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Abstract
Given a graph H, let us denote by fχ (H) and f�(H), respectively, the maximum chromatic number and
the maximum list chromatic number of H-minor-free graphs. Hadwiger’s famous colouring conjecture
from 1943 states that fχ (Kt)= t − 1 for every t ≥ 2. A closely related problem that has received significant
attention in the past concerns f�(Kt), for which it is known that 2t − o(t)≤ f�(Kt)≤O(t(log log t)6). Thus,
f�(Kt) is bounded away from the conjectured value t − 1 for fχ (Kt) by at least a constant factor. The so-
called H-Hadwiger’s conjecture, proposed by Seymour, asks to prove that fχ (H)= v(H)− 1 for a given
graph H (which would be implied by Hadwiger’s conjecture).
In this paper, we prove several new lower bounds on f�(H), thus exploring the limits of a list colouring
extension of H-Hadwiger’s conjecture. Our main results are:

• For every ε > 0 and all sufficiently large graphs H we have f�(H)≥ (1− ε)(v(H)+ κ(H)), where κ(H)
denotes the vertex-connectivity of H.

• For every ε > 0 there exists C = C(ε)> 0 such that asymptotically almost every n-vertex graph H with⌈
Cn log n

⌉
edges satisfies f�(H)≥ (2− ε)n.

The first result generalizes recent results on complete and complete bipartite graphs and shows that the list
chromatic number ofH-minor-free graphs is separated from the desired value of (v(H)− 1) by a constant
factor for all large graphs H of linear connectivity. The second result tells us that for almost all graphs H
with superlogarithmic average degree f�(H) is separated from (v(H)− 1) by a constant factor arbitrarily
close to 2. Conceptually these results indicate that the graphs H for which f�(H) is close to the conjectured
value (v(H)− 1) for fχ (H) are typically rather sparse.
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1. Introduction
All graphs considered in this paper are finite, have no loops and no parallel edges. Given graphs G
andH, we say that G containsH as aminor, in symbols, G�H, if a graph isomorphic toH can be
obtained from a subgraph of G by contracting edges.

Hadwiger’s colouring conjecture, first stated in 1943 by Hugo Hadwiger [8], is among the most
famous and important open problems in graph theory. It claims a deep relationship between the
chromatic number of graphs and their containment of graph minors, as follows.

Conjecture 1 (Hadwiger [8]). Let t ∈N. If a graph G is Kt-minor-free, then χ(G)≤ t − 1.
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Hadwiger’s conjecture has been proved for all values t ≤ 6, see [26] for the most recent result in
this sequence, resolving theK6-minor-free case. For t = 5, the conjecture states thatK5-minor-free
graphs are 4-colorable. Since planar graphs are K5-minor-free, this special case already generalises
the famous four colour theorem that was proved in 1976 by Appel, Haken and Koch [1, 2].

Given that during 80 years of study little progress has been made towards resolving Hadwiger’s
conjecture for t ≥ 7, it seems natural to approach the conjecture via meaningful relaxations.
For instance, much of recent work has focused on its asymptotic version. The so-called linear
Hadwiger conjecture states that for some absolute constant C ≥ 1, every Kt-minor-free graph is
�Ct�-colorable. Starting with a breakthrough result by Norin, Postle and Song [20] in 2019, there
has been a set of papers providing some exciting progress towards this conjecture [21, 23–25]. This
culminated in the currently best known upper bound of O(t log log t) for the chromatic number
of Kt-minor-free graphs by Delcourt and Postle [6] in 2021.

Another natural relaxation, proposed by Seymour [27, 28], suggests replacing the condition
that the considered graphs exclude Kt as a minor by the stronger condition that they exclude a
particular, possibly non-complete graph H on t vertices as a minor.

Conjecture 2 (H-Hadwiger’s conjecture [27, 28]). H-minor-free graphs are (v(H)− 1)-colorable.

Note that Hadwiger’s conjecture would imply the truth of this statement for every H. Also
note that this upper bound on the chromatic number would be best possible for every H, as the
complete graph Kv(H)−1 has chromatic number v(H)− 1 but is too small to host an H-minor.

H-Hadwiger’s conjecture can easily be verified using a degeneracy-colouring approach if H
is a forest, and it is also known to be true for spanning subgraphs of the Petersen graph [9]. A
particular case ofH-Hadwiger’s conjecture which has received special attention in the past is when
H =Ks,t is a complete bipartite graph.Woodall [37] conjectured in 2001 that everyKs,t-minor-free
graph is (s+ t − 1)-colorable. Also this problem remains open, but if true it would resolve H-
Hadwiger’s conjecture for all bipartite H. Several special cases of this conjecture have been solved
by now. Most notably, Kostochka [14, 15] proved that for some function t0(s)=O(s3 log3 s), H-
Hadwiger’s conjecture holds whenever H =Ks,t and t ≥ t0(s). The conjecture is also true for H =
K3,3, which can be seen using the structure theorem for K3,3-minor-free graphs by Wagner [35]
and the fact that planar graphs are 5-colorable. In addition, the statement has been proved for
H =K2,t when t ≥ 1 [5, 18, 37, 38], for H =K3,t when t ≥ 6300 [16] and for H =K3,4 [10]. In
a different direction, Norin and Turcotte [22] recently proved H-Hadwiger’s conjecture for all
sufficiently large bipartite graphs of bounded maximum degree that belong to a class of graphs
with strongly sublinear separators.

1.1. List colouring H-minor-free graphs
In this paper, we shall be concerned with the list chromatic number of graphs that exclude a fixed
graph H as a minor. List colouring is a well-known and popular subject in the area of graph
colouring, whose introduction dates back to the seminal paper of Erdős, Rubin and Taylor [7]. A
list assignment for a graphG is a mapping L:V(G)→ 2N assigning to every vertex v ∈V(G) a finite
set L(v) of colours, also called the list of v. An L-colouring of G is a proper colouring c:V(G)→N

for which every vertex must choose a colour from its list, that is, c(v) ∈ L(v) for every v ∈V(G).
Finally, we say that G is k-choosable for some integer k≥ 1 if there exists a proper L-colouring
for every list assignment L satisfying |L(v)| ≥ k for all v ∈V(G). The list chromatic number of G,
denoted χ�(G), is the smallest integer k such that G is k-choosable. Note that trivially χ(G)≤
χ�(G) for every graph G, but conversely no relationship holds, as χ�(G) is unbounded even on
bipartite graphs G, see [7].

The first open problem regarding list colouring of minor-closed graph classes was raised
already in 1979 in the seminal paper by Erdős, Rubin and Taylor [7], who asked to determine
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the maximum list chromatic number of planar graphs. This question was answered in the 1990s
in work of Thomassen [33] and Voigt [34]. Thomassen proved that every planar graph is 5-
choosable, and Voigt gave the first examples of planar graphs G with list chromatic number
χ�(G)= 5.

The latter result also answered a question by Borowiecki [4] in the negative, who had asked
whether one could potentially strengthen Hadwiger’s conjecture to the list colouring setting by
asserting that every Kt-minor-free graph G satisfies χ�(G)≤ t − 1.

Given the previous discussion, it is natural to study the maximum list chromatic number of Kt-
minor-free graphs, see also [39] for an open problem garden entry about this problem. To make
the following presentation more convenient, for every graph H we denote by fχ (H) and f�(H),
respectively, the maximum (list) chromatic number of H-minor-free graphs. Note that with this
notation, the H-Hadwiger’s conjecture amounts to saying that fχ (H)= v(H)− 1.

Let us briefly summarise previous work regarding bounds on f�(Kt). The construction of Voigt
mentioned above shows that f�(K5)≥ 5. Thomassen’s result regarding the 5-choosability of pla-
nar graphs was later extended by Škrekovski [29] to K5-minor-free graphs, thus proving that
f�(K5)= 5. Until today none of the values f�(Kt) with t ≥ 6 have been determined precisely, a
list of the currently best known lower and upper bounds for f�(Kt) for small values of t can
be found in [3]. In 2007, Kawarabayashi and Mohar [12] made two conjectures regarding the
asymptotic behaviour of f�(Kt), namely that (A) f�(Kt)=O(t), this is known as the list linear
Hadwiger conjecture, and that (B) f�(Kt)≤ 3

2 t for every t. In 2010, Wood [36], inspired by the fact
that f�(K5)= 5, proposed an even stronger conjecture stating that f�(Kt)= t for every t ≥ 5. This
strong conjecture was refuted in 2011 by Barát, Joret and Wood, who gave a construction show-
ing that f�(Kt)≥ 4

3 t −O(1). However, the weaker conjecture (B) by Kawarabayashi andMohar still
remained open. Recently, a new lower bound of f�(Kt)≥ 2t − o(t) was established by the second
author [30], thus refuting conjecture (B). As for upper bounds, the best currently known bound
is f�(Kt)≤ Ct(log log t)6, which was established in 2020 by Postle [25]. Some previous work also
addressed bounds on f�(H) when H is non-complete. In particular, Woodall [27] conjectured in
2001 that f�(Ks,t)= s+ t − 1 for all integers s, t ≥ 1, and proved this in the case when s= t = 3.
From the previously mentioned works [5, 18, 37, 38] it was also known that f�(K2,t)= t + 1 for
t ≥ 1. Additionally, a result by Jørgensen [10] implied the truth of the conjecture for K3,4, and
Kawarabayashi [11] proved that f�(K4,t)≤ 4t for every t. Despite this positive evidence, Woodall’s
conjecture was recently disproved by the second author [31] showing that f�(Ks,t)≥ (1−
o(1))(2s+ t) for all large values of s≤ t. A positive result comes from the aforementioned result of
Norin and Turcotte [22], which also works for list colourings and shows that f�(H)= v(H)− 1 for
all large bipartite graphs H of bounded maximum degree in a graph class with strongly sublinear
separators.

1.2. Our contribution
The above discussion shows that when excluding a sufficiently large complete or a sufficiently
large balanced complete bipartite graph H, the value of f�(H) exceeds the trivial lower bound
f�(H)≥ v(H)− 1 by at least a constant factor. This means that, in a strong sense, one cannot hope
for extendingHadwiger’s conjecture to list colouring with the same quantitative bounds. However,
note that if H is a complete or a balanced complete bipartite graph, then H is quite dense in the
sense that it has a quadratic number of edges. On the other extreme of the spectrum, the previously
mentioned result by Norin and Turcotte [22] shows that f�(H)= v(H)− 1 does hold for large
classes of graphs H with a constant maximum degree (and thus, with a linear number of edges).
This naturally opens up a new question, as follows: How sparse must the desired minorH be, such
that one can hope for a list colouring extension of H-Hadwiger’s conjecture? Concretely, which
structural and density properties of graphs H guarantee that f�(H)= v(H)− 1? While one might

https://doi.org/10.1017/S0963548323000354 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000354


132 O. Fischer and R. Steiner

be tempted to hope for a nice description of the class of all graphs H satisfying f�(H)= v(H)− 1,
Theorem 3 below speaks a word of caution: Any given graph F can be augmented, by the addition
of sufficiently many isolated vertices, to a graph H in this class.

Theorem 3. For every graph F there exists k0 = k0(F) such that for every k≥ k0 the graph H
obtained from F by the addition of k isolated vertices satisfies f�(H)= v(H)− 1. In fact, every
H-minor-free graph is (v(H)− 2)-degenerate.

This shows that arbitrary graphs F can show up as induced subgraphs of graphsH with f�(H)=
v(H)− 1. To avoid such artificial constructions and to make a nice structural description of the
graph class at hand more likely, it seems natural to ask for the largest class that is closed under
taking subgraphs such that all members H of this class satisfy f�(H)= v(H)− 1.1

Problem 4. Characterise the classH of graphs H such that f�(H′)= v(H′)− 1 for all H′ ⊆H.

The main contributions of this paper are Theorems 5 and 7 below, which establish new lower
bounds on f�(H) and strongly limit the horizon for positive instances of Problem 4. The first result
proves a lower bound on f�(H) in terms of v(H) and the vertex-connectivity κ(H), implying that
f�(H) exceeds v(H) by a constant factor for all large graphs of linear connectivity.2

Theorem 5. For every ε > 0 there exists n0 = n0(ε) ∈N such that every graph H on at least n0
vertices satisfies f�(H)≥ (1− ε)(v(H)+ κ(H)).

In particular, this result immediately generalises both of the lower bounds of f�(Kt)≥ 2t − o(t)
and f�(Ks,t)≥ (1− o(1))(2s+ t) previously established by the second author in [30, 31] by noting
that κ(Kt)= t − 1 and κ(Ks,t)= s for s≤ t. It also has the following simple consequence, showing
that the graphs inH have a subquadratic number of edges.

Corollary 6. For every n ∈N, let h(n) denote the maximum possible number of edges of an n-vertex
graph inH. Then limn→∞ h(n)

n2 = 0.

Proof. Towards a contradiction, suppose the statement is not true. Then there is some constant
δ > 0 such that there exist arbitrarily large graphs H ∈H with average degree at least δv(H). By
a classical result of Mader [17], every graph of average degree at least 4(k− 1) for some inte-
ger k≥ 2 contains a k-connected subgraph. As H is closed under subgraphs, this implies that
there are arbitrarily large graphs H ∈H with connectivity at least δ

4v(H). Then, using ε := δ
8 and

Theorem 5, for sufficiently large H ∈H with average degree at least δv(H), we have f�(H)≥ (1−
ε)(1+ δ

4 )v(H)= (1+ δ
8 − δ2

32 )v(H)> v(H). However, we have f�(H)= v(H)− 1 by the definition
ofH, which yields the desired contradiction and concludes the proof. �

Our second result addresses to what extent sparsity of H can push f�(H) closer to the trivial
lower bound v(H)− 1, by showing that for any fixed ε > 0, asymptotically almost all n-vertex
graphsH with average degree of order C log n for a sufficiently large constant C are far from being
inH, in the sense that f�(H) is separated from v(H)− 1 by a factor of at least 2− ε.

Theorem 7. For every ε > 0 there exists a constant C = C(ε)> 0 such that asymptotically almost
every graph H on n vertices with 
Cn log n� edges satisfies f�(H)≥ (2− ε)n.

1This is done in the spirit of the definition of perfect graphs, where a nice characterisation of graphs with χ(G)= ω(G) seems
elusive, but the largest class of graphs with this property that is closed under taking induced subgraphs admits a beautiful
structural description by the strong perfect graph theorem.

2Here, by graphs of linear connectivity we mean n-vertex graphs H that are αn-connected for some small but absolute
constant α > 0.
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Together with Corollary 6, this hints at the graphs in H typically being quite sparse. It also
shows that the lower bound f�(Kt)≥ 2t − o(t) for complete graphs from [30] applies in equal
strength to almost all t-vertex graphs H with ω(t log t) edges, despite them being (much) sparser
than Kt .

Our proofs of Theorems 5 and 7 are based on several extensions and refinements of the prob-
abilistic approach for lower bounding f�(Kt) and f�(Ks,t) introduced by the second author in
[30, 31]. However, several new ideas are required to overcome obstacles arising from the largely
increased generality of the setup. For instance, to prove Theorem 7 one has to construct graphs
avoiding rather sparse graphsH as a minor. While the constructions in [30, 31] were based on the
fact that clique sums of graphs under mild assumptions preserve Kt- and Ks,t-minor-freeness, a
corresponding statement is no longer true for sparse graphs H of much lower connectivity.

1.3. Organisation of the paper
In Section 2 we prove two probabilistic results on random bipartite graphs that exhibit properties
of these graphs that are crucial for our constructions in the proofs of Theorems 5 and 7. We then
present the proofs of our main results Theorem 5 and Theorem 7 in, respectively, Section 3 and
Section 4. Finally, in Section 5 we separately prove Theorem 3. The latter proof is self-contained
and independent of the results in the other three sections.

1.4. Notation and terminology
By κ(G) we denote the vertex-connectivity of a graph G, i.e., the minimum k such that G is k-
connected. Given integersm, n≥ 1 and an edge-probability p ∈ [0, 1], we use G(m, n;p) to denote
the bipartite Erdős-Rényi random graph with bipartition classes A and B of sizesm and n, respec-
tively, and in which a pair abwith a ∈A and b ∈ B is chosen as an edge ofG(m, n;p) independently
with probability p. For integers m, n≥ 1 we denote by G(n;m) a random graph drawn uniformly
from all graphs on vertex set [n]= {1, . . . , n} with exactlym edges.

While the original definition of the graph minor-containment relation � is via edge contrac-
tions and deletions, for proving the results in this paper it will be more convenient to think about
graph minor models. Given a graph G and a graphH, anH-minor model is a collection (Zh)h∈V(H)
of pairwise disjoint and non-empty subsets of V(G) with the property that G[Zh] is a connected
graph for every h ∈V(H) and such that for every edge h1h2 ∈ E(H), there exists at least one edge in
G with endpoints in Zh1 and Zh2 . The sets Zh, h ∈V(H) are also called the branch sets of the minor
model. It is well-known and easy to see that for every pair of graphs G and H we have G�H if
and only if there exists an H-minor model in G.

2. Probabilistic lemmas
In this short preparatory section we prove two simple auxiliary results (Lemmas 9 and 11) that will
be used in the proofs of both our main results in Section 3 and 4. The lemmas capture two simple
but important properties exhibited by bipartite Erdős-Rényi random graphs. These properties
will later be used to lower bound the list chromatic number of the graphs in our constructions for
Theorems 5 and 7 and to argue that they exclude a given graph as a minor.

Two basic tools from probability theory that we will use in the following are the classical
Chernoff concentration bounds, stated below. A standard application of the Chernoff bounds
yields an upper bound on the maximum degree of bipartite graphs with linear expected degree,
stated below without proof.
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Lemma 8 (Chernoff). Let X be a binomially distributed random variable. Then the following
bounds hold for every δ ∈ (0, 1]:

P(X ≥ (1+ δ)E(X))≤ exp
(

−δ2

3
E(X)

)
, P(X ≤ (1− δ)E(X))≤ exp

(
−δ2

2
E(X)

)
.

Lemma 9. Let p ∈ (0, 1] be a constant. Then w.h.p. the random bipartite graph G=G(n, n;p) has
maximum degree at most 2pn.

In order to compactly state and refer to our next lemma below, it is convenient for us to intro-
duce a technical definition for the following relationship between a graphH and a bipartite graph
Gwith vertex bipartition A, B. Let G� denote the graph complement ofG. We are interested in the
existence of H̃-minor models in G�, where H̃ is a subgraph of H. For fixed integers k, l, consider
the situation where X1, . . . , Xk ⊆A, Y1, . . . , Yk ⊆ B are pairwise disjoint subsets of A and B and
x1, . . . , xk, y1, . . . , yl ∈V(H) are distinct vertices of H. Let H̃ be the induced subgraph by the ver-
tices {x1, . . . , xk, y1, . . . , yl} and let Zx1 := X1, . . . , Zxk := Xk, Zy1 := Y1, . . . , Zyl := Yl. Then the
branch sets (Zv)v∈V(H̃) form an H̃-minor model in G� if and only if each branch set is connected
and for each edge of the form xiyj ∈ E(H) there is an edge between Zxi and Zyj in G�. Therefore,
(Zv)v∈V(H̃) is not an H̃-minor model in G� if there is an edge xiyj ∈ E(H) such that G contains all
edges between Xi and Yj. This relationship, with some additional constraints on branch set size
and subgraph size, is captured by the following property.

Definition 10 (Property P). Let 0< δ < 1, s ∈N and let H be a graph on n vertices. We say that a
bipartite graph G with bipartition {A, B} satisfies property P(H, δ, s) if for all integers k, l≥ δn the
following holds:

If x1, . . . , xk, y1, . . . , yl ∈V(H) are distinct vertices satisfying eH({x1, . . . , xk}, {y1, . . . , yl})≥ s
and X1, . . . , Xk ⊆A, Y1, . . . , Yl ⊆ B are pairwise disjoint sets of size at most 1

δ
each, then there exists

an index pair (i, j) ∈ [k]× [l] such that xiyj ∈ E(H) and xy ∈ E(G) for every (x, y) ∈ Xi × Yj.

Lemma 11. Let δ, p ∈ (0, 1) be constants. Then there exists a constant D=D(δ, p)> 1 and a
sequence qn = 1− o(1) such that with s= s(n) := 
Dn log n� for every n-vertex graphH the random
bipartite graph G=G(n, n;p) satisfies P(H, δ, s) with probability at least qn.

Proof. Choose any constant D>max{1, 3p−(1/δ2)}. Let A, B be the vertex bipartition of G with
|A| = |B| = n, let H be an n-vertex graph and let k, l≥ δn. There are at most nn choices of distinct
vertices x1, . . . , xk, y1, . . . , yl ∈V(H) and at most n2n choices of disjoint vertex sets X1, . . . , Xk ⊆
A, Y1, . . . , Yl ⊆ B. Consider a fixed such choice satisfying the premises in Definition 10 and the
random event that for every pair (i, j) ∈ [k]× [l] such that xiyj ∈ E(H), not all of the potential edges
between Xi and Yj are included in G. The probability that this holds is

∏
xiyj∈E(H) (1− p|Xi||Yj|)≤

(1− p(1/δ2))Dn log n, where we used the premises that the sets Xi, Yj are of size at most 1
δ
and that

there are at least s≥Dn log n edges of the form xiyj ∈ E(H). Using a union bound over the choices
described above, we have

P(G does not satisfy property P(H, δ, s))≤ n3n(1− p(1/δ
2))Dn log n

≤ exp(3n log n− p(1/δ
2)Dn log n).

We have 3− p(1/δ2)D< 0 and thus the above expression tends to 0 as n→ ∞. Setting qn := 1−
exp((3− p(1/δ2)D)n log n) then concludes the proof of the lemma. �
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3. Proof of Theorem 5
In this section, we present the proof of Theorem 5. We start off by making use of Lemmas 9 and
11 from the previous section to establish the existence of small H-minor-free graphs that are in a
sense “almost complete”, as follows.

Lemma 12. For every ε ∈ (0, 12 ) there exists an integer N =N(ε) such that for every n≥N and every
n-vertex graph H with κ(H)≥ εn there exists a graph F with the following properties:

• The vertex set of F can be partitioned into two disjoint sets A and B such that both A and B
form cliques in F and |A| = �(1− 2ε)κ(H)�, |B| = �(1− 2ε)n�.

• Every vertex in B has at most εn non-neighbors in F.
• F is H-minor-free.

Proof. Define p := ε
2 and δ := ε2. By Lemma 9 there is a sequence pn = 1− o(1) such that

G(n, n;p) has maximum degree at most 2pn= εn with probability at least pn, and by Lemma 11
there exists an absolute constant D> 0 and a sequence qn = 1− o(1) such that for every n-vertex
graphH the probability that G(n, n;p) satisfies property P(H, δ, 
Dn log n�) is at least qn. Let n1 be
such that pn, qn > 1

2 for every n≥ n1. Moreover, let n2 ∈N be chosen large enough such that the
inequality δ2n2 ≥Dn log n holds for every n≥ n2. Finally, we put N := max{n1, n2} and let n≥N
be arbitrary. By our choice of N, there then exists at least one bipartite graph G with bipartition
{A′, B′} such that |A′| = |B′| = n, G has maximum degree at most εn, and G satisfies property
P(H, δ, 
Dn log n�). Let A⊆A′, B⊆ B′ be chosen (arbitrarily) such that |A| = �(1− 2ε)κ(H)�,
|B| = �(1− 2ε)n�. Note that this is possible as κ(H)< v(H)= n. We now define F as the graph
complement of the induced subgraph G[A∪ B] of G. Since A and B are independent sets in G,
they form cliques in F. Thus the first item of the lemma is satisfied. To verify the second item, it
suffices to note that since G has maximum degree at most εn, the same is true for G[A∪ B], and
thus every vertex in F can have at most εn non-neighbors in F.

It thus remains to prove that F is indeed H-minor-free. Towards a contradiction, suppose that
there exists anH-minormodel (Zh)h∈V(H) in F. LetXA, XB, XAB be the partition ofV(H) defined as
follows: XA := {h ∈V(H)|Zh ⊆A} and XB := {h ∈V(H)|Zh ⊆ B} contain those branch sets which
are subsets of A or of B, respectively, and XAB := {h ∈V(H)|Zh ∩A �= ∅ �= Zh ∩ B} contains the
branch sets which overlap with both A and B.

Our goal now is to find at least δn vertices in XA and in XB whose corresponding vertex subsets
of A or of B have size at most 1

δ
and which have at leastDn log n edges between them.We will then

be able to use property P(H, δ, 
Dn log n�) to complete the proof.
Note that we have |XB| + |XAB| ≤ |B| ≤ (1− 2ε)n as the sets in (Zh)h∈V(H) are pairwise disjoint.

Given that |XA| + |XB| + |XAB| = v(H)= n, this implies that |XA| ≥ 2εn. Since the sets (Zh)h∈XA
are disjoint and since |A| ≤ (1− 2ε)κ(H)< (1− 2ε)n< n, there cannot be more than δn sets of
size greater than 1

δ
in the collection (Zh)h∈XA . Hence, there exists k≥ 2εn− δn≥ δn and k distinct

vertices x1, . . . , xk ∈ XA such that |Zxi | ≤ 1
δ
for i= 1, . . . , k. Note that H has minimum degree at

least κ(H), for otherwise one could separate a vertex in H from the rest of the graph by deleting
fewer than κ(H) vertices. Using this, we have

|NH(xi)∩ XB| ≥ degH (xi)− |XA ∪ XAB| ≥ δ(H)− |A|
≥ κ(H)− (1− 2ε)κ(H)= 2εκ(H)≥ 2ε2n= 2δn

for every i= 1, . . . , k, where in the last step we used that κ(H)≥ εn by assumption. Consider for
any fixed index i ∈ [k] the set collection (Zh)h∈NH(xi)∩XB . Since the sets are pairwise disjoint and
contained in the set B of size at most n, as above it follows that at most δn sets in this collection
can be of size greater than 1

δ
. Consequently, for each i ∈ [k] there exists a subset Ni ⊆NH(xi)∩ XB

of size at least 2δn− δn= δn such that |Zh| ≤ 1
δ
for every h ∈Ni and i ∈ [k]. Let y1, . . . , yl ∈ XB

https://doi.org/10.1017/S0963548323000354 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000354


136 O. Fischer and R. Steiner

be distinct vertices such that {y1, . . . , yl} = ⋃k
i=1 Ni. Then clearly, l≥ |N1| ≥ δn. Furthermore, we

have

eH({x1, . . . , xk}, {y1, . . . , yl})≥
k∑

i=1
|Ni| ≥ k · δn≥ δ2n2 ≥Dn log n,

where in the last step we used our assumption that n≥N ≥ n2.
We can now use that G satisfies property P(H, δ, 
Dn log n�), which directly implies that there

exists a pair (i, j) ∈ [k]2 such that xiyj ∈ E(H) andG contains all edges of the form xywhere (x, y) ∈
Zxi × Zyj . However, by definition of F thismeans that there exists no edge in F which has endpoints
in both Zxi and Zyj . This is a contradiction to our initial assumption that (Zh)h∈V(H) form an H-
minor model in F. Thus, F does not contain H as a minor, which establishes the third item of the
lemma and concludes the proof. �

Our next lemma below guarantees that for sufficiently well-connected graphs H, the property
of being H-minor-free is preserved when pasting together two graphs along a sufficiently small
clique. This statement will then be used in the proof of Theorem 5 to glue several copies of the
H-minor-free graph from Lemma 12 along a common clique, thus eventually creating a graph
that is stillH-minor-free but has an increased list chromatic number. The lemma is folklore in the
graph minors community, see also Section 3.1 in [19].

Lemma 13. Let G1,G2 be H-minor-free graphs and let C := V(G1)∩V(G2). If C forms a clique in
both G1 and G2 and if |C| < κ(H), then the graph union G1 ∪G2 is also H-minor-free.

The last ingredient required to complete the proof of Theorem 5 is a simple but important idea
on how to lower-bound the list chromatic number of a graph that is obtained from a fixed graph
F by repeated pasting along the same clique. Since the statement will also be reused for the proof
of Theorem 7 in the next section, we decided to isolate it here. We use the following terminology:

Definition 14 (Pasting). Let F be a graph, let S⊆V(F) and K ∈N. A K-fold pasting of F at S is any
graph that can be expressed as the union of K isomorphic copies F1, . . . , FK of F with the property
that V(Fi)∩V(Fj)= S for all 1≤ i< j≤K.

Lemma 15. Let m, n, d ∈N with d ≤m and let F be a graph whose vertex set is partitioned into two
cliques A, B such that every vertex in B has at least |A| − d neighbours in A. Let K = (|A| + |B| −
1)|A| and let F(K) be a K-fold pasting of F at A. Then χ�(F(K))≥ |A| + |B| − d.

Proof. Let F1, . . . , FK be an ordering of the copies of F in the pasting graph F(K), and let
B1, . . . , BK be the corresponding copies of B. Let f :[|A| + |B| − 1]A → [K] be an arbitrary bijec-
tion and let c1, . . . , cK :A→ [|A| + |B| − 1] be the ordering of colour assignments toA that satisfies
f (ci)= i for all i ∈ [K]. Consider the list assignment L:V(F(K))→ 2[|A|+|B|−1] defined as follows:

• L(a) := [|A| + |B| − 1] for all a ∈A
• L(b) := [|A| + |B| − 1] \ {ci(a) | a ∈A \NFi(b)} for all b ∈ Bi for all i ∈ [K]

Given that every vertex in B by assumption has at most d non-neighbors in F, we have
|L(v)| ≥ |A| + |B| − 1− d for all v ∈V(F(K)). Now assume towards a contradiction that F(K)
admits a proper L-colouring c and let i ∈ [K] be the unique index satisfying ci(a)= c(a) for all
a ∈A. Then let cFi :A∪ Bi → [|A| + |B| − 1] be the colouring c restricted to the graph Fi. Since
v(Fi)= |A| + |B|, there exist by the pigeonhole principle vertices u, v ∈V(Fi) with c(u)= c(v).
Since c is proper andA, B are cliques, we have uv /∈ E(Fi) and u ∈A, v ∈ Bwithout loss of generality.
However, c(u) /∈ L(v) by the construction of L, a contradiction. �

By assembling the previously established pieces, we can now easily deduce Theorem 5.
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Proof of Theorem 5. Let a constant ε > 0 be given choose ε̃ ∈ (0, ε
4 ). LetN =N(ε̃) be as in Lemma

12. We now set n0 := max{N, 
 4
ε2

��} and claim that Theorem 5 holds for this choice of n0.
Let H be a graph on n≥ n0 vertices. We have to prove that f�(H)≥ (1− ε)(n+ κ(H)). If

κ(H)< εn, then this follows directly from the trivial lower bound via

f�(H)≥ v(H)− 1= n− 1≥ (1− ε2)n= (1− ε)(n+ εn)> (1− ε)(n+ κ(H)).

Thus, we may now assume κ(H)≥ εn, in particular, κ(H)≥ ε̃n. Using n≥N and Lemma 12 we
now find that there exists anH-minor-free graph F whose vertex set is partitioned into two cliques
A, B such that |A| = �(1− 2ε̃)κ(H)� < κ(H) and |B| = �(1− 2ε̃)n�, and such that every vertex in
B has at most ε̃n non-neighbors in F. Let d := �ε̃n� and K := (|A| + |B| − 1)|A|. Let F(K) denote a
K-fold pasting of F at the clique A. Since every vertex in B has at least |A| − d neighbours in A, we
can apply Lemma 15 to find that

χ�(F(K))≥ |A| + |B| − d ≥ (1− 2ε̃)(κ(H)+ n)− 2− ε̃n

≥ (1− 3ε̃)(n+ κ(H))− 2≥ (1− ε)(n+ κ(H)),

using n≥ n0 ≥ 4
ε2

in the last step. In addition, since |A| < κ(H), the graph F(K) isH-minor-free by
repeated application of Lemma 13. We conclude that f�(H)≥ (1− ε)(v(H)+ κ(H)), as desired.�

4. Proof of Theorem 7
In this section, we present the proof of Theorem 7. The theorem claims a lower bound on f�(H) for
almost all graphsH on n vertices and 
Cn log n� edges for some large constant C > 0. However, in
fact the only condition on the graphH our lower bound proof relies upon is the following pseudo-
random graph property, guaranteeing the existence of many edges between every pair of disjoint
linear-size vertex subsets in H.

Definition 16 (Property Q, graph family Qn). Let δ > 0 and D> 1 be arbitrary. We say that a
graph H with n vertices satisfies property Q(δ,D) if for every two disjoint vertex sets A, B⊆V(H)
with |A|, |B| ≥ δn, we have eH(A, B)≥Dn log n. Let Qn(δ,D) denote the family of n-vertex graphs
H that satisfy property Q(δ,D).

Crucially, property Q(δ,D) is satisfied for almost all graphs on n vertices with an average degree
of C log n for a large enough constant C. The proof uses a standard probabilistic argument and is
therefore omitted.

Lemma 17. Let δ > 0, D> 1 be arbitrary and let m:N→N be defined as m(n)= 
D2

δ2
n log n�. Then

with high probability as n→ ∞, a random graphH =G(n;m(n)) drawn uniformly from all n-vertex
graphs with m(n) edges satisfies property Q(δ,D).

In our next step towards proving Theorem 7, we establish the following statement somewhat
analogous to Lemma 12, showing how to build small and close-to-complete H-minor-free graphs
for a given graph H ∈Qn(δ,D).

Lemma 18. Let δ ∈ (0, 1), D> 1, n ∈N, and H ∈Qn(δ,D) be arbitrary. Moreover, let G be a
bipartite graph with bipartition {A, B}, |A| = |B| = �(1− 3δ)n� satisfying property P(H, δ, s) for
s= 
Dn log n�. Then its complement graph G� does not contain H[U] as a minor for any U ⊆V(H)
with |U| ≥ (1− δ)n.

Proof. Assume G� contains H[U] as a minor for some U ⊆V(H) with |U| ≥ (1− δ)n. Let
(Zh)h∈U be an H[U]-minor model in G� and define XA := {h ∈U | Zh ⊆A}, XB := {h ∈U |
Zh ⊆ B}, and XAB := {h ∈U | Zh ∩A �= ∅ �= Zh ∩ B}. We have |XA| + |XAB| ≤ |A|, |XB| + |XAB| ≤
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|B|, and |XA| + |XB| + |XAB| = |U| ≥ (1− δ)n, which implies |XA|, |XB| ≥ (1− δ)n− (1− 3δ)n=
2δn.

Since the branch sets (Zh)h∈XA in A and the branch-sets (Zh)h∈XB in B are pairwise disjoint, at
most δ(1− 3δ)n< δn branch sets in each of (Zh)h∈XA and (Zh)h∈XB can be larger than 1

δ
. Thus,

there are at least 2δn− δn= δn branch sets of size at most 1
δ
in (Zh)h∈XA as well as in (Zh)h∈XB .

Thus for k := l := 
δn�, there exist distinct vertices x1, . . . , xk ∈ XA, y1, . . . , yl ∈ XB such that
|Zxi |, |Zyj | ≤ 1

δ
for all 1≤ i, j≤ k= l. Since H ∈Qn(δ,D), we have eH({x1, . . . , xk}, {y1, . . . , yl})≥


Dn log n� = s. Next we use our assumption that G satisfies property P(H, δ, s). It implies that
there exists an edge xiyj ∈ E(H) with (i, j) ∈ [k]× [l] such that G contains all the edges xy with
(x, y) ∈ Zxi × Zyj . Then, however, there is an edge between vertices xi and yj in H, but no edge
between the corresponding branch sets Zxi and Zyj in G�, a contradiction. �

The next auxiliary statement we need is Lemma 19 below, which establishes a weak analogue
of Lemma 13 for graphs H ∈Qn(δ,D). Note that as these graphs may have sublinear minimum
degree and connectivity, Lemma 13 cannot be used to obtain the same statement.

Lemma 19. Let δ > 0, D> 1, H ∈Qn(δ,D) and let F be a graph with a clique W ⊆V(F) of size
�(1− 3δ)n�. Let K ∈N and let F(K) be a K-fold pasting of F at W. If F(K) contains H as a minor,
then there exists U ⊆V(H) with |U| ≥ (1− δ)n such that F contains H[U] as a minor.

Proof. In the following, let F1, . . . , FK denote the copies of F such that F(K) = ⋃K
i=1 Fi.

Suppose F(K) has anH-minor and fix anH-minor model (Zh)h∈V(H) inH. Let us denote XW :=
{h ∈V(H) | Zh ∩W �= ∅} and ξW := |XW |, and Xi := {h ∈V(H) | Zh ⊆V(Fi) \W} and ξi := |Xi|
for every i ∈ [K]. Note that since every branch-set Zh induces a connected subgraph of F, every
vertex h ∈V(H) appears in exactly one of the sets XW , X1, . . . , XK , i.e., they form a partition of
V(H). In particular, we have ξW + ∑K

i=1 ξi = v(H)= n.
We have ξW ≤ |W| ≤ n− 3δn and thus

∑K
i=1 ξi = n− ξW ≥ 3δn. In the following, let us w.l.o.g.

assume [K] is ordered such that ξ1 ≥ ξ2 ≥ · · · ≥ ξK . We claim that ξ1 ≥ (1− δ)n− ξW . Towards
a contradiction, suppose in the following that ξ1 < (1− δ)n− ξW . We first note that using this
assumption, we have that

∑K
i=2 ξi = n− (ξW + ξ1)> n− (1− δ)n= δn.

Now suppose for a first case that ξ1 ≥ δn. Then the two disjoint sets of vertices X1 and⋃K
i=2 Xi in H are both of size at least δn. By property Q(δ,D) this implies that eH(X1,

⋃K
i=2 Xi)≥

Dn log n> 0. In particular there exists 2≤ i≤K and an edge uv ∈ E(H) for some u ∈ X1 and
v ∈ Xi. This implies that there must exist an edge in F(K) connecting a vertex in Zu ⊆V(F1) \W
to a vertex in Zv ⊆V(Fi) \W. However, by construction of F(K) no such edges exist, and so we
arrive at the desired contradiction in this first case.

For the second case, suppose that ξ1 < δn (and thus in particular ξi < δn for all i ∈ [K]). Let
j ∈ [K] be the smallest index such that

∑j
i=1 ξi > δn (this is well-defined, since

∑K
i=1 ξi ≥ 3δn, see

above). By the minimality of j, we have
∑j

i=1 ξi = ξj + ∑j−1
i=1 ξj ≤ δn+ δn= 2δn. This implies that∑K

i=j+1 ξi = ∑K
i=1 ξi − ∑j

i=1 ξi ≥ 3δn− 2δn= δn. In consequence, we find that the two disjoint
vertex sets

⋃j
i=1 Xi,

⋃K
i=j+1 Xi in H are both of size at least δn. Hence, using property Q(δ,D) we

have eH(
⋃j

i=1 Xi,
⋃K

i=j+1 Xi)≥Dn log n> 0. Similar as above, this implies the existence of two
indices i, i′ with 1≤ i≤ j< i′ ≤K such that there exists an edge betweenV(Fi) \W andV(Fi′) \W
in F(K). As this is impossible by construction of F(K), a contradiction follows also in the second
case. Thus our initial assumption ξ1 < (1− δ)n− ξW was false.

We therefore have |X1 ∪ XW | = ξ1 + ξW ≥ (1− δ)n. Let U := X1 ∪ XW . For every h ∈U, let
Zh′ := Zh if h ∈ X1 and Zh′ := Zh ∩V(F1) if h ∈ XW . We now show that (Zh′)h∈U is an H[U]-
minor model in F1, which will then conclude the proof of the lemma.
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First of all, note that F1[Zh′] is a connected graph for every h ∈U. If h ∈ X1, then F1[Zh′]=
F(K)[Zh] is connected since (Zh)h∈V(H) is anH-minor model. And if h ∈ XW , then the connectivity
of F1[Zh′]= F(k)[Zh ∩V(F1)] follows since (1) F(K)[Zh] is connected and (2) every path connect-
ing two vertices in Zh′ that is contained in F(K)[Zh] can be shortened to a path whose vertex set is
completely contained in V(F1) by short-cutting every segment of the path that starts and ends in
the cliqueW by the direct connection between its endpoints.

Let us now consider any edge uv ∈ E(H[U]). Then there must exist an edge xy ∈ E(F(K)) with
x ∈ Zu, y ∈ Zv. If we have x, y ∈V(F1), then this witnesses the existence of an edge between Zu′
and Zv′ in F1, as desired. If on the other hand at least one of x, y lies outside of V(F1), then we
necessarily must have Zu ∩W �= ∅ �= Zv ∩W, and thus there exists an edge in the clique induced
byW (and thus also in F1) that connects a vertex in Zu′ to a vertex in Zv′. All in all, this shows that
F1 contains H[U] as a minor. Since |U| ≥ (1− δ)n, this concludes the proof. �

With the previous auxiliary results at hand, we can now deduce Theorem 7.

Proof of Theorem 7. Let a constant ε ∈ (0, 1) be given. Let δ > 0 be chosen small enough
such that 7δ < ε, set p := δ

2 , let D=D(δ, p)> 1 be the constant given by Lemma 11, and let
C := D2

δ2
.

For every n ∈N, put s= s(n)= 
Dn log n�. By Lemma 17, a random graphH =G(n;
Cn log n�)
chosen uniformly from all n-vertex graphs with 
Cn log n� edges satisfies property Q(δ,D) w.h.p.
as n→ ∞. Now assume the graphH satisfies propertyQ(δ,D). By Lemmas 9 and 11, w.h.p. as n→
∞, the random bipartite graph G=G(�(1− 3δ)n�, �(1− 3δ)n�;p) has maximum degree at most
2p�(1− 3δ)n� ≤ δn and satisfies property P(H, δ, s). Now fix n large enough and consider a graph
G with bipartition {A, B}, |A| = |B| = �(1− 3δn)� satisfying these two properties. By Lemma 18,
G� does not contain any induced subgraph H[U] as a minor for any U ⊆V(H) with |U| ≥ (1−
δ)n. Let K := (|A| + |B| − 1)|A| and let(G�)(K) be a K-fold pasting of G� at A. Then by Lemma 19,
(G�)(K) does not contain H as a minor. Moreover, by Lemma 15, applied with d = �δn�, we find
that (G�)(K) has list chromatic number at least |A| + |B| − d > 2(1− 3δ)n− δn− 2> (2− ε)n for
n large enough. This shows that w.h.p. the random graph H =G(n;
Cn log n�) satisfies f�(H)≥
(2− ε)n, which concludes the proof. �

5. Proof of Theorem 3
In this section we give the proof of Theorem 3, which is self-contained and independent of the
results in the previous sections. A basic tool from extremal graph theory used in the proof is
Turán’s theorem, in the following form:

Theorem 20 (Turán). Let k ∈N, k≥ 2 and let G be a graph. If e(G)> (1− 1
k−1 )

v(G)2
2 then G

contains a clique on k vertices.

We also use the following classical result regarding the minimum degree of Kt-minor-free graphs,
as independently proved by Kostochka [13] and Thomason [32].

Theorem 21 ([13, 32]). For every integer t ≥ 1 there exists an integer d = d(t)=O(t
√
log t) such

that every graph of minimum degree at least d contains Kt as a minor. In particular, for every graph
F there exists d = d(F) ∈N such that all graphs of minimum degree at least d contain F as a minor.

Proof of Theorem 3. We start by fixing an integer d ∈N as guaranteed by Theorem 21, i.e. such
that every graph of minimum degree at least d contains F as a minor. We now define k0(F) :=
min{d + 1, 9 · v(F)3}. Let k≥ k0(F) be any given integer. Let H denote the graph obtained from
F by adding k isolated vertices. We will now show that every H-minor-free graph is (v(H)− 2)-
degenerate, which then easily implies f�(H)= v(H)− 1.
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Towards a contradiction, suppose that there exists an H-minor-free graph G which is not
(v(H)− 2)-degenerate, and let G be chosen such that v(G) is minimised. Note that the minimality
assumption on G immediately implies that δ(G)≥ v(H)− 1= v(F)+ k− 1. Observe that since
δ(G)≥ k> d, the graph G− x for some x ∈V(G) has minimum degree at least d and thus must
contain F as a minor. Let X ⊆V(G) be chosen of minimum size subject to G[X] containing F as
a minor. Note that from the above it follows that |X| ≤ v(G)− 1 and hence that V(G) \ X �= ∅.
Let (Zf )f∈V(F) be an F-minor model in G[X]. By minimality of X, we have that (Zf )f∈V(F) forms a
partition ofX. With the goal of bounding the number of edges inG− X, we present our next argu-
ment as a separate claim. We will later use this bound and Turán’s theorem to show the existence
of an F-subgraph in G− X.

Claim 22. For every v ∈V(G) \ X and every f ∈V(F), we have |N(v)∩ Zf | < 9v(F).

Proof. Let v ∈V(G) \ X and f ∈V(F) be arbitrary. For |Zf | = 1 the inequality |N(v)∩ Zf | ≤ 1<

9v(F) trivially holds for every v ∈V(G) \ X. We may therefore assume |Zf | ≥ 2. Let Tf denote a
spanning tree of the connected graph G[Zf ], and let Lf ⊆ Zf be the set of leaves in Tf .

We first show that Tf has at most v(F)− 1 leaves. Note that for every l ∈ Lf the graphG[Zf \ {l}]
is still connected. However, by minimality of X, G[X \ {l}] does not contain F as a minor, and
thus in particular the set system consisting of Zf \ {l} together with the remaining branch-sets
(Zf ′)f ′∈V(F),f ′ �=f cannot be an F-minor model in G. In consequence, there has to exist some f ′ ∈
V(F) \ {f } such that among all vertices in Zf , the vertex l is the only one that has a neighbour in
Zf ′ . Since the above argument applies to any choice of l ∈ Lf , and since the respective elements f ′

have to be distinct for different choices of l, it follows that |Lf | ≤ |V(F) \ {f }| = v(F)− 1.
We next describe a decomposition of Tf into strictly less than 2v(F) edge-disjoint and internal-

vertex-disjoint paths. Let Tf
′ be a tree without degree 2-vertices such that Tf is a subdivision of

Tf
′, i.e., every edge in Tf

′ corresponds to one maximal path of Tf all whose internal vertices are of
degree 2. Then, since Tf

′ is a tree and thus has average degree strictly less than 2, it has more leaves
than vertices of degree 3 or more. As the number of leaves in Tf

′ is exactly |Lf |, we have v(Tf
′)≤

|Lf | + (|Lf | − 1)≤ 2v(F)− 3 and therefore e(Tf
′)= v(Tf

′)− 1≤ 2v(F)− 4< 2v(F). This means
that Tf can be expressed as the edge-disjoint union of a collection of paths (Pi)ri=1 where r < 2v(F)
and the internal vertices of each path Pi are of degree 2 in Tf .

Now choose a vertex set Y ⊆ Zf of size at most v(F)− 1 as follows: For each edge ff ′ ∈ E(F),
pick some vertex yf ′ ∈ Zf that has at least one neighbour in Zf ′ and add it to Y . Let R denote the
collection of internally disjoint paths in Tf obtained from (Pi)ri=1 by splitting each path Pi into its
maximal subpaths that do not contain internal vertices in Y . It is easy to see that |R| ≤ r + |Y| <
2v(F)+ v(F)= 3v(F), and that Tf equals the union of the paths inR.

We next claim that for every vertex v ∈V(G) \ X and every R ∈R, we have |N(v)∩V(R)| ≤ 3.
Indeed, suppose that v has at least 4 distinct neighbours on R. Let x and y be the two neighbours of
v on R that are closest to the endpoints of R. Define R′ as the path obtained from R by replacing its
subpath between x and y (which has to contain at least two internal vertices) by the path x− v− y
of length two. LetA be the set of vertices on R strictly between x and y and observe that |A| ≥ 2 and
A∩ Y = ∅. ForX′ := (X \A)∪ {v}we have |X′| < |X| and we can find an F-minormodel inG[X′],
namely the branch-sets (Zf \A)∪ {x} together with (Zf ′)f ′∈V(F),f ′ �=f . Notice thatG[(Zf \A)∪ {x}]
is indeed connected as all the internal vertices of R are of degree 2 in Tf . Also, since Y ⊆ Zf \A,
there still exists a connection from a vertex in (Zf \A)∪ {x} (namely, yf ′) to a vertex in Zf ′ for
every edge ff ′ ∈ E(F). This contradicts our initial choice of X and proves that our assumption was
wrong, so indeed every vertex v ∈V(G) \ X satisfies |N(v)∩V(R)| ≤ 3 for every R ∈R.

Therefore, we have |N(v)∩ Zf | ≤
∑

R∈R |N(v)∩V(R)| ≤ 3|R| < 9v(F) for every v ∈V(G) \ X,
which concludes the proof of the claim. �
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It follows immediately from Claim 22 that |N(v)∩ X| ≤ ∑
f∈V(F) |N(v)∩ Zf | < 9v(F)2 for

every v ∈V(G) \ X. Additionally recalling that δ(G)≥ v(F)+ k− 1≥ k, we find that for every
v ∈V(G) \ X, we have degG−X(v)= |N(v) \ X| = deg(v)− |N(v)∩ X| > k− 9v(F)2. Having estab-
lished V(G) \ X �= ∅ at the beginning of the proof, it now follows that G− X is a graph of
minimum degree greater than k− 9v(F)2. Also note that since G[X] contains F as a minor, we
are not able to find k distinct vertices in V(G) \ X as these could be used to augment the F-minor
in G[X] to an H-minor in G, contradicting our assumptions. We thus have v(G− X)< k. Using
our choice of k0 and k≥ k0, it now follows that

δ(G− X)> k− 9v(F)2 >

(
1− 1

v(F)− 1

)
k>

(
1− 1

v(F)− 1

)
v(G− X).

Therefore,G− X has more than
(
1− 1

v(F)−1
) v(G−X)2

2 edges and thus Theorem 20 implies the exis-
tence of a clique on v(F) vertices in G− X. In particular, G− X and thus G contain a subgraph
isomorphic to F. LetK ⊆V(G) be the vertex set of such a copy of F. Then, since v(G)≥ δ(G)+ 1≥
v(F)+ k, there are at least k vertices outside of K in G, which can be added to the copy of F on
vertex set K to create a subgraph of G that is isomorphic to H. In particular, this means that G
contains H as a minor, a contradiction. All in all, we find that our initial assumption, namely
regarding the existence of a smallest counterexample G to our claim, was wrong. This concludes
the proof that all H-minor-free graphs are (v(H)− 2)-degenerate.

It is a well-known fact and easy to prove by induction that for every a ∈N all a-degenerate
graphs are (a+ 1)-choosable. Thus what we have proved also implies that every H-minor-free
graph is (v(H)− 1)-choosable, as desired. All in all, it follows that f�(H)= v(H)− 1, concluding
the proof of the theorem. �
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