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Abstract

The dissemination of Escherichia coli producing extended-spectrum beta-lactamase (ESBL-Ec)
is evident in the community. A population-based spatial analysis is necessary to investigate
community risk factors for ESBL-Ec occurrence. The study population was defined as indivi-
duals with ESBL-Ec isolated in Queensland, Australia, from 2010 to 2019. Choropleth maps,
global Moran’s index and Getis-Ord Gi* were used to describe ESBL-Ec distribution and iden-
tify hot spots. Multivariable Poisson regression models with or without spatially structured
random effects were performed. A total of 12 786 individuals with ESBL-Ec isolate were
identified. The crude incidence rate increased annually from 9.1 per 100 000 residents in
2010 to 49.8 per 100 000 residents in 2019. The geographical distribution of ESBL-Ec changed
from random to clustered after 2014, suggesting presence of community-specific factors that
can enhance occurrence. Hot spots were more frequently identified in Outback and Far North
Queensland, future public health measures to reduce transmission should prioritise these
communities. Communities with higher socioeconomic status (RR = 0.66, 95% CI 0.55–0.79,
per 100 units increase) and higher proportion of residents employed in the agricultural industry
(RR = 0.79, 95% CI 0.67–0.95, per 10% increase) had lower ESBL-Ec incidence. Risk factors for
occurrence appear differential between remote and city settings and this should be further
investigated.

Introduction

The community spread of Escherichia coli producing extended-spectrum beta-lactamase
(ESBL-Ec) is notable in the last decade. ESBL-Ec are extra-intestinal pathogenic bacteria
that predominantly cause urinary tract infections while development of either primary or
secondary bloodstream infections are also common. Although carriage may not present
with clinical implications, several high-risk groups, such as older people and immunocom-
promised patients, may be at elevated risk of life-threatening infections. It was observed
that the odds of mortality in patients with ESBL-Ec infection were 70% higher than patients
with non-ESBL-Ec infection [1]. In Australia, of all mortality cases from E. coli bloodstream
infections in 2019, ESBL-Ec were detected in 18.3% of the cases, of which more than half
were of community-onset [2].

Although previously treated as a healthcare-associated pathogen, an eight-fold increase in
global ESBL-Ec carriage rate in healthy individuals was reported between 2003 and 2018 [3].

The widespread emergence of ESBL-Ec outside of hospital settings can be attributed to sev-
eral reasons, including the establishment of a successful clonal group, namely E. coli ST131
that is highly associated with ESBL carriage [4]. The presence of long-term ESBL-Ec carriers
in the community and importation of multidrug-resistant pathogens from travellers also
increase the risk of ESBL-Ec exposure for general community dwellers [5, 6]. A modelling
study from the Netherlands had documented that 67% of ESBL-Ec transmission in the com-
munity can be attributed to human-to-human spread [7]. Individual risk factors for ESBL-Ec
infection such as old age, underlying disease and recent history of antibiotics use and hospi-
talisation are well-documented [8]. The risk factors in the community, that can promote inter-
human spread, are still not extensively studied. Nonetheless, several observational studies have
postulated that contact with farm animals [7, 9, 10], retail meat for consumption [7, 11], and
household composition and density are predictors of ESBL-Ec acquisition in the community
setting [12–14]. A high prevalence of migrants from ESBL-Ec endemic countries, such as
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Southeast Asia [3, 8, 15], may also introduce ESBL-Ec into the
host country [16], and thereby increase the risk of human
transmission.

The availability of population-based studies investigating com-
munity risk factors of ESBL-Ec spread is still scarce. Moreover,
current population-based studies do not account for the spatial
relationship between neighbouring communities and as such, do
not consider influence from neighbouring features. With ESBL-Ec
increasingly detected in the community, the need for spatial
population-based epidemiological studies to understand its distri-
bution pattern and risk factors is warranted. The higher risk of
hospitalisation and mortality associated with ESBL-Ec infection
warrants these public health investigations to allow for mitigation
of ESBL-Ec spread. With significant increases in the occurrence of
E. coli isolates resistant to ceftriaxone and ceftazidime detected in
Australian communities [2], this population-based study aimed to
describe the geographical patterns of ESBL-Ec in Queensland over
a ten-year period, and to identify the predictors of ESBL-Ec trans-
mission in the community.

Methods

This manuscript followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) Statement
for recommended reporting guidelines [17]. The study protocol
was reviewed and approved by the University of Queensland
Human Research Ethics Committee (2020001388). As this is a
population-based ten-year study using de-identified data, a waiver
of consent was obtained for its low and negligible risk nature.

Study design, setting and participants

This study was based on an ecological design. The study popula-
tion was defined as all Queensland, Australia, residents with
ESBL-Ec isolates from 2010 to 2019. This included both asymp-
tomatic and sick residents with detected ESBL-Ec isolate.
Queensland is in North-Eastern Australia, spans approximately
1.7 million km2 of land area and includes costal, mountainous
as well as arid regions. It is the second largest state in Australia
with 5.2 million residents from 442 postal areas in 2021. Most
of Queensland residents reside in the state capital, Brisbane, as
well as in other coastal cities including Gold Coast, Sunshine
Coast, Cairns and more.

Outcome data

The study data were extracted from AUSLAB (PJA Solutions Pty
Ltd) database, Pathology Queensland, which is the pathology
laboratory that records and processes all microbiological samples
collected from public healthcare facilities in Queensland. The
public healthcare services are distributed and managed across
15 different regional and metropolitan Hospital and Health
Services in Queensland (Supplementary Fig. S1). There are 36
laboratories from Pathology Queensland to service these public
healthcare facilities. Pathology Queensland determines ESBL pro-
duction using EUCAST Breakpoint Tables (currently version 11).
The combination disc test is used to confirm ESBL-Ec isolates
that had initial susceptibility testing performed on Vitek2
(BioMerieux), demonstrating resistance to ceftriaxone or
ceftazidime. Data were collected from 2010 to 2019. Only unique
individuals were included in the study sample and the year of
ESBL-Ec acquisition was documented as their first isolate detected

during the study period. Individuals with recorded postal code
outside of Queensland were excluded. For each identified isolate,
residential postal area, date of specimen collection, gender, age
and specimen type were also recorded. The acquisition nature
(community- or healthcare-acquired) could not be determined
with our dataset.

Explanatory variables

The population and demographic profile per postal area were
collected from Australian Bureau of Statistics (ABS) [18], using
census data from 2011 and 2016. Because population counts
were not available for the other years, estimates were obtained
by aggregating population counts from smaller administrative
area (Statistical Area 1) that were publicly available from
Queensland Government [19]. Community demographic profile
for each Queensland postal area pertaining to population density,
median age, proportion of males, indigenous people, migrants,
rental properties, residents employed in health care services and
residents employed in agricultural industry, housing composition
and density (average number of children per family, average resi-
dents per house and average residents per bedroom) and index of
relative socioeconomic disadvantage (IRSD), education and income
were collected and described in Supplementary Table S1.
Queensland postal area-level shapefiles (boundary map) were
downloaded from ABS [20].

Statistical analysis

Distribution of ESBL-Ec and hot spot analysis
The annual ESBL-Ec incidence rate per 100 000 residents was cal-
culated using number of cases identified in each year as numer-
ator and total number of Queensland residents in each year as
denominator. The annual standardised morbidity ratio (SMR)
of each postal area was calculated using observed number of
ESBL-Ec cases divided by expected number of ESBL-Ec cases,
where expected frequency was derived from annual Queensland
incidence rate multiplied by population of each postal area. The
SMR values were used to create annual choropleth maps of the
spatial distribution of ESBL-Ec cases across Queensland. Next,
hot spot analysis was performed by calculating global Moran’s
index to determine overall spatial autocorrelation. The assump-
tion of inverse distance spatial relationship among postal areas,
where closer neighbours were assigned higher weightage as com-
pared to farther neighbours, was applied. The ESBL-Ec spatial
pattern was determined as clustered if z-score fell above 1.96, as
dispersed if z-score fell below −1.96 and as random if otherwise.
Next, local Getis-Ord Gi* was performed to visually identify hot
or cold spots of statistical significance. The assumption of inverse
distance spatial relationship among postal areas was similarly
applied here. There was no threshold distance applied to assume
relationship among all postal areas. Distance method was set as
Euclidean. To assess differences in results based on spatial rela-
tionships of features, a repeated Getis-Ord Gi* was performed
using the default threshold distance (derived as 218 kilometers),
where every feature had at least one other neighbour. All spatial
mapping and hotspot analysis were performed on ArcGIS Pro.

Regression modelling with and without spatial parameter
Three postal areas with no residing population were excluded
from the spatial analysis. The outcome was defined as all
ESBL-Ec cases identified in 2016 per postal area and the
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predictors were demographic variables collected from 2016
census. All pre-determined variables were checked for correlation
(r > 0.7 or r≤ 0.7) and collinearity (variance inflation factor >5).
In the event where high correlation or collinearity was detected
between two variables, the variable that returned a lower Akaike
information criterion score in a univariate Poisson regression
model was selected. Following these model diagnostic tests, the
variables tertiary education and median personal income were
dropped from the model. Selection of demographic variables
was performed on STATA/SE 16.1 and the univariate Poisson
regression analysis of selected variables is documented in
Supplementary Table S2.

Three Poisson regression models were developed in WinBUGS
version 1.4.3 (MRC Biostatistics Unit 2008) using a Bayesian
framework. The first model included only the unstructured ran-
dom effects (μ) at postal area level, the second model included the
spatially structured random effects (s) at postal area level and the
third convoluted model (μ + s) included both unstructured and
spatially structured random effects at postal area level. The convo-
luted Poisson model followed the following equation –

Yi � Poisson(mi)
log(mi) = log(Ei)+ ui

θi = α+ β1[population density]i + β2[median age]i + β3[proportion
of males]i + β4[proportion of indigenous residents]i + β5[proportion
of migrants]i + β6[average children per family]i + β7[average residents
per house]i + β8[proportion of rented households]i + β9[proportion of
residents employed in health care services]i + β10[proportion of
residents employed in agricultural industry]i + β11[average resi-
dents per bedroom]i + β12[IRSD]i + μi + si,

where Yi refers to the observed cases at the i postal area, Ei refers
to the expected cases at the i postal area and θ is the mean log
relative risk. The random effects (μ, s) assumed normal prior dis-
tributions. The precision of random effects (μ, s) assumed gamma
prior distribution of 0.5 and 0.0005. The intercept (α) assumed
continuous uniform prior distribution with infinity bounds. The
coefficients of covariates (β) assumed normal prior distributions
with mean = 0 and precision = 0.001. Each covariate (x) was stan-
dardised using z = (χ − population mean/population standard
deviation). To model the spatial autocorrelation effects on
WinBUGS, a conditional autoregressive (CAR) prior structure
was used. Spatial relationships between postal code areas were
determined using an adjacency weights matrix, which assigns
weight = 1 to postal areas with shared boundary and weight = 0
if otherwise. The initial values were specified as 0 for the intercept
and covariates, and as 0.5 for the precision of the random effects.

The zero-inflated Poisson regression models were also assessed
in WinBUGS to determine the best model fit for this dataset.
Models returning lower deviance information criterion (DIC)
values were considered better. The Poisson models consistently
returned lower DIC than the zero-inflated Poisson models and
as such, Poisson regression was selected for this analysis.

For each model tested, a random seed of 5000 was set and an
initial burn-in of 1000 iterations was made and discarded.
Convergence of parameters was monitored with every subsequent
10 000 iterations, based on visual inspection of autocorrelation
and history plots. Each of the Poisson regression model converged
after 20 000 iterations. After convergence was met, another 20 000
iterations were run for the posterior distribution. The DIC value,
posterior mean, standard deviation and 95% credible interval

(95% CI) of each parameter, were stored and used for analysis.
Statistical significance was set as 0.05.

Sensitivity analyses were conducted according to these model
specifications and assumptions, using demographic data collected
from the 2011 census and outcome defined as all ESBL-Ec cases
identified in 2011.

Results

A total of 12 786 unique patients with ESBL-Ec from 369 postal
areas were recorded over the ten-year period. This included
7884 (61.7%) patients with ESBL-Ec isolates detected from urin-
ary specimens only, 380 (3.0%) patients with ESBL-Ec isolates
detected from blood specimens only and 733 (5.7%) patients
with ESBL-Ec isolates from both urine and blood specimens.
There were 2867 (22.4%) patients with no positive clinical culture
but ESBL-Ec was isolated from their faecal specimens or rectal/
anal swabs. The patients were predominantly female (63.1%).
The mean age was 58.5 years (S.D. = 25.0), with 995 patients
(7.8%) aged less than 18 years, 5483 (42.9%) aged between 18
and 65 years, and 6308 (49.3%) aged above 65 years.

Distribution of ESBL-Ec and hot spot analysis

The incidence rate increased annually from 9.1 per 100 000 resi-
dents in 2010 to 49.8 per 100 000 residents in 2019 (Fig. 1), with
the sharpest rise detected between 2016 and 2018. Annual choro-
pleth maps of ESBL-Ec SMR are presented in Figure 2. Areas with
higher-than-expected number of cases (SMR>1) were more preva-
lent from 2014 onwards. Using global Moran’s index, the distribu-
tion of ESBL-Ec cases across Queensland was random between
2010 and 2013 (P > 0.05) but became significantly clustered
between 2014 and 2019 (P < 0.05) (Fig. 2).

The ESBL-Ec hot spots of at least 90% confidence are detailed
in Figure 3 (with focused map of state capital Brisbane in
Supplementary Fig. S2). The hot spots identified using either
default (218 kilometres) or no threshold distance were identical.
Hot spots were more frequently detected from 2014 to 2016 inclu-
sive, with the highest number of hot spots observed in 2016. It
appeared that hot spots were more prevalent in remote Outback
and Far North Queensland. Sporadic hot spots were also detected
in the outer regional areas throughout the study period. A few
coastal and inner regional hot spots that were detected in 2013
disappeared in the following years. The hot spots identified within
Brisbane city were scarce and sporadic as compared to regional
and remote areas. There was no cold spot of statistical significance
identified.

Predictors of ESBL-Ec incidence

The demographic characteristics of the remaining 439 postal areas
in 2016 is summarised in Table 1. A total of 1364 patients with
ESBL-Ec was detected in 2016. In the multivariable analysis, the
Poisson model with spatially structured random effects showed
the best performance (DIC = 1271.20). Using posterior means
from this model, communities with higher IRSD score (RR =
0.66, 95% CI 0.55–0.79, per 100 units increase), which translates
to better socioeconomic status, had significantly lower ESBL-Ec
incidence (Table 2). Communities with higher proportion of resi-
dents being employed in the agricultural industry (RR = 0.79, 95%
CI 0.67–0.95, per 10% increase) was also a significant predictor of
lower ESBL-Ec incidence. A higher proportion of Aboriginal and
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Torres Strait Islander residents in the community was the only
predictor for higher ESBL-Ec incidence (RR = 1.13, 95% CI
0.96–1.33, per 10% increase), although this observation was not
statistically significant.

Next, the posterior mean variance of spatially structured ran-
dom effects per postal area was mapped (Fig. 4). After accounting
for the studied community risk factors, hot spots were still largely
detected in Outback and Far North Queensland, where a large

Fig. 1. Annual incidence rate of ESBL-Ec per 100 000
residents in Queensland from 2010 to 2019.

Fig. 2. Annual SMR of ESBL-Ec incidence per postal area and overall geographical distribution across Queensland.
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proportion of these postal areas were classified as remote or very
remote regions. A clear decreasing gradient of hot spots from very
remote to remote to outer regional and to inner regional zones

can be visualised. However, at the Brisbane urban city area,
there was no distinct pattern in the distribution of hot spots.

There were 423 postal areas with residents in 2011. In the sen-
sitivity analysis using census data and ESBL-Ec incidence from
2011, the spatially structured model (DIC = 897.462) similarly
had the best performance. Better socioeconomic status within
the communities (RR = 0.61, 95% CI 0.46–0.82, per 100 units
increase) and higher proportion of residents employed in the agri-
cultural industry (RR = 0.62, 95% CI 0.44–0.85, per 10% increase)
were consistently protective factors of lower ESBL-Ec incidence
(Supplementary Table S3).

Discussion

The annual incidence rate of ESBL-Ec in Queensland, Australia,
has increased by more than 5-fold between 2010 and 2019, with
a sharper escalation noted between 2016 and 2018. The hot
spot analysis identified that the distribution of ESBL-Ec cases
changed from random to clustered after 2014, with the highest
number of hot spots detected in 2016. This suggests that there
are area-specific risk factors that escalated ESBL-Ec spread in
some communities. ESBL-Ec hot spots were more prevalent in
Outback and Far North remote Queensland regions, and interest-
ingly, only few hot spots were identified in the Brisbane city
region despite higher population density. The protective factors
for lower ESBL-Ec incidence were better socioeconomic status
and higher proportion of residents employed in agricultural
industry within the community. A higher proportion of

Fig. 3. Annual ESBL-Ec hot spots identified in Queensland.

Table 1. Summary of community demographic factors in 439 Queensland
postal areas with residents in 2016

Demographic variable Mean (S.D.)

Number of people per km squared 490.0 (901.4)

Median age (year) 40.6 (7.0)

Proportion of male (%) 50.8 (3.1)

Proportion of Aboriginal and Torres Strait Islander (%) 5.6 (10.4)

Proportion of residents born in Australia (%) 75.3 (10.7)

Proportion of unemployed residents (%) 7.0 (4.0)

Average number of children per family 0.7 (0.2)

Average number of residents per house 2.5 (0.3)

Proportion of rented households (%) 32.1 (14.7)

Proportion of residents employed in health care
services (%)

10.5 (4.2)

Proportion of residents employed in agricultural
industry (%)

14.1 (18.0)

Average number of people per bedroom 0.8 (0.1)

IRSD 978.6 (74.3)
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Aboriginal and Torres Strait Islander residents in the community
was associated with higher ESBL-Ec incidence, but this was not
statistically significant. Despite accounting for these demograph-
ics, residual spatially structured effects were still present, and
were indicative of unaccounted ESBL-Ec clusters especially in
the more remote communities but also within Brisbane city.

Interestingly, population and household density were not pre-
dictive of ESBL-Ec incidence. As the outcome data were collected
from public health care facilities only, the number of ESBL-Ec
cases from city areas was likely under-represented as access to pri-
vate health care services is higher in the city. Nonetheless, a
population-based prevalence study was recently conducted in
the Netherlands investigating predictors of ESBL-producing
Enterobacterales carriage as compared to non-carriers in the com-
munity. Consistent with our results, this study also reported that
population density was not predictive of higher incidence [21].
Although a mathematical modelling study had suggested that
the probability of ESBL-Ec transmission could be higher within
denser households, transmission can be attenuated with good
hand hygiene practices [22]. Good sanitation behaviour, such as
proper handwashing, may have a bigger influence on preventing
ESBL-Ec spread in the community than restricting overcrowding,
and could be validated with further studies.

Next, our results indicate that the spread of ESBL-Ec in the
community is likely not discriminative of age. Although a
population-based study conducted in France reported that age
greater than 65 years was predictive of urinary tract infection
caused by ESBL-Ec [10], the study sample had only included
infected patients who were likely with higher risk of being sick.
On the other hand, our population-based sample included a sub-
stantial proportion (∼22.4%) of ESBL-Ec carriers who did not

develop subsequent infection, and are likely younger and at
lower risk of infection. As such, although ESBL-Ec transmission
in the community is likely not influenced by age, future public
health measures to prevent spread should be targeted in elderly
communities where infections are more likely to develop from
carriage.

Our results also show that working in the agricultural industry
may lower the incidence of ESBL-Ec in the community. This is in
contrast to molecular evidence presented from several studies
where farm animal to human transmissions were reported [9].
The population-based French sample had also observed poultry
and pig densities in the community as predictors of urinary
tract infection caused by ESBL-Ec [10]. There are several postula-
tions to these discrepancies in observations. Firstly, our covariate
measuring proportion of agricultural industry workers may be
insufficiently valid in measuring spread of ESBL-Ec from farm
animals to humans. The covariate measured people who were
also employed in other agricultural practices, such as forestry,
fruit and vegetable farming and fishing, which have shown no evi-
dence as risk factors of ESBL-Ec sources. As a result, the true
effect between contact with farm animals and ESBL-Ec incidence
may have been masked. Alternatively, ESBL-Ec spread between
farm animals and humans may not be significant within
Queensland communities. Australian farming practices tend to
be less intensive and are conservative in antibiotics use in food
animal production [23]. In addition, there is evidence that
ESBL-Ec isolates derived from food animals and humans are gen-
etically distinct [24, 25], suggesting that colonisation in humans is
highly unlikely to be acquired from this source. This molecular
evidence, combined with our spatial epidemiological results, indi-
cate that direct transmission of ESBL-Ec from farm animals

Table 2. Multivariable spatial analysis of demographic predictors and ESBL-Ec incidence in 2016, with comparison of results across 3 different models

Year 2016

Spatially unstructured
random effects
model (s + μ)

Spatially structured
model (s)

Unstructured
random effects

model (μ)

Demographic variable Relative risk (95% CI)

Number of people per km squared (per 1000 people increase) 0.93 (0.80–1.08) 0.94 (0.81–1.09) 0.96 (0.84–1.09)

Median age (per 1 year increase) 0.98 (0.95–1.00) 0.98 (0.95–1.00) 0.97 (0.94–0.99)

Proportion of male (per 10% increase) 0.95 (0.56–1.60) 0.95 (0.56–1.59) 1.19 (0.70–1.97)

Proportion of Aboriginal and Torres Strait Islander (per 10% increase) 1.12 (0.95–1.33) 1.13 (0.96–1.33) 1.20 (1.01–1.43)

Proportion of residents born in Australia (per 10% increase) 1.00 (0.86–1.17) 1.00 (0.86–1.16) 0.96 (0.84–1.10)

Average number of children per family (per 0.1 unit increase) 0.95 (0.83–1.08) 0.95 (0.83–1.08) 0.95 (0.82–1.08)

Average number of residents per house (per 0.1 increase) 0.94 (0.88–1.01) 0.94 (0.88–1.00) 0.95 (0.89–1.02)

Proportion of rented households (per 10% increase) 0.95 (0.82–1.09) 0.94 (0.81–1.08) 0.90 (0.78–1.05)

Proportion of residents employed in health care services (per 10% increase) 1.01 (0.68–1.51) 1.00 (0.69–1.49) 1.01 (0.69–1.50)

Proportion of residents employed in agricultural industry (per 10% increase) 0.80 (0.67–0.95) 0.79 (0.67–0.95) 0.77 (0.65–0.91)

Average number of people per bedroom (per 0.1 unit increase) 0.97 (0.83–1.13) 0.97 (0.83–1.14) 0.93 (0.79–1.10)

IRSD (per 100 units increase) 0.66 (0.54–0.79) 0.66 (0.55–0.79) 0.62 (0.51–0.74)

Posterior mean of variance (95% CI)

Unstructured 0.00 (0.00–0.04) – 0.17 (0.12–0.27)

Structured 0.41 (0.26–0.66) 0.43 (0.29–0.67) –

Deviance information criterion (DIC)

1275.270 1275.140 1301.080
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contact to human may not be likely in Queensland communities
and hence, does not present as a risk factor. To further validate
the association between exposure to farm animals and ESBL-Ec
incidence, future observational studies would require a more
robust tool to measure farm exposure and results should ideally
be complemented with molecular evidence.

Communities with higher proportion of Aboriginal and Torres
Strait Islander residents were associated with higher incidence of
ESBL-Ec, although this observation was not statistically significant
in the multivariable analysis. The hot spots detected in Far North
Queensland region (Fig. 3) are likely accounted by the high
proportion of Aboriginal and Torres Strait Islander residents,
which comprised between 30% and 95% of population there
(Supplementary Fig. S3). Based on the multivariable analysis,
the socioeconomic status associated with the indigenous popula-
tion likely had an influence on risk of ESBL-Ec acquisition.

The mapping of posterior mean variance of spatially struc-
tured random effects shows that hot spots were more likely
detected in remote areas, even after accounting for multiple
demographic risk factors in this study. The remoteness index is
defined by ABS based on relative access to services from urban
centre or locality [26], and our results suggest that poor access
to services may have an effect on increased ESBL-Ec incidence.
As visualised in Figure 4, there is a clear decreasing gradient of
hot spots from very remote to remote to outer regional to inner
regional areas. This suggests the plausibility of a negative associ-
ation between access to services and incidence of ESBL-Ec.
Public health measures that aim to reduce the spread of

ESBL-Ec should be targeted and tailored for the remote commu-
nities and future research should be planned to identify specific
risk factors in remote settings. Interestingly, the decreasing gradi-
ent of hot spots across the remoteness index was not applicable to
urban Brisbane city, as a substantial number of hot spots were
detected here. As such, the risk factors for ESBL-Ec acquisition
in cities are likely differential to remote and regional communities
in Queensland.

One limitation in our ecological study is that there are likely
other spatial factors that were not collected and accounted, such
as local temperature. It was reported that the incidence of
E. coli bloodstream infections increases with increased mean
local temperature or over the summer season [27], postulated
by changes in human behaviour, bacteria density in environmen-
tal sources or host immune function [28]. More specifically, this
positive association with temperature was also observed with inci-
dence of ESBL-producing bacteria in Germany [29]. In our hot
spot and spatial analyses, we found that hot spots were more likely
identified in Outback and Far North Queensland, which experi-
ence generally hotter weather conditions as compared to
Brisbane city. Nonetheless, the dynamics between temperature
and incidence of bacteria acquisition are extremely complex and
multifactorial. Further epidemiological, spatial, time-series and
molecular analyses are required to elucidate the relationship
between ESBL-Ec incidence and temperature or seasonal changes.
Another limitation in our study is that healthcare-associated risk
factors, such as community consumption of antibiotics and hos-
pital exposure, were not accounted in the analyses. While

Fig. 4. Posterior mean variance of structured random effects per postal area across Queensland.
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modelling studies have predicted that reducing overall antibiotic
use could reduce drastically ESBL-producing bacteria colonisation
[30], other population-based studies have reported that these pre-
dictors were not significantly associated with or had limited con-
tribution to ESBL-Ec incidence in the community [10, 21]. These
healthcare-associated risk factors may account for some of the
residual spatially structured effects detected in the Brisbane city
area, where accessibility to antibiotics and medical care is higher
as compared to remote areas. In addition, the spatial analysis
assumes that each acquisition event had occurred within the geo-
graphical boundary of the reported residential postal area, which is
factually false since acquisition may have occurred elsewhere with
a fluid population. We also could not quantify and differentiate
between hospital-acquired and community-acquired ESBL-Ec
cases with the available data. The presence of hospital-acquired
ESBL-Ec cases in our study sample would have made our results
less precise.

Nonetheless, this is the first study to describe ESBL-Ec clusters
using hot spot analysis and to determine community risk factors
using spatial analysis. Transmission of ESBL-Ec in the community
is very dynamic and complicated, exacerbated by the fluidity of
humans moving across diverse communities on a daily basis.
We tried to elucidate risk factors that may promote spread and
acquisition in people when ESBL-Ec bacteria are introduced
into the community. While the results are derived from a popu-
lation level, this study serves as good evidence to inform hypoth-
eses for future observational studies.

Conclusion

The annual incidence rate of ESBL-Ec increased five-fold from
2010 to 2019, with the highest escalation observed between
2016 and 2018. The distribution of cases was identified as random
before 2014 and as clustered after 2014, indicating the presence of
area-level specific risk factors that can enhance the spread of
ESBL-Ec in the community. The hot spot analysis identified a
higher number of clusters found in Outback and Far North
Queensland regions, where postal areas are mostly classified as
remote with low accessibility to services from urban centre or
localities. As such, future public health measures may be targeted
at these remote communities to reduce transmission and research
should be additionally conducted to identify specific risk factors
for transmission in these remote settings. The spatial multivari-
able analysis suggests that better socioeconomic status could be
protective of lower ESBL-Ec acquisition. Moreover, it appears
that having a larger proportion of the population employed in
the agricultural industry, which was a proxy for exposure to
farm animals in this study, did not increase the risk of higher
ESBL-Ec incidence in the community. Nonetheless, there are sev-
eral other spatial factors, such as local temperature and
healthcare-associated risk factors, that were not accounted for
and should be further investigated in future studies. On a local
context, future research should be conducted to investigate if
the hotter climatic conditions of Outback and Far North
Queensland or if poor accessibility to services are associated
with increased ESBL-Ec incidence in Australia.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822001637.
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