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Abstract. Over a Cohen–Macaulay (CM) local ring, we characterize those
modules that can be obtained as a direct limit of finitely generated maximal CM
modules. We point out two consequences of this characterization: (1) Every balanced
big CM module, in the sense of Hochster, can be written as a direct limit of small
CM modules. In analogy with Govorov and Lazard’s characterization of flat modules
as direct limits of finitely generated free modules, one can view this as a “structure
theorem” for balanced big CM modules. (2) Every finitely generated module has a
pre-envelope with respect to the class of finitely generated maximal CM modules. This
result is, in some sense, dual to the existence of maximal CM approximations, which
has been proved by Auslander and Buchweitz.

2010 Mathematics Subject Classification. Primary 13C14. Secondary 13D05,
13D07.

1. Introduction. Let R be a local ring. Hochster [18] defines an R-module M to
be big Cohen–Macaulay (big CM) if some system of parameters (s.o.p.) of R is an
M-regular sequence. If every s.o.p. of R is an M-regular sequence, then M is called
balanced big CM. The term “big” refers to the fact that M need not be finitely generated;
and a finitely generated (balanced) big CM module is called a small CM module. It
is conjectured by Hochster, see (2.1) in loc. cit., that every local ring has a big CM
module. This conjecture is still open, however, it has been settled affirmatively by
Hochster [16, 17] in the equicharacteristic case, that is, for local rings containing a
field. In fact, such a ring always has a balanced big CM module. Since it is known that
a positive answer to Hochster’s conjecture will imply several other classic homological
conjectures, the existence of (balanced) big CM modules remains to be an important
question in commutative algebra.

Although this paper makes no direct contribution to Hochster’s conjecture, it is
concerned with balanced big CM modules. We study such modules over a CM ring
R with a dualizing module �. In this setting, the conjecture is of course trivially true
since small, and hence also balanced big, CM modules abound (examples are R and
�); and the natural question is therefore if one can describe all these big modules. As
it turns out, all balanced big CM R-modules do share a common “structure”: they can
always be built from small ones. The following result is proved in Section 4.

THEOREM A. Every balanced big CM R-module is a direct limit of small CM
R-modules.
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Example 4.7 exhibits a (non-balanced) big CM module that is not a direct limit of
small CM modules.

A finitely generated maximal CM module is a module which is either small CM or
zero; a covention used by Auslander and Buchweitz [2] and others. Theorem A is a
consequence of the next result—also proved in Section 4—which gives two equivalent
characterizations of the direct limit closure of the class of finitely generated maximal
CM modules.

THEOREM B. For every R-module M, the following conditions are equivalent.
(i) M is a direct limit of finitely generated maximal CM R-modules.
(ii) Every system of parameters of R is a weak M-regular sequence.
(iii) M is Gorenstein flat1 viewed as a module over the trivial extension R � �.

This theorem is analogous to a classic result, due to Govorov [14] and Lazard
[22], which shows that the direct limit closure of the class of finitely generated free
modules is precisely the class of flat modules. Following Hochster’s terminology, it
is reasonable to call a module weak balanced big CM if it satisfies condition (ii) in
Theorem B. This class of modules is denoted by wbbCM, and it is a natural extension
of the class of finitely generated maximal CM modules to the realm of all modules.
Indeed, a finitely generated module belongs to wbbCM if and only if it is maximal CM.

In Section 5 we give applications of Theorem B in relative homological algebra. It
follows from works of Ischebeck [20] and Auslander and Buchweitz [2] that the class
MCM of finitely generated maximal CM R-modules is part of a complete hereditary
cotorsion pair (MCM, MCM⊥) on the category of finitely generated R-modules2. In
particular, every finitely generated R-module has an MCM-precover and an MCM⊥-
preenvelope. We show:

THEOREM C. Every finitely generated R-module has an MCM-preenvelope.

We also extend the cotorsion pair (MCM, MCM⊥) and the existence of MCM-
preenvelopes to the realm of all—not necessarily finitely generated—modules:

THEOREM D. On the category of all R-modules, (wbbCM, wbbCM⊥) is a perfect
hereditary cotorsion pair, in particular, every R-module has a wbbCM-cover and a
wbbCM⊥-envelope. Furthermore, every R-module has a wbbCM-preenvelope.

As a consequence of Theorem D, we prove the existence of (non-weak) balanced
big CM covers for certain types of modules; see Proposition 5.2 and Example 5.3.

2. Regular sequences, depth, and CM modules

Setup 2.1. Throughout, (R,m, k) is a commutative noetherian local CM ring with
Krull dimension d. It is assumed that R has a dualizing (or canonical) module �.

Let (A, n, �) be any commutative noetherian local ring and let M be any A-module.
A sequence of elements x̄ = x1, . . . , xn ∈ n is called a weak M-regular sequence if xi

is a non-zerodivisor on M/(x1, . . . , xi−1)M for every 1 � i � n (for i = 1 this means
that x1 is a non-zerodivisor on M). If, in addition, (x1, . . . , xn)M �= M, then x̄ is an

1 In the sense of Enochs, Jenda, and Torrecillas [10]; see also Definition 4.2.
2 Actually, MCM⊥ is the class of finitely generated R-modules with finite injective dimension; cf. Theorem 5.1.
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M-regular sequence. If M �= 0 is finitely generated, then by Nakayama’s lemma every
weak M-regular sequence is automatically M-regular; this is not the case in general.

The depth of a finitely generated A-module M �= 0, denoted by depthA M, is the
supremum of the lengths of all M-regular sequences (alternatively, the common length
of all maximal M-regular sequences). This invariant can be computed homologically
as follows:

depthA M = inf{ i ∈ � | Exti
A(�, M) �= 0 }. (1)

For an arbitrary A-module M, we define its depth3 by the formula (1), with the
convention that inf ∅ = ∞. So, for example, the zero module has infinite depth4.

For a finitely generated A-module M �= 0 one always has depthA M � dim A, and
the following conditions are equivalent; see Eisenbud [8, Prop.-Def. 21.9].

(i) depthA M = dim A.
(ii) Every system of parameters of A is an M-regular sequence.
(iii) Some system of parameters of A is an M-regular sequence.

A finitely generated module M that satisfies these equivalent conditions is called small
CM. A finitely generated maximal CM module is a module which is either small CM or
zero, and the category of all such modules is denoted by MCM. Unlike the category of
small CM modules, the category MCM is additive and closed under direct summands.
Some authors, such as Yoshino [31], use the simpler terminology “CM module” for
what we have called a “maximal CM module”.

It is well known that for an arbitrary A-module M, the conditions (i)–(iii) above
are no longer equivalent, and hence there is more than one way to extend the notion of
“(maximal) CM” to the realm of non-finitely generated modules. The next definition
is due to Hochster [18] (the term “balanced” appears in Sharp [27]).

DEFINITION 2.2. An A-module M is called (balanced) big CM if (every) some
system of parameters of A is an M-regular sequence.

It is well known that a big CM module need not be balanced; cf. Example 4.7. As
noted above, a finitely generated module is big CM if and only if it is balanced big CM.

LEMMA 2.3. Let M be any (not necessarily finitely generated) R-module and assume
that x̄ = x1, . . . , xn is both an R-regular and a weak M-regular sequence. Then one has

TorR
i (R/(x̄), M) = 0 for all i > 0 .

Proof. By induction on n. For n = 1, we have a single element x1 which is a
non-zerodivisor on both R and M. The assertion follows from inspection of the long
exact Tor-sequence that arises from application of − ⊗R M to the short exact sequence
0 → R

x1→ R → R/(x1) → 0.

3 Some authors refer to the number in (1) as the “Ext-depth” of M. If nM �= M, then depthA M (i.e. the
“Ext-depth” of M) is always an upper bound for the length of any M-regular sequence; see Strooker [29,
Prop. 5.3.7(ii)]. However, if M is not finitely generated, then there does not necessarily exist an M-regular
sequence of length depthA M; see p. 91 in loc. cit. for a counterexample.
4 It is also possible for a non-zero module to have infinite depth; see Observation 4.8.
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Next, we assume that n > 1. Consider the ring R̄ = R/(x1, . . . , xn−1) and the R̄-
module M̄ = R̄ ⊗R M = M/(x1, . . . , xn−1)M. By the induction hypothesis,

TorR
i (R̄, M) = TorR

i (R/(x1, . . . , xn−1), M) = 0 for all i > 0.

Thus, in the derived category over R, one has R̄ ⊗L
R M ∼= R̄ ⊗R M = M̄, and

consequently

R/(x1, . . . , xn) ⊗L
R M = R̄/(x̄n) ⊗L

R M ∼= R̄/(x̄n) ⊗L
R̄ (R̄ ⊗L

R M) ∼= R̄/(x̄n) ⊗L
R̄ M̄,

where x̄n denotes the image of xn in R̄. Hence TorR
i (R/(x1, . . . , xn), M) ∼=

Tor R̄
i (R̄/(x̄n), M̄) for every i > 0. The latter Tor is zero; this follows from the induction

start as x̄n ∈ R̄ is a non-zerodivisor on both R̄ and M̄. �
PROPOSITION 2.4. For every (not necessarily finitely generated) R-module M, the

following conditions are equivalent:
(i) Every system of parameters of R is a weak M-regular sequence.
(ii) For every R-regular sequence x̄ one has TorR

i (R/(x̄), M) = 0 for all i > 0.
(iii) For every R-regular sequence x̄ one has TorR

1 (R/(x̄), M) = 0.

Proof. (i)=⇒ (ii): Let x̄ be any R-regular sequence. As R is CM, x̄ is part of a
s.o.p. of R; see [4, Thm. 2.1.2(d)]. By the assumption (i), this s.o.p. is a weak M-regular
sequence, and hence so is the subsequence x̄. Lemma 2.3 gives the desired conclusion.

(ii)=⇒ (iii): Clear.
(iii)=⇒ (i): Let x̄ = x1, . . . , xd be any s.o.p. of R. Since R is CM, the sequence x̄ is

R-regular; see Section 2. Thus, for every i = 1, . . . , d there is an exact sequence,

0 −→ R/(x1, . . . , xi−1)
xi−→ R/(x1, . . . , xi−1) −→ R/(x1, . . . , xi) −→ 0 .

Application of the functor − ⊗R M to this sequence yields the long exact sequence

TorR
1 (R/(x1, . . . , xi), M) −→ M/(x1, . . . , xi−1)M

xi−→ M/(x1, . . . , xi−1)M.

The sequence x1, . . . , xi is R-regular, as it is a subsequence of the R-regular sequence
x̄. Hence TorR

1 (R/(x1, . . . , xi), M) = 0 by the assumption (iii), and thus xi is a non-
zerodivisor on M/(x1, . . . , xi−1)M. Therefore x̄ is a weak M-regular sequence. �

3. The trivial extension. Let A be any commutative ring and let C be any A-
module. The trivial extension of A by C (also called the idealization of C in A) is the
ring A � C whose underlying abelian group is A ⊕ C and where multiplication is given
by

(a, c)(a′, c′) = (aa′, ac′ + a′c) for (a, c), (a′, c′) ∈ A ⊕ C.

We refer to Fossum, Griffith, and Reiten [12, §5] for basic properties of this
construction. The ring homomorphisms ϕ : A → A � C given by a �→ (a, 0), and
ψ : A � C → A given by (a, c) �→ a allow us to consider any A-module as an (A � C)-
module, and vice versa, and we shall do so freely. Note that the composition ψϕ is the
identity on A.
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LEMMA 3.1. Let A be any commutative ring. For any A-module C and any set of
elements x1, . . . , xn in A there is an isomorphism of rings,

(A � C)/((x1, 0), . . . , (xn, 0)) ∼= A/(x1, . . . , xn) � C/(x1, . . . , xn)C .

Proof. There is a surjective homomorphism ϕ : A � C � A/(x1, . . . , xn) �

C/(x1, . . . , xn)C given by (a, c) �→ ([a](x1,...,xn), [c](x1,...,xn)C). Clearly, we have (xi, 0) ∈
Ker ϕ. Conversely, if (a, c) ∈ Ker ϕ, then a = ∑n

i=1 xiai and c = ∑n
i=1 xici where

ai ∈ A and ci ∈ C. It follows that (a, c) = ∑n
i=1(xi, 0)(ai, ci), so (a, c) is in the ideal

((x1, 0), . . . , (xn, 0)) in A � C. �

While the previous lemma was quite general, the next one is more specific.

LEMMA 3.2. Let C �= 0 be any finitely generated maximal CM R-module. If
x1, . . . , xn ∈ m is an R-regular sequence, then (x1, 0), . . . , (xn, 0) is an (R � C)-regular
sequence.

Proof. Fix i ∈ {1, . . . , n}. As C �= 0 is a maximal CM R-module and the sequence
x1, . . . , xi−1 is R-regular, C̄ = C/(x1, . . . , xi−1)C �= 0 is a maximal CM module over
R̄ = R/(x1, . . . , xi−1). By assumption, xi is a non-zerodivisor on R̄. We must argue
that (xi, 0) is a non-zerodivisor on (R � C)/((x1, 0), . . . , (xi−1, 0)) ∼= R̄ � C̄, where the
isomorphism is by Lemma 3.1. Thus, let (r, c) ∈ R̄ � C̄ be any element such that
(xi, 0)(r, c) = (xir, xic) is (0, 0); that is, we have xir = 0 and xic = 0. By assumption, xi

is a non-zerodivisor on R̄, and since the R̄-module C̄ is maximal CM, the element xi is
also a non-zerodivisor on C̄. Thus the equations xir = 0 and xic = 0 imply that r = 0
and c = 0, that is, (r, c) = (0, 0) as desired. �

Let A be a commutative ring and let x ∈ A be an element. Recall that the
Koszul complex on x is the complex KA

• (x) = 0 → A
x→ A → 0 concentrated in

homological degrees 0, 1. For a sequence x̄ = x1, . . . , xn ∈ A the Koszul complex is
KA

• (x̄) = KA
• (x1) ⊗A · · · ⊗A KA

• (xn).

LEMMA 3.3. Let A be any commutative ring, let C be an A-module, and let
x̄ = x1, . . . , xn be a sequence of elements in A. Consider the elements yi = (xi, 0) and
the sequence ȳ = y1, . . . , yn in A � C. For every A-module M there is the following
isomorphism of both A- and (A � C)-complexes,

KA�C
• (ȳ) ⊗A�C M ∼= KA

• (x̄) ⊗A M .

Proof. It suffices to consider the case n = 1. We have

KA�C
• (y1) ⊗A�C M ∼= 0 −→ M

y1−→ M −→ 0 (M is viewed as an (A � C)-module)

KA
• (x1) ⊗A M ∼= 0 −→ M

x1−→ M −→ 0 (M is viewed as an A-module)

By definition of the (A � C)-action on M, multiplication by the element y1 = (x1, 0)
on M is nothing but multiplication by x1 on M. �
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4. The direct limit closure of maximal CM modules. By a filtered colimit of
maximal CM R-modules we mean the colimit of a functor F from a skeletally small
filtered category J to the category of R-modules such that F(J) is maximal CM for
every J in J . We reserve the term direct limit for the special situation where J is the
filtered category associated to a directed set, i.e. a filtered preordered set.

REMARK 4.1. It follows from general principles that a module is a filtered colimit
of maximal CM modules if and only if it is a direct limit of maximal CM modules; see
Adámek and Rosický [1, Thm. 1.5]. Thus in Theorem B condition (i), one can freely
replace “direct limit” with “filtered colimit”.

In Theorem B condition (iii), we encounter the notion of Gorenstein flat modules.
These modules were defined by Enochs, Jenda, and Torrecillas [10] as follows:

DEFINITION 4.2. Let A be any commutative ring. An A-module M is called
Gorenstein flat if there exists an exact sequence of flat A-modules, � = · · · → F1 →
F0 → F−1 → · · · , with the property that E ⊗A � is exact for every injective A-module
E, such that M ∼= Im(F0 → F−1).

We are now in a position to prove our main result: Theorem B from the
Introduction.

Proof of Theorem B. (i)=⇒ (ii): Every finitely generated maximal CM R-module
satisfies condition (ii); see Section 2. And Proposition 2.4 shows that the class of
R-modules that satisfy condition (ii) is closed under direct limits.

(ii)=⇒ (iii): As � is a dualizing R-module, R � � is a Gorenstein ring by [12,
Thm. 5.6]. So at least the (R � �)-module M has finite Gorenstein flat dimension;
see [11, Cor. 2.4] or [5, Thm. 5.2.10]. It therefore follows from [5, Cor. 5.4.9] that this
dimension, GfdR�� M, can be computed by the “Chouinard formula”:

GfdR�� M = sup{ depth(R � �)q − depth(R��)q Mq | q ∈ Spec(R � �) }.
Thus, to prove that M is Gorenstein flat over R � �, equivalently, that GfdR�� M � 0
(the Gorenstein flat dimension of the zero module is −∞), we must argue that the
inequality

depth(R � �)q − depth(R��)q Mq � 0 (2)

holds for every prime ideal q in R � �. By [12, Lem. 5.1(i)] every such q has the form
q = p � � for a prime ideal p in R. The rings R and R � � are CM, and hence so
are their localizations Rp and (R � �)q. By Lemma 5.1(ii) in loc. cit. the rings Rp and
(R � �)q have the same Krull dimension, and this number we denote by e.

Recall that all maximal R-regular sequences contained in p have the same length;
this number is called the grade of p on R and it is denoted by gradeR (p, R). Since
R is CM, we have gradeR (p, R) = depth Rp = e by [4, Thm. 2.1.3(b)]. Now, let x̄ =
x1, . . . , xe ∈ p be a maximal R-regular sequence in p. Set yi = (xi, 0) and ȳ = y1, . . . , ye.
The sequence ȳ is evidently contained in q = p � �, and it is (R � �)-regular by
Lemma 3.2. Hence ȳ (or more precisely, the sequence y1/1, . . . , ye/1) is also (R � �)q-
regular, see [4, Cor. 1.1.3(a)]. As noted above, the ring (R � �)q has depth (and Krull
dimension) equal to e, and thus the (R � �)q-module (R � �)q/(ȳ)q ∼= ((R � �)/(ȳ))q
has depth 0, which means that the maximal ideal qq in (R � �)q is an associated prime
of this module. It follows that q is an associated prime ideal of the (R � �)-module
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T := (R � �)/(ȳ); see [24, Thm. 6.2]. Note that the (R � �)-module T = (R � �)/(ȳ)
has finite projective dimension (equal to e); this follows from [4, Exerc. 1.3.6] and the
fact that ȳ is (R � �)-regular. We are therefore in a position to apply [5, Lem. 5.3.5(b)],
which gives an inequality,

depth(R � �)q − depth(R��)q Mq � sup{ i | TorR��
i ((R � �)/(ȳ), M) �= 0 }. (3)

Since ȳ is an (R � �)-regular sequence, the Koszul complex KR��
• (ȳ) is a projective

resolution of the (R � �)-module (R � �)/(ȳ); see [24, Thm. 16.5(i)]. Similarly, KR
• (x̄)

is a projective resolution of the R-module R/(x̄). This explains the first and last
isomorphism below; the middle isomorphism follows from Lemma 3.3:

TorR��
i ((R � �)/(ȳ), M) ∼= Hi(K

R��
• (ȳ) ⊗R�� M)

∼= Hi(K
R
• (x̄) ⊗R M)

∼= TorR
i (R/(x̄), M).

The assumption (ii) and Proposition 2.4 shows that TorR
i (R/(x̄), M) = 0 for all i > 0.

This fact, combined with (3), gives the desired conclusion (2).
(iii)=⇒ (i): Recall from Section 2 that the category of finitely generated maximal

CM R-modules is an additive category closed under direct summands. To prove (i)
we apply Lenzing [23, Prop. 2.1] (see also Remark 4.1). That is, we must show that
every homomorphism of R-modules ϕ : N → M, where N is finitely generated, factors
through a maximal CM R-module. If we view N and M as modules over R � �,
then N is still finitely generated and M is Gorenstein flat by assumption (iii). As
R � � is Gorenstein, [9, Lem. 10.3.6] yields that ϕ, as a homomorphism of (R � �)-
modules, factors through a finitely generated Gorenstein projective (R � �)-module
G. By viewing the hereby obtained factorization N → G → M of ϕ, in the category of
(R � �)-modules, through the ring homomorphism R → R � �, we get a factorization
of the original ϕ in the category of R-modules. Thus, it remains to argue that G
is maximal CM over R, i.e. that depthR G = d. By Iyengar and Sather–Wagstaff [21,
Lem. 2.8] applied to the local ring homomorphism R → R � �, we get that depthR G =
depthR�� G. As G is Gorenstein projective over R � �, it is also maximal CM over
R � �, see e.g. [9, Cor. 11.5.4], so depthR�� G = dim (R � �) = d. �

In view of Definition 2.2 (due to Hochster), we suggest the following:

DEFINITION 4.3. Let A be a commutative noetherian local ring. An A-module
M is said to be weak balanced big CM if every system of parameters of A is a weak
M-regular sequence. The category of such A-modules is denoted by wbbCM (where
the ring A is understood).

REMARK 4.4. Let (A, n, �) be any commutative noetherian local ring. If an A-
module M satisfies nM �= M, then M is balanced big CM if (and only if) it is weak
balanced big CM. Indeed, under the assumption nM �= M, a sequence of elements in
n is M-regular if (and only if) it is weak M-regular.

With this terminology, the equivalence of conditions (i) and (ii) in Theorem B can
be expressed as follows: Over a CM ring R with a dualizing module, a module is weak
balanced big CM if and only if it is a direct limit of finitely generated maximal CM
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modules. In symbols, the result can be written as

wbbCM = lim−→(MCM). (4)

QUESTION 4.5. Over a general commutative noetherian local ring (not assumed to
be CM with a dualizing module), how are the classes wbbCM and MCM related?

EXAMPLE 4.6. As always in this paper, R denotes the ring from Setup 2.1.
(a) It follows from Proposition 2.4 that every flat R-module is weak balanced big
CM.

(b) Recall that an R-module M is said to be torsion-free if every non-zerodivisor
on R is also a non-zero divisor on M. If R has dimension d = 1, then a system
of parameters of R is nothing but a non-zerodivisor on R, so in this case “weak
balanced big CM” just means “torsion-free”.

Next we prove Theorem A from the Introduction.

Proof of Theorem A. Let M be a balanced big CM R-module. As M is, in particular,
weak balanced big CM, it can by Theorem B be written as M = lim−→i∈I

Mi for some
direct system ϕji : Mi → Mj (for i, j ∈ I with i � j) of finitely generated maximal CM
R-modules. A priori, some of the Mi’s could be zero, and hence they are not necessarily
small CM modules. However, since M �= 0 the subset I ′ = {i ∈ I | Mi �= 0} is cofinal
in I . (Otherwise there would exist i0 ∈ I such that Mi = 0 for all i � i0, in which
case the subset J = {i ∈ I | Mi = 0} would be cofinal in I , and hence 0 = lim−→i∈J

Mi =
lim−→i∈I

Mi = M; which is a contradiction.) It follows that M = lim−→i∈I ′ Mi, and hence
M can also be written as a direct limit of non-zero finitely generated maximal CM
(i.e. small CM) modules. �

The following example is due to Griffith [15, Rem. 3.3].

EXAMPLE 4.7. Let R = k[[x, y]] be the ring of formal power series in two variables
x, y with coefficients in a field k. It is a regular, and hence a CM, local ring of dimension
d = 2. Set E = ER(R/(y)) and M = R ⊕ E. Multiplication by x is an automorphism
on E since x /∈ (y), see e.g. [9, Thm. 3.3.8(1)], so x is a non-zerodivisor on M with
M/xM ∼= R/(x). It follows that y is a non-zerodivisor on M/xM and that M/(x, y)M ∼=
R/(x, y) �= 0. Hence the system of parameters x, y of R is an M-regular sequence, so
M is a big CM R-module.

However, M is not a balanced big CM module since the sequence y, x is not M-
regular. Indeed, multiplication by y is not a monomorphism on E (the entire submodule
R/(y) of E is mapped to zero), and hence y is a zerodivisor on M.

As M is not balanced big CM, and since (x, y)M �= M, it follows from Remark 4.4
that M is not even weak balanced big CM. Theorem B now shows that M can not be
written as a direct limit of finitely generated maximal CM R-modules.

OBSERVATION 4.8. Recall from Section 2 that a finitely generated R-module X is
maximal CM if and only if depthR X � d (and equality holds if X �= 0). As the functors
Exti

R(k,−) commute with direct limits, it follows from the definition of depth and from
Theorem B that for every R-module M, the following implication holds:

M is weak balanced big CM =⇒ depthR M � d.
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The converse is not true, as the R-module M from Example 4.7 is not weak balanced
big CM, but it does have depthR M = 2 = d. Here is one way to see why:

Since E is injective one has Exti
R(k, E) = 0 for all i > 0. We also have HomR(k, E) =

0. Indeed, since k = R/(x, y) there is an isomorphism HomR(k, E) ∼= {e ∈ E | (x, y)e =
0}. And if e ∈ E satisfies (x, y)e = 0 then, in particular, xe = 0 which implies that e = 0
since x is a non-zerodivisor on E. Thus depthR E = ∞ and depthR M = depthR(R ⊕
E) = depth R = 2.

A more explicit way to formulate these considerations are as follows. The R-module
M from Example 4.7 has the property that Exti

R(k, M) = 0 for i = 0, 1; but M is not
a direct limit of finitely generated R-modules with this property (of course, M is the
direct limit of some direct system of finitely generated R-modules).

We mention another easy consequence of Theorem B.

PROPOSITION 4.9. The following conditions are equivalent:

(i) R is regular.
(ii) Every weak balanced big CM R-module is flat.5

Proof. By Lazard [22, Thm. 1.2] an R-module is flat if and only if it is a direct limit
of finitely generated projective R-modules. And by Cor. 1.4 in loc. cit. every finitely
generated flat R-module is projective. By Theorem B an R-module is weak balanced
big CM if and only if it is a direct limit of finitely generated maximal CM modules. And
every finitely generated weak balanced big CM R-module is maximal CM. It follows
that condition (ii) holds if and only if every finitely generated maximal CM module is
projective, and this is tantamount to R being regular. �

In view of Example 4.6(b), we have the following special case of the implication
(i) ⇒ (ii) in the result above: Over a principal ideal domain every torsion-free R-module
is flat. This classic result can of course be found in most textbooks on homological
algebra; see for example Rotman [26, Cor. 3.50].

5. Applications in relative homological algebra. In this final section, we give
applications of Theorem B from the Introduction in relative homological algebra.
Special attention is paid to preenvelopes and covers by maximal CM modules and by
(weak) balanced big CM modules. First we recall some relevant notions.

Let A be a class of objects in a category M, and let M be an object in M.
Following Enochs and Jenda [9, Def. 5.1.1], a morphism π : A → M with A ∈ A is an
A-precover of M if every other morphism π ′ : A′ → M with A′ ∈ A factors through π ,
as illustrated below.

A′

��
�
�
�
� π ′

��������

M

A
π

��������

5 Recall from Example 4.6(a) that a flat R-module is always weak balanced big CM.
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An A-precover π : A → M is called an A-cover if every endomorphism ϕ of A that
satisfies πϕ = π is an automorphism. The notion of A-(pre)envelopes is categorically
dual to the notion of A-(pre)covers.6

Let M be an abelian category (in our case, M will be the category of all modules
over some ring or the category of finitely generated modules over a noetherian ring).
For a class of objects A in M, we define

⊥A = {M ∈ M | Ext1
M(M, A) = 0 for all A ∈ A }, and

A⊥ = {M ∈ M | Ext1
M(A, M) = 0 for all A ∈ A }.

A pair (A,B) of classes of objects inM is called a cotorsion pair ifA⊥ = B andA = ⊥B.
A cotorsion pair (A,B) is called:

– Hereditary if the class A is resolving; this means that A contains all projective
objects inM and thatA is closed under extensions and kernels of epimorphisms.
See [13, Def. 2.2.8(i) and Lem. 2.2.10] for further details.

– Complete if the class A has enough projectives; this means that for every M ∈ M
there exists an exact sequence 0 → B → A → M → 0 with A ∈ A and B ∈ B.
Equivalently, B has enough injectives, that is for every M ∈ M there is an exact
sequence 0 → M → B → A → 0 with A ∈ A and B ∈ B. See [9, §7.1] and [13,
Lem. 2.2.6].
Note that if (A,B) is a complete cotorsion pair, then every M ∈ M has a special
A-precover and a special B-preenvelope in the sense of Xu [30, Props. 2.1.3
and 2.1.4]. That is, every M ∈ M has a surjective A-precover, respectively,
an injective B-preenvelope, whose kernel, respectively, cokernel, is in A⊥,
respectively, in ⊥B.

– Perfect if every M ∈ M has an A-cover and a B-envelope. See [13, Def. 2.3.1].
Recall that MCM denotes the category of finitely generated maximal CM modules;

see Section 2. We denote by I the categeory of finitely generated modules with finite
injective dimension. As always, R is the ring from Setup 2.1.

A classic result of Ischebeck [20] (see also [4, Exerc. 3.1.24]) shows that
Exti

R(M, I) = 0 for all M ∈ MCM, all I ∈ I, and all i > 0. In particular, one has
MCM⊥ ⊇ I and MCM ⊆ ⊥I. Combining this fact with the existence of maximal
CM approximations and hulls of finite injective dimension, proved by Auslander and
Buchweitz in [2, Thm. A], one gets:

THEOREM 5.1. On the abelian category of finitely generated R-modules, the pair
(MCM, I) is a complete hereditary cotorsion pair. In particular, every finitely generated
R-module has a MCM-precover and an I-preenvelope.

We now prove Theorems C and D from the Introduction.

Proof of Theorem C. By Crawley–Boevey [6, Thm. (4.2)], the assertion is equivalent
to lim−→(MCM) being closed under products. By Theorem B, the class lim−→(MCM) is exactly
the class of weak balanced big CM R-modules, and it follows from Proposition 2.4
and [9, Thm. 3.2.26] that this class is closed under products. �

6 Let M = Mod(A) be the category of (left) modules over a ring A. If A = Prj(A) is the class of projective
A-modules, then an A-cover is exactly the same as a projective cover in the sense of Bass [3]. If A = Inj(A)
is the class of injective A-modules, then an A-envelope is exactly the same as a injective hull in the sense of
Eckmann and Schopf [7]. Proofs of these facts can be found in Xu [30, Thms. 1.2.11 and 1.2.12].
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Proof of Theorem D. It follows from Proposition 2.4 that wbbCM is resolving,
and that it is closed under products, coproducts, and direct summands. Since
wbbCM = lim−→(MCM), see (4), Lenzing [23, Prop. 2.2] shows that wbbCM is closed
under pure submodules and pure quotient modules. Thus [19, Thm. 3.4] yields that
(wbbCM, wbbCM⊥) is a perfect cotorsion pair, which is hereditary as wbbCM is
resolving. It follows from Rada and Saorin [25, Cor. 3.5(c)] that every R-module
has a wbbCM-preenvelope. �

We end this paper by proving the existence of (non-weak) balanced big CM covers
for certain types of modules.

PROPOSITION 5.2. Let M be any R-module. If mM �= M, then M has a surjective
cover with respect to the class of balanced big CM R-modules.

Proof. It follows from Theorem D that M has a cover with respect to the class of
weak balanced big CM R-modules, say, π : W → M where W is in wbbCM. The
homomorphism π must be surjective since every projective R-module belongs to
wbbCM. As π is surjective, so is the induced map W/mW → M/mM, and it follows
that mW �= W . Hence W is balanced big CM R-modules, see Remark 4.4, and π is
the desired cover. �

Proposition 5.2 is related to the main result in [28, Thm. 5.6] by Simon. This
result asserts that, over a CM ring with a dualizing module, every complete module
has a surjective cover w.r.t. the class X of complete big CM modules including the zero
module.

In Proposition 5.2, the assumption mM �= M is essential; here is a pathological
example.

EXAMPLE 5.3. The zero module M = 0 does not have a cover with respect to the
class of balanced big CM R-modules. Indeed, suppose that W → 0 is such a cover.
Since the zero endomorphism 0: W → W makes the diagram

W

0

��

��������

0

W

��������

commutative, it follows from the definition of a cover that 0 : W → W is an
automorphism. This means that W = 0, which is impossible as W is a big CM module.

ACKNOWLEDGEMENTS.
It is a pleasure to thank the anonymous referee for a careful reading of this

manuscript and for thoughtful comments, suggestions, and corrections.

REFERENCES
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