PUTNAM'S INEQUALITY FOR p-HYPONORMAL n-TUPLES

MUNEO CHŌ

Department of Mathematics, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221 Japan

TADASI HURUYA

Department of Mathematics, Faculty of Education, Niigata University, Niigata, 950-21 Japan

(Received 11 February, 1997; revised 14 June, 1997)

Dedicated to the memory of Professor Katsutoshi Takahashi

Abstract. In this paper, we introduce *p*-hyponormal tuples in the sense of D. Xia [6]. Furthermore we extend Putnam's inequality to these tuples and show an equivalence relation of two spectra.

1. Introduction. Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . For an operator $T \in B(\mathcal{H})$ is called p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. If p=1, T is called hyponormal, and if $p=\frac{1}{2}$, T is called semi-hyponormal. For an operator $T \in B(\mathcal{H})$, we denote the spectrum of T by $\sigma(T)$. D. Xia, in [6], introduced semi-hyponormal tuples and extended the Putnam's inequality to semi-hyponormal tuples. In this paper, we introduce p-hyponormal tuples and extend the Putnam's inequality to p-hyponormal tuples. Throughout this paper, let $\mathbf{U} = (U_1, \ldots, U_n)$ be a fixed commuting n-tuple of unitary operators and, for an operator $T \in B(\mathcal{H})$, we denote the (n+1)-tuple (U_1, \ldots, U_n, T) by (\mathbf{U}, T) . The operator \mathbf{Q}_i $(j=1, \cdots, n)$ on $B(\mathcal{H})$ is defined by

$$\mathbf{Q}_j T = T - U_j T U_j^* \quad (T \in \mathcal{B}(\mathcal{H})).$$

Let $A \in B(\mathcal{H})$ and $A \geq 0$. (U, A) is called a *semi-hyponormal tuple* if

$$\mathbf{Q}_{i_1}\cdots\mathbf{Q}_{i_m}A\geq 0$$

for all $1 \le j_1 < \dots < j_m \le n$. If (U, A) is a semi-hyponormal tuple, then U_jA is semi-hyponormal for every j ($j = 1, \dots, n$). For an operator $T \in B(\mathcal{H})$, if

$$S_j^{\pm}(T) = s - \lim_{n \to +\infty} (U_j^{-n} T U_j^n)$$

exist, then the operators $S_j^{\pm}(T)$ are called the polar symbols of T. If U_jA is semi-hyponormal, then $S_j^{\pm}(A)$ exist (cf. [7]). For $0 \le k \le 1$, we denote

$$(kS_j^+ + (1-k)S_j^-)T = kS_j^+(T) + (1-k)S_j^-(T).$$

Let $\mathbf{k} = (k_1, \dots, k_n) \in [0, 1]^n$ and (\mathbf{U}, A) be a semi-hyponormal tuple. Then the generalized polar symbols $A_{\mathbf{k}}$ of A are defined by

$$A_{\mathbf{k}} = \prod_{j=1}^{n} (k_{j} \mathcal{S}_{j}^{+} + (1 - k_{j}) \mathcal{S}_{j}^{-}) A.$$

Then we have a following proposition.

PROPOSITION. With the above notations, (U, A_k) is a commuting (n+1)-tuple for every $\mathbf{k} \in [0, 1]^n$.

Proof. Let $\mathbf{k} = (k_1, ..., k_n) \in [0, 1]^n$. Since $U_i U_j = U_j U_i$, we have $\mathcal{S}_i^{\pm}(\mathcal{S}_j^{\pm}(A)) = \mathcal{S}_j^{\pm}(\mathcal{S}_i^{\pm}(A))$ and, from the definition of $\mathcal{S}_j^{\pm}(A)$, we have $U_j \mathcal{S}_j^{\pm}(A) = \mathcal{S}_j^{\pm}(A) U_j$ for every j = 1, ..., n. Next, let $B = \prod_{i \neq j} (k_i \mathcal{S}_i^+ + (1 - k_i) \mathcal{S}_i^-) A$. Then we have

$$U_{j}A_{\mathbf{k}} = U_{j}(k_{j}S_{j}^{+} + (1 - k_{j})S_{j}^{-}) \prod_{i \neq j} (k_{i}S_{i}^{+} + (1 - k_{i})S_{i}^{-})A$$

$$= U_{j}(k_{j}S_{j}^{+}(B) + (1 - k_{j})S_{j}^{-}(B)) = (k_{j}S_{j}^{+}(B) + (1 - k_{j})S_{j}^{-}(B))U_{j} = A_{\mathbf{k}}U_{j}.$$

Therefore, U_i commutes with A_k for every j and every $k \in [0, 1]^n$.

We denote the *Taylor spectrum* of a commuting *m*-tuple $S = (S_1, ..., S_m)$ of operators by $\sigma_T(S)$. For an *m*-tuple $S = (S_1, ..., S_m)$, let $\sigma_{ja}(S)$ be the *joint approximate point spectrum* of S, i.e., the set of all points $(z_1, ..., z_m)$ for which there exits a sequence $\{x_k\}$ of unit vectors such that

$$\lim_{k\to\infty} \| (\mathcal{S}_j - z_j) x_k \| = 0 \quad (j=1,\ldots,m).$$

It is well known that $\sigma_T(S) = \sigma_{ja}(S)$ if S is a commuting m-tuple of normal operators. Hence, from the Proposition, it holds that $\sigma_T(U, A_k) = \sigma_{ja}(U, A_k)$ for every $k \in [0, 1]^n$ (cf. [2],[5]). Next, D. Xia in [7] defined the joint spectrum for a non-commuting commuting (n+1)-tuple $(U, A) = (U_1, \ldots, U_n, A)$ as follows: Let $T = \{z \in C : |z| = 1\}$ and let $E(\cdot)$ be the spectral measure of U. For $\mathbf{z} = (z_1, \cdots, z_n) \in \sigma_T(\{U\}, the set of all products <math>\Delta = \gamma_1 \times \cdots \times \gamma_n$ of open arcs $\gamma_j \subset T$, containing z_j $(j=1,\cdots,n)$ is denoted by $\Gamma(\mathbf{z})$. The set

$$\{(\mathbf{z}, r) : \mathbf{z} \in \sigma_T(\mathbf{U}), r \in \bigcap_{\Delta \in \Gamma(\mathbf{z})} \sigma(E(\Delta)AE(\Delta))\}$$

is called the *Xia spectrum* of (U, A) and we denote it by $\sigma_X(U, A)$. Also D. Xia proved the following result.

THEOREM A (Th. 2 of [6]). Let (U, A) be a semi-hyponormal tuple. Then

$$\sigma_X(\mathbf{U}, A) = \bigcup_{\mathbf{k} \in [0,1]^n} \sigma_{ja}(\mathbf{U}, A_{\mathbf{k}}).$$

Let m_i $(j=1,\dots,n)$ be the normalized Haar measure in the unit circle T, i.e.,

$$dm_j = \frac{1}{2\pi} d\theta_j \ (e^{i\theta_j} \in \mathbf{T})$$

and $m = m_1 \times \cdots \times m_n \times dr$, where dr is the Lebesgue measure on **R**. Then D. Xia also proved the following

THEOREM B (Th. 5 of [6]). Let (U, A) be a semi-hyponormal tuple. Then

$$\parallel \mathbf{Q}_1 \dots \mathbf{Q}_n A \parallel \leq m(\sigma_X(\mathbf{U}, A)).$$

We now introduce p-hyponormal tuples. Let $A \in B(\mathcal{H})$ and $A \geq 0$. (U, A) is called a p-hyponormal tuple if

$$\mathbf{Q}_{j1}\dots\mathbf{Q}_{jm}A^{2p}\geq 0$$

for all $1 \le j_1 < \cdots < j_m \le n$. Evidently, if (U, A) is a p-hyponormal tuple, then (U, A^{2p}) is a semi-hyponormal tuple. Let (U, A) be a p-hyponormal tuple and $0 \le k \le 1$. We denote

$$(kS_j^+ + (1-k)S_j^-)_p A = \{kS_j^+(A^{2p}) + (1-k)S_j^-(A^{2p})\}^{\frac{1}{2p}}.$$

For $\mathbf{k} = (k_1, \dots, k_n) \in [0, 1]^n$, the generalized polar symbols $A_{(\mathbf{k})}$ of A are defined by

$$A_{(\mathbf{k})} = \prod_{j=1}^{n} (k_j S_j^+ + (1 - k_j) S_j^-)_p A.$$

We remark that if $p = \frac{1}{2}$,

$$(k_j S_i^+ + (1 - k_j) S_i^-)_p A = (k_j S_i^+ + (1 - k_j) S_i^-) A$$
 and $A_{(\mathbf{k})} = A_{\mathbf{k}}$.

Since, for every i, j, it holds that

$$(k_i \mathcal{S}_i^+ + (1 - k_i) \mathcal{S}_i^-)_p (k_j \mathcal{S}_j^+ + (1 - k_j) \mathcal{S}_j^-)_p A = \{k_i \mathcal{S}_i^+ [k_j \mathcal{S}_j^+ (A^{2p}) + (1 - k_j) \mathcal{S}_i^- (A^{2p})] + (1 - k_i) \mathcal{S}_i^- [k_j \mathcal{S}_j^+ (A^{2p}) + (1 - k_j) \mathcal{S}_i^- (A^{2p})]\}^{\frac{1}{2p}},$$

we also have that $(\mathbf{U}, A_{(\mathbf{k})}) = (U_1, \dots, U_n, A_{(\mathbf{k})})$ is a commuting (n+1)-tuple for every $\mathbf{k} \in (0, 1)^n$. And the *Xia spectrum* $\sigma_X(\mathbf{U}, A)$ is defined by

$$\sigma_X(\mathbf{U}, A) = \{(\mathbf{z}, r) : \mathbf{z} \in \sigma_T(\mathbf{U}), r \in \bigcap_{\Delta \in \Gamma(\mathbf{z})} \sigma((E(\Delta)A^{2p}E(\Delta))^{\frac{1}{2p}})\}.$$

In this paper, we show the following theorems.

THEOREM 1. Let (U, A) be a p-hyponormal tuple. Then

$$\sigma_X(\mathbf{U}, A) = \bigcup_{\mathbf{k} \in [0,1]^n} \sigma_{ja}(\mathbf{U}, A_{(\mathbf{k})}).$$

Theorem 2. Let (U, A) be a p-hyponormal tuple. Then

$$\| \mathbf{Q}_1 \cdots \mathbf{Q}_n A^{2p} \| \leq \frac{2p}{(2\pi)^n} \int \cdots \int_{\sigma_X(\mathbf{U},A)} r^{2p-1} d\theta_1 \cdots d\theta_n dr.$$

2. Proof. The following lemma is well known, but we include a proof for completeness.

LEMMA. Let A be a self-adjoint operator. Suppose that $r \in \mathbf{R}$ and $\{x_n\}$ is a sequence of unit vectors such that $\lim_{n\to\infty} \|(A-r)x_n\| = 0$. Then for any $f \in C(\sigma(A))$, $\lim_{n\to\infty} \|(f(A)-f(r))x_n\| = 0$, where $C(\sigma(A))$ denotes the set of all continuous functions on $\sigma(A)$.

Proof. Since for any polynomial p, there is a polynomial q such that p(z)-p(r)=q(z)(z-r), then $\lim_{n\to\infty}\|(p(A)-p(r))x_n\|=0$. We choose a sequence $\{p_m\}$ of polynomials such that $\lim_{m\to\infty}\|p_m-f\|=0$ in $C(\sigma(A))$. By a standard argument using $\{p_m\}$, we have $\lim_{n\to\infty}\|(f(A)-f(r))x_n\|=0$.

Proof of Theorem 1. By the definition of $\sigma_X(\mathbf{U}, A)$, we have

$$\sigma_X(\mathbf{U}, A) = \{(\mathbf{z}, r^{\frac{1}{2p}}) : (\mathbf{z}, r) \in \sigma_X(\mathbf{U}, A^p)\}.$$

Since (U, A^{2p}) is semi-hyponormal, Theorem A implies that

$$\sigma_X(\mathbf{U}, A^{2p}) = \bigcup_{\mathbf{k} \in [0,1]^n} \sigma_{ja}(\mathbf{U}, (A^{2p})_{\mathbf{k}}).$$

Since, from the Lemma, we have

$$\sigma_{ja}(\mathbf{U}, A_{(\mathbf{k})}) = \{(\mathbf{z}, r^{\frac{1}{2p}}) : (\mathbf{z}, r) \in \sigma_{ja}(\mathbf{U}, (A^{2p})_{\mathbf{k}})\}$$

for every $\mathbf{k} \in [0, 1]^n$, it follows that

$$\sigma_X(\mathbf{U}, A) = \bigcup_{\mathbf{k} \in [0,1]^n} \sigma_{ja}(\mathbf{U}, A_{(\mathbf{k})}).$$

Hence the theorem is proved.

Proof of Theorem 2. Since (U, A^{2p}) is semi-hyponormal, by Theorem B, we have that

$$\parallel \mathbf{Q}_1 \cdots \mathbf{Q}_n A^{2p} \parallel \leq \frac{1}{(2\pi)^n} \int \cdots \int_{a_{\nu}(\prod A^{2p})} d\theta_1 \cdots d\theta_n dr.$$

Also it follows that

$$\sigma_X(\mathbf{U}, A^{2p}) = \{ (\mathbf{z}, r^{2p}) : (\mathbf{z}, r) \in \sigma_X(\mathbf{U}, A) \}.$$

Hence Theorem 2 is proved by the transformation of the variables.

3. Application. In this section, we study a relation of the usual spectrum $\sigma(T)$ and the Xia spectrum $\sigma_X(\mathbf{U}, |T|)$ of a *p*-hyponormal operator T = U|T| with unitary U, where T = U|T| is the polar decomposition of T.

Theorem 3. Let T = U|T| be p-hyponormal with unitary U. Then

$$re^{i\theta} \in \sigma(T)$$
 if and only if $(e^{i\theta}, r) \in \sigma_X(U, |T|)$.

We need the following result.

Theorem C (See [1]). Let T = U|T| be p-hyponormal with unitary U. Then

$$\sigma(T) = \bigcup_{0 < k < 1} \sigma(T_{(k)}).$$

Proof of Theorem 3. For q > 0, let

$$S_U^{\pm}(|T|^q) = s - \lim_{n \to +\infty} (U^{-n} |T|^q U^n).$$

For $0 \le k \le 1$, we define an operator $|T|_{(k)}$ as follows:

$$|T|_{(k)} = \{kS_U^+(|T|^{2p}) + (1-k)S_U^-(|T|^{2p})\}^{\frac{1}{2p}}.$$

Also let $T_{(k)} = U|T|_{(k)}$ for $0 \le k \le 1$. By Theorem 1 we have

$$\sigma_X(U, |T|) = \bigcup_{k \in [0,1]} \sigma_{ja}(U, |T|_{(k)}). \tag{*}$$

From the above, $(U, |T|_{(k)})$ is a commuting pair. Since U is unitary and $|T|_{(k)} \ge 0$, it holds that $\sigma_T(U, |T|_{(k)}) = \sigma_{ja}(U, |T|_{(k)})$, where $\sigma_T(U, |T|_{(k)})$ denotes the Taylor spectrum of $(U, |T|_{(k)})$ (cf. [5]). Since $U|T|_{(k)} = T_{(k)}$, it follows from the spectral mapping theorem of the Taylor spectrum that

$$(e^{i\theta}, r) \in \sigma_{ia}(U, |T|_{(k)})$$
 if and only if $re^{i\theta} \in \sigma(T_{(k)})$.

Hence by (*) and Theorem C, the proof is complete.

REFERENCES

- **1.** M. Chō and M. Itoh, On spectra of *p*-hyponormal operators, *Integral Equations and Operator Theory* **23** (1995), 287–293.
- **2.** R. Curto, On the connectedness of invertible *n*-tuples, *Indiana Univ. Math. J.* **29** (1980), 393–406.
- **3.** R. Curto, P. Muhly and D. Xia, A trace estimate for *p*-hyponormal operators, *Integral Equations and Operator Theory* **6** (1983), 507–514.
- **4.** C. R. Putnam, Commutation properties of Hilbert space operators (Springer-Verlag, 1967).
- 5. J. L. Taylor, A joint spectrum for several commuting operators, *J. Funct. Anal.* 6 (1970), 172–191.
- **6.** D. Xia, On the semi-hyponormal *n*-tuple of operators, *Integral Equations and Operator Theory* **6** (1983), 879–898.
 - 7. D. Xia, Spectral theory of hyponormal operators (Birkhäuser, 1983).