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Abstract

In this note semi inner product spaces over quaternions are studied. We investigate the properties of
complex strict convexity over C, left and right (^-complex strict convexity over Q, and left and right
quaternion strict convexity. Finally we discuss the permanence properties with respect to formation of
products.
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1. Introduction

Lumer (1961) introduced the concept of semi inner product spaces over K
(K = R or C). Generalising this concept Torgashev (1974) introduced the concept
of semi inner product spaces over quaternions and studied some of its properties.
In this note, we obtain some further results on semi inner product spaces over
quaternions.

Throp and Whitley (1967) introduced the concept of complex extreme points
for studying the Banach space valued analytic functions. Later on, Istratescu
(1979a, 1979b) studied complex extreme points and complex strictly convex
spaces in detail. Here we give a sufficient condition for complex strict convexity
over C or Q. We also introduce and study left and right quaternion strictly convex
spaces.
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In particular characterizations of left and right quaternion strict convexity of
product space with /̂ ,-norm are given. Here vector spaces over quaternions and
normed spaces over quaternions are all in the sense of Torgashev (1974).

2. Left and right semi inner product spaces

We recalll the following from Torgashev (1974).

DEFINITION 2.1. Let I be a vector space over Q. Then a s.i.p on X is a
functional ( , ) : X X X -» Q satisfying the following properties:

(a) (x + x', y) = (x, y) + (x', y),
(b') (\x, y) = X(x, y%
(b")(x,Xy) = (x,y)X,

(c) (x, x) s* 0, = 0 only if x = 0,
(d)\(x,y)\2^(x,x)-(y,y)

for each x, x', y G X and each X G Q.

NOTE 2.2. We shall call a functional ( , ) as defined above a left s.i.p. A vector
space X over Q with a left s.i.p. will be called a left s.i.p. space over Q.

We now introduce the notion of right s.i.p. in the following way.

DEFINITION 2.3. A right s.i.p. on a vector space X over Q is a functional ( , >:
X X X -> Q satisfying the following properties:

(a)(x + x',y)=(x,y)+(x\y),
(b')(xX,y)=(x,y)X,
(b")(x,yX)=X(x,_y),
(b'")(Xx,y)=(x,Xy),
{c)(x,x)>0, = 0 only if x = 0,
(d)\(x,y)\2<(x,x)-(y,y)

for each x, x', y G X and each X G Q.

NOTE 2.4. When the field of scalars is R or C then the notion of left and right
s.i.p. coincides with the notion of s.i.p. introduced by Lumer (1961) and Giles
(1967).

We quote the following result which is straightforward from the generalised
Hahn-Banach theorem.
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THEOREM 2.5. Let X be a normed space over Q. For each arbitrary x0 G X
(JC0 T6 0) there exist functional f, E Xf andfr E X* such thatf,{x0) = ||xo||, \)f,\\ = 1
andfr(x0) = \\xo\\, ||/r|| = 1. Here Xf (X*) is the space of all bounded left (right)
linear functional on X.

It can be easily verified that every left and right s.i.p. space over Q is a normed
space over Q.

Lumer (1961) has shown that every normed space over R or C can be
represented as a s.i.p. space (in general in infinitely many different ways); we now
generalise this result as follows.

THEOREM 2.6. Every normed space over Q can be represented as a left s.i.p.
space over Q (in general in infinitely many different ways).

PROOF. Let us introduce on the unit sphere 5 of X an equivalence relation ~ by
sf ~ s2 if and only if there exist a,, a2 E Q (|a, | = | a 2 l = 1) s u c n t n a t s\ — «,52«2

(a, and a2 are unique). Let So be any equivalence class. By the axiom of choice,
we can select an element s0 E 50. Now by the generalised Hahn Banach theorem,
there exists an fs E X* such that fs(s0) = 1 and | | / s || = 1. For each s E 50>

s = alSoa2 (|ot, | = | a 2 | = 1). We define fs = / a , S o a 2 = «2/s0«i- Since fSf> is a left
linear functional then so also is / s .

Now fs(s) = (a2/S oa,) (a{soa2) = (a2fSo) (axsoa2)ai = /So(a,5oa2a2)tt, = 1.
For arbitrary y E X(y =£ 0),

y = \ \ y \ \ - s = \ \ y \ \ a x s Q a 2 ( | a , | = | a 2 | = \ , s Q E S Q ) .

We define fy = \\y\\fs = \\y\\a2fsax and f0 = 0. Now let j8 E g and y3 = | j 8 | ^
(| A, |= 1). T h e n / ; , , _ = / M o Q | S o t t 2 = | j8 | •||>'||52/So«li8o = fyfi.

Similarly,/,, = pfy.
We define a transformation W: X -» Af, ^ ( 7 ) = / v . Then from above, this

transformation has the following properties:

3) / v / J =
4)\\fy\\
For each x j E l , we define (x, y) = fy(x). Then it can be easily verified that

this defines a left s.i.p. on X. Hence X is a left s.i.p. space over Q. In general there
are many such mappings W from X to X*. Therefore X can be represented as a
left s.i.p. space over Q in infinitely many different ways.

By symmetry, the following result also holds.
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THEOREM 2.7. Every normed space over Q can be represented as a right s.i.p.
space over Q (in general in infinitely many different ways).

NOTE 2.8. Torgashev (1974), in Theorem 1, has proved that every normed space
over Q can be represented as a left s.i.p. with properties (b') and (b") of
Definition 2.1.

NOTE 2.9. Let A1 be a normed space over Q. Then X is also a normed space over
R, which will be denoted by XR. If/0 is any real linear functional on XR we define
for xEX,

(1) //(*) =/o(*) - '/o(«) -JfoUx) - kfo{kx)
and

(2) fr( x) = /„( x) - ifo( xi) - jf/0( xj) - kfo( xk ),

Then/, E Xf and/ e Xr*.
Conversely, if /, and /r are elements of Xf and X* respectively such that

Re(/,) = Re(/) = /0 (say), then/0 is a real linear functional on XR, and further//
and/, satisfy (1) and (2). Now we define the map T: Xf -> X* by T(f,)= fr where
/, and/, are given by (1) and (2). Then it can be easily verified that ||/,||

//)ll = ll/rll a nd hence T is a real linear isometry from Xf onto Xf.

We now show that left and right s.i.p. products are equivalent in a certain
sense.

THEOREM 2.10. Let ( , ) be a left s.i.p. on a normed space X over Q. Then a right
s.i.p. ( , > can be derived, and conversely.

PROOF. Let ( , ) be a left s.i.p. on X. Suppose [x, y] — Re(x, y) for all x,y £ X.
Then [ , ] is a real s.i.p. on XR and (x, y) = [x, y] — i[ix, y] —j[jx, y] —
k[kx, y]. From this, [x, x] — (x, x) = ||x||2 and [ix, x] = [jx, x] — [kx, x] = 0
for all x G X.

Let \ E Q and X = ax + ia2 + ja3 + kaA say. Now

(i.) [\x, y] = ax[x, y] + a2[ix, y] + a3[jx, y] + a^kx, y].

Again,

(ii) [x, Xy] = Re(x, Xy) = Re{(x, y)X) = [Xx, y]
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and

(iii) [x, yX] = Re(x, yX) = Re{xX, y)

= "A*, y] ~ a2[xi, y] ~ a3[xj, y] - a4[xk, y].

Let us define a functional ( , ) on X by

(x,y)= [x, y] - i[xi, y] -j[xj,y] - k[xk, y].

Then we have
(a) (x + z, y)= (x, y)+ (z, y),
(b') (xX, y)= [xX, y] - i[x\i, y] -j[xXj, y] - k[xXk, y] = (x, y)X,
(b")(x, yX)= [x, yX] - i[xi, yX] - j[xj, yX] - k[xk, yX] = X(x, j),by the

relation (iii),
(b'") (Xx,y)=[Xx,y]-i[Xxi,y]-j[Xxj,y]-k[Xxk,y] = (x,Xy), by

the relation (ii),
(c)(x,x)>0, = 0 only if x = 0,
(d) by Note 2.9 and the Cauchy-Schwarz inequality for the real s.i.p. [ , ], we

K^HINWI
Therefore ( , > defines a right s.i.p. on X. The converse statement is proved

similarly.

NOTE 2.11. Though left and right s.i.p. products are equivalent in a certain
sense, they are needed for studying the interconnection between left and right
complex strictly convex, (^-complex strictly convex and quaternion strictly convex
spaces.

Further, let us recall that Torgashev (1976) defined the numerical range of a
right linear operator by using left linear functional. But a left s.i.p. is nothing but
a set of left linear functionals.

We now give a characterization of Hilbert spaces over Q.

THEOREM 2.12. Let X be a Banach space over Q. If there exists a left s.i.p. on X
such that (x, y) + (y, x) is real for all x, y G X, then X is a Hilbert space.

PROOF. Suppose ( , ) is a left s.i.p. on X which satisfies the condition that, for
all x, y G X,

(i) (x, y).+ (y, x) is real. Now in (i), by replacing x by ix we have
(ii) i(x, y) — (y, x)i is real. From the conditions (i) and (ii) we have (x, y) =

(y, x). Thus ( , ) is an inner product on A' in the sense of Torgashev (1974). Hence
X is a Hilbert space.
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3. Strict convexity

We now introduce the concept of strict convexity in normed spaces over Q.

DEFINITION 3.1. Let A' be a normed space over Q. We say X is left (right)
strictly convex if and only if every non-zero continuous left (right) linear
functional attains its maximum on the unit sphere at most at one point.

THEOREM 3.2. A left {right) linear functional attains its maximum on the unit
sphere at a unique point if and only if it's real part attains its maximum on the unit
sphere at a unique point.

PROOF. The result follows from Note 2.9.

THEOREM 3.3. Let T be the map defined in Note 2.9. Then a left linear functional
f, attains its maximum on the unit sphere at a unique point if and only if T(fj)
attains its maximum on the unit sphere at a unique point.

PROOF. The result follows from Note 2.9 and Theorem 3.2.

NOTE 3.4. From Theorem 3.3 we conclude that left strict convexity implies right
strict convexity and conversely. Hence we simply use the phrase strictly convex
(in short, s.c).

NOTE 3.5. Hilbert spaces over Q are s.c. spaces.

NOTE 3.6. From Theorem 3.2 we conclude that X is s.c. if and only if XR is s.c.

We now generalise Theorem 1 of Beesack, Hughes and Ortel (1979).

THEOREM 3.7. A normed space X over Q is s.c. if and only if whenever x, y G X
with x^y and \\x\\ = 1 = ||^||, we have \\qx + (1 — q)y\\ < 1 for some q e Q.

PROOF. Suppose X is s.c. Then XR is s.c. and the result holds with q = j .
Conversely suppose the given condition is satisfied. If X is not s.c. then there

exist x,y and a bounded left linear functional/,, such that/X*) = ft(y) — \\x\\ —
\\y\\ = 1 = H/,11. Hence for any q e Q,

\\qx + (1 - q)y\\ > \\f,{qx + (1 - q)y)\\ = 1

and so the given condition fails.
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Similarly the following result holds.

THEOREM 3.8. A normed space X over Q is s.c. if and only if whenever x, y G X
with x ^ y and ||x|| = 1 = \\y\\, we have \^xq + y(\ — q)\\ < 1 for some q G Q.

Results of Koethe (1969) (Theorem 3), Torrance (1970), Guelder and Strawther
(1976) and Sen (1981) are also true in this setting.

4. C-strict convexity and Q-strict convexity

We recall the following definitions from Istratescu (1979a).

DEFINITION 4.1. Let K be a convex subset of a normed space X over C and
x0 E K. The element x0 is a complex extreme point of K if and only if {x + zy:
I z |*£ 1, z G C} C K for y G X, implies y - 0.

DEFINITION 4.2. A normed space X over C is called complex strictly convex
(c.s.c.) if and only if each point of the unit sphere is a complex extreme point of
the unit ball.

Istratescu (1979b), Theorem 2.7, gave a sufficient condition for a Banach space
to be c.s.c. An easy application of Theorem 1 of Holub (1975) shows that it is in
reality a sufficient condition for a space to be s.c.

We now give a sufficient condition for a normed space over C to be c.s.c.

DEFINITION 4.3. For every normalized pair {*,, x2} of linearly independent
elements of a normed space X over C, let K[x,, x2] be the complex vector space
spanned by x] and x2 and let R[xx, x2] be the set of all those elements
y = a^xx + a2x2 G V[xx, x2] with axa2 real.

THEOREM 4.4. Let X be a normed space over C. If for every normalized pair
{xu x2) of linearly independent elements in X, the points in V[xv x2] equidistant
from Xj and x2 are in R[xu x2] then X is c.s.c.

PROOF. Suppose that Xis not a c.s.c. space. Then there exist anx E. X, \\x\\ = 1
and ay ¥= 0 such that ||JC + zy\\ = 1 for all \z\< 1, z complex. Let xx = ix + y,
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Suppose u = ixx + x2. Then u E. V[xx, x2]. Now u — xx = -i(x — y) and
u — x2 = -x + iy. As ||w — xx\\ = ||w — x2|| = 1, u is equidistant from x, and x2.
Since u is not in R[xx, x2], we have a contradiction.

NOTE 4.5. Let A' be a complex normed space. Then X can be considered as a
normed space over the reals. If xx, x2 is a normalized pair of linearly independent
elements of X, then V[xx, x2] — VR[xx, x2, ixx, ix2], where F^x,, x2, ixx, ix2] is
the real linear span of xx, x2, ixx, ix2.

Thus V[xx, x2] can be considered as a real subspace of X and R[xx, x2] is a
subset of V[xx, x2].

Therefore it is relevant to ask whether in Theorem 4.4, c.s.c. can be replaced by
s.c. But the author has not been able to settle this problem. The author has
however observed that the condition in Theorem 4.4 is not necessary for s.c. For
let X = l2 and ex and e2 be two mutuallyorthogonal unit vectors of X. Then the
vector (1 + /) (ex + e2) £ V[ex, e2] and is equidistant from ex and e2 but not in
R[ex,e2].

We now define left and right complex extreme points on a normed space over
Q.

DEFINITION 4.6. A quaternion a0 + iax + ja2 + ka$ is said to be g-complex
(complex) if and only if at least one (two) of a,, a2) a3 is (are) zero.

DEFINITION 4.7. Let C be a convex set of a normed space X over Q. An element
x0 6 C is said to be a left complex extreme point of C if and only if {x0 + zy:
| z |^ 1, z complex} C C lory in X, impliesy = 0.

Similarly a right complex extreme point can be defined in the same manner.

DEFINITION 4.8. A normed space X over Q is said to be left (right) complex
strictly convex if and only if every element of the unit sphere is a left (right)
complex extreme point of the unit ball. Similarly, we can define left and right
(^-complex strict convexity and quaternion strict convexity.

NOTE 4.9. It would be interesting to know whether the left and right concepts
are equivalent.

EXAMPLE 4.10. Let /, be the set of all infinite sequences of quaternions x = {*,:
i = 1,2,...} such that 2JL11 *, |< oo. Addition and left and right scalar multipli-
cations on /, are defined as usual; lx forms a Banach space over Q with the norm
||x|| = 2°°=, | jci; | . The space lx is both a left and right c.s.c. space; this follows from
Corollary 4.23.
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NOTE 4.11. Henceforth we only consider left properties as the corresponding
right ones can be discussed similarly.

NOTE 4.12. Every left c.s.c. space is a left Q-c.s.c. space and evry left Q-c.s.c.
space is a left q.s.c. space.

NOTE 4.13. It would be interesting to find an example of a left g-c.s.c. space
which is not left c.s.c. and another example of a left q.s.c. space which is not a left
Q-c.s.c. space.

We now give a sufficient condition for a normed space over Q to be left c.s.c.

DEFINITION 4.14. For every normalized pair {x,, x2} of left linearly indepen-
dent elements of a normed space X over Q, let V\xy, x2] be the left complex
vector space spanned by x,, x2 and let Rt[xi, x2] be the set of all y = a,x, +
a2x2 G V[[xx, x2] with a, • a2 real.

THEOREM 4.15. Let X be a normed space over Q. If for every normalized pair
{x,, x2} of left linearly independent elements in X, the points in F,[x,, x2] equidis-
tant from x, and x2 are in R[xu x2], then X is a left c.s.c. space.

PROOF. The proof is the same as for Theorem 4.4.

We now give a sufficient condition for a normed space over Q to be left Q-c.s.c.

DEFINITION 4.16. For every normalized pair {xx, x2) of left linearly indepen-
dent elements of a normed space X over Q, let F,[x,, x2] be the left (^-complex
vector space spanned by x,, x2 and let C,[x,, x2] be the set of all y = a,x, +
a2x2 E V\xx, x2] with ax • a2 complex.

THEOREM 4.17. Let X be a normed space over Q. If for every normalized pair
{x,, x2) of left linearly independent elements in X, the points in V\xx, x2] equidis-
tant from x, from x2 are in C/[x1; x2], then X is left Q-c.s.c.

PROOF. Suppose that X is not a left Q-c.s.c. space. Then there exist a n x 6 l ,
||x|| = 1, and y # 0 such that ||x + qy\\ = 1 for all g-complex q with \q\^ 1. Let
x, = x and x2 = x — ky. Then ||x,|| = ||x2|| = 1.

Suppose u = (i +y)x, + x2. Then u e V,[xv x2]. Now u — x, = (i! +j — l)x
+ x — ky = (i + j)x — ky and u — x2 = (i + j)x.
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From this, \\u - x,|| = \i +j\ -\\x - (/ + j)'1ky\\ = ft, as (/ + j)~lk is Q-com-
plex and |(j + j)~xk\< 1 and \\u — x2\\ = ft. Therefore u is equidistant from x,
and x2. Since u is not in C,[x,, x2], we have a contradiction.

We now give a sufficient condition for a normed space over Q to be left q.s.c.

DEFINITION 4.18. For every normalized pair (x,, x2} of left linearly indepen-
dent elements of a normed space X over Q, let K^x,, x2] be the left quaternion
vector space spanned by x,, x2 and let Q\xx, x2] be the set of all y = a,x, +
a2x2

 e P/[-*i> xi

THEOREM 4.19. Let X be a normed space over Q. If for every normalized pair
{xx, x2} of left linearly independent elements in X, the points in V,[xx, x2] equidis-
tant from x, and x2 are in Qj[xx, x2], then X is left q.s.c.

PROOF. Suppose that X is not a left q.s.c. space. Then there exist an x £ X,
\\x\\ — 1, and a y ^ 0 such that ||x + qy\\ = 1 for all \q\< 1, q quaternion. Let
x, = x + y and x2 — x — y. Then ||x,|| = ||x2|| = 1. Suppose w = (i + l)x, +
(j + i)x2. Then it can be easily verified that u is equidistant from x, and x2 but
not in Q,[xx, x2]. Hence we have a contradiction.

We now give a characterization of left q.s.c. product spaces with lp-nonn.
Before proving our required characterization we prove a lemma.

LEMMA 4.20. Let X be a normed space over Q. If\\u\\ — 1 and \\u ± v\\ = 1 then
(v, u) = 0 = (v, u), where ( , ) and ( , ) denote left and right s.i. products on X
respectively.

PROOF. We have 11 ± (v, M)| = |(M ± v, u)\*z \\u ± v\\ • \\u\\ = 1 or 11 ±(v,u)\
=£ 1. Since the space Q of quaternions with usual norm is strictly convex this
implies that (v, u) = 0. Similarly (v, u)= 0.

THEOREM 4.21. Let X be the product space Xx X X2 with lp-norm (1 < p < oo).
For p = oo, X is never left q.s.c. For 1 < p < oo, X is left q.s.c. if and only if each
Xt(i- 1,2) is left q.s.c.

PROOF. Let X be left q.s.c. and 1 <p < oo. If the result does not hold then
there exists an Xt (say Xx) such that Xx is not left q.s.c. Since Xx is not left q.s.c.
then there exist a u, \\u\\ — 1 and a c ^ O such that ||M + #u|| = 1 for all |qr|< 1.
We choose x = (M, 0), y = (t>, 0).
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Then ||x|| = 1 and ||x + qy\\ = 1 , \q\*z\. Since X is left q.s.c, y = 0, a
contradiction.

We now prove the converse.
Case I, 1 < p < oo. Let each Xt (i = 1,2) be left q.s.c. Suppose [ , ]x. is any

consistent left s.i.p. on Xl (i = 1,2). Then a left s.i.p. on X is given by

i]x,\\yi\\

yi)¥-2 . K , < o o .

Let«,t> EJf, | |M| |= land||M + ^u||= \,\q\*z 1. Then by Lemma 4.20, [v, u] = 0.
If M = (xx, x2), v = (yx, y2), then

1 = ||x,| | ' + \\X2\\P = [xx + qyuXl]Xi • | | x , r - 2 + [x2 + qy2, x2]Xi • \\X2\\P~2

< ll*i + m\\ • W 1 +11*2 + m\\ • 11*211'"'

< (ll*i + «y. i r +11*2 + ^ I D 1 7 ' •(ll^1ll(p-1)<? + l l ^ l l ^ " 1 ^ ) 1 7 ' = i ,

Therefore by Holder's inequality (note that l/p + \/q= 1).

(0 ll*i + «y.ll • I I ^F" 1 +11*2 + C2II • I W

= (II*. + qyr +11*2 + qyi\\p)x/p • (ll^.ir + 17

Since equality holds in Holder's inequality there exists a non-zero positive
number Kq such that

(ii) II*, + qyx\\P = Kq • \\XX\\P, \\x2 + qy2\Y = Kq • \\x2\\"

for|^r|< 1.
Now from (i) and (ii), Kq = 1. Again since each Xt is left q.s.c. then from (ii),

yt = 0 for / = 1, 2.
Hence v = 0. Therefore X is left q.s.c.
Case II, p = 1. Suppose each A", (/ = 1,2) is left q.s.c. Let u, v E X, \\u\\ = 1

and ||« + qv\\ = 1 for all \q\*z 1. Suppose u = (*,, x2), D = ( j , , y2). Then for

(i) ll*ill + ll*2ll = i . l l * i+ C1II +11*2

Without loss of generality we may assume that ||*,||, ||x2|| # 0 . Let G, = {q:
\q\< \,\\xx + qyx\\ < | |x , | |} a n d G2 = {q: \q\< l,\\x2 + qy2\\ ^ \\x2\\). T h e n Gx U
G2 = B, the closed unit ball of Q, and Gx and G2 are closed sets.

Suppose / = G, n G2. Then 0 G /.
We now show that / contains more than one element. If possible let / = {0}.

Then B\GX = G2\{0} is an open set in B and B\G2 = G,\{0} is an open set in
B.
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Now B\{0} = (G,\{0}) U (G2\{0}), the union of two disjoint open sets,
which is a contradiction (as B,\{0} is a connected set). Therefore, / contains
more than one element.

We now show that / is symmetric. Suppose q £ /. Then

(ii) ll*i+«Fill<ll*ill, \\x2

Again,

2- | |* , l l<l l*,+ ©',11 +

or

Similarly,

(iv) | |x2| | < \\x2 - qy2\\.

From (i), (iii), and (iv)

ll*,ll + IM *= ll*i - m\\ +11*2
Therefore from (iii) and (iv)

l l * i -© ' i l l = ll*ill. \\x2 - gy2\\ = \\x2\\

which shows that -q E /.
We now show that / = B. Let q E I, q =£ 0 and <?, £ Q such that | q i • q\^ 1.

Then as / is symmetric,

11 11*111. 11*2 ±2

By our Lemma 4.20, [yu xx]x^ = 0 = [^2, x2]Xl- Now

or

(v) l l*i l l<ll*.+9i
Similarly,

(vi) ^ ||x2|| < \\x2 + qx • qy2\\.

From (i), (v) and (vi),

From this we conclude that | |x, + q\qy\\\ — \\xy\\ and \\x2 + qx • qy2\\ — \\x2\\.
Hence qx • q £ /, and therefore I = B.
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Hence ||x, + qyx\\ = \\xx\\ and ||x2 + qy2\\ = \\x2\\ for q E B. Since Xx, X2 are
left q.s.c, yx = 0 = y2. Hence v = 0. Therefore, A'is left q.s.c.

For/? = 00, let M = (x,,0), 0 = (0, y2) with ||x,|| = 1 - \\y2\\. Then \\u + qv\\x

= 1 for |<5f|*£ 1. Therefore, X is not left q.s.c.

COROLLARY 4.22. / / X is an lp-sum (1 < p < 00) of a sequence of normed spaces
{Xt} then X is left q.s.c. if and only if each Xt is left q.s.c.

PROOF. Case I, 1 < p < 00. The proof follows from Theorem 4.21 above.
Case II, p = 1. Suppose each Xt is left q.s.c. Let ||x|| = 1, ||JC + qy\\ = 1 for

q G B, x, y E X. Suppose x = (*„ x2, x 3 ) . . . ) , y = (yx, y2, y3,...). Then
2r=,IWI = 1 and 2f=1||x, + qy,\\ = 1 = 2r=,IWI for q E B.

Let Gj ={q:q<E B, \\x, + qyt\\ < xt\\) and G2 = {q: q_G B, \\x + qy\\ < ||x||},
where x = (0, x2, x 3 > . . . ) , y = (0, j 2 , >»3...). Then G U G2 = B and each G, and
G2 are closed sets.

Arguing as in the case of two spaces, we have / = G\ C\ G2 contains more than
one element. Also arguing as in the case of two spaces we can show that

ll*i + ©Ml = ll*ill and II* + «FII = 11*11 iorqeB.

Therefore Gx= B and hence yx = 0 as Xx is left q.s.c. Arguing in the same
manner we get Gt = B for all / and hence yt = 0 for all / as the X,'s are left q.s.c.
Therefore y = 0 and hence X is left q.s.c.

COROLLARY 4.23. Theorem 4.21 and Corollary 4.22 also hold for left Q-c.s.c. and
c.s.c. spaces over Q and c.s.c. spaces over C.

NOTE 4.24. For p = 2, Theorem 4.21 above is proved for c.s.c. spaces over C in
Istratescu (1979a).

COROLLARY 4.25. Let X be the product space Xx X X2 with lp norm, 1 < p *s 00.
For 1 < p < 00, X is s.c. if and only if X{ (i = 1,2) is s.c. For p = 1 or p — 00, X is
never s.c.

COROLLARY 4.26. / / X is an lp-sum (1 < p < 00) of a sequence of normed spaces
{Xj} then X is s.c. if and only if each Xt is s.c.

We recall the following definition from Jamison (1982).
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DEFINITION 4.27. Let A' be a complex Banach space and / an analytic function
defined on a domain D with values in X. The space X is said to have the strong
maximum modulus property (SMMP) if and only if either ||/(z)|| has no maxi-
mum on D or/(z) is constant on D.

THEOREM 4.28. If X is an lp-sum (1 < p < oo) of a sequence of complex Banach
spaces {Xt} then X has SMMP if and only if each X, has SMMP.

PROOF. The result follows from Corollary 4.23 above and Theorem 3.1 of
Throp and Whitley (1967).

NOTE 4.29. For p — 1, Theorem 4.28 above is stated without proof in Jamison
(1982).
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