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A finite set covering theorem

Alan Brace and D.E. Daykin

Let n, s, t be integers with s > t > 1 and n > (t+2)2S ~ .

We prove that if n subsets of a set 5 with s elements have

union S then some t of them have union S . The result is

best possible.

1. Introduction

Small letters denote non-negative integers and large letters denote

sets. In particular 0 is the empty set, and [i, j] denotes the set

{i, i+1, i+2, ... , j] . Suppose that X , X^, ..., X are subsets of the

set S = [l, s] which cover (have union) S . We are here concerned with

determining the smallest number of X. which will cover 5 . Of course s
If

of the X. will cover S , just take a suitable X. for each element of
7* I*

S . However can we be sure that t of the X. will cover S if t < s ?

At the other extreme we could have all the 2 - 1 proper subsets of S

with no t = 1 of them equal to 5 . So we assume s > t > 1 , and then

an important example is

E = {X; X = P u Q, P c [1, t+1], \P\ 5 1 , « c S\P] .

Since no set X in E contains two elements of [l, t+l] it is clear

that no t sets of E have union S , and the number e of sets in E

is

e = e(s, t) = U+2)2S t X

We can now state our
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THEOREM. Let n, s , t be integers with s > t > 1 and let

N = {X±, X2, ..., Xn) be n different subsets X. of S = [ l , s] with

union S . Suppose also that no t of the X. have union S . Then

(i) n 5 e 3 and

(ii) if 3 - t and n = e we can obtain N from E by permuting

the elements of S .

When t = 2 we can attain the value e in many ways beside E , for

instance

F = {X; X = [1] or X c [2, s], X # [2, s]}

or

G = {X; X = [l] u Y or X = [2] u Y or X c [3, s], J <= [k, s]}

and so on. If in an application of the theorem one knew that the X. have

non-empty intersection T one could improve the result by restriction to

S\T .

2. Proof of (i)

Without loss of generality we strengthen the hypothesis of the theorem

by assuming that n is as large as possible. This implies that if X is

in N then all subsets of X are in N . When t = 2 we can't have a

subset X of 5 and its complement both in N so n 5 j2 = e(s, 2) and

(i) holds. When t = s - 1 no set X of N can have more than one

element, so ?i£s + l = e(s, s-l) and again (i) holds. We now use double

induction on s, t . We suppose 3 - t 5 s - 2 and that (i) holds in the

two cases s - 1, t and s - 1, t - 1 . Then we deduce that (i) holds for

the case s, t . Clearly some set of N has more than one element so we

assume [1, 2] is contained in some set in N .

To define a partition of N , for brevity we write 1, 2 and 1 u 2

for the sets [l], [2] and [l, 2] , and put

B = {X; X u 1 u 2 I N, X u l\2 € N, X u 2\l i N] .

Then the partition is

N = A u Bo U BJ U B2 U CI u C2 u D
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where

A = {X; X u 1 u 2 i N]

Bo = {X; X i B, 1 \ X, 2 i X)

Bx = {X; X I B, 1 € X}

B2 = {X; X € B, 2 6 X}

C! = {X; X u 1\2 t N, X u 2\l \ N)

C2 = {X; X u 1\2 | tf, X u 2\l « ̂/}

and

D = {X; X u 1\2 $ N, X u 2\l ^ *} .

Let a, b$, b\, ... denote the number of elements in the sets

A, Bo, BI, ... respectively, even though some of these sets may be empty.

If X is in C\ then all subsets of X are in N so

(1) X u 1, *\1 i Ci for all X € Cx .

By similar reasoning we see that

Bx = {Y; J = X u 1, X € B o } and B2 ={?;¥= X u 2, X I Bo]

and hence bo = bi = b2 •

Case 1. ZJQ - d . In this case we put

C2 = {X; X Z C2, 2 $ X} u {Y; Y = X u l\2, X t C2, 2 t X}

D' = [Y; Y = X u 1, X i D}

and

N' = A u Bo o B^ u D' u Ci u C2 u D .

We have chosen N' in such a way that, like in (l), we have

(2) X u 1, X\l i N' for all X d N' .

Since c2 = a2 and d' = d the number of sets in /?' is

n1 = n - i>0 + d . Roughly speaking the sets of N and N' differ only

with respect to the elements 1 and 2 . As [l, 2] is in A it is

clear that N' covers 5 .

Since (2) holds we can let Y. , Yo, ..., Yi , be the sets of the form
1 2 Tn
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{Y; Y I N' , 1 $ Y] . These sets cover [2, s] but we claim that no t of

them do so. For suppose Y , Y Y cover [2, s] . Then the

element 2 is in one of the sets, Y say, and so Y is in A , because

2 is only in the sets A of N' . Moreover Y u 1 u 2 is also in A .

For 2 5 k 5 t there is a set X. of N which differs from Y only

with respect to the elements 1 and 2 , so in N we have

S = {Y u 1 v 2} u X. u X. u . . . u * . ,
1 ^2 %3 %t

a contradiction. By our induction hypothesis |n' S e(s-l, t) , so

n±n-bo+d=n' 5 2e(s-l, i) = e(s, t) ,

and ("•£/) holds in this case.

Case 2. b0 > d . We show that this case never arises. We put

B 3 = {Y; Y = X u 1 u 2, X € Bo}

M = ,4 u Bo u B! u B2
 u C\ u C2 u B3

L = {[i]; i \ M, i C 5}

and

N" = L u M .

If the sets in M cover S then £ is empty, but if L is not empty

then LcD because N covers S . Also n" = n + bo - d + I > n , so

because the X. were chosen with n as large as possible, there are t
"I-

sets Z , Z , ..., Z in tf" which cover S . If L t 0 , every set [i]

in L is a Z, , for otherwise the element i would not be covered.

We claim that no Z, is in A . For otherwise for 1 5 k 5 t we act

as follows:

(a) if Zv £ A let X. = Z, u 1 u 2 £ A ,

(B) if Zk € B 3 let Xi = Zfe\(lu2) « BQ , and

(y) in all other cases let X. = Z, .
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Then we have the contradiction that X. , X. , — , X. cover S in N .

Next we claim that no two of the Zfe lie in

H = Bo u Bi u B 2 u B3 u C\ u C2 •

Elements 1 and 2 must be covered by sets in H because they are not

covered by sets in L . So suppose Z\ s Z2 are in H and cover 1 and

2 . If Z b 2 2 j (B0uB3) they are in N and we let X. , X. be them.

If Zi, Z2 Z (BouS3) we put X. = Zj u 1,\2 € B1 c N and

X. = Z2 u 2\l € B 2 c tf . Finally if Zx is not in Bo u B3 but Z2 is
^ 2

in, we put X. = Zj £ N and #. = (Z2\[l, 2]) u j Z N , where j is
1 ^2

that one of the elements 1, 2 which is not in Z\ . Then for 3 5 fe 2 t

we act as in (3) and (y) above to obtain t sets in iV which cover S , a

contradiction.

Thus we conclude that Z, , Z , ..., Z consist of one set in B and

t - 1 sets in L , s o I = t - 1 . Without loss of generality assume

these t - 1 sets to be [s-t+2], [s-t+3], ..., [s] . We now observe that

firstly, no set in N contains more than one element of [s-t+2, s] , and

secondly, no set in N contains 1 or 2 together with an element of

[s-t+2, s] . Otherwise we easily get t sets of N which cover S .

Hence sets in N containing the element s must be of the form W u s

with W c [3, s-t+l] . The set [3, s-t+l] u s itself cannot be in N or

again we would get t sets of N covering S .

It now follows that the element s is in less than 2 sets of

N . No t - 1 of the remaining sets cover [l, s-l] so the number of

these, by our induction hypothesis, is not greater than e(s-l, t-l) .

Therefore n < 2 + e(s-l, t-l) = e(s, t) and this is fewer sets than

we get with example E , contradicting our assumption that n was maximal.

Thus this case is impossible, and (i) holds by induction.

3. Proof of (ii)

If t = s - 1 then N has no set with 2 elements, so N is E ,

and (ii) holds in this case. We now use induction on s . In Section 2
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we showed that no t of the sets V = {! , Y , ..., -i' 1 f > cover [2, s] ,

and we now have n' = e . Thus by our induction hypothesis V is of the

same form as example E , and it is important to know whether or not the

element 2 is in the set corresponding to P . Before discussing the

cases we observe that if 2 < i < j 5 s and no set in V contains both i

and 3 then no set in N contains both i and j .

Case 1. By permuting [3, s] in S we get

7 = { I ; I = P u « , P c [s-t, s], \P\ 5 1, Q c [2, s]\P} , 2 { P .

Then after the permutation, no set in N contains two elements of

[s-t, s] , and since N has e sets, we must have

N = {X; X = P u Q, Pc [s-t, s], \P\ 5 1, Q c S\P} .

Case 2. By permuting [3, s] in S we get

F = {Y; I = P u Q, P c [2, t+2], \P\ £ 1, Q c [2, s]\P) , 2 € P .

Consider any two elements of [3, t+2] , say 3 and k . Now for

5 - k 5 t+2 there is a set T̂, , say, in N which contains the set

k u [t+3, s] of V . We claim that there are not two sets X3, #4 , say,

in N with 1, 3 d X3 and 2, U 6 ̂  . Otherwise the t sets

X , X,, ..., ̂ + 2 cover 5 in N . Hence, because the elements 3, h

were chosen arbitrarily, either

N = Of; X = P u S, P <= [1] u [3, t+2], \P\ < 1 , « c S\P}

or

N = {X; X = P u Q, P c [2, t+2], \P\ 5 1, Q c S\P) ,

and the theorem follows inductively.
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