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CLASSIFICATION OF HOMOGENEOUS BOUNDED DOMAINS
OF LOWER DIMENSION

SOJI KANEYUKI AND TADASHI TSUJI*®

Introduction

The theory of classification of homogeneous bounded domains in the
complex number space C™ has been developed mainly in the recent papers
[101,[6],[3] and [7]. As a result, the classification is reduced to that of
S-algebras due to Takeuchi [7] which correspond to irreducible Siegel
domains of type I or type II (For the definition of irreducibility see §1).
On the other hand Pjateckii-Sapiro [5] found large classes of homogeneous
Siegel domains obtained from classical self-dual cones. Even in lower-
dimensional cases, however, there are still homogeneous Siegel domains
which do not appear in his results.

In this article, we give a method of classification of S-algebras which
correspond to irreducible Siegel domains; applying this, we classify all
irreducible Siegel domains of type I and of type II up to dimension 10
and 8, respectively.

After reviewing results of [3] and [8] in §1, we define in §2 N-
algebras of type II and establish a relation between N-algebras and S-
algebras. In §3 we define skeletons of type I or type II and isomor-
phisms among them. It turns out that to each isomorphism class of
N-algebras there corresponds an isomorphism class of certain skeletons
(Lemma 3.1 and Lemma 3.2). We classify all skeletons which are neces-
sary to find all the N-algebras corresponding to the above-mentioned
Siegel domains (Prop. 3.5 and Prop. 3.6). In §4 we will first restrict
our attention to 3-skeletons of type I and 2-skeletons of type II. We
study how to construct N-algebras from such a skeleton (Lemma 4.1 and
4.6) and study under what conditions these N-algebras are isomorphic
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(Lemma 4.2, 4.4, 4.5 and 4.8). In §5 and §6, applying results in §4,
we will obtain all the N-algebras which correspond to each of skeletons
classified in Proposition 3.5 and 3.6.

In §7, summing up results in §5 and §6 we get the main theorem
(Theorem 7.1). We give also the numbers of irreducible Siegel domains
in the respective dimensions (Theorem 7.2). Furthermore we give the
explicit forms of all irreducible Siegel domains of type I (resp. type II)
up to dimension 7 (resp. 8. Some of them are already known in
Pjateckii-Sapiro [5]; but others are new and most of them are Siegel
domains obtained from non-selfdual cones. It should be noted that there
exists a unique one-parameter family of non-isomorphic irreducible Siegel
domains of type II in C" or in C® (cf. §6 and § 7).

Throughout this paper, we will employ notations and terminologies
in the previous article [3]. We denote by E, the unit matrix of degree
n and by O(n) the real orthogonal group of degree x.

§ 1. Basic theorems and N-algebras of type I

1.1. Vinberg, Gindikin and Pjateckii-Sapiro [10] proved that every
homogeneous bounded domain D is realized as a (affine) homogeneous
Siegel domain of type I or type 1I. If D is realized as that of type I,
it is called of tube type. A homogeneous bounded domain is called
iwrreducible, if it is not (holomorphically) isomorphic to a direct product
of any two homogeneous bounded domains of lower dimension. Then the
following theorems are known:

THEOREM A ([3]). FEwvery homogeneous bounded domain D is isomor-
phic to a direct product of irreducible domains; the decomposition 1is
unique up to an order. Furthermore D is of tube type if and only if
each irreducible factor of D is of tube type.

THEOREM B ([3], [(4)). Let D(V,F) and D(V',F’) be homogeneous
Siegel domains of type I or type II. Then D(V,F) is (holomorphically)
isomorphic to D(V’,F”) if and only if they are mutually linearly equiva-
lent. In particular homogeneous Siegel domains D(V) and D(V’') of type
I are mutually isomorphic if and only if the homogeneous convex cones
V and V' are linearly equivalent to each other.

A homogeneous convex cone V is called irreducible if it is not linearly
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equivalent to a direct sum of any two homogeneous convex cones.

THEOREM C* ([3]). A homogeneous Siegel domain D(V,F) of type I
or type II is irreducible as a homogeneous bounded domain if and only
if the homogeneous cone V is irreducible.

It is known in [3] that a homogeneous Siegel domain of type II can
not be realized as a homogeneous Siegel domain of type I. Therefore,
in view of the above theorems, what we need to do, in order to classify
homogeneous bounded domains up to holomorphic equivalence, is

A) to classify trreducible homogeneous convex cones V up to linear
equivalence, and

B) to classify homogeneous Siegel domains D(V,F) of type II with
V irreducible, up to linear equivalence.

1.2. We recall N-algebras of type I due to Vinberg [8].

DEFINITION ([8]). Let N be a finite dimensional associative algebra
over the real number field R, and m (> 2) be a positive integer. Suppose
that N is the direct sum of bigraded subspaces N,; (1 <i¢ <j<m) and
that N is equipped with a positive definite inner product (, >. Then N
is called an N-algebra of type I of rank m, if the following conditions
are satisfied;

(N]-) Niijlc c Nik’

(N2) NN, =0 if 7+ ¢,

(N3 (N Ny =0if ik or j+ ¢,
(N4) for every a;;€ N;; and b, € Ny,

1
{001 Qi5bjuy = 7@‘”’ @;50<b sk b1,
j
where n; =1+ § >, dim N,; + § > ; dim Ny,
(N5) if Qi € N'L’k; bj](; eNjk (7: < j) and

<aik, Nb]k> - 0, then <Na“c, Nb]k> == 0.

An N-algebra of type I of rank one is defined to be an empty set.
(N4) is equivalent to the following (N4’) or (N4").

% Taking this opportunity we correct a small error in the proof of this theorem;
that is, in the line 6 ff, page 126 [3], (4 — 4B + Aw)/2 and (4 — A® 4 A@)/2 are

not roots only for @ # 8 or g=v. But, since we have [jre, W;] = [j7,, W1l =0, the
equality [jR1, Wil = [jRs, W1] = 0 in the line 7ff is still valid.
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(N4’) For every a,;,a;;€ Ny and by, D)€ Ny,
{isb iy @i + @isble, @by = %@z‘f’ @;5<byjier biny -
(N4”) For orthonormal bases {e{;} of N,
et i) + <ol €heh> = bt

Let N = >},.; N;; be an N-algebra of type I of rank m. A permu-
tation ¢ of the index set {1,2,...,m} is called admissible to N if N,; =
(0) as long as 1< j and ¢(?) > a(j). Let ¢ be a permutation admissible
to N. If we replace each index ¢ by ¢(z) in N, then we get a new N-
algebra N° of type I different from N only in bigrading. Let N and N’
be two N-algebras of type I of rank m. Then N is said to be isomorphic
to N’ if there exist a permutation ¢ admissible to N and an algebra
isomorphism f of N° onto N’ which is not only bigrade-preserving but
isometric relative to the respective inner products. It is known in
Vinberg [8] that there exists a natural bijection between the set of all
linear equivalence classes of homogeneous convex cones and the set of
all isomorphism classes of N-algebras of type I. To the N-algebra of
type I of rank one there corresponds the cone of the positive real half-
line.

Thus, to solve the problem A) we have only to consider N-algebras
of type I.

§2. N-algebras of type II

We shall begin with some definitions due to Vinberg [8]. Let m be
a positive integer and U be a finite dimensional algebra over R. Then
% is called a matriz algebra of rank m + 1 if it is bigraded with sub-
spaces %;; 1 <14, 7 <m 4+ 1) such that ;A C Wy, sy =0 AL <M
+ 1) and that %%, = (0) for 7 # k. Let U = 3 ,.; jcms Us; be a matrix
algebra of rank m + 1. By an tnvolution of % we mean an involutive
anti-automorphism % of 2 such that

@.1) W =A,  (1<i, j<m+1).

A complex structure j of a matrix algebra U = 37, ; jcm, Uy of rank
m 4+ 1 with an involution % is, by definition, a linear endomorphism of
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the subspace > icicm (Ui msr + Ynyr,) of A such that

(22) j?’{z‘,m-;-l = 2[i,m+1 (1 S. 'L S m) ’
2.3) Jo# =07,
2.4) f=—1.

We note that (2.1), (2.2) and (2.3) imply that j%,,,,, = W, A <7< m).
From now on we shall use the following notations (cf. [8]);

[a,b] = ab — ba (a,be?),
la, b, c] = a(bc) — (ab)c (a,b,ce?),
ng; = dim Ay, 1<i, 7j<m+1,

k<i 1<k

and we will denote by a,; the ;;-component of an element a e . In
what follows, we will consider exclusively S-algebras (cf. Takeuchi [7])
with the additional condition (T, 0), which we call T-algebras of type II
in accordance with the usual T-algebras in Vinberg [8].

DEFINITION 2.1 (cf. [7]). Let A = >, jom.1 Uiy be a matrix algebra
of rank m + 1 with an involution * and a complex structure 7. Then
the triple (¥, *,7) is called a T-algebra of type II of rank m if the follow-
ing axioms are satisfied;

(T.0) U mi 7 (0) for some 7 (1 <7 < m),
(T.1) Each subalgebra A, (1 <i<m + 1) is isomorphic to the
algebra R; These isomorphisms are denoted by p,
(T.2) ayuby; = p(aii)bij’ a;;b;; = .O(bjj)aij A<, j<m+ 1,
(T.3) Spla,d] =0 (a,beA), where Sp is defined by
SP o = 2 icicmer Wip(@is),
(T.4) Spla,b,c]=0 (a,b,ce?),
(T.5) Spaa* >0 if a0 (aec?),
(T.6) [a,b,c]1=0 (a,b,ce>icicjems Wiy
(T.7D [a,0,0*1 =0 (a,b€>cicicmer Usp)s
(T. 8 j(@;0;me) = 3500y ny) A <LE< G < m,
(T.9) Spajb) =8pab (a,b¢€ X hcicm Wi mir + Wnsr,d))-

Remark 2.2. (T.1)—(T.7) imply that a T-algebra of type II of rank
m is itself a usual T-algebra of rank m + 1 (cf. [8]).
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DEFINITION 2.3. Let N = > cicjcms1 Vi be an N-algebra of type I
of rank m + 1 with the inner product ¢, > and j be a linear endomor-
phism of the subspace >, icm Nimy 0f N. Then the triple (N, {, >,7) is
called an N-algebra of type II of rank m if the following conditions are

satisfied ;

2.5) Nimy # (0) for some 7 A <1< m),

(26) jNi,m+1 = Ni,m+1 (1 < ) < m) ’

2.7 7 =-1,

@.9) Gia,iby = <@,by  (abe 3 Nemia)

2.9) i(ab) = aj(®) (a e 3 Nybe X Ni,,,m) .
1Li<j<m 1<i<m

The above j is called the complex structure of N. For simplicity
we will often denote (2,x*,7) by % and (NV,{, >,7) by N, respectively.

Let % be a T-algebra of type II of rank m and N be an N-algebra
of type II of rank m. Then a permutation ¢ of the index set {1,2,---,
m + 1} is said to be admissible to % (resp. N) if o(m + 1) =m + 1 and
if U;; = 0 (resp. N;; = 0) as long as ¢ < j and ¢(?) > ¢(j). For a permu-
tation ¢ admissible to ¥ (resp. N), we have a new T-algebra %A° (resp. an
N-algebra N°) of type II of rank m by replacing each index 7 by ¢(@) in
A (resp. N), which is different from % (resp. N) only in bigrading.

DEFINITION 2.4 ([7T]). Let (,x,7) and (A, +’,7) be two T-algebras
of type II of rank m. Then ¥ is said to be isomorphic to A’ if there
exist a permutation ¢ admissible to % and a grade-preserving algebra
isomorphism ¢ of % onto A’ such that

(2.10) pox =+'ogp,

2.11 pof=7op on > Ufu+ Ui .

1gism

DEFINITION 2.5. Let (N, <, >,7) and (NV',<{, )',j)) be two N-algebras
of type II of rank m. Then N is said to be isomorphic to N’ if there
exist a permutation ¢ admissible to N and a grade-preserving algebra
isomorphism +» of N’ onto N’ such that

(2.12) v is an isometry with respect to (, > and (, ',
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(2.13) Yof=7gcy on 3 Ni,...

i<ism

Let (%, *,7) be a T-algebra of type II of rank m. We define the
inner product {, > in U by putting

(2.14) <a,b> = Sp ab*

for a,be U (cf. (T.5) in Definition 2.1). Then this inner product has
the following relations;

{a*,b*> =<a, b, {ab*, > = {ba*, c*) = {cb,a),

(2.15)
{a*b, c> = {b*a, c*> = {ac,b>

for a,b,c€ > 1cicjems Wiy (cf. [8], p. 349, (46), (1), (52)). Let us put NQ)
= D i<icicms1 Wiy Then, as is known in Vinberg [8], N(¥) is an N-algebra
of type I of rank m + 1 with respect to the inner product <{, >, since
@, %) is a T-algebra of rank m + 1 (cf. Remark 2.2). From (T. 8) and
(T.9), it follows that the above inner product <, > and the complex
structure j restricted to > icicm i my satisfy (2.6)—(2.9). Thus N is
an N-algebra of type II of rank m. We denote by @ the mapping which
assigns each T-algebra (¥, x,7) of type II of rank m to the N-algebra
(NQD, <, >, of type IT of rank m.

THEOREM 2.6. The mapping @ induces a natural bijection & between
the set of all isomorphism classes of T-algebras of type II of rank m
and the set of all isomorphism classes of N-algebras of type II of rank m.

Proof. We define & to be the mapping which carries the isomor-
phism class of (%, ,7) to that of (N@Q),{, >,7). First we will show that
® is well-defined and injective. Let (,x,7) and (', «,§) be two T-
algebras of type II of rank m and suppose that (,x,7) is isomorphic
to (', +’,7). Then there exist a permutation ¢ admissible to ¥ and an
isomorphism ¢ of UA° onto A’. Since ;) = W ey AL I< i< m+ 1)
and since n;; = 0 as long as ¢ < 7, o(®) > a(j), we have n;, = n,,. Hence,
it follows that for a;;, 0;;e¥,; A<i<j<m+ 1

{p(@ss), 9(bsg))" = Sp (p(@:)p(bi)*) = 150" (p(ai;0%)
= nzp(a”bi"]) = <a/1lj, bl]> ’

where o’ is the algebra isomorphism of %;;, onto R. Therefore ¢ induces
an isometry of N()° onto N(¥’). From this and the Definition 2.4 and
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2.5, it can be seen that ¢ induces an isomorphism of (N@®)°,{, >,7) onto
(NQ),< , M, i), which proves that & is well-defined.

Suppose that (N, <, >,7) is isomorphic to (N@),<{, >,7). Then
there exists a permutation ¢ admissible to N() and a grade-preserving
isomorphism + of N()° onto N('). Let us define the map ¢ of 2 onto
A" as follows;

W on Az, 1<7,
p=1{0"ep on A,
* onfpox on 2(:1,_7<1,
Then by using (2.12)-(2.15), we can show that ¢ is an isomorphism of
7, %,7) onto (', +’,7), which implies that & is injective.

We want to show that & is surjective. Let (NV,<, >,7) be an N-
algebra of type II of rank m. Then by Vinberg [8], there exists a T-
algebra (%, %) of rank m 4 1 such that N() = N as N-algebras of type
I. We define a complex structure ;7 on 2 as follows;

,’i = jl on ?Ii,mﬂ = Ni,m+1 ’
kofiox on s)/[m+1,i = N'?fm+1 A<gi<m).

It remains for us to show that (¥, x,7) satisfies the axioms (T.8) and
(T.9). (2.9) implies (T.8). On the other hand, for a;m.,, €% m.1
b’m+1,i € g[m+1,12 (1 S 7: _<_ m)1

Sp (jai,m+1jbm+1,i) = <jai,m+1’ (.’ibm+1,i)*> = <j1a’i,m+1’ j1b1ﬁ+1,i>
= <ai,m+17 b;rkz+1,i> = Sp (ai,m+1bm+1,i) ’
which implies (T. 9). So O, *,7) = (N,{, >, 5)- q.e.d.

From the above theorem and Theorem A in Takeuchi [7], we get
the following:

COROLLARY 2.7. There exists a bijection between the set of oll
isomorphism classes of N-algebras of type II and the set of all linear
equivalence classes of homogeneous Siegel domains of type II.

Thus, to work out the problem B) in §1, we have only to consider
N-algebras of type II.

§ 3. Skeletons
3.1. We will define an m-skeletons of type I. Let us put m tiny
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circles on R? so that they may form the vertices of a regular m-polygon;
by a regular 1-polygon (resp. 2-polygon) we mean a point (resp. a line
segment). Let us number these circles counterclockwise, starting from
the vertex at the upper left corner. The i-th circle is called the vertex
1, or simply 7. Some of these circles may be joined by line segments.
By the notation 7 ~ j (resp. < <7) we mean that the vertices ¢ and j are
joined (resp. not joined) by a line segment. The following assumption
(*) has to be satisfied; (x) if i<j<k, i~7and j~Fk, then it ~k. A
figure S satisfying (%) is called an m-skeleton of type I, if a positive
integer m,, is attached to each line segment ¢ (¢ <j) in S in such a way
that

S ifi<j<k, i~7and j~Fk, then max (n, n;) < fy,
S2) ifi<ji<k<d4,i~7,j~4, i~k kE~4 1~4 and 74k, then

max (s + Mgy Moy + Niegs Mg + Ny Mgy + Ngp) < Mgy

We often denote the skeleton S by the pair (S, (n;)). An m-skeleton
S of type I is called connected if for any two vertices ¢ and j there
exists a series of vertices 7 = %y, %, -+ +,%._1,% = 7 such that 7,_, ~ 7, for
each 1 <k <s.

DEFINITION 3.1. Let (S,(n;)) and (S',(n};)) be two m-skeletons of
type I. S is said to be isomorphic to S’, if there exists a permutation
¢ of the set {1,2,---,m} such that

i) if <7 and ¢(?) > (7)) in S, then ¢ 7 in S,
ii) ¢(@) ~o() in S if and only if ¢ ~j in S,
) g = Ny

It can be seen that the above isomorphism is an equivalence relation
in the set of all m-skeletons of type I.

EXAMPLE. The following 5-skeletons of type I are connected and
1234 5)

mutually isomorphic under the permutation ¢ = (
32154
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o
ooc\
[y

3.2. By an m-skeleton of type II we mean an (m + 1)-skeleton
(©, (n;y) of type I satisfying the conditions;

i) there exists at least one vertex 7, 1 <7< m such that 1 ~m + 1;
in this case each 7 ,,, is an even number,

ii) only the last vertex m 4 1 is denoted by a black circle @.

An m-skeleton & of type II is said to be connected if for any two
vertices ¢ and j (4,7 #+ m + 1) there exists a series of vertices ¢ = 4, 1,
e, 85_y, Ty =7 such that 1 <14, --,%,_, <m and that 7,_, ~ i, for each
1<k<s.

EXAMPLE. Consider the following 3-skeletons of type II.

1 2 4 1 2 4

3

The first one is connected, while the second is not connected.

DEFINITION 3.2. Let (&,(n;) and (&, (n],)) be two m-skeletons of
type II. Then they are said to be isomorphic to each other, if there
exists a permutation ¢ of the set {1,2,...,m,m + 1} leaving m + 1 fixed
and satisfying i)-iii) of Definition 3.1.

The above isomorphism is an equivalence relation in the set of all
m-skeletons of type II.

3.3. Let N=3,.; N;; be an N-algebra of type I of rank m. We
put n;; = dim N,;;. For the N-algebra N we define its diagram S(N) in
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the following way*’; at first m tiny circles should be put and numbered
in the same way as in 3.1; let us join the vertex ¢ with 7 ( <7) by a
line segment if and only if %,; # 0, and let us attach the number #,; to
each line segment ij. For the case of m = 1, S(N) is defined to be just
a vertex.

LEMMA 3.1. The diagram S(N) of an N-algebra N of type I of rank
m is an m-skeleton of type I. If two N-algebras of type I are isomor-
phic to each other, then so are their diagrams.

Proof. Suppose that three vertices ¢+ <j <k in S(N) satisfy ¢ ~7
and j ~ k. Let x, be a non-zero element in N,,. Then, by (N4) the map
of N;; to N;, defined by z;;€ N;j— 2;;20€ Ny is a linear isomorphism
of N;; into N;,. Hence we have n;; < ny, and analogously 7 < 7.
S(N) thus satisfies S1). Suppose that four vertices 1 < j <k < £ in S(N)
satisfy the conditions 1 ~ 4, 7~ 4, i ~Fk, k~4, i~ ¢ and 7 < k. Then,
for arbitrary elements x;,, e N,, and x;,e€ N,, we have {(x;, Nz, = 0.
Hence, by (N5) we have (NN,, NN,»> = 0. Take non-zero elements
€;;€ Ny, ey € Ny,. Then the maps

f: X5 € N” > X;;€;,

9% Ty € Ny —> Ty

are linear isomorphisms of N;; into N;, and of N, into N,, respectively
(cf. (N4)). The condition {(NN,,, NN;,> = 0 implies that the subspaces
S(N;») and g(N;) of N,, are orthogonal to each other. Hence n;; + 74
< ny,. Other assertions in S2) are analogously proved. Thus S() is an
m-skeleton of type I. The second assertion of the lemma is immediate.
q.e.d.

Let (N,{, >, 7) be an N-algebra of type II of rank m. Then we can
consider the diagram S(N) of N by regarding N as an N-algebra of type I
of rank m + 1. By the diagram S(N) of N as an N-algebra of type II
of rank m we mean the figure which is obtained from S(N) by changing
the color of the vertex m + 1 in black. By the quite similar way as in
Lemma 3.1 we get

LEMMA 3.2. The diagram S(N) of an N-algebra (N,<, >, of type

* To define the diagram of an N-algebra of type I was motivated by the diagram
of a T-algebra due to Asano [1].
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II of rank m is an m-skeleton of type II. If two N-algebras of type II
are isomorphic, then so are their diagrams.

3.4. Let D(V,F) be a homogeneous Siegel domain of type II. Let
(N,<{, >,7) be the corresponding N-algebra of type II and (S, (n;)) be
its diagram. Suppose that rank N = m. Then it follows from Takeuchi
[7] that the figure which is obtained from (&, (n;;)) by removing the
vertex m + 1 and all line segments starting from m 4+ 1 is the diagram
of the N-algebra of type I corresponding to the cone V. Hence, from
Theorem C and a result of Asano [1] we have

ProPOSITION 3.3. Let D(V,F) be a homogeneous Siegel domain of
type I or type II. Then it is irreducible if and only if the diagram of
the N-algebra corresponding to D(V,F) is connected.

LEMMA 3.4. Let D(V) (resp. D(V, F)) be an irreducible Siegel domain
of type I (resp. type II). Let N(V) (resp. N(V,F)) be the N-algebra
corresponding to D(V) (resp. D(V,F)). If dim D(V) < 10, then rank N(V)
<5; i dimD(V,F) <8, then rank N(V,F) < 4.

Proof. Suppose rank N(V) = n and rank N(V,F) = m. Let (S, (n;)))
and (€, (m;;)) be the diagrams of N(V) and N(V,F), respectively. Note
that dim D(V) =n + Xicicjcn My and dim D(V,F) = m + D icicjcm My +
Ducicm ¥Mimyr (cf. [8],[7]). Since S and © are connected by Proposition
3.3, it follows from a result of Asano [1] that >, ,cnmy > n — 2
and D iiciem My > m — 2. So we get n— 2 < iy < 10 — 1.
On the other hand, at least one m; 4., is not zero and so > 7, 4M; p\y > 1.
Hence m — 2 < > 1cicjem Myy < 7 — m. Thus we have n < 5 and m < 4.

q.e.d.

Thus, to solve the problem A) for the case of dimV < 10 and B)

for the case of dim D(V,F) < 8 (cf. §1), our task is

I) to classify (up to isomorphism) all connected n-skeletons (S, (n;;))
of type I satisfying the condition

{ngS

3.1 ny <10 —n,
1<i<j<n

ID) to classify all connected m-skeletons (S, (m;,)) of type II satisfy-
ing the condition
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m < 4
8.2) {

mz’j + 12 %mi,mﬂ S 8 —m ’

1<i<y<m <ism

III) for each skeleton S or & obtained in I) or II) find (up to iso-
morphism) all the N-algebras whose diagrams are isomorphic to S or .

The answers to the above problems I) and II) are given in the
following two propositions, the proofs of which are quite elementary but
tedious; so we may omit them.

PROPOSITION 3.5. All the connected skeletons of type I satisfying
3.1) are (up to isomorphism) as follows;

1
S, 5
1 2
S, o— 5 1<n,<8
1 3
S; T {2 <Ny + Ny <7
Ny, < Ny
N2
2
1 3
Sy s {2 Sty + My < T
Mgy < Mg
Ta3
2
9 1 M3 3
S; 3 My + Ny + 0y < T
Max (1,5, Myy) < Mg
N2 MNa3
2
1 N4 4

S} 3 < Ny + Ny + My, <6
Mgy < My < Mgy
N1z N3

https://doi.org/10.1017/50027763000016007 Published online by Cambridge University Press

[\
(%]


https://doi.org/10.1017/S0027763000016007

14 S0JI KANEYUKI AND TADASHI TSUJI

. 1 4, 4
Si {3£n14+nz4+n34g6
Moy < My < My
Mg N34
2 3
1 N 4
Si 3 < My + Ny + 1y <6
on N3
2 3
14 4
S {43%13—{-%14—]—%23—]-’)’1,2436
Max (3, gy M) < Ty
Nay N3
2 Nz3
1
Sk e 4 < My + Ny + My + 1, < 6
Max (15, yy) < Ty
Ny2
N3
Mgy
2 3
* Ny 4
Si {4§n13+’)’&14+n24+’n34£6
Mgy Max (13, 15) < 7
N34
Moy
2 3

ny=1o0r 2

@

E -t
S

"

['=N

|3V
=
w
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1 4
S T n, =1 or 2
1
1
1
2 1 3
1 4
S¢ 2
1 1
2 3
Si
Si L M5 2 ;=1 or 2
1 1
1
2 4
3
Slli' 1 M5 5 ’n/15 = 1 or 2
1 1
1
9 4
3
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ot

S3 1 s 2<n; 4+ 1, <3

Sy . M5 5 2< g+ 1y <3
20— 1 / o4

S? 1 N5 5 < Ny + Ny + Ny < 4
Nig
Nas
2 1 4
3
Sy Loms B B <ty o+ Mo + My < 4
Nas
Niq
2 4
1
3
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PRrOPOSITION 3.6. All the connected skeletons of tyve II satisfying
3.2) are (up to isomorphism) as follows;

1 2
S, o—™ o 1< in, <7
1 3
c 2 2 <y + b1y < 6.
N2
2
1 s 3 .
& {3 <y, + $(ny + ny) <6,
Max (1,5, 29) < 1y .
N2 N3 )
2
1 4
S e {3 < Mgy + M + 3 <5
Ny < Nz o
N2 13
2 3
\ 1 Ny 4
(CH (T1zy Moy ey Myx) = (1,2,2,1),
Nog (19 29 4, 1)7 (r 1’ 2, 2) 2), (2,2, 2; 1) .
N1y
713
2 3
1 4
S 3K Mgy + My + 31y < 5.
N33
2 Tzs 3
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1 N4 4

@g {(77’13, Nazs Mgy nz«s) = (1: 1; 2’ 2) )
N\ e (1,1,2,9, @122 .

2 Na3 3
o 1, 4

Ez

2 1 3

1 ne 4
62 (nls’ ’}’L“) = (1} 2)’ (1: 4)’ (2, 2) .

1 N3

2 1 3

. 1, 4
1 2
1

2 1 3
e 1 P 5 & 1 9 5

1 1 1

1 1
2 4 20— 4
/
3 3
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oy

§4. Some lemmas on N-algebras

4.1. Let S be the following 3-skeleton of type I
1

N13 3

2

and we consider a real square matrix A = (a;x,) of degree n,n,, where
1<, k<my, 1<7, £<n, (The double indices (i7) should be put in
the lexicographic order) satisfying the following conditions

“4.1) Ao = Qoig »
4.2) Qayney T Cunrgy = 2 Osx0js

2 where n, =1 4 $(n,, + ny) ,
4.3) A is positive semi-definite .

Such a matrix A is not uniquely determined in general and may contain
several parameters ¢, ---,t, which are indeterminate coefficients of A.
So we write A, for A, where ¢t = (¢, -.-,t). The matrix A, is called
the Grammian of S. Let B be an n,n, X n,; real matrix and consider
the matrix equation with B as its indeterminate

4.9 A, =B'B.

It can be easily seen that the equation (4.4) has a solution if and only if
rank A, < n,;. Let B, = (b%) be a solution of (4.4), where 1 < i< ny,
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1<j<my, and 1<k<mn, Let N=N,+ N, + N, be the orthogonal
direct sum of the euclidean vector spaces N,; with dimN;; = ny
(1 <9<7<3). Then, for fixed orthonormal bases {e¥;} of N,; we define
a multiplication in N as follows:

elefy = Z biels 1<ty 1<7< Ny,
4.5) i1
efer, =0 for 7+ ¢.

LEMMA 4.1. With respect to the multiplication (4.5) the euclidean
vector space N s an N-algebra of type I having S as its diagram. Every
N-algebra of type I of rank3 having S as its diagram can be obtained
in this way, provided that the value of the parameter t is suitably chosen.

Proof. The multiplication (4.5) satisfies (N1) and (N2). The associ-
ativity and (N5) are also trivially satisfied. Let {, > be the inner product
of N. Using (4.4) and (4.5) we have

<6§2@{g, ei‘26§3> + <efze§3’ e{‘2e§3>
= Z szb‘lgcz + Z b?ebij = a/(z'j)(ké) + a’(ie)(kj)
§ s
2
= 5ik5je ’

N,

which proves (N4”). The first assertion of the lemma was thus proved.
Let N= N,, + N, + N,, be an N-algebra of type I of rank3 with S as
its diagram, and let {ef;} be an orthonormal base of N,;. We define the
matrix A = (@ujw,) by putting o, = {eied, ehelsy. Then A satisfies
(4.1)—(4.3) and coincides with the Grammian A, of S for a fixed value
of the parameter ¢. Since elel, is written in the form > pw cfef;, we
have &, = 25 €5;¢5,, Which implies A = BB,, where B, = (c};). This
means that the matrix B, of the structure constants of N is a solution
of (4.4). q.e.d.

For an N-algebra N having S as its diagram, the matrix 4 =
(Keieds, efyelsy) is called the Grammian of N with respect to the ortho-
normal bases {ef;}. In what follows, an N-algebra N having S as its
diagram is often called an N-algebra corresponding to S.

LEMMA 4.2, Let N= N, + Ny + N and N’ = Ni, + Nj, + N3, be
two N-algebras of type I corresponding to S. Let {e};} (resp. {ejt}) De
an orthonormal base of N,; (resp. Ni;) (1 <i<j<3), and let B = (bf)
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(resp. B’ = (bj%)) be the matrixz of the structure constants of N (resp. N’)
with respect to these bases. Then N is isomorphic to N' if and only if
there exist matrices T, e On,), T,e O(ny) and T,e O(n,,) such that

(4.6) T, ®T)B = B'T, .
Proof. Suppose that there exist such matrices T, T, and T,. Put
T, = (aw), T, = (B;y) and T; = (). By (4.6) we have
; bgﬁ‘cs = ;C: akiﬂtjb;ctt .

We define the linear isometry ¢ of N onto N’ by ¢|N;; = ¢;;, where
§012(e§2) = Zk “kiegy 5023(3g3) = Ze .Bejeég and 9013(9163) = Zs rskeig. Then ) is an
isomorphism of N onto N’; in fact

SD(efz)gD(e«{a) = kzz: a’kiﬂue{’;e;é = ng: “ktﬁub;fzeﬁ

(A4}

= Zn: bﬁjme{é = 90(6%3653) .
The “only if” part is analogously proved. q.e.d.

LEMMA 4.83. Let B, and B, be n X m real matrices such that BB,
= B!B,. Then there exists a matriz T,c O(m) such that B, = B,T,.

Proof. Let us put A = B!B,. Let {a}, ---,a?} be the set of all non-
zero different eigenvalues of A. We assume that o, >a,> -+ >, > 0.
There exists a matrix U< O(n) such that A = UD'U, where

2
alEnl

4.7 D = :
4.7 &,

0

Noting that rank A < n,m, we define the n X m real matrix D, as
alEnl

Do = .
C‘-’sEn,
0
and put B, = UD,. Then A = BB, holds*. So, in proving the lemma,

#* This method of finding B, will be used in the proofs of the propositions 5.8, 6.3,
6.4, 6.5, 6.6 in order to find a solution B of (4.4). A simpler proof of Lemma 4.3 was
kindly informed us by the referee.
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without loss of generality we can assume that B, = B,. Since BB, =
B!B,, there exist the matrices T € O(xn) and T’ ¢ O(m) such that B, = TB,1",
as is known in the matrix theory. We have TA = AT; in fact TAT =
T(BiB)'T = TB{TB,) = (BT (BT") = A. So, putting Y =‘:UTU, we
have YD = DY (cf. [2]). Since D is the diagonal matrix given by (4.7)
and commutes with Y, it follows from the direct verification that Y is
written in the form

X8+1,

where X; (1 <i<s) is a matrix of degree n;,. By the definition of Y
each X, is an orthogonal matrix. We define the orthogonal matrix T7
of degree m by

(X, N
X,
T] = g :
X;
. Ek,
where k=m — (n, + 0, + -+ + n,). Then an easy computation shows
that YD, = D,T;. Therefore B, = TB,1" = (UY'U)UD)T’' = UYD,1" =
UD,T'T" = B,T,, where T, = T/T". q.e.d.

COROLLARY 4.4. Let N and N’ be two N-algebras of type I corres-
ponding to the skeleton S. Let A (resp. A’) be the Grammion of N
(resp. N’) for some fized orthonormal bases. If A = A’, then N 1is
isomorphic to N'.

Proof. Let B (resp. B’) be the matrix of the structure constants of
N (resp. N’) with respect to the given bases. Then, by the assumption,
we have B'B = B"*B’. By Lemma 4.3 there exists an orthogonal matrix
T, such that B’ = BT,. Hence the corollary is immediate from Lemma 4.2.

PROPOSITION 4.5. Let A, be the Grammian of the skeleton S with
Ny =2 0r Ny = 2. Let N, and N, be the N-algebras of type I, having
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S as their diagrams, which correspond to fixed values s, and s, of the
parameter t, respectively. Then N, and N, are isomorphic if and only
if the Grammians A, and A,, have the same eigenvalues.

Proof. Suppose that N, is isomorphic to N,. Then the assertion is
an immediate consequence of (4.6). To prove the converse, let us first
consider the case of n, = 2. Then, taking (4.1) and (4.2) into account,
we can see that the Grammian A, is written as

1

2

where 4, is a skew-symmetric matrix depending on the parameter ¢.
Hence we can write 4, in the form
At = (2 _3) ® A~z + —;—Z-Eznga

for each t. Consequently, from the assumption of the proposition it follows
that the skew-symmetric matrices 4,, and A,, have the same eigenvalues.
So there exists a matrix T e O(n,) such that TA T = A,. LetB,, (i =
1,2) be the matrix of the structure constants of N, with respect to some
orthonormal bases. Then B, is a solution of the equation (4.4) for ¢ =
s; 0 =1,2). Putting B’ = (E,® T)B,,, we have BB’ = A,,. Hence, by
Lemma 4.3, there exists an orthogonal matrix 7’ such that B’ = B, T".
We have thus (E,® T)B,, = B,, T/, which implies that N, and N, are
isomorphic (cf. Lemma 4.2).

Next, let us consider the case of 7, = 2. Then, taking (4.1) and
(4.2) into account, the Grammian A, is seen to be

~ (0 —1 1
A, =4 ( ) 1.,
! t®1 O+n2 i

where A, is a skew-symmetric matrix depending on the parameter t.
Hence, by the same way as in the case of n, = 2, we can conclude that
N, is isomorphic to N,. q.e.d.

4.2, Let us consider the following two skeletons
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S 1 N33 3 S 1 N13 3
2 2

and let N = N,, + N,, + N,; be an N-algebra of type I corresponding to
S; let B = (b%) be the matrix of the structure constants of N relative
to orthonormal bases {e%;} of N;;. Then we have

LEMMA 4.6. The N-algebra N of type I is that of type II corres-
ponding to the skeleton S if and only if there exist matrices J; € O(ng)
and Jy e O(ny) such that

J%a = —Enm ’ Jga = _Enga ’
4.8)
(Enm ® JyB = BJ,; ;

in this case the complex structure of N is given by the pair (Ji,J5,).

Proof. Suppose that there exist such matrices J,; and J,. Put J,
= (@), J5s = (B;;). Then, from (4.8) we have

Zs: bgjats = kZ‘; 5kiﬁu‘b;¢z = ; ﬁubgz .

Let 7, 2=1,2) be the orthogonal transformation defined by J;, with
respect to the bases {ef;}. Then the above equality implies j(ekel) =
et (jmed). And the pair (7,7, is the desired complex structure on N
(cf. Definition 2.3). The converse is immediate. q.e.d.

In view of the above lemma we can regard the complex structure
of the N-algebra N of type II as the pair (J,,J,) of the orthogonal
matrices satisfying (4.8).

DEFINITION 4.7. Let N be an N-algebra of type I corresponding
to the skeleton S, and let B be the matrix of the structure constants
with respect to orthonormal bases. Let J = (J,,J;) and J' = (J4, J5) be
two complex structures on N. Then J is said to be equivalent to J’ (or,
simply denoted by J ~ J’) if there exist three matrices T, € O(ny), T, € O(n,,)
and T, e O(n,) such that

(Tl ® Tz)B = BT3 ’
Tszs = Jgst ’
and
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T3J13 = JisTs .

This is obviously an equivalence relation. From Lemma 4.2 and
Definition 2.5 we have immediately

LEMMA 4.8. Let (N,J) and (N,J") be two N-algebra structures of
type II on the N-algebra N of type I in Definition 4.7. Then (N,J) is
isomorphic to (N,J’) if and only if J is equivalent to J'.

LEMMA 4.9. Let (S,(n;y) (resp. (&, (my,))) be an m-skeleton of type
I (resp. type II) satisfying either the condition (P) or (P);

(P) for each triple (i,7,k) of vertices such that ¢ <j <k, the con-

dition © £ § or § X k is valid.

P) m <2 for (S,(ngy) (resp. m =1 for (&, (m;)))).
Then there exists a unique N-algebra of type I (resp. type II) corres-
ponding to (S, (n) (resp. (&,(myy)); in this case the product of any
two elements is always zero.

Proof. We will prove the lemma only for the case that (&, (m,)
satisfies (P), since other cases are similar. Let N = 3 icjcms1 Vi; be
an euclidean vector space such that the right-hand side is the orthogonal
direct sum of N,;’s, where dim N,; = m,;. Since N must satisfy (N4)
and (N2), it follows from (P) that the product of two elements of N
should be zero; with this multiplication, N is an N-algebra of type I.
Since m; ., is even, we can find a complex structure 7; ,.,; on N; .y
(1 < i < m) which leaves the given inner product invariant. N is thus
an N-algebra of type II corresponding to (&, (m;;)). If we change the
inner product and the complex structure to another, then the N-algebra
structure of type II remains isomorphic, since two hermitian vector
spaces of the same dimension are isomorphic. q.e.d.

Remark 4.10. Suppose that there exists a unique N-algebra N cor-
responding to a given skeleton S of type I or type II. Then every N-
algebra whose diagram is isomorphic to S is isomorphic to N.

§ 5. Classification of N-algebras of type I

Throughout this section we will call, for brevity, an N-algebra of
type I an N-algebra. Let {ef} always denote an orthonormal base of
the euclidean space N,; and {, > denote the inner product of an N-algebra.
As a corollary to Lemma 4.9 we have
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PROPOSITION 5.1. There exists a unique N-algebra N whose diagram
is one of the skeletons S,,S,,S:, S¥, St S¥, Sz, 82, St, S¥, Sz, S¥, S8, 8%, St, S¢*
i Proposition 3.5; the product of any two elements is zero.

PROPOSITION 5.2. There exists a unique N-algebra whose diagram
18 S; with n, =1 or ny, = 1; the multiplications are as follows;

: 2 ; .
el = \/nzg I 3313 A <i<ny for mp =1,

5.1

€he35 = \/nlzz—l' 36§3 I<i<ny for my,=1.
Proof. We consider only the case of n, = 1. The Grammian 4, of
the skeleton is given by (2/(ny + 3)E,,. The n, X n,; matrix B =
V2/(ny + 3) (E,,,0) is a solution of the equation (4.4), from which we
get the multiplication (5.1). Since the Grammian 4, is a constant matrix,
the uniqueness follows from Corollary 4.4 and Lemma 4.1. q.e.d.

PROPOSITION 5.3. There exists a unique N-algebra whose diagram is
Sz with Ny, = N, = 2 and n, = 3; the multiplication is as follows;

1 1

1,635 = 7~§3}3 ’ €365 = Vgeia ’
5.2
€136 = %—efs ’ ehes = “:/1?3:3}3 .
Proof. Putting agy ., = t, the Grammian A, of the given skeleton is
0o —1 0 ¢ 1
5.3 A, = ( ) ( ) 1g,.
(5.3) ¢ 1 0 A ¢ 0 + TRk

The eigenvalues of A, are i + t both with multiplicity two. As we
remarked in § 4, the equation (4.4) has a solution if and only if rank A4, <
fy; = 3, from which we get t = +1. We have thus two Grammians 4,
and A_,;. Since A,; and A_,,; have the same eigenvalues, the corres-
ponding two N-algebra structures are isomorphic (c¢f. Proposition 4.5).
The uniqueness in the proposition follows from this and Lemma 4.1. Put

10 0
1 010

B.=_——"

VA 0 1 0
-1 0 0
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Then B, is a solution of the equation 4,, = B’B, from which we get (5.2).
q.e.d.
A result of Vinberg [9] shows that there exists a unique N-algebra
corresponding to S2 with #%,, = n,, = 1, = 2 and that the multiplication
is given by (5.2).

PROPOSITION 5.4. There exists a unique N-algebra whose diagram is
one of the skeletons Si, Si,S%, SY, S8, S and St in Proposition 3.5.

Proof. Note that for Sin, or n, is equal to one and that for S¥ n,,
or 7, is equal to one. The proposition is easily seen from the proof of
Proposition 5.2 and Lemma 4.9. q.e.d.

Letting a be an element of an N-algebra N, we denote by L, (resp. R,)
the left (resp. right) multiplication by @ in the N-algebra N.

PROPOSITION 5.5. There exists a unique N-algebra corresponding to
the skeleton S% (resp. S3); the multiplication is as follows;

€163 = \/""ela ’
€163, = \/—314 ’

€363 = \/—614
€365 = «/ —924

Proof. We give the proof only for the case of S{. Let N = N,, +
N, + Ny, + N, + N,, be the orthogonal direct sum of the euclidean vector
spaces N;; of dimension n;;, where m, = ny; =n,; =m,, =1 and n, =1
or 2. Suppose that N has the algebra structure whose multiplication is
given by (5.4) and (N2). Then it is easy to see that N is an N-algebra
having S% as its diagram.

Let N’ = > Nj; be another N-algebra corresponding to Si. The sub-
spaces M = N,, + N,, + N,, and M’ = N/, + N,, + N, are subalgebras of
N and N’, respectively, whose multiplications satisfy (N4). Hence, as
is seen from the proof of Proposition 5.2 there exists an algebra isomor-
phism ¢, of M onto M’, which is also isometric and grade-preserving.
Let ¢, be a natural isometry of the vector space N,, onto N,,. The right

(5.4)

(resp.
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multiplication R, is a bijection of N,, onto N,, by virtue of (N4). Let
¢ be a linear isomorphism of N onto N’ defined by

[N on M,
P =1 on N,
R%(e%;) o0 Re—;l; on N,.

Then ¢ is an isometry and isomorphism; in fact, ¢(eney) = Ry, o0
° R;;:(e%zeés) = o(el)pler) = olel)p(ey). q.e.d.

PROPOSITION 5.6. There exists a unique N-algebra corresponding to
the skeleton S%; the multiplication is given by

6}26%4 = ‘;/‘];2‘:3%4 ’
(5.5 1
ei3e§4 = '\/iei ¢

Proof. Let N = N,, + N, + Ny, + N3 + N,, be the orthogonal direct
sum of the euclidean vector spaces N;; of dimension n;;, where n,, = n,,
=Ny =Ny =1 and %, = 2. We can easily see that if the multiplication
(5.5) and (N2) is given to N, then N is an N-algebra corresponding to S¢.

Let N’ = > Nj; be another N-algebra corresponding to Si. Put M,
= le + N34 + N13N34, M, = N12 + N24 + NNy, M; = N;s + N:{M + N;3Ng4
and M, = N); + N;, + N,N,,. Then M, and M, (resp. M; and M}) are
ideals of N (resp. N’). By (N5) we have (N, N, N,N,»> = (NiNi, NLNbL>
=0. So N (resp. N’) is the direct sum of ideals M, and M, (resp. M;
and M;). On the other hand, from the proof of Proposition 5.2, it
follows that there exists an algebra isomorphism ¢, of M, onto M} (i =
1,2) which is also isometric and grade-preserving. The map ¢ of N onto
N’ defined by ¢|M,; = ¢, (i = 1,2) is an isomorphism of N onto N’

q.e.d.

According to Vinberg [9] there exists a unique N-algebra correspond-

ing to Si; the multiplication is given by

2 2
el ey = \/—5“613 ’ el = geh >
2 2
€103, = \/-5—6%4 , €163 = "5*3;4 .

In view of the results in this section and Remark 4.10 we have
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worked out the classification of N-algebras of type I of the problem III)
in §3.

§ 6. Classification of N-algebras of type II

Throughout this section, for simplicity, we will call an N-algebra of
g “3) for e= +1. Let
A and B be arbitrary two matrices. Then we define the direct sum
A®B by (‘(;1 g) In following each proposition, complex structures

and multiplications are represented with respect to the same orthonormal
bases {ef;}.
As a corollary to Lemma 4.9 we get

type II an N-algebra. I(¢) denotes the matrix

PROPOSITION 6.1. There exists a unique N-algebra whose diagram is
one of the skeletons ©,,S3, €}, &, &, ©L, €2, &2, & in Proposition 3.6.

PROPOSITION 6.2. There exists a unique N-algebra whose diagram
s & with n, = 1. Furthermore the multiplication is given by (5.1) and
the complex structure is represented as follows;

Jo=ID® - ®I1) (ﬁziz — com‘es) . i=1,2.

Proof. By Proposition 5.2, there exists a unique N-algebra N of
type I whose diagram is S with %, =1 in §4 and the matrix B of the
structure constants is given by B = v/(2/(n,; + 3))(E,,.0). Let J;; € O(ny)
and J, € O(n,y) and let us decompose J,; into submatrices as follows;

IR I
I = ( J® <2>) ’
13 J13
where J (resp. J&) is a square matrix of degree n, (resp. n,; — Ny).
Then it is verified that J = (Jy,J,) satisfies (4.8) if and only if J§ =

Ty IO =0, J® =0, JP* = —F,,, JO'= —E We define J = (J,,,
Jy) satisfying (4.8) by

N13—Na3*

Jo=I0® - ®IQ) (%—copies), 1=1,2.

It can be seen that there exist two matrices T, € O(ny) and T, e O(ny; — 1)
such that
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Ty =dJuT,, (T®T),=Ju(T,DT).

Since T\B = B(T,® T,), it follows from Lemma 4.8 that (N,J) is isomor-
phic to (N,.)). q.e.d.

PROPOSITION 6.3. There exists a unique N-algebra whose diagram
18 &2 with (N, Ny, Nyy) = (2,2,2). The multiplication is given by (5.2) and
the complex structure is represented by J,, = J,, = I(1).

Proof. As we remarked before Proposition 5.4, there exists a unique
N-algebra N of type I whose diagram is S? with (0, %y, 7)) = (2,2,2) in
Proposition 3.5 and the matrix B of the structure constants is given by

10
1] 01
B=__ .
V3| 0 1|

-1 o

Let J = (Jy;,J5) be a pair of the orthogonal matrices of degree 2. Then
J satisfies (4.8) if and only if J, = J,, = I(e). Put J® = (JQ,J¥), where
JO =J = I(e). Then J* is equivalent to J<V. In fact, T = ((1) _(1))
satisfies the equalities 7J® = J5PT (1 =1,2) and (T® T)B = BT.
q.e.d.

PROPOSITION 6.4. The N-algebras whose diagrams are &} with (n,,
Nyys Nyy) = (2,2,4) or (2,2,6) are effectively parametrized by the closed
interval [0,4]; the multiplication and the complex structure of the N-
algebra N, corresponding to tel0,1] are given as follows;

eney = Ael; + pel , 1263 = A€l — pel; ,
1,63 = A6l + #eia ’ €565 = — ey, + ﬂeia y
where 2 = v + 3)/6, p = +v{1 — 3t)/6.
I ®IA or N, =4
= 1 @I(1) f 1 T =I) .
IH@IDDIA) for my =6

Proof. First we show that N-algebras of type I whose diagrams are
S in §4 satisfying (n,, n,, 1) = (2,2,4) or (2,2,6) are effectively para-
metrized by [0,1].* The Grammians A, of these two skeletons are the

* The existence of a one-parameter family of non-isomorphic N-algebras of type I
corresponding to S with (7., 72, 111s) = (2, 2, 4) has been stated in Vinberg [8].
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same as in (5.3) and the eigenvalues of A, are 1 + ¢ both with multipli-
city 2 (cf. Proposition 5.3). Since A, is positive semi-definite, it follows
that —3 <t <{. Since rank A4; < n; =4 or 6, the solutions of the
equation (4.4) always exist and one of the solutions is given by

2.0 o O
Btz 0 2 O # fOI'nl3=4,
0 2 0 —p
—2 0 ¢ O
A 0 g 000
020 p 00
B, = for n, =6,
’ 02 0—x 00 .
L—2 0 ¢ 0 0 O

where 1=+ + 36)/6, p = VA — 3)/6. For a fixed te[—4,4] let N,
be the N-algebra of type I with B, as the matrix of the structure con-
stants. Let ¢,se[—%,4]. Then it follows from Proposition 4.5 that N,
is isomorphic to N, if and only if ¢t = +s. It remains to determine the
complex structures with respect to which N, (te[0,4]) is an N-algebra
of type II. Let J, = (J;3,J:s) be a pair of the orthogonal matrices of
degree n,; and 2, respectively.

Case I. Suppose f4i. Then J, satisfies (4.8) if and only if it is
written as follows;

I(e) @ I(e) for n, =4
13 — ’ Jtzs = 1(51) ’
I(e) @ I(e) @ I(ey) for n, = 6
where ¢,¢, = +1. We put
T,®T, for n, = 4
T —(1 0) T, = 10
1=\ o 1T T1®T1®(0 s) for my, = 6 .
2

Then, from the direct verification it follows that T.J;, = J, T, Tyl =
J;T; and (T, ® T)B; = B,T,, which shows that (J;,J:s) ~ (Jy5,J2) (cf.
Definition 4.7).

Case II. Suppose t = 4. Then J, satisfies (4.8) if and only if J,,;, =
I(e) and
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. {I(el) @ I(ep for n, =4
T ) @ I for n; =6,

where J,;e O4) and J2, = —FE,. There exists a matrix T e O(4) such
that TV, = (IQ1) ® IQ)T. Put

T, @ <1 0) for n,y, =14
0 &

T.©T for n, =6.

T, =

Then it can be seen that T,/ = J,, Ty, ToJis = JsTs and (T, ® T)B,; =
B, T;, which shows (J;13, J15) ~ (135 J59)-
Thus it follows from Lemma 4.8 that there exists a unique complex
structure J with respect to which N, is of type II for each te¢[0,}].
q.e.d.

PROPOSITION 6.5. There exist two non-isomorphic N-algebras (N,J™)
and (N,J®) corresponding to & with (N, N,, N, = (2,4,4). They are
1somorphic to each other as N-algebras of type I, but the complex structure
JPY and J?® are mnot equivalent: the multiplication and the complex
structures J© and J? are given by

1,1 . 1,2 2,1 1,1

€12633 = 35613 €12€23 = 3613

1,2 . __1p1 2,2 1,2

6.1) €165 = —3€p3 €12€23 = 3613
: eled. — let el = L
12623 = €13 12633 = 2€13

1,4 . __ 1,3 2 4 _ 1,4
€126 = —3€n3 612633 = 3613 -

IR =J =IIN), JP=JP=I0SI(-1).

Proof. The Grammian A, of the skeleton S in §4 with (1, 1.y, 1)

=(2,4,4) is
0 —t, —t, —t,
1B, —A . ¢ 0 —t, —t
At=<}14 lEt)’ A=l ¢ o —tl
¢ ‘Z 4 3 3 2

ty t, t, 0

where t = (¢, ---,t). The characteristic polynomial of A, is given as
follows,

2
det (@B, — A,) = {(x — U4 = @ = 1497 3+ (i + bt — tstﬁ)Z} :
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Considering (4.3) and the fact that rank A4; < n, = 4, we conclude that
for each value of ¢ the eigenvalues of 4, are 1 and 0 both with multipli-
city 4. Furthermore we have

(6.2) {tl =¢ly, ty =ety, L, = —ety,

B+ 8+ =,
where ¢ = +1. So Proposition 4.5 shows that there exists a unique N-
algebra of type I corresponding to S with (n,, ny,,n,) = (2,4,4). To get

the multiplication of N, take a special value of the parameter ¢ satisfy-
ing (6.2), e.g.,, t =(4,4,0...0), and put

01 00
B =10 000
B=%(E4)’ B=1 1910 01
L oo-1o0

Then B is a solution of the equation (4.4) for ¢t =(4,1,0..-0) and the
matrix B gives the multiplication (6.1). Let J = (J,;,J;) be a pair of
the orthogonal matrices of degree 4. Then J satisfies (4.8) if and only
if Jy,=dJy J4= —E, J,B=DBJ, Since B=1I(—1)@®I(—1), there ex-
ists an orthogonal matrix T of degree 4 such that

TB = BT, TJIAT =I(e) @ I(,) (G =1,2),

where (e,¢) = (1,1), (1,—1) or (—1,—1). Since TB = BT implies
(E,® T)B = BT, it follows that J ~ J“», where J“v» = (I(e,) B I(s,),
I(s,) ® I(e,) (cf. Definition 4.7). Put

—~1 0 ,
r.=(73 0, m=CmeEmn.
Then we have (T, ® T,)B = BT,, T,I1) ®I(1)) = (I(—-1) D I(—1))T,. Hence,
by Definition 4.7, J&Y ~ J<L-Y. Suppose JEP ~ JHY . Then there exist
three matrices T, 0(2), T,c O4) and T;e O4) such that

(6.3) T, @ I(—1) = IQ) D IW)T,; (i=4,5)
and
6.4) (T,® T)B = BT, .

Putting T, = (g 2), the condition (6.4) is equivalent to

https://doi.org/10.1017/50027763000016007 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016007

HOMOGENEOUS BOUNDED DOMAINS 35

(6.5) BT, = aT,B + ¢T,, T, = bT,B + dT, .

Using (6.3) and (6.5), it follows from the direct calculation that T, is
not invertible, which is a contradiction. So we have two different N-
algebras (N,J®) and (N, J®). q.e.d.

PROPOSITION 6.6. There exists a unique N-algebra whose diagram
18 & with (N, Ny, 1) = (8,2,4). The multiplication and the complex
structure are as follows,

2 2 2

€1:€63 = \/ 76% y  €hen = — 7%3 sy €hey = 73%3 >
(6.6) _ _ -
2 2 2

€65 = \/ 7%3 ,  €hen = "7‘333 s ehe3; = 77‘653 ’

Jy=10)®IQ), Jy =1IQ) .

Proof. The Grammian A, of the skeleton S in §4 with (n,,, %, %)
= (3,2,4) contains three parameters ¢t = (¢, %,,t,) and is represented as

L (0 -1\, 2 (0 b
Ac:At®(1 0>+7E6, A, = ¢ 0 —t.
t, t 0

The eigenvalues of A, are 2 and £ + /& + & + ¢ with multiplicity 2,
respectively. Since rank A, < mn,, = 4, we get £ + ¢ + ¢ = (3)* and so,
for each value of the parameter ¢ the eigenvalues of A, are %,Z and 0
with multiplicity 2, respectively. So the corresponding N-algebras of
type I are isomorphic to each other (cf. Proposition 4.5). Put

(0 0 1 0

0 0 0 1

B JZ[0 0 0-1
710 0 1 0
10 0 0

0 1 0 0

Then B is a solution of the equation (4.4) for ¢ = (%,0,0) and B gives
the multiplication (6.6). Let J = (J;,J,;) be a pair of the orthogonal
matrices of degree 4 and 2, respectively. Then J satisfies (4.8) if and
only if J is represented as follows,

Jy =1 @I, Jy=1(), e==x1.
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We write J© = (J©,J%) instead of J = (Jy,J,;) in accordance with & =
+1. Put

n 0 .
T,= -1 |, T2=( 0), T,=T,®T,.
0 . 0 —1

Then we have JG¥T, = TJ®, JGPT, = TJY, (T,® T,)B = BT,, which
implies J® ~ J-b, q.e.d.

The following proposition can be proved by the similar methods as in
Lemma 4.9, Proposition 6.2 and 6.3, since #n,,n, <2 for &. Thus we
omit the proof.

PROPOSITION 6.7. There exists a unique N-algebra whose diagram is
& (resp. 9.

PROPOSITION 6.8. There exists a unique N-algebra whose diagram is
€5, Furthermore the multiplication and the complex structure are as
follows,

1 1
ehef, = —_¢ef, ehel = ek k=12,
(6.7) 13 V34 ’\/3 14 23V 34 1/3 24 ( )
J14=J24:J34:I(1)-

Proof. Let N = N,;; + N,, + Ny, + Ny + N, be an orthogonal direct
sum of the euclidean vector spaces N,; of dimension n;; with an inner
product <, >, where (n, Ry, Ny Mo, o) = (1,2,2,1,2).  We define the
multiplication and the complex structure j in N by (6.7). Then it is
easy to see that with this structure, (V,{, >,7) is an N-algebra corres-
ponding to &5. Let (N',<{, ),j) be another N-algebra whose diagram
is €. Then, from Proposition 6.2 it follows that there exists a grade-
preserving linear isometry f of Ny + N, + N, onto Nj; + Nj, + Nj, such
that f(zy) = f(@)f(y) for xe N, and y e N, and that foj = 70f on N,,
+ N,,. We will extend f to an isomorphism of N onto N’. Let & be
a linear isometry of N, onto Nj, and let L, and L,., be the left
multiplication by e}, and h(ek), respectively. We define a map g of N

onto N’ as
h on N,,,
g = Lh(eéa)ofoLe—%; on N, ,
J on N+ N,, + Ny, .

https://doi.org/10.1017/50027763000016007 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016007

HOMOGENEOUS BOUNDED DOMAINS 37

Then, by (N4) in §1 ¢ is a grade-preserving linear isometry. Since
Ly,0f = joLg, and Ly, oJ" = §' o Ly, (cf. Definition 2.3), we have goj
=j0o9 on N, + N, + N,. To show that g is a homomorphism, it is
enough to verify that g(xy) = g(x)g(y) for xe N,, and ye N,,. We can
assume that x =e},. Then g(ehy) = (Lney, o f o Lad(ehy) = Mek) f(¥) =
g(el)g(y). We have thus proved that N is isomorphic to N’. q.e.d.

By the analogous way as in the above proposition, we get

PROPOSITION 6.9. There exists a unique N-algebra whose diagram
s & The multiplication and the complex structure are given as follows,

1
V3

11
€13€33 =

el ek, = %e;a (k=1,2).
J14 = Jz4 = I(l) .

We have thus showed that only to the skeleton &2 there correspond
several non-isomorphic N-algebras, and a skeleton isomorphic to & is &
itself. Hence, in view of the above propositions and Remark 4.10, we
have solved the problem III (§3) for N-algebras of type II.

§ 7. Final Results

7.1. Summing up results in §5 and §6, we get the following

THEOREM 7.1. (1) There exists a one-to-one correspondence between
the set of (holomorphic) equivalence classes of all irreducible homogeneous
Siegel domains of type I up to dimension 10 and the set of all the skeletons
in Proposition 3.5.

(2) () To each of the skeletons in Proposition 3.6 except & with
(Mg Mgy Myy) = (2,2, 4), (2,2,6) or (2,4,4), there corresponds one and only
one irreducible homogeneous Siegel domain of type II of dimension < 8;

(ii) to the skeleton & with (N, Ny, N = (2,2,4) or (2,2,6) there
corresponds a one-parameter family of non-equivalent irreducible homo-
geneous Siegel domains of type II of dimension 7 or §;

(iii) to the skeleton & with (N, Ny, Ny = (2,4,4) there correspond
two non-equivalent irreducible homogeneous Siegel domains of type II
of dimension 8; the domains in (i)~(iii) exhaust all irreducible homo-
geneous Siegel domains of type II of dimension < 8.

By the above theorem, we can count the numbers of all irreducible
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homogeneous Siegel domains of type I (resp. type II) up to dimension 10
(resp. 8). And we have

THEOREM 7.2. Let U(n) (resp. ¥y(n)) denote the number of irreducible
homogeneous bounded domains of dimension n which are realized as
Stegel domains of type I (resp. type II). Then ¥y n) and Ty(n) are given
as follows;

n 1 2 3 4 5 6 7 8 9 10

Ui(n) 1 0 1 1 3 4 9 16 34 66

T1(n) 0 1 1 2 4 8 15+ col 34 4 ool

where oo denotes a one-parameter family of the domains.

7.2. We will give here the explicit forms of all irreducible homo-
geneous convex cones up to dimension 7. These forms are obtained by
using the multiplications of N-algebras described in §5 and a result of
Vinberg [8]. In what follows we will use the following notations:

Vv A homogeneous convex cone in a real vector space.

H(n:R) The vector space of all real symmetric matrices of degree ».

R* The cone of all positive real numbers.

H*(n:R) The cone of all positive definite matrices in H(n: R).

C(n) The circular cone of dimension n, that is, the set
{@,-+-x,)eR*; 22, — 3 — --+ — 22 > 0,2, > O}

b,e,d,a;¢,d; (1 =1,2,.--) Real variables.

2,2, 0 =1,2,-..) Complex variables.

In the following list, the homogeneous convex cones (1.1), (1.2), (1.3),
(1.4) and (1.5) are well known (for the last two, see Vinberg [8]), while
others are new; the only cones (1.1),(1.2),(1.3) are self-dual.

1
1.1 o V=R", dmV =1.
1 n 2 .
1.2) O———0 V=Cn-+2), dimV=n+42.
1 3 .
1.8) V=H*3:R), dimV =6.
1 1
2
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1.8
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(Y
=
w

a, b
V=:1b a,
¢ 0

dimV=5.

[
0)>0,
a

i 4, 3
a, 0 b
v=1l0o a ¢ ;(‘]‘1 b)>0,(“2 c>>0 ,
4 b ¢ a b a, c
dimV =5.
2
1 3
2 a, b =z
V= (b a, 0)>O , dimV =6.
1 zZ 0 a,
2
1 3
2 a, 0 =z
v=10 a b ;(‘fl z)>0,<“2 b)>0 ,
1 5 b a, zZ b a4
dimV =6.
2
1;
2
a, b ¢ 0,00 — ay0° — ay(c] 4 ¢ + ¢3) > 0
V={|b a 0};c=C(c,ce),0,>0 ’
c 0 a a, >0

dmV="7.
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a 0 ¢ a0, — (et +c3+¢3) >0
V=L:10 a D];c=1(c,C;0C),00,— >0 ,
c b a, a, >0
dimV ="7.
1 3
(1.10) 2 4 7 %
V={1% a 0}>0;, dimV ="17.
2 Z, 0 a,
2
1, 3
1.11) a, 0 2z
v=1{0 q 2 ;(‘fl zl)>o,(‘f2 z2)>0 ,
2 Z % ) O 2 U
dimV ="7.
2
1 3
(1.12) vz
1 1
2
a, b d (a0, — d2 — d2) (a0, — ¢?) — (a;b — cd)* > 0
V=<0 a ¢l|;d=(,d,),a,a,—c*>0 ,
d ¢ a, a, >0
dimV ="7.

>0, dimV =17,

~~
=
-
o
N
[y
(=Y
: H [
<
1]
SWECIRS R
OONQQ'
ocf oo
S oo

[\
(%)
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a, 0 0 d
v_l0 a 0 ¢ ,(al d)>0<az c>>0(a3 b)>0 ,
0 0 a b|'\d a, e q, b a,
d ¢ b a
dimV="7.
1 4
(1.15) 1
1 1
2 3
a, 0 b a b d
v=J0 @ 0 el 40 >0,<“2 0)>0,
b 0 a, O d 0 a c a,
d ¢ 0 a4J *
dmV ="7.

7.3. We will give here the explicit forms of all irreducible homo-
geneous Siegel domains D(V,F) of type II up to dimension 8. These
forms are obtained by using the results in §6 and a result of Takeuchi
[71. As we mentioned in 3.4, the diagram of the cone V is obtained
from the diagram of ID(V,F) by eliminating the black vertex and all line
segments starting from it. And by the assumption for D(V,F) the cone
V is irreducible and dim V < 7. Hence, one can find the explicit form of
the cone V by the list of 7.2. So we will give only the V-hermitian
form F'.

In the following list, the domains (2.1), (2.2), (2.3),(2.4), (2.5), (2.7.a),
(2.7.0), (2.17) with n =1 and (2.18) are found in Pjateckii-Sapiro [5], [6]
(For (2.5),(2.6) see also [7]), while others are new. The domain (2.5) is
different from a domain of Pjateckii-Sapiro (cf. [6] p. 28) in the form,
but it can be seen that they are linearly equivalent. The domains (2.7.a)
and (2.7.b) correspond to the N-algebras in Proposition 6.5 with the
complex structures J® and J®, respectively. The only domains (2.1),
(2.4), (2.7.a) are symmetric.

1 2
@1 o—2 & 1<m<T7, Fuv) =1 I w,

dimD(V,F) =m + 1.
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1 3
2.2) Zm 2<n+m<6,
F(u’ 7)) = (Z;c”;l uk?k’ 0, tt Yy O) € Cn+2 9
" dmD(V,F) =n +m + 2.
2
1 2m1 3
(2.3) (m;,m) =(1,D,2,1,3,1,4,1,2,2),3,2),
dim D(V,F) = m, + m, + 3.
1 2me
2
Dok U Dy o Ul s + Unmgsn¥r)
F(M, /0) = _ _ _ ’
EL kail (uklvmﬂk + um1+kvk) Zlcmil um1+kvml+k
where % = (U, ** +, Unyym)s V= (Vp, ", Viymy,) -
1 9 3
(2.4) w0, UT, .
Fu,v) = ), dim D(V,F) =6 .
UV, U,T,
2 2
2

= (Cos 6-u;B, + Sin 4-u,v, Uy,
where 0 < 0 < x/4, dimD(V,F,)=1T.

U, + U0, Cos 0-u,w, + Sin 0-@@2)
3

1 3
(2.6) 6
2 2
2
U, T, + U, + uB,  Cos 6-u,v, + Sin f-u,7,
Fo(u,v) = . )
Cos 6-u,w, -+ Sin 8-u,7, UT,

where 0 < 0 < n/4, dim D(V,F,) = 8.
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1 4 3
(2.7.2) Flu, v) = (1‘1?1 + uzﬁz 2137_)1 + zq?Z) ’
) [ WV, + T, UTy + UT,
dim D(V,F) =8 .
2
1 4 3
(2.7.b) Fu, ) — (uﬁl + uz? UT, + ui@) ’
) A w, + w0, UV, + U0,
dim D(V,F) =8 .
2
1 4 3
(2.8) Fu,v) = 0, + w0, 1,7, (00,7, + 1,7,),
\ 4 +(U,0, — Ty, v, + u,v,)) ,
dim D(V,F) = 8 .
2
_ 1 5, 4
(2.9) (n,nyym) = (1,1,1), 1,1,2), 1,1,3),
12,1, 1,2,2), (1,3,1),
™ 3 2,2,1).
>y 000
2 3 F(u,v) = 0 0 o},

0 0 0
dim DV, F) =n,+n, +m + 3.

(2.10) : n=1or 2,
) 2 U, Dy (0, + w,0,) 0
Fu,v) = | $#u,7, + 1,7, 2, 7T, 0},
N 0 0 0
2 3

dimD(V,F) =n + 6.

1 4 4
(2.11) w0, + U0,  Fuv, + u,v,) 0
, 2 Fu,v) = |+, + u,7,) UV, 0},
0 0 0
N dim D(V,F) = 8..
2 3
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1 9 4
(2.12) w0, U0, 0
2 Fu,v) = |up, wv, 0], dim D(V,F) = 8.
2 0o 0 0
1
2 3
1 om 4
(2.13) (n,m,m) = (1,1,1), 1,1,2), 1,1,3), 2,1,1),
n 21,2, ¢,1,1, 2,2,1), 1,2,1),
1
12,2, @,3,D,
iU, 0 0
2 T2 3 F(u,v) = 0 0 0},

0 0 0
dimD(V,F) =n, + n, + m 4+ 3.

(2.14) 5 n=1or 2,
2 n?o, 0 0
n Fau,v )= 0 ww, 0},
0 0 o0

2 1 3 dim D(V,F) =n + 6.

[\]
>N

@m)l 4 4 WO+ uB, 0 0
X Fu,v) = 0 uD, 0},
. 0 0 0
dim D(V,F) = 8.
2 1 3
1 o 4

(2.16) Fu,v) =
U, 0 3T, + u,7,)
2 0 T, w7, + w0y |,
E 3y, + w,v;) Huv, + U,y Uy,

dim D(V,F) =8 .

[\
juy
%Y

https://doi.org/10.1017/50027763000016007 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016007

HOMOGENEOUS BOUNDED DOMAINS

2.17) m,m) = (1,1, 1,2), 2,1,
» STy 00

F(u,v) = 0 0 0},
0 0 0

dim DV, F)=xn+m + 5.
(2.18)

U, (U, + w,v,) 0
Fu,v) = | $(u,2, + u,7,) UV, 0],
0 0 0
dim D(V,F) = 8 .

(2.19) 1 2 ws 0 0 0
1 1 F(u,v) = 0 000 R
0 0 0 0
5 1 . 0 000
dim D(V,F) = 8.
3
(2.20) ! 2 3 ws 0 0 0
0 0 0 0
L Fan=14 9 0 o’
o . . 0 0 0 0
dim D(V,F) = 8
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1 5
(2.21) 2 ws 0 0 0
Pl o) 0 0 0 0
u,v) = ,
1 S 0 00 0
o 1 . 0 0 0 0
\ dim D(V,F) = 8.
3
1 5
(2.22) ) 0 0 0 0
0 uv 0 0
F(u,v) = ,
1 0 0 0 0
0 4 0 0 0 0
1 dim D(V,F) = 8.
1
3
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