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A finite setcovering theorem

Alan Brace and D.E. Daykin

Let n, 8, t be integers with s > ¢t >1 and n > (t42)25° 01 |

We prove that if =»n subsets of a set § with s elements have
union S then some ¢t of them have union S . The result is

best possible.

1. Introduction

Small letters denote non-negative integers and large letters denote

sets. In particular 0 is the empty set, and [Z, j] denotes the set

{¢, i+1, i+2, ..., j} . Suppose that X., X, -.., X are subsets of the
set S = [1, 8] which cover (have union) S . We are here concerned with
determining the smallest number of Xi which will cover S . Of course s

of the X. will cover S , Just teke a suitable Xi for each element of
S . However can we be sure that ¢ of the Xi will cover § if ¢t <8 ?

f o1 proper subsets of S

At the other extreme we could have all the 2
withno ¢ =1 of them equal to S . So we assume § > t > 1 , and then

an important example is

E={Xx;x=Pugqg, Pc[1, tfa1], |P| =1, @ < 5\P} .
Since no set X in E contains two elements of [1, t+1] it is clear
that no ¢ sets of F have union § , and the number e of sets in F
is

e =e(s, t) = (t+2)23_t_l .

We can now state our
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THEOREM. Let n, s, ¢t be integers with s > t > 1 and let
¥=A{x, %, ..., X,} be n different subsets X, of §=1[1,s] with

wion S . Suppose also that no t of the X; have wnion S . Then

(i) n<e, and

(i) tf 3=t and n =e we can obtain N from E by permuting
the elements of S .

When ¢ = 2 we can attain the value e in many ways beside £ , for

instance
F={X; x=1[1] or Xc[2,5], X# [2, s]}
or

G

{x; x

{1Ju?Y or X=(2luvY or Xc|[3, 8], Yc [L, ]}
and so on. If in an application of the theorem one knew that the Xi have

non-empty intersection 7T one could improve the result by restriction to
S\T .

2. Proof of (i)

Without loss of generality we strengthen the hypothesis of the theorem
by assuming that #»n 1is as large as possible. This implies that if X is

in & then all subsets of X are in N . When ¢ =2 we can't have a

subset X of S and its complement both in N so n =< %23 = e(s, 2) and
(1) holds. When ¢t =8 - 1 no set X of N can have more than one
element, so n <s + 1 = e(s, s-1) and again (Z) holds. We now use double
induction on 8, t . We suppose 3 < ¢t =<s - 2 and that () holds in the
two cases s - 1, t and s -1, t - 1 . Then we deduce that (Z) holds for
the case s, t . Clearly some set of N has more than one element so we

assume [1, 2] 1is contained in some set in W .

To define a partition of # , for brevity we write 1, 2 and 1 u 2

for the sets [1], [2] and [1, 2] , and put
B={x; xulu2¢nN, Xxul\2 €N, X u2\l €N} .
Then the partition is

N=,4UB()UBIU32U01U02UD
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where

A={X; Xulu?2en}

Bo={x; xe¢B,1¢x,2¢x)

By = {X; X € B, 1 € X}

By = {X; X € B, 2 € X}

€, ={x; Xul\2 € ¥, x u 2\l ¢ n}

C, = {X; X ul\2 ¢ N, X u2\1 € N}
and

D={x; Xxul\2 ¢ N, x u2\1 ¢ N} .

let a, bg, by, ... denote the number of elements in the sets

A, Bg, By, ... respectively, even though some of these sets may be empty.

If X is in (; then all subsets of X are in N so
(1) Xul, X\1 €Cy for all X € C,
By similar reasoning we see that
By ={Y; Y=Xu1l, X € By} and By = {¥; Y =X v 2, X € By}
and hence by = b, = by .

Case 1. bg =d . In this case we put

chy={x; xec, 2kxu{y; Y=xuvi\2, x € 03, 2 € X}

Dl

{y; y=xuv1l, X € D}
and

Nl

n

AuByuB uD uCyuCiuD.
We have chosen X#N' in such a way that, like in (1), we have
(2) Xul, X\1 € N' for all X € N'

Since e} = ¢, and d' = d the number of sets in N' is
n' =n - by +d . Roughly speaking the sets of N and N' differ only
with respect to the elements 1 and 2 . As [1, 2] is in 4 it is

clear that ~N' covers S .

Since (2) holds we can let Y., Y

1° 1o N Yln' be the sets of the form
2
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{v; Yen,1¢7y}.
them do so.
element 2 1is in one
2

For 2 <k =t there

with respect to the elements

S = {Yl vlvu?2lu Xi U Xi U ...

a contradiction.

nsn
and () holds in this
Case 2. by > d .
B3
M
L
and
a"

If the sets in M cover

then L © D Dbecause

because the Xi were
sets Zl’ 22’ eey Zt
in L is a Zk , for

We claim that no
as follows:

(a) if Z, € A

if Z, € B

(8) ;

k

(v) in all other cases let Xi
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These sets cover [2, s] but we claim that no ¢ of
Y, ¥y -oo, ¥, cover (2, 8] . Then the
of the sets, Yl say, and so Yl is in A , because

A of N Moreover Yl ulu?2 is also in 4 .

of N which differs from Y

X only

is a set X.
1

k

1l and 2 , so in N we have

U Xi
t

s

2 3

an' =e(s-1, t) , so

-bg+d=n"=2(s-1, t) = els, t) ,

case,

We show that this case never arises. We put

{¥Y; Y=Xxuv1lvu2, X € By}

AUB()UBlUBzUClUCzUB:;

{[i]; © ¢ M, 7 € S}

=LuM.

S then L 1is empty, but if L 1is not empty
N covers § . Also n" =n+byg-d+1>n, so
chosen with 7n as large as possible, there are ¢

in WN" which cover S . If L # 0 , every set (%]
otherwise the element < would not be covered.
Zk is in A For otherwise for 1 <= k =t we act
let X. =2, ulu2¢€ed,

7 k

k
let Xik = Zk\(lUE) € B, , and

= Zk .

k
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Then we have the contradiction that X. , X. , ..., X, cover S din N .
1t T¢

Next we claim that no two of the Zk lie in

H=BguByuB, uBzuc(C, v,

Elements 1 and 2 must be covered by sets in H Dbecause they are not

covered by sets in L . So suppose Z), Z, are in H and cover 1 and

2. If Z,, 25 ¢ (ByuB3) they are in N and we let X Xiz be them.
1

If 2y, Z, € (BguB3) we put X, =2Z;u 1\2 € By €N and
1

X, =12y v 2\1 € B, c N . Finally if 2; is not in By u B3 bdut 2, is
2

in, we put X,L.1 =2 €N and X, = (Zo\[1, 2]) u g € N , where J is
2

that one of the elements 1, 2 which is not in Z; . Then for 3 =<k =t
we act as in (B) and (Yy) above to obtain ¢ sets in N which cover S , a

contradiction.

Z Z consist of one set in B and

l’ 29 se ey £ 3
t-1 setsin L ,s0 1 =% -1 . Without loss of generality assume
these t - 1 sets to be [s-t+2], [s-t+3], ..., [s] . We now observe that

Thus we conclude that 2

firstly, no set in ¥ contains more than one element of [s-t+2, s8] , and
secondly, no set in N contains 1 or 2 together with an element of
[s-¢t+2, 8] . Otherwise we easily get t sets of N which cover S .
Hence sets in N containing the element s must be of the form ¥ u s
with W < [3, s-t+1] . The set [3, s-t+l] u & itself cannot be in N or

again we would get ¢ sets of N covering S .

It now follows that the element & is in less than 2° °1 sets of

N . No t -1 of the remaining sets cover [1l, s-1] so the number of
these, by our induction hypothesis, is not greater than e(s-1, t-1) .

Therefore n < 2s-t—l + e(s-1, t-1) = e(s, t) and this is fewer sets than

we get with example F , contradicting our assumption that = was maximal.

Thus this case is impossible, and (%) holds by induction.

3. Proof of (ii)

If ¢=s -1 then N has no set with 2 elements, so N is FE ,

and (iZ) holds in this case. We now use induction on s . In Section 2
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we showed that no ¢ of the sets V = {Yl, Y . Yln'} cover [2, s8],
]

22
and we now have n' = e . Thus by our induction hypothesis V 1is of the
same form as example £ , and it is important to know whether or not the
element 2 1s in the set corresponding to P . Before discussing the
cases we observe that if 2 <7 < j =s and no set in V contains both <

and J then no set in N contains both < and g .
Case 1. By permuting [3, s] in S we get
V={¥;Y=Pug, Pcls-t,sl, |P|=1,@c[2,s]\P}, 2¢P.

Then after the permutation, no set in N contains two elements of

[s-t, s8] , and since N has e sets, we must have

N={x;Xx=Pugq, Pc[s-t, 8], |P| =1, @ cs\P} .
Case 2. By permuting [3, 8] in S we get
v={y; Y=Pugq, Pc[2,t+2], |P| =1, @c (2, e]\P}, 2¢P .

Consider any two elements of [3, t+2] , say 3 and 4 . Now for

5 = k = t+2 there is a set Xk , say, in N which contains the set

k u [t+3, 8] of V . We claim that there are not two sets X3, X, , say,
in N with 1, 3 € X3 and 2, b € X, . Otherwise the ¢ sets
X3, Xh’ e Xt+2 cover S in N . Hence, because the elements 3, L

were chosen arbitrarily, either
N={X;Xx=Pug@,Pcl1]ul3, t+2], |P| =1, @ c S\P}
or
N={;xXx=Pug, Pcl2, t+], |P| =1, Qc S\P} ,

and the theorem follows inductively.
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