1 0

0
—a
-b
—c

a
0

-d
—e

b
d
0

-f

c
e

f
0

Let D be the matrix constructed from y in the same way, then we require that
MTDM + iMTCM has rank 2 for 0 < i </> - 1. So if

MTDM =

we must have that (« + i)(f + i) + be — cd = 0 for 0 s i <p — 1. Setting i = —a gives
be-cd = 0, and we are left with (a + i)(f + i) = 0 for 0 ^ / ^p - 1, which is impossible
for p > 3.

Stages 1 and 2 thus yield that G/U is of type (iii).
The converse statement in the theorem is proved in essentially the same way as that

of Theorem II of [8].
As an immediate and perhaps surprising corollary of Theorem 1 we obtain the

following stronger version of 1.7.

COROLLARY 2.7. Let p be odd and let G have p.r.x.(l, a). Suppose G has a normal
abelian p-complement. Then G has p.r.x.(l, a") for any integer n.

To conclude this section we note that if we allow p = 2 in the matrix calculations of
stage 2 above, then we find that the extra-special 2-groups G of order 32 have p.r.x.(l, a)
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for 10 cohomology classes out of the 32 in M(G). Since these groups are not classified by
Theorem 1 (with p = 2), they provide counter-examples to the results of 2.2 and will be
dealt with in the following section.

3. Degree two. In this section we shall deal exclusively with a group G having
p.r.x.(l, a) and a normal abelian p-complement which is not classified by Theorem 1. In
particular then p = 2, and we can assume that there exists a special subgroup A of G of
minimal index 2 '>2, with an element aeA such that either A<Ca(a)<G or A is
more-special and A < CG(a) < G. With this notation fixed for the duration of this section
we can now prove.

PROPOSITION 3.1. A is more-special and G/A is an elementary abelian group of order
4.

Proof. Let C(a) denote Ca{a) or if A is more-special Cc(a). Then we may treat the
two separate possibilities above simultaneously. Now the proof of 2.2 yields for all
xeC(a)-A, all y sG-C(a), and all beA with x$C(b), that z~1 = w = z¥=l, where
w = [x, b] and z = [y, a]. If C{a) = Ca(a) this gives that a is a--regular, and then that A
must be more-special, otherwise we can obtain that z or w = 1 respectively. Thus A is
more-special and C(a) = CG(a).

Now for any choice of yl,y2eG - CG(a) we must have that [y\,a\ = [y2, a] i.e.
y\yzX£CG{a), so that [G:CG(a)] = 2. By 2.5 of [8] there exists a subgroup T of G of
index 2 with A< T, such that T has p.r.x.(l, aT) and [aT] = [1]. Clearly A is a special
subgroup of T, so that by 3.3 of [8] or 2.2 CaT{a) = CT{a)=A or C«T{a) = CT{a) = T.

In the former case there exists g eG -T with g eCG(a), and since g2 e T we have
that g2eA. Thus in this case it follows that Ca(a) = CG(a) = (A,g) or Ca(a)=A and
CG(a)=(A,g).

In the latter case we conclude by 2.3 that Ca(a) = CG(a) = T. In this case if T is the
unique subgroup of G satisfying 2.5 of [8] then T must be abelian, contrary to the fact
that A is more-special. So we may let S be another subgroup of G of index 2 with the
same properties as T. Then as before Cs(a) = A or 5. Since ST = G, we must have that
Cs(a) = A, and the desired results follows as in the first case.

By 3.1 each element b of A is classified into one of four types according to whether 1.
beU = Z(G); 2. Ca{b) = A = CG(b); 3. Ca{b) = A and [G: CG(b)] = 2; 4. Ca(b) = CG(b)
and [G: CG(b)] = 2. Let z, r, s, and t denote respectively the number of elements of each
type contained in A. Also let tu t2, and f3 be the number of elements of type 4 centralized
by Tx= (A,x), T2= (A, v), and T3= (A,xy) respectively; where G/A = {Ax, Ay) and
Cc(a) = (A,x). Using this notation we now show.

PROPOSITION 3.2. (i) G/U has order 16 and exponent 2 or 4.
(ii) G/U has p.r.x.(l, /S) for any cocycle ft of G/U with inf([/3]) = [or],
(iii) G/U is of y-central type for some cocycle y of G/U with inf([y]) = [1].

Proof. We first note by 3.1 that A is a special subgroup of 7̂  of index 2 with respect
to the trivial cocycle of Th so that from 3.5 of [8] \A\ = \Z{T,)\ \T't\ for 1 < i <3 .

Case 1: A contains an element of type 3.
We may assume for notational convenience that a is of type 3. Now the number of

x-invariant elements of Proj(/4, aA) is 0, since a is not ar-regular. Let A e ?ro)(A, aA), then
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we may assume without loss of generality that /G(A) = T2. If this is true for all elements of
Proj(/4, aA) then T2 is abelian, contrary to the fact that A is more-special. So there exists
A' e Pro')(A, aA) with /c(A') = T3. Now let b be any type 3 element, then by the arguments
above Cc(b) = Tx. So by 1.8 of [4], 0 = z — s + tx; and similarly by considering y and xy,
2z +12 + h = \A\ = z + r + 5 + f, so that z = r + s + ft. Thus r + 2tx = 0, and hence r = tx =
0, z = s , and |Z(7i)| = 2z.

We now consider TJ. We note from the proof of 3.1 that [x',b] is the same element
w of order 2 for all b eA - Z(TX) and all x' eTx-A. Let c,deA, then

, if c,d e Z(r,) ore , d $ Z(TX);
, otherwise.

Similar calculations show that [cc,d] or [c,djc] is 1 or w, and hence T'x is the group of
order 2 generated by w. Thus [>1: £/] = 4.

Case 2: v4 contains no element of type 3.
In this case every element of A is a-regular, and a is of type 4. As in the proof of 3.1

we have for c a type 4 element that for all x' e CG(c) — A, all y' eG — Cc(c), and all
b eA with x' $ CG{b), that z~l = w = z =£ 1; where w = [x\ b] and z = [y \ c]. Suppose c
has Cc(c) = T2, then it follows that for any type 2 element 'b' that [_y, 6] = [x, b], so that
xy~l e CG(b) =A, a contradiction. We obtain a similar contradiction if we assume that
CG(c) = T3. Thus either r = 0, or all type 4 elements c have CG{c) = 7}.

Now \A\ = z + r + t, and A contains z + - + - conjugacy classes of G. Suppose G

fixes k elements and has m orbits of length 2 in its action on Proj(^4, aA). Then

\A\-k + 2m, and it follows from 1.8 of [4] that k + m = z +- + -. Thus k = z—-,

and so z >£. Now |Z(7;)| = z + f, and (/ < Z{Tt), so that z divides i, for 1 < i < 3. Thus z

divides t and hence r. We conclude that r = 0, z, or 2z.
Suppose r = 0. Then as in Case 1 we may now show that Tl has order 2 for 1 =s i =s 3.

So z + fi = t2 + '3, z + f2
 = '1 + h-> z + '3 = f 1 + f2>

 a n d hence adding we obtain that t = 3z.
Thus [A:U] = 4.

Suppose now r >0. Then |Z(71)| = z +1. If r = 2z, then |A| = 3z +1. So z +1 divides
2z, and since z divides f we conclude that t = z. Thus [.<4 : (/] = 4. Finally if r = z, then we
obtain similarly that z +1 divides z, which is impossible.

We have thus proved that G/U has order 16, also G/U has p.r.x.(l, jS) for any
cocycle p of G/U with inf([/S]) = [a] from 1.2. Now since A is a more-special subgroup of
G of minimal index 4 and [/I: (/] =£2, we have that G has p.r.x.(2,1) but not p.r.x.(l, 1)
by 3.5 of [8] and 2.3. Thus there exists a cocycle y of G/U with inf([y]) = [1] for which
G/U is of y-central type. Finally suppose Ug has order 8 in G/U. Then (U,g) is special
and has index 2 in G, contrary to the definition of A. Thus G/U has exponent 2 or 4.

We can now immediately proceed to classify G/U, and hence prove Theorem 2. The
proof we shall give actually contains additional information about the various cohomology
classes of G/U.

Proof of Theorem 2. Suppose firstly that G/U is abelian. Then by 3.2, G/U has
exponent 2 or 4 and order 16, so G/U = C2 x Q x Q, x Q , or C4 x C4, or C4 x Q, x Q .
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Suppose G/U s C2 x C2 x C2 x C2. The set of skew-symmetric 4 x 4 matrices over Z2

consists of 1 matrix of rank 0, 28 of rank 2, and 35 of rank 4. These correspond as in the
proof of Theorem 1 to 1, 28, and 35 cohomology classes of G/U for which G/U has
minimal p.r.x. 0, 1, and 2 respectively.

Suppose G / l / s C 4 x C 4 . Then M ( G / ( / ) s Q . Now consider inf:M{G/U)^> M{G).
We have that [a] = inf([/3]) for some [/3] e M(G/U), and so ker(inf) must be of order 2,
since G does not have p.r.x.(l, 1). Thus [/S] has order 4, and G/U is of /3-central type,
contrary to 3.2(ii).

Finally suppose G/U = C4 x C2 x Q . Then by 5.4 of [12] the set of elements which
are y-regular for all cocycles of G/U is isomorphic to Q . Thus in this case G/U is not of
y-central type for any cocycle y of G/U, contrary to 3.2(iii). Alternatively Lemma 2 of [1]
also gives this result.

Now suppose G/U is non-abelian. Then again since G/U has exponent 4 and order
16 we have that G/U is isomorphic to one of the following five (non-isomorphic) groups:
1. D4 X Cj; 2. R, as in the statement of Theorem 2; 3. Q X Q , Q the quaternion group; 4.
(x,y,z:x4 = y2 = z2 = 1, xy = yx, zx =xz, yz = zx2y); 5. C4x C4.

In Case 1, M(D4 x Q) s Q, x Q, x C2 from p. 378 of [13]. Here we may consider
normal cocycles 7 of D4 x Q as in Proposition 1 of [13], and show that the elements of
order 4 in D4 are y-regular for exactly 6 classes [y] of M(D4 x C2). For these classes
D4 X Q cannot be of y-central type and so must have p.r.x.(l, y). It follows that D4 x Q )
has p.r.x. 1 for 6 cohomology classes of D4 x C2, and has minimal p.r.x. 2 for the
remaining 2 classes.

In Case 2, A ^ R ^ Q - x Q , from p. 378 of [13], and from [5] R has p.r.x. 1 for 3
cohomology classes of R and has minimal p.r.x. 2 for the remaining class.

In Cases 3, 4, or 5 we may consider groups of order 32 with centre of order 2 (see
[14]), and we conclude by using 3.5 of [12] that G/U is not of y-central type for any
cocycle y of G/U, contrary to 3.2(iii).

Finally we give examples to show that groups satisfying Theorem 2 do exist, noting
that examples satisfying Theorem 1 have already been given on p. 456 of [8].

EXAMPLES 1. Let G be either of the extra-special 2-groups of order 32. Then G has
an ordinary character of degree 4 by V.16.14 of [6]. We indicated at the end of Section 2
how to show that G has p.r.x.(l, a) for 10 cohomology classes [a-] out of the 32 in M(G).
Also for any such class [or], U = Z(G), so that G/U is elementary abelian of order 16.

2. Let G be either of the groups Gu G2 of order 32 described in [5]. Then from [5]
G/Z(G) = R, and G has both an ordinary character of degree 4 and p.r.x.(l, a) for the
unique non-trivial cohomology class of G. Also U = Z(G) for [or].

3. Let G be either of the two groups of order 32 with G/Z(G) s ^ x Q . Then G' is
cyclic of order 4 from [14]. Also G has an ordinary character of degree 4 by using 3.5 of
[8], or since G has 11 conjugacy classes from [14]. It follows that the kernel of the
inflation homomorphism from G/Z(G) into G has order 2. Now from the proof of
Theorem 2 exactly four classes of M(D4 x Q ) will inflate to give two classes [a-] of M(G)
for which G has p.r.x.(l, a-). Lastly U = Z(G) for both such [a].
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