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ON ISOMETRIC ACTIONS

S.B. MULAY

To a cardinal k ^ 2, we associate a simply-connected polyhedral surface £* endowed
with a bounded metric dk such that every group of cardinality k has an isometric,
properly discontinuous action on (Efc,dfc). If No ^ k ^ 2N° and G is a group of
cardinality A:, then we extend (£fc,djt) to a simply-connected bounded metric space
(MG, da) such that the action of G extends to an isometric, properly discontinuous
action on {MQ, da) and G is the full isometry-group of (MG, da).

INTRODUCTION

Let G be a group. Suppose we are given an isometric action of G on a metric
space M. By an isometric action we mean that each element of G acts not merely as
a homeomorphism but as an isometry of M. In this situation can we always extend
M nicely to a larger metric space so that G is realised as the full isometry group of
the extension? Here nicely means, on the one hand, preserving the properties of action
such as freeness, discreteness, discontinuity et cetera and, on the other hand, preserving
boundedness, connectedness properties et cetera of M. In Section 3 of this article we
have formulated one possible definition of what can be regarded as a nice extension.

The main aim of this article is to provide a partial answer to the above question.
Our construction of such a desired extension M of M is under the restrictions that M
is a connected, bounded metric space of cardinality ^ 2No and G is an infinite group of
cardinality ^ 2No. Most groups of traditional interest (for example, the linear groups)
do fall in this restricted class. But, there are a number of interesting isometric actions
for which the underlying metric is un-bounded. Therefore it is desirable to remove, in
some manner, our imposed restriction of boundedness. Also, the case of a finite group G
acting isometrically on a nontrivial metric space M remains outside our consideration.
We construct M by attaching spikes (or hair) to M; for this reason we have termed
it as a comb-extension. Consequently, M can be recovered as a deformation retract of
its enlargement M. These spikes are of equal length but their relative positioning (or
manner of attachment) depends on G as well as its given action on M.

Consider a nontrivial group G (of arbitrary cardinality) as a discrete topological

space. Let X be a cone over G having vertex O. The left-multiplication action of G on
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itself has a canonical extension to an action on X such that O is the only point with
non-trivial stabiliser. There is a natural path metric on X with respect to which this
action of G is isometric. We deform X3 — {(O,O,O)} to a simply-connected surface E
which is a patchwork of triangles (2-simplices) and such that the coordinatewise action
of G on X3 — {(0,0,0)} leaves E invariant. This way we get an isometric, properly
discontinuous action of G on E. Our metric spaces X, E depend only on the cardinality
of G. If G is countable, E is separable and admits a topological embedding in R6.

When the order of G does not exceed that of the real numbers, we construct a
bounded metric space (NQ, da) with an isometric action of G satisfying the following
three key requirements: the distance between any pair of distinct points is bounded
(below) away from zero, G is the exact full group of isometries of (iVG, dG) and the
action of G is properly discontinuous. Our cardinality restriction is needed only in this
construction. Further, if G is infinite, a comb-extension of E by means of (No, da)
provides a simply-connected, bounded metric space having G as its full isometry-group
and on which, the action of G remains properly-discontinuous.

En route we also show that a finite group can be realised as the full isometry-group
of a finite metric space. This is well-known (see [1]) but the construction employed in
[1] is of different nature. The main theorem of [1] shows that any finite group G can
be realised as the full isometry-group of a Riemannian sphere; however, the action of G
resulting from this construction is rarely free of fixed points. In the last section of this
article we pose some problems closely related to our explorations. Concerning these, very
little appears to be known. We are indeed aware of the connection between group-actions
and Cayley-graphs, but how advantageous it is in the present context, remains to be seen.

1. GRAPH-AUTOMORPHISMS AND ISOMETRIBS

The set of all nonempty, proper subsets of a set K is called the restricted power-set
of K and we denote it by ir(K). By the restricted power-set graph of K we mean the
graph whose vertex-set is ir(K) and there is an undirected edge between A,B e n{K)
whenever A U B = K. Since there is hardly any possibility of confusion, the subgraph of
the restricted power-set graph of K with an underlying set of vertices L C n(K) is also
denoted by L. The group of permutations of A" is denoted by S(K). The induced action
of S(K) on TT(K) is given by: A" := a{A) for all (A,a) 6 ir(K) x S{K).

By the canonical metric of a connected graph we mean the metric on its vertex-set
obtained by declaring each edge to have length 1 and where the distance between any
two vertices is defined to be the length of a shortest edge-path connecting them. It is
easy to verify that the diameter of ft(K), with respect to its canonical metric, is at most
3 (see the proof of assertion (i) of Lemma 1 below).

Let G be a non-trivial group and let X := G x {0,1}. The action of G on X by
left-multiplication in the first coordinate turns X into a G-set. From this we get the
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induced action of G on n{X). In the rest of this article ir(X) is regarded as a G-set via
this action. Given a subset A of X and an index i € {0,1}, we let At := A n G x {i}. In
the following G and X remain fixed.

LEMMA 0 . An element A € n{X) has non-trivial stabiliser in G if and only if each
Ai is a union of right-cosets of some non-trivial cyclic subgroup ofG.

PROOF: Let g be a non-identity element of the stabiliser of A in G. Clearly gAt

= g~*Ai = Ai for each i. Without loss we regard each Ai as a subset of G. Given an Ai
which is either the empty or the improper subset of G, our assertion is obviously true.
Say AQ is a nonempty proper subset of G. Suppose (g)x is a coset which is not contained
in A) but Ao D (g)x is nonempty. Pick a in AQ n (g)x and b G (g)x \ A. Now a := gpx and
b := gqx for some integers p, q. So 5(«"p)a = b. Since g stabilises A, the element gg~pa is
in Ao. This contradicts the choice of b. Hence a right coset of (g) is either contained in
Ao or it is disjoint from .Ao. In other words, Ao is a union of right cosets of the nontrivial
cyclic group (g). The converse is straightforward. D

DEFINITION: A sub-set W of n(X) is called nice if

(1) W is closed under complementation,

(2) W contains the singleton subsets of X,

W contains the subsets of X of the form {(g, 0), (ft, 1)},

stabc(A) (the stabiliser of A in G) is trivial for each A € W and

for all (g, A) € G x W the set gA is in W.

(3)

(4)

(5)

EXAMPLES.

(el) Let Z denote the subset of n(X) consisting of those A e ft{X) whose
stabiliser in G is the trivial subgroup.

(e2) Let K C ir{X) consist of the singleton subsets of X together with the
subsets (of X) of the form {(g, 0), (h, 1)}. Let ZQ be the set of those
A 6 n(X) for which either AzKoiX-AeK.

(e3) For an r which is either an integer ^ 3 or oo, let ZT(X) denote the subset
of Z which consists of all A 6 Z such that either card(i4) < r or card(X
- A) < r.

REMARKS.

1. Zo C Zr(X) C Zr+i{X) C ZoopQ for all r ^ 3.

2. Sets Z, Zo and Zr, for all 3 < r ^ oo, are nice.

3. If W is nice, then Zo C W.

4. If G is infinite, then card(Z0) = card(Zr) = card(G) for all 3 < r ^ oo.

5. Thanks to Lemma 0, we have an injective function 7 : n(G) -» Z given by

7(T):=(Tx0)u{(e,l)}
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where e stands for the identity element of G. If G is infinite, then from
the existence of 7 we see that Z and n{X) have the same cardinality. In
particular if G is infinite countable, then caxd(Z) = 2Ko (the cardinality of
real numbers).

LEMMA 1. Let W be a nice subset ofir(X). Then the following holds.

(i) W is a connected graph of diameter at most 3.

(ii) If 6 denotes the canonical metric of the graph W, then it coincides with

the restriction of the canonical metric ofit{X) to W.

(iii) W does not have vertices of degree 2. Singleton subsets of X are the only

vertices of degree 1 in W.

(iv) W is a union ofn(X)-orbits ofG.

(v) Let Aut(W) denote the group of graph-automorphisms ofW. Then G is,

in a natural way, a subgroup of Aut(W).

(vi) Aut(W) is the group ofisometries of (W, 8).
PROOF: Suppose A, B are two distinct vertices of W. If A is comparable to B with

respect to containment, say A C B, then A to X — A to B is an edge-path of length 2
from A to B. Otherwise, picking a € A\B and b € B \ A, we get an edge-path from A
to X - {a} to X - {b} to B which is in W and has length 3. Thus (i) holds.

Now A is at distance 1 from B in ir(X) if and only if this is so in W. Suppose
A U B ± X but A to T to B is an edge-path in n(X). Then T contains X - (A n B). So
An B is non-empty. Pick x 6 A n B. Then A to X — {x} to B is an edge-path of length
2 in W. This establishes (ii).

Consider a vertex A of W. If A has at least 2 distinct elements a, b then A is adjacent
to three distinct vertices X — {a}, X — {b} and X — A of W. If A is singleton, then its
degree is clearly 1. This proves (iii).

Assertion (iv) is simply a re-statement of no.(5) (in the definition of niceness). The
action of G on W is edge-preserving and without fixed points. Hence G embeds in the
graph-automorphism-group of W as asserted in (v).

For A, B in W we have 6(A, B) = 1 if and only if A, B are adjacent. Hence ev-
ery isometry of (W, S) is a graph-automorphism. The converse is a consequence of the
definition of 6. Thus (vi) holds. D

Let W be nice and let S(X, W) denote the subset of S(X) consisting of all those
permutations of X whose induced action on n(X) keeps W invariant. Obviously, S(X, W)
is a subgroup of S(X). Since each singleton subset of X belongs to W, distinct members of
S(X, W) induce distinct permutations of the set W. Also, the action of S(X, W) preserves
edges. Hence there is a canonical group-monomorphism from S(X, W) to Aut(W).

LEMMA 2 . With the above notation we have the following.
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(i) T ie canonical group-monomorphism bom S{X, W) to Aut(W) is an iso-
morphism.

(ii) Let a e Aut(W) be such that a leaves each W-orbit ofG invariant. Then
a is in G.

P R O O F : Let / be in Aut(W). Since / maps a vertex of degree 1 to another such, the
collection of singleton subsets of X, which forms the subset of degree 1 vertices of W, is
permuted by / . For each x £ X the only edge ensuing from {x} connects to X - {x} and
hence f(X — {x}) = X — f{x} for all x € X. Let xp(f) denote the permutation of X such
that {tl)(f)(x)} = / ({x}) . Consider A, B 6 W and let y, z 6 X be such that ip{f){y) = z.
Then, z e f(A) n f(B) if and only if 6(X - {z}, f{A)) =1 = 6(X- {z}, f(B)) if and
only if 6(X - {y}, A) = 1 = S(X - {y}, B) if and only if y € A D B. Thus

f(A)nf(B) = {i;(f)(y)\y G AHB}.

Now6(A,X-A) = 1 implies 6(f(A),f{X- A)) = 1 that is, X-f{A) C f(X-A). Since
AnX — A is empty, we must have f(A)nf(X — A) = 0 and hence X — f(A) = f(X — A).
In other words, / commutes with complementation. But then we also have

For each A in W we can now derive the equality

which tells us that the induced action of ^( / ) coincides with that of / . Obviously, ip(f)
is in S(X, W). Let X/J : Aut(W) -> S(X, W) be the map sending / to ip{f). Then V is a
homomorphism of groups and tj) followed by the canonical monmorphism from S{X, W)
to Aut(W) is easily seen to be the identity map of Aat(W). This proves assertion (i).
Henceforth, we identify / with ^ ( / ) .

Let K denote the subset of Aut(W) consisting of those elements of kat{W) which
leave each W-orbit of G invariant. Clearly, K is a subgroup of Aut(W). Let a be
an element of K. There is a g G G with a((e, 0)) = g(e, 0) = (g, 0) where e denotes
the identity element of G. Let 9 := g~la. Then 9 € K and 0((e,O)) = (e,0). Since
{{(ff, 1)} | g 6 G\ is a W-orbit of G it is mapped to itself by 9. In particular 0((e, 1))
= ( M ) for some h e G. Let E := {(e,0),(e, 1)}. Since E e W, we must have
9(E) = qE for some q € G. So {(e,0),(/i,l)} = {e((e,0)),9((e,l))} = {(q,O),(q,l)}.
Hence h = q = e. Let z be an arbitrary element of G and let A := {(e, 0), (z, 1)},
B := {(z,0),(e, 1)}. Again, since A,B are in W, we have 9{A) = uA and 9{B) = vB
for some u,v 6 G. It follows that 9(z, 1) = (z, 1) and 9{z,0) = (z,0). In short, 9 is the
identity automorphism of W. Thus a = g 6 G that is, /if = G. D
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We continue to use the previous notation. As above, W stands for a nice subset of
n(X). Let V denote the set of W-orbits of G. Obviously, V has cardinality at least 2.
Henceforth we assume that the cardinality of V does not exceed that of the real numbers.
Fix an injection (existence of one such is assured by our assumption)

A:7>->[4,9/2]

where the co-domain is a closed real interval, and an injection

such that w(P) belongs to P for all P G V that is, choose the representatives for the
W-orbits of G.

Let V(W) := W (J (GxP). We make V(W) (the vertex-set of) a graph by declaring
that there is an edge between a, 6 € V exactly when one of the following holds:

(1) a, b are in W and a U b = X,
(2) a := (g, P) and b = gu(P) with (g, P)eGxP.

In view of of Lemma 1, it follows that V(W) is a connected graph of diameter at most 5
such that a vertex has degree 1 exactly when it is in G x V and a vertex has degree 2 if
and only if it is a degree 1 vertex in the sub-graph W. To simplify the notation, we let
V stand for V(W) unless there is a need to pay attention to a specific choice of W.

We extend the metric 6 from W to the set V as follows. If a := (g, P) is in GxP, then
the unique edge ensuing from a is declared to have length A(P). Define the distance S(a, b)
between a, b G V to be the length of the shortest edge-path (in the graph) connecting
them. We also extend the action of G on W to an action on V by declaring g(t, P)
:— (gt, P) for all (t, P) € G xV. It is straight-forward to verify that this action of G
preserves the edges of graph V. So we regard G as a subgroup of Aut(F), the graph-
automorphism-group of V. The V-orbits of G are exactly the W-orbits of G together
with the sets of the form G x {P}. Let Isom(V, 6) denote the group of isometries of the
metric space (V,S).

LEMMA 3 . The following holds.

(i) 1 < S(vu v2) < 12 for all vu u2 in V.
(ii) Isom(V, S) is (canonically isomorphic to) G.

(iii) Each element of V has trivial stabiliser in G.

PROOF: It is straightforward to verify assertions (i) and (iii). We proceed to show
(ii). Let H denote the isometry-group Isom(V,<5). Regard H as a subgroup of the group
of permutations of V. Our identification of H with G rests on the following four basic
observations.

(ol) The distance between any two elements of W is at most 3 (see (i) of
Lemma 1).
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(02) The distance between any two (distinct) elements of G x V is at least 9.
(03) The distance between an element of W and an element of G x V is at least

4 and at most 15/2.
(04) If a := (g, P) 6 G x V and b € W are such that either 6 does not belong

to P or b ̂  gu(P), then 6{a, b) ^ 5.

Consider an element 9 of H and an element a := (g, P) of G x V. Since 5{a, gw(P))

= A(P), we have 6( 0(a), 0(gu{P)j\ = A(P). Note that there is a c in W with 5(gu{P), c)

= 1. From s(e(gtj(P)),6{c)\ = 1 it follows that 0(0w(P)) is in W. Hence 0(a) has to
be in G x V. Moreover, if 0(a) := (h,Q). then, Q = P and 0(0w(P)) = /iw(P). In
particular, 0 leaves W invariant and also maps each V-orbit of G to itself.The above
argument also shows that if the restriction of 0 to W is identity, then 0 is the identity
map of V. This way, H can be regarded as a subgroup of Aut(W). Since H leaves each
W-orbit of G invariant, in view of (ii) of Lemma 2, we have H = G. D

DEFINITION: Given a nice sub-set W of n{X) let Y(G, W) :— V(W) and corre-
spondingly let (Y(G, W),6) ~ (V{W),6).

REMARK. Let G be finite group of order A; > 2. Then Y(G, Zo) has Ak(k + 2) points.
Thus, by the above lemma, G is the isometry group of a metric space of cardinality
4fc(fe + 2) and furthermore, G acts properly discontinuously on this space. The reader
may wish to compare this with the results of [1].

2. COMB-EXTENSIONS

Suppose the data (N, d, m, M, B, d, 0) satisfies the following properties.

(pi) M and m are positive real numbers.
(p2) (N, d) is a metric space such that 2m < d(t, u) < 2M whenever t, u are

points of N with t •£ u.

(p3) (B, d) is a connected metric space of diameter ^ 2m.

(p4) /? is a surjection from N onto B.

Let comb(iV, M, m, {}) denote the quotient of N x [0, M] obtained by identifying a (t, 0)
with a (u, 0) whenever fi{t) = /3(u). Now we have the canonical surjection N x [0, M]
-¥ comb(iV, M, m, /?). The image of (t, a) via this map is denoted by [(t, a)]. Below we
define three important mappings.

(a) r : N —• comb(iV, M, m, /?) given by T(U) := [(u, M)].

(b) 77: B -»• comb(AT, M, m, 0) given by ri{k) := [{t, 0)] where /3(t) = k.

(c) For points Pi := [(*, a)] and P2 := [(", &)] of comb(iV, M, m, /?) define

, P2) := |o — b\ if t = u and otherwise let
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:=mm{{t,u) + 2M-a-b, a + b + d(0(t),0(u))}

LEMMA 4 . The following holds.

(i) T is injective.

(ii) T] is injective.

(Hi) D(T(U), T(V)) — d(u, v) for ailu,v in N.

(iv) D(r](k), ri(l)) = d(k, I) for all k, I in B.

(v) D is a metric on comb(iV, M, TO, 0).

PROOF: The needed triangle inequality for D is the only non-transparent part of the
above assertions. Although this inequality might be intuitively clear to an expert reader,
it is helpful to sketch a verification. So, consider points P := [(x, a)], Q := [(y, b)] and
R := [(z, c)] of comb(iV, M, TO, /?). Our proof of the inequality

is divided into five cases.

CASE I. x = y = z. Follows from the triangle inequality for absolute values.

CASE II. x = z±y. In this case, we also have x ^ y. Interchanging P and R if needed,
we may assume a^ c. Since a—c^a+b and a—c^ 2M—b—c, it suffices to consider the
sub-case where D(P, Q) = d(x, y) + 2M-(a + b) and D(Q, R) = (b + c) + d(P{y), 0(z)).
Now it suffices to note that a — c ̂  M.

CASE III. x ^ z = y. Obviously, x # y. If

a + b + d(0(x), P{y)) > d(x, y) + 2M-(a + b),

then we have

d(x,y) + 2M - ( a + b) + \ b - c\ > d{x,z)+2M-(a + c)Z D{P,R).

Otherwise, noting that 0(y) = fi(z) and a + b + \b — c\ ^ a + c we get

a + b + d(0(x), 0(y)) + \b - c\ > a + c + 8{0(x), 0{z)) > D(P, R).

CASE IV. x = y ^ z. Obviously, x ^ z and the verification is entirely similar to the one
in the previous case.

CASE V. x ^ y / z^ x. From the triangle inequality for d we get

d(x,y) + 2M - (a + b) + d(y,z) + 2M-{b + c)2 d(x,z) + 2M - (a + c) > D(P,R).

From the triangle inequality for the metric d, we get

(a + 6) + d(0(x), 0{y)) + (b + c) + d(0(y), 0{z)) > D(P, R).

https://doi.org/10.1017/S0004972700035693 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035693


[9] On isometric actions 255

From d{x,y) > 2m ^ d(P(x),/3(z)) we deduce

d(x, y) + 2M-(a + b) + (b + c) + d{0(y),0{z)) > D(P, R).

Likewise, from d(y, z) > 2m ~£ d(/3{x),P(z)) we deduce

(a + b)+ d(0{x), 0(y)) + d(y, z)+ 2M - (b +c) }z D(P, R).

This establishes assertion (v). D

REMARKS.

1. Clearly, (comb(iV, M,m, /?), D) is a bounded metric space.
2. Note that for each x € N the injection [0, M] -*• comb(iV, M, m, /3) which

maps k to [(#, A;)] identifies the interval [0, M] (with its usual metric) as
a metric sub-space of (comb(iV, M, m,0),D).

3. In view of (i) and (iii) of the above lemma, (N, d) is regarded as a metric
sub-space of (comb(iV, M, m, /3),D).

4. Likewise, (ii) and (iv) permit us to identify the space (.6,9) as a metric
sub-space of (comb(N, M,m,P),D).

LEMMA 5 . Letting E(N) := comb(AT, M, m, /3) we iave tie following.
(i) If(B, d) is arc-connected, then so is (E(N), D). (B, d) is a deformation retract

of(E{N),D). In particular, if(B,d) is contractible, then so is (E(N),D).
(ii) If AT is countable and cardB = 1, then (E(N), D) is separable.
(iii) There is a naturai group-monomorphism

p : lsom(E(N),D) -» Isom(AT,d).

(iv) Assume N has at least 3 distinct points. Also assume that

=d{P(x),

for all x,y in N and all f in lsom(N,d). Then, the above morphism p is surjective,
inducing an isomorphism of lsom(E(N), D) onto Isom(7V, d). Moreover, the action of
Isom(.E(iV), D) on E(N) \ TJ(B) is (free and) properly discontinuous.

(v) In addition to the hypotheses of (iv) assume that for any x in N and any f
in lsom(N,d) whenever &(f(x)) = 0(x), we have f(x) = x. Then, the stabiliser (in
Isom(i?(iV), D)) of a point [(x, a)] is the same as the stabiliser ofx in Isom(iV, D).

TERMINOLOGY. We want to draw reader's attention to our use of the term arc-connected;
as in [3], an arc is meant to be a path homeomorphic to [0, 1].

PROOF: Below we tacitly identify T(N) with N and rj(B) with B. Connectedness
properties and assertion (ii) are evident from the construction of E(N). Since

h : E(N) x [0, 1] -> E(N),
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given by h[[(u,a)],t) = [(u,ta)], is easily seen to be continuous, B is a deformation
retract of (E{N),D). Thus (i) holds.

We proceed to show the third assertion. For a positive real number e, let Se(P)
denote the sphere of radius e with centre P. Given a point P of E(N) we note the
following.

(1) Se(P) is singleton for all sufficiently small e > 0 if and only if P is in N.
(2) Sm(P) is doubleton for all sufficiently small e > 0 if and only if P is not in

N\JB.

Property (1) ensures that each isometry of (E(N), D) maps N to itself and hence upon
restriction to N yields an isometry of (N,d). Likewise, property (2) ensures that B
and (hence) the complement of NuB are invariant under the action of Isom(E(N), D).
Let p : Isom(E(N),D) —> Isom(iV,d) denote the 'restriction-to-iV' map. Clearly p is a
homomorphism of groups. Let 9 be in the kernel of p. Consider a point P := [(u, a)]
and suppose 6(P) := [{t,b)]. As observed earlier, 9 maps Q := [(u,0)] to some [(^,0)].
Comparing the distance of each of these from the ( 0-fixed ) point [(u, M)] we at once
see that [(v,0)] = Q. Suppose a ^ 0. Now equalities D(P,Q) = D([(t,b)],Q) and

D(P, [{U,M)}) = D([(t,b)}, [(«,Af)]) readily imply

Needless to say that the above holds only when d(u, t) — 0 = b - a that is, 6{P) = P.
This proves the injectivity of p as claimed in (iii).

With the hypotheses of (iv), given an isometry / of (N, d) the prescription /([(u, a)]
:= j(/(u),a) yields a well-defined isometry of (E(N),D). Thus p is surjective and
consequently it is an isomorphism. Identify lsom(E(N),D) with lsom(N,d). Suppose
an isometry / fixes [(x, a)]. If a ^ 0, then we must have f(x) = x. If a = 0, then we must
have /?(/(z)) = P(x). The additional hypothesis in (v) ensures that we have f(x) = x
even when a = 0. The nature of D makes it easy to see that the action of Isom(./V, d) on
E(N) \ B is properly discontinuous. D

REMARKS.

1. Note that the assumed bounded-ness of (B, d) is used only in establishing
the triangle inequality for D. Without assuming this boundedness, does
there exist a metric on E(N) for which our Lemma 5 remains valid?

2. Let Pi := [(t,a)] and P2 := [{u,b)] be points of E{N). Define

if tjtu.

Then D, D* are equivalent metrics on E(N) (verification left to the reader).
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In the remaining part of this section we restrict our attention to the case where B is
the trivial metric space consisting of a single point. Without any loss, we assume M = 1.
Since we want to focus only on the topology of (E(N),D), in view of the above remark
it is permissible to replace D by its equivalent D* and then we are free to ignore the
metric on N. To simplify the notation, let X := E(N), let at := [(t,a)], let O := [(t,0)]
and let

\\au-bv\\:=D'{[(u,a)],[{v,b)]).

Likewise, a point (ai±i, • • • , Onin) of Xn is denoted by ax where a stands for (ai, • • • ,0,,)
and x stands for (xt, • • • , i n ) . It is tacitly assumed that the metric on Xn is the one
given by

\\ax - by\\ := \\ai±i - 6iyi|| + • • • + ||a,,i;n - 6nyn||.

Henceforth by X" we mean the metric space (Xn, || | |). Observe that the natural pro-
jection p : Xn —> [0, 1]" is a weak contraction that is, it does not increase distances.
Multiplication of tuples in [0, 1]" is meant to be coordinatewise.

LEMMA 6 .

(i) Let (i : Xn -> (0, l]U{-co} map P := ax to t ie minimum of {au • • • , On}\{0}
(fay convention, —oo is the minimum of the empty set). Suppose Q := by is a point of
Xn at distance at most n(P) from P. Ifr,s are elements of [0, 1]", then

\\(ra)x - (sb)y\\ = 1 ^ ^ - Si&i| + • • • + |rnan - sn6n|.

(ii) Let 0 be a continuous function Scorn [0, l ] m xU to [0, 1]" where U is an open

subset of [0, 1]" not containing the zero vector. Then the (corresponding) function

f : [0, lpxp-Ht/ ) -^"

given by / ( t , a i ) := ((j>(t, a)a)± is continuous.

PROOF: Consider points P,Q as in (i). If there is an 1 ^ j ^ n s u c n that ajbj / 0
and Xj / yj, then ||a£ - by\\ ^ â  +bj > (J.(P). Thus for all 1 < j < n

\\(rjaj)xj - (sjb^yjW = \rjaj - sfrl

and (i) follows.

To prove (ii) consider a point (t, P) where P := ax and a positive real number e.
Our hypothesis ensures that n(P) > 0. Using continuity of the map

(t,c) -> 0(t, c)c =: (fc(t,c)clt • • • ,£,(*,c)c)

find 6 > 0 such that

1^(^,0)0! - ^(s,6)&!| H + \4>n(t,a)an - <j>n(s,b)bn\ < e
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for all (a, b) with

|*i - «i| + • • • + !*„ - «m| + |ai - bi\ + • • • + K " bn\ < 9-

Now continuity of / is readily established by choosing 6 := min{0,n{P)}. D

DEFINITIONS: Define sub-spaces ^(X) and Y of X3 by

S2(X) := {(ax,by,cz) \a + b + c = l},
Y:={(ax,by,O)\a + b = l}.

For each z € JV we define a metric subspace Y(z) of X3 by

Y(z):= {(ax,by,(l-a-b)z)\(ax,by)eX2 and a + 6 ^ l } .

R E M A R K S .

1. Earlier we have used the notation S(X) to denote the group of permutations of
X. Obviously, SP(X) bears no relation to S{X).

2. Since the topology of (JV, d) is discrete, after having ignored the metric d cardi-
nality of JV is all that matters. More precisely, let JV* be a non-empty set whose cardinality
equals that of JV and let d* be a metric on JV* such that 0 < 2m* < d*(t, u) < 2M* for all
distinct t,u e JV*. Then (X, || ||) is homeomorphic to (E(N*),D) where the later space
is the comb-extension of (JV*,d*) with trivial base B as indicated before. Thus it is more
suggestive to denote X by Xk and ^(X) by Sfc where k is the cardinality of JV.

3. If JV is countable, then X can be topologically embedded in R2 and hence
Xn, SPiX) are homeomorphic to subspaces of R2 n,R6 respectively.

LEMMA 7 . The following holds.

(i) SP(X) is a polyhedral surface.

(ii) SPiX) is a union of sets Y(t) as t ranges over N.
(iii) Y is arc-connected and Y(u) n Y(v) = Y. for allu^v in JV.
(iv) S?(X) is a deformation retract of X3 \ {(O,O, O)}.
(v) Y{z) is homeomorphic to a cone over Y. In particular, each Y(z) is con-

tractible.

(vi) Y(u) U Y(v) is simply-connected for all u ^ v in JV.

PROOF: For each (x,y,z) e JV3 let I(x,y,z) denote the subspace {(ax,by, cz)} of
X3. Note that each I(x, y, z) is a closed subset homeomorphic to the standard cube and
X3 is a union of these cubes as (x, y, z) ranges over JV3. Moreover, any two of these cubes
meet along a face (edge, vertex) containing (O, O,O).

Since ^(X) n I(x,y,z) is just the standard 2-simplex, it follows that S?(X) is a
connected simplicial complex of pure dimension 2, that is, a polyhedral surface as asserted
in (i). Verification of (ii) and (iii) is straightforward.
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Let U := [0, I]3 - {(0,0,0)} and <j>: [0, 1] x U ->• [0, I]3 be the continuous function
defined by

<t>(t,{a,b,c)) := (l-t + { , l - t + [ , l - t + [
v v '' \ a + b + c a + b + c' a + b + c

In view of (ii) of Lemma 6 it follows that the corresponding map

F : [0, 1] x (x3 - {(O,O,O)}) -> X3 - {(O,O,O)}

F(t,av):=(<}>{t,a)a)v

is a (strong) deformation retraction of A"3 \ {(O,O,O)} to S2(X).
Using (ii) of Lemma 6 it is easy to verify that the map Y x [0, 1] —• Y(z) given by

((o±, by, O), t) -> ({ta)x, (tb)y, (1 - t)z)

is continuous and consequently Y(z) is a cone over Y.
Finally, observe that if u, v are distinct, then Y{u) U Y(v) is just a double-cone

(that is, a suspension) over the arc-connected space Y and hence it is indeed simply-
connected. 0

ACKNOWLEDGEMENT. The author is indebted to N. Brodskiy for bringing observations
(ii), (iii) and (iv) of Lemma 7 to his notice.

LEMMA 8 . SP(X) is simply-connected.

PROOF: Fix a point z of N. By Pu we mean the vertex point (O,O,u) of the cone
Y(u). If T is a real number in the interval [0, 1] and u is in TV, then let

Y{r,u):={Q<=Y(u)\\\Q-Pu\\>r}.

Let F be the set of all functions from N to [0, 1] which are constant outside a finite
subset of N. Let I :=T x N. For an element (p, u) of / let

z(P,u) := [vteNY(P(t),t)] uy(u)uy(*).

Observe that

(i) 52(X) = U(p,u)g/^(/'1«),
(ii) Z(n, UI) D • • • n Z(rn, un) equals Z(6, w) for some {6, w) in / ,

(iii) Z(p,u) is an open, arc-connected subset of S2 (X) and

(iv) ( 0 , 0 , z) = Pz\s in n(p,u)e /Z(p, u).
Further, it is straightforward to verify that Y(u) U Y(z) is a deformation retract of
Z(p,u) and hence, in view of (vi) of Lemma 7, Z(p,u) is simply-connected for all
(p, u) in /. Applying the generalised van Kampen theorem (see [2]) we conclude that
nl(S

2(X),Pz)) = l. D
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3. MAIN THEOREM

DEFINITIONS: Let G be a group and (M, d) be a metric space. By an isometric
action ofG on (M,d) we mean a group-homomorphism a from G to Isom(M, d). Given
an isometric action a of G on (M, d), by a (G, a)-extension of (M, d) we mean a metric
space (M*,d*) together with a <f> : G —»• H := Isom(Af',d*) satisfying the following
properties.

(1) (M, d) is an i/-invariant metric subspace of (M*, d*).

(2) <j> is a group-isomorphism of G onto if.

(3) Letting h : H -* lsom(M,d) denote the 'restriction-to-M' map we have
a = ho<j>.

(4) Via <f>, the group G acts (freely,) properly discontinuously on the subspace
M*\M.

(5) (M, d) is a deformation retract of (Af*,d*).

LEMMA 9 . Let G be a noathvial group, of cardinality not exceeding 2Ko. Tien,
there exists an (arc-connected) contractible, bounded metric space (M, V) with a marked
point O such that

(i) G is isomorphic to Isom(.M, T>),

(ii) G acts properly discontinuously on M\ {O} and

(iii) ifG is countable, then (M,V) is separable.

PROOF: Let (B, d) be the trivial metric space, that is, where B has only one point O.
Let (N, d) be either the space (Y(G, Zo), 6) or any one of (Y(G, Zr),6) where 3 ^ r ^ oo.
Let /? be the obvious surjection and let (M,"D) be the space (comb(7V, 10,1/10,/?),D)
(our choices of M and m are permissible in view of Lemma 3). Since lsom(N,d) is G
by Lemma 3, assertion (i) follows from (iv) of Lemma 5. Note that stabo(x) is trivial
for each x in iV (as ensured by (iii) of Lemma 3) and thus (ii) follows from Lemma 5.
Assertion (iii) follows by noting that when G is countable, N is countable. D

LEMMA 10. Let G be an infinite group with card(G) ^ 2"°. Let a be an isometric
action ofG on a connected, bounded metric space {B,d) such that card(B) < 2N°. Then,
there exists a (G,a)-extension (M,V) of(B,d) such that the following holds.

(i) (M,V) is a bounded metric space.
(ii) If (B, d) is arc-connected, then so is (M, T>).
(iii) If (B, d) is contractible, then so is (M, V).
(iv) IfG is countable and card B - 1, then {M., V) is separable.

PROOF: If G is countable and B is uncountable, then let N = Y(G, Z). Otherwise,
let N = Y(G, ZQ) (or any one of Y(G, ZT)). Scale the metric 5 (appearing in Lemma
3) to obtain a metric d on N such that for every pair (t, it) of distinct points of N the
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distance d(t, u) is strictly greater than the diameter of {B,d). It is important to observe
that, in view of Lemma 3, we have G = Isom(iV, d) and G acts properly discontinuously
on (N,d). Fix a set of representatives T for the iV-orbits of G. Without loss we may
identify JV with G x T. In this form the action of G on N is simply left-multiplication in
the first coordinate. The remarks immediately following our description of the sets Z, Zr

show that cardT ^ cardB. Fix a set of representatives 5 for the B-orbits of G. Choose
a surjection ip : T ->• S and let /? : N -> B be the surjection defined by : p(x) = giji{t)
if x = (g, t). Since a is an isometric action, the requirements of assertion (iv) of Lemma
5 are satisfied. Choose positive real numbers M, m so that the diameter of (B, d) is
at most 2m and we have 2m < d(t, u) < 2M for all pairs (t, u) of distinct points of N.
Now let (M,V) be the space (comb(N,M,m,/?),£>). Then, our assertions follow from
Lemma 5 in a straightforward manner. D

THEOREM. Given a cardinal k ^ 2 there exists a simply-connected polyhedral

surface S* endowed with a bounded metric dk, such that the following holds.

(i) Each group G of cardinality k has an isometric, properly discontinuous action

on (£*,</*). Moreover, if A; ^ Ho, then (T,k,dk) is a separable metric space.

(ii) If No ^ k ^ 2No and G is a group of cardinality k, then S* has a (simply-
connected) extension MQ carrying a bounded metric da such that the action ofG extends
to a properly discontinuous action on {MG,da), the restriction ofdG to S* is equivalent
to dk and G is (isomorphic to) the full isometry-group of (Me, do).

P R O O F : TO prove (i) let (B,d) be the 1-point (trivial) metric space, let N = G

(with discrete topology) and let X = E(N) be the metric space as in the last part of
the previous section. Clearly, X is a cone on G. Left-multiplication by elements of G
naturally extends to an isometric action on X having the vertex as the only fixed point.
The induced coordinatewise action of G on X3 keeps 52(X) invariant. Thus we get a
properly discontinuous, isometric action ofG on (52(Jf), || | |) . By the remarks preceding
Lemma 7, the space (52(X), || ||) depends only on the cardinality of N. Hence employing
(Ek,dk) to denote ( S ^ X ) , || ||) is indeed well justified. Note that when G is countable,
X is a separable metric space.

To prove (ii) we start with the one-point metric space (B,d) and construct (M,V)

exactly as in Lemma 9. The choice of N as in Lemma 9 ensures that cardinality of N

equals A; (see the remarks preceding Lemma 1). Let do be the (product) metric on ^(M)

induced by D. By Lemma 9, do is a bounded metric. As above, in view of the last part
of the previous section, ^{M) is naturally identified with E* and then dc is equivalent
to dk- Action of G on M extends naturally to a coordinatewise action on M3. Obviously
S2 (M) = Ejfe is invariant under this action. Hence, by (i) and (ii) of Lemma 9, G has
an isometric, properly discontinuous action on the metric space (Ejfe,d(j). Let a denote
this action. Starting from (B, d) := (£*, da) we construct a (G, a)-extension (Ma, da) of
(B, d) as in Lemma 10. Then (£*, da) is a deformation retract of (MG, dG). In particular,
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(Me, do) is simply-connected. Also, G is the full group of isometries of (Ma, dG) acting
properly discontinuously on (Ma, da)- D

REMARK. AS a consequence of (i), the orbit space E*/G has fundamental group G.
Although it is well known that for any group G there is an Eilenberg-MacLane space
having G as its fundamental group (see [4]), the above construction is much simpler.

4. QUESTIONS

Here we formulate some questions which are natural variations of the above result.
In the following assume G to be a group whose cardinality does not exceed that of the
real numbers.

1. Does there exist a contractible, separable (bounded) metric space on which G
has a properly discontinuous, isometric action?

2. Does there exist a contractible, (bounded) metric subspace of some R" having
G as the (full) group of isometries?

3. Do either of the above two questions have an affirmative answer if G is countable?
4. Assuming G to be finitely generated, does there exist a contractible, separable

(bounded) metric space on which G acts isometrically and such that the isotropy groups
are finite groups of uniformly bounded order?

It seems rather unlikely that an arbitrary countable group G can be realised as the
full group of isometries of a contractible metric subspace of some R".
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