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Abstract

We study k-divisible partition structures, which are families of random set partitions
whose block sizes are divisible by an integer k = 1, 2, . . . . In this setting, exchangeability
corresponds to the usual invariance under relabeling by arbitrary permutations; however,
for k > 1, the ordinary deletion maps on partitions no longer preserve divisibility, and
so a random deletion procedure is needed to obtain a partition structure. We describe
explicit Chinese restaurant-type seating rules for generating families of exchangeable
k-divisible partitions that are consistent under random deletion. We further introduce the
notion of Markovian partition structures, which are ensembles of exchangeable Markov
chains on k-divisible partitions that are consistent under a random process of Markovian
deletion. The Markov chains we study are reversible and refine the class of Markov
chains introduced in Crane (2011).
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1. Introduction

A partition π of [n] := {1, . . . , n} is a collection B1/ · · · /Bm of nonempty, disjoint subsets
called blocks for which

⋃
1≤j≤m Bj = [n]. For n, k ≥ 1, we call a partition π = B1/ · · · /Bm

of [nk] k-divisible, or just divisible, if the cardinality of each block B1, . . . , Bm is divisible
by k. When k = 2, we call π an even partition.

Divisible partitions are natural in ecological applications as well as randomization in experi-
mental design. For example, in experimental design, each of nk individuals is assigned one of k

treatments. If individuals are further grouped into blocks so that every treatment is assigned
the same number of times within each block, then the block structure of the design is a divisible
partition of [nk]. In this setting, divisible partitions are related to group-divisible association
schemes; see Bailey [1] for further connections between experimental design and the theory of
partitions. Our study of probabilistic structures of divisible random partitions is motivated by
the above heuristic as well as the appeal of partition models to applications in clustering and
classification [7], [15], population genetics [10], [11], and linguistics [9], [18].

We study ensembles of random divisible partitions whose distributions are consistent under
a random deletion operation. Kingman [13], [14], first studied the deletion properties of
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Reversible Markov structures on divisible set partitions 623

random integer partitions. He defined a partition structure as a collection P := (P1, P2, . . .) of
probability distributions on the spaces (Pn, n ∈ N) of integer partitions of each n = 1, 2, . . .

such that if λ′ ∈ Pn−1 is obtained by choosing a part of λ ∼ Pn with probability proportional
to its size and reducing it by 1, then λ′ ∼ Pn−1. On set partitions, consistency of a family of
distributions P is defined through the usual nonrandom restriction operation. Any consistent
collection determines a unique probability measure on partitions of N := {1, 2, . . .}. Gnedin
et al. [12] studied further deletion properties of random partitions.

In our main theorems, we extend the Chinese restaurant process [16] and the Ewens–
Pitman Markov chain [3] to the space of k-divisible partitions, and we obtain the finite-
dimensional distributions of these processes. By reversing these procedures, we describe
natural deletion mechanisms under which the prescribed finite-dimensional distributions are
consistent. In the Markov chain case, this produces a Markovian partition structure, that is, a
family {(ε(n), E (n))}n≥1 of initial distributions ε(n) and transition probability measures E (n) on
k-divisible partitions of [nk] that are exchangeable and consistent under a Markovian deletion
scheme. Under this operation, Markovian partition structures have the form

P[nk] | k −→ P[nk] | k⏐� ⏐�
P[(n−1)k] | k −→ P[(n−1)k] | k,

where horizontal arrows denote Markov transitions in time and vertical arrows represent ran-
domized projections by the Markovian deletion scheme. In particular, the marginal distributions
at fixed times, as n varies, are consistent; and the marginal distribution of each sequence, for
fixed n, is a Markov chain. For a single time t , the marginal behavior of the Markovian deletion
scheme coincides with the deletion scheme for k-divisible partition structures. We provide the
details in Sections 3.2 and 3.4.

To obtain a characteristic measure ε(∞) on the limit space of partitions of N, we need a
deterministic deletion operation; but there is no such operation in the k-divisible setting with
k > 1. When k > 1, simple deletion of the highest labeled group {nk + 1, . . . , (n+ 1)k} from
an exchangeable divisible partition of [(n + 1)k] does not preserve divisibility; therefore, a
random deletion scheme is needed. For example, the partition π = 1468/27/35 is 2-divisible,
but the partition π ′ = 146/2/35 obtained by deleting elements {7, 8} is not 2-divisible because
the cardinalities of {1, 4, 6} and {2} are not even.

Though the processes we study are not sampling consistent in the ordinary sense, the finite-
dimensional processes we generate are exchangeable and, in the Markov chain case, reversible
with respect to the k-divisible extension of the Ewens–Pitman distribution [10], [16]. Reversible
processes for partition-valued Markov chains have been studied previously; see [2] and [3].

Our main discussion focuses on the analog to the Ewens distribution for divisible partitions
and Markov chains; however, these conclusions apply more generally to any paintbox measure.
We develop these ideas formally in Sections 3.2 and 3.3. We make some concluding remarks
in Section 4.

2. Preliminaries: random partitions

A partition n of n = 1, 2, . . . is a nonincreasing collection of positive integers n =
(n1, . . . , nk), called parts or summands, whose sum is n. Alternatively, n can be expressed in
terms of its multiplicities (λ1, . . . , λn), n = 1λ1 2λ2 · · · nλn such that

∑
λj = k is the number
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of parts and
∑

jλj = n. For each n ∈ N, the Ewens’s sampling formula with parameter θ > 0,
ESF(θ ), is the probability distribution on integer partitions of n with closed form expression

pn(n; θ) =
(

θ#n

θ↑n

)(
n!∏n

j=1 jλj λj !
)

, n = 1λ1 · · · nλn ∈ Pn, (1)

where #n := ∑n
j=1 λj is the number of parts of n and θ↑n := θ(θ + 1) · · · (θ + n − 1).

Ewens [10] first derived (1) while studying the sampling theory of neutral alleles, but the
Ewens’s sampling formula also occurs in purely mathematical contexts; for example, as the
asymptotic distribution of large prime factors [8] and as a special case of the α-permanent of a
matrix [4], [5].

Ewens’s sampling formula more naturally resides on the space P[n] of partitions of [n],
where it is the (0, θ) sub-family of the two-parameter Ewens–Pitman(α, θ) family with finite-
dimensional marginal distributions

�
(n)
α,θ (π) =

(
(θ/α)↑#π

θ↑n

) ∏
b∈π
−(−α)↑#b, π ∈ P[n], (2)

where #π denotes the number of blocks of π , #b the cardinality of block b, and (α, θ) satisfies
either

• α = −κ < 0 and θ = mκ for m = 1, 2 . . . , or

• 0 ≤ α ≤ 1 and θ > −α.

For fixed (α, θ), �α,θ := (�
(n)
α,θ , n ∈ N) is a consistent collection of exchangeable probability

measures on the system (P[n], n ∈ N). In particular, (�
(n)
α,θ , n ∈ N) is

• exchangeable if, for every n ∈ N, �(n)
α,θ (π) depends on π only through its block sizes, and

• consistent under subsampling if, for all m ≤ n, the image measure of �
(n)
α,θ by restriction to

P[m] is �
(m)
α,θ ; that is, �(m)

α,θ = �
(n)
α,θR

−1
m,n, where Rm,n : P[n] → P[m] denotes the restriction

map,

Rm,nπ := {B1 ∩ [m], . . . , Bl ∩ [m]} \ {∅}, π = B1/ · · · /Bl ∈ P[n] .

As a result, the finite-dimensional marginals in (2) determine a unique probability measure
�α,θ on PN, called the Ewens–Pitman(α, θ) distribution. Throughout this paper, we assume that
a pair (α, θ) is always within the parameter space of the Ewens–Pitman model, and we call any
random partition with finite-dimensional distributions (2) an (α, θ)-partition. The distribution
on P[n] corresponding to ESF(θ) in (1) is Ewens–Pitman(0, θ).

Sampling consistency of the Ewens–Pitman family is easily observed through its Chinese
restaurant construction. We construct a sequence 	 := (	1, 	2, . . .) of finite exchangeable
partitions by putting 	1 = {1} and, given 	n = π = B1/ · · · /Bm ∈ P[n], we generate 	n+1
by inserting the element n+ 1

• in occupied block b ∈ π with probability (#b − α)/(n+ θ), and

• in its own block of 	n+1 with probability (θ +mα)/(n+ θ).

We write CRP(n, α, θ) to denote the conditional probability distribution of 	n+1 given 	n

above.
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More generally, Kingman’s paintbox process [13] describes the law of any exchangeable
partition of N. Let ν be a probability measure on

�↓ :=
{
(s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∑
j

sj ≤ 1

}
.

Given (S1, S2, . . .) ∼ ν and S0 := 1−∑
j Sj , we generate a sequence X := (X1, X2, . . .) of

conditionally independent random variables with

P{Xi = j | S} =

⎧⎪⎨
⎪⎩

Sj , j ≥ 1,

S0, j = −i,

0 otherwise.

The partition 	 of N defined by ‘i and j are in the same block of 	 if and only if Xi = Xj ’
is exchangeable and obeys (Kingman’s) paintbox distribution, or paintbox process, directed
by ν, denoted by 	 ∼ �ν . The Ewens–Pitman(α, θ) law corresponds to the paintbox process
directed by the Poisson–Dirichlet(α, θ) law on �↓.

In the next section we provide Chinese restaurant-type constructions for divisible partitions.
Through this process, we construct a partition structure on exchangeable k-divisible partitions
of [nk]. We also introduce Markovian partition structures, which are families of Markov chains
consistent under a random Markovian deletion process. This extends Kingman’s partition
structures to sequences of exchangeable k-divisible partitions and further refines the family of
exchangeable Markov chains studied in [3].

3. Divisible partitions

We call any subset A ⊆ N k-divisible, or just divisible, if #A is divisible by k, denoted by
A | k. We call a partition π k-divisible if each of its blocks is k-divisible, denoted by π | k, and
we write P[nk] | k to denote the space of k-divisible partitions of [nk]. For example, π = 148

235 679
is k-divisible for k = 1 and k = 3.

3.1. Chinese restaurant construction for divisible partitions

Let k ∈ N, (α, θ) be fixed, and N be a population of individuals. Suppose that individuals
arrive at a restaurant in groups of size k, regarded as {ik + 1, . . . , ik + k} for i = 1, 2, . . . . In
particular, for every n ∈ N, we construct a random divisible partition 	n ∈ P[nk] | k according
to the following seating rule. As usual, the tables in the restaurant correspond to the blocks of
a random partition.

Divisible random seating rule. Step 1. The first k individuals are seated at the same table,
	1 := {{1, . . . , k}}.
Step 2. After nk individuals are seated according to 	n, the next k individuals nk + 1, . . . ,

nk + k are seated randomly as follows. We initialize by putting 	
(1)
n = 	n.

(a) Independently for each i = 2, . . . , k, nk + i chooses u(i) uniformly among [nk + i − 1]
and immediately displaces u(i) in 	

(i−1)
n to define 	

(i)
n . If the chosen element u(i) is not

in 	
(i−1)
n , then no displacement occurs.

(b) After each individual has made its choice of u(i) above, there are k individuals (nk +
1, w(2), . . . , w(k)) waiting to be seated. The group w∗ := {nk + 1, w(2), . . . , w(k)}
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is treated as a single unit and randomly chooses a table b ∈ 	
(k)
n ∪ {∅} according to

CRP(nk, α, θ), that is,

P{w∗ �→ b | 	(k)
n = π} ∝

{
#b − α, b ∈ π,

α#π + θ, b = ∅.

We define 	n+1 as the partition resulting from this seating assignment.

This construction generates a collection (	1, 	2, . . .) of divisible partitions of [nk].
Remark 1. Note the change in notation in (b) above from u(i), denoting displaced individuals,
to w(i), denoting those individuals still not seated after the final displacement. This reflects the
possibility that a single element can be displaced multiple times, because a particular element
can be chosen as u(i) for multiple i = 2, . . . , k. The following example illustrates the seating
procedure.

Example 1. With n = k = 3 and fixed (α, θ), we generate the partition 	3 = 134 689
257 from the

above seating procedure as follows.

• We begin with 	1 = 123.

• At time 2, individuals 4, 5, 6 arrive and, following step 2(a), element 5 first chooses
u(2) from {1, 2, 3, 4}, say u(2) = 4, and element 6 chooses u(3) from {1, 2, 3, 4, 5}, say
u(3) = 2. Then, after step 2, we have partition 136, with 2, 4, 5 displaced. (Note that the
displaced individuals differ from the set {4, u(2), u(3)} = {2, 4}.) Treating w∗ := {2, 4, 5}
as a single unit, we choose to put {2, 4, 5} in the same block as {1, 3, 6} with probability
(3− α)/(3+ θ) to obtain 	2 = 123 456.

• At time 3, individuals 7, 8, 9 arrive and choose u(2) = 2 and u(3) = 5 so that the partition
after step 2(a) is 134 689. We now place w∗ = {2, 5, 7} in its own block with probability
(α + θ)/(6+ θ) to obtain 	3 = 134 689

257 .

Note that there is more than one way to obtain 	3 = 134 689
257 . We derive the distribution of 	n

in Theorem 1 below.

In proving the following theorem, and throughout this paper, we write i ∼π j to denote
that elements i and j are in the same block of a partition π . Exchangeability on P[nk] | k is
defined in the usual way: ε

(n)
α,θ is exchangeable if ε

(n)
α,θ (π) depends only on (#b, b ∈ π), for

every π ∈ P[nk] | k .

Theorem 1. Let 	 := (	1, 	2, . . .) be a sequence of random partitions generated by the
above seating rule. Then each 	n is marginally an exchangeable k-divisible partition of [nk]
with distribution

ε
(n)
α,θ (π) =

(
n!

(nk)!
)(

(θ/α)↑#π

(θ/k)↑n

) ∏
b∈π
−

(
−α

k

)↑(#b/k)( #b!
(#b/k)!

)
, π ∈ P[nk] | k . (3)

Proof. To establish (3), we fix k ∈ N and (α, θ) in the parameter space of the Ewens–Pitman
model. We show (3) by induction on n. Clearly, (3) holds for n = 1 since ε

(1)
α,θ in (3) is the

point mass at the single-block partition {1, 2, . . . , k}.
Now assume that (3) holds for n ∈ N and consider π∗ ∈ P[(n+1)k] | k . Let Aπ∗ := {π ∈

P[nk] | k : π �→ π∗} be divisible partitions of [nk] for which there is a positive probability of
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the event {(	n, 	n+1) = (π, π∗)} in the divisible seating process. By definition, the block
sizes of each π ∈ Aπ∗ and π∗ are identical except for the block to which the displaced group
(nk+ 1, w(2), . . . , w(k)) is inserted in π during step 2(b). Let this block be written as b∗ ∈ π∗.

Each random displacement in step 2(a) has probability 1/[(nk + 1) · · · (nk + k − 1)] and
the random table assignment in step 2(b) follows CRP(nk, α, θ), which assigns probability
(#b − α)/(nk + θ) to b if b �= ∅ and (θ + α#π)/(nk + θ) if b = ∅. By the induction
hypothesis, each π ∈ Aπ∗ is distributed as in (3), so that the joint probability of the event
(	n, 	n+1) = (π, π∗), for every π ∈ Aπ∗ , is

(
n!

(nk)!
)(

(θ/α)↑#π

(θ/k)↑n

) ∏
b∗∈π∗

−
(
−α

k

)↑(#b∗/k) ∏
b∈π

(
#b!

(#b/k)!
)

for every n ≥ 1.

Since this joint probability is the same for all pairs (π, π∗), we obtain the marginal distri-
bution of 	n+1 by multiplying the number of partitions in Aπ∗ . Let←−π ∗n denote the labeled
(nk + 1)-shift of π∗. That is, define←−π ∗n as a partition of {2, . . . , n} with

i ∼←−π ∗n j if and only if nk + i ∼π∗ nk + j,

and label each b ∈ ←−π ∗n by its smallest element. In step 2(a) of the random seating plan,←−π ∗n is
obtained by random displacement of the elements of π . Let σ ∗ be the permutation [nk] → [nk]
defined by the product of transpositions

σ ∗ :=
(

nk + 2
u(2)

)
· · ·

(
nk + k

u(k)

)

and let ϕπ,π∗ : {2, . . . , n} → [(n+1)k] be the operation corresponding to step 2(a) of the above
divisible seating rule: for i = 2, . . . , k, ϕπ,π ′(i) = σ ∗(nk+i) is the element occupying position
i in (nk + 1, w(2), . . . , w(k)). Let ϕπ,π∗(

←−π ∗n) denote the partition obtained by replacing each
i ∈ {2, . . . , n} with ϕπ,π∗(i). Writing b ∈ π to denote the block to which the displaced group
is added in step 2(b) of the seating process, we have(

#b + k − 1

k − 1

)
= (#b + k − 1)!

(k − 1)! #b!
choices of the elements of ϕπ,π∗(

←−π ∗n) for any choice (u(2), . . . , u(k)) of displaced elements;
and there are

(k − 1)!∏
b′∈←−π ∗n #b′!

ways to arrange these elements into a labeled partition with block sizes corresponding to the
block sizes of←−π ∗n. Finally, the assignments under ϕπ,π∗ within each b′ ∈ ←−π ∗n can be rearranged
in #b′! ways to obtain a total of (#b + k − 1) · · · (#b + 1) partitions in Aπ∗ . Equation (3) now
follows by the induction hypothesis. This completes the proof.

Remark 2. Note the relationship between distributions (2) and (3). These distributions coin-
cide when k = 1, because 2(a) of the divisible seating rule is nugatory and the divisible random
seating rule is equivalent to the usual Chinese restaurant seating rule in this case. Otherwise,
these distributions differ as a result of the random shuffling that occurs during step 2(a) of the
divisible random seating rule.
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For α = 0, (3) with parameter (0, θ) becomes

ε
(n)
0,θ (π) =

(
n!

(nk)!
)(

θ#π
∏

b∈π (#b − 1)!
(θ/k)↑n

)
, (4)

the marginal distribution of each 	n in the construction with the random seating rule
CRP(nk, 0, θ) in step 2(b). From (4), we obtain the combinatorial identity

1

(nk)!
∑

π∈P[nk] | k
θ#π�(π) = (θ/k)↑n

n! , (5)

where �(π) := ∏
b∈π (#b − 1)!. This identity gives the generating function for k-divisible

permutations, that is, permutations of [nk] whose cycle sizes are all divisible by k, and also
gives the following special property of the Ewens distribution.

Corollary 1. For θ > 0, the distribution ε
(n)
0,θ in (3) is that of a (0, θ)-partition conditioned to

be k-divisible.

3.2. Divisible partition structures

We specify a random deletion scheme for P[nk] | k as follows. Given π ∈ P[nk] | k , let b∗ ∈ π

denote the block of π containing (n− 1)k + 1.

(i) Sequentially, for i = k, k − 1, . . . , 2, an element u(i) is chosen uniformly from the set

(b∗ ∩ [(n− 1)k + i]) \ {(n− 1)k + 1, u(k), . . . , u(i+1)}.
Let π∗ be the image of π under permutation by the product of transpositions

σ ∗ :=
(

(n− 1)k + 2
u(2)

)
· · ·

(
(n− 1)k + k

u(k)

)
. (6)

(ii) Obtain π ′ ∈ P[(n−1)k] | k by deleting {(n− 1)k + 1, . . . , (n− 1)k + k} from π∗.

Definition 1. We call a collection ε = (ε(n), n ∈ N) of probability distributions a divisible
partition structure if, for every n ∈ N, ε(n) is the distribution of 	′ obtained by applying the
divisible deletion scheme to 	 ∼ ε(n+1).

Theorem 2. For any (α, θ), εα,θ := (ε
(n)
α,θ , n ∈ N) is a divisible partition structure under the

above deletion scheme.

Proof. For π ′ ∈ P[(n−1)k] | k , we define Aπ ′ := [π ∈ P[nk] | k : π ′ ← π ] to be the set of
divisible partitions of [nk] for which there is positive probability of obtaining π ′ from the above
deletion scheme. Any π ∈ Aπ ′ has the same block structure as π ′ except for the block b∗ ∈ π

containing (n−1)k+1, which has k more elements than its corresponding block in π ′ and will
be reduced by k during the deletion process. From the proof of Theorem 1, we can express the
probability of π ∈ Aπ ′ as

ε
(n)
α,θ (π) = ε

(n−1)
α,θ (π ′)

(
(#b∗ − 1)↓(k−1)

(nk − 1)↓(k−1)

)[(
#b∗ − k − α

(n− 1)k + θ

)
1{#b∗>k}

+
(

θ + α#π ′

(n− 1)k + θ

)
1{#b∗=k}

]
,
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where 1 is the indicator function. For any b ∈ π ′, the probability that (n−1)k+i, i = 2, . . . , k,
displaces a specific element of b∗ is 1/(b∗ − k + i − 1) and, in total, there are nk − k + i − 1
elements which (n − 1)k + i has the option of displacing. (Every π ∈ Aπ ′ corresponds to a
choice b ∈ π ′ to insert the displaced group in step 2(b) of the random seating rule. Given b ∈ π ,
the choice ((n− 1)k + 1, u(2), . . . , u(k)) corresponds to a unique k-tuple of transpositions σ ∗
in (6) to obtain π ′ from π by the deletion process. There are (nk − k + 1) · · · (nk + 1) total
choices for every such b ∈ π .) By the law of cases, we have

P{	n−1 = π ′} =
∑

π∈Aπ ′
P{	n−1 = π ′ | 	n = π}ε(n)

α,θ (π)

=
∑
b∗

∑
σ ∗

ε
(n)
α,θ (π)

(
1

(#b∗ − 1) · · · (#b∗ − k + 1)

)

= ε
(n−1)
α,θ (π ′)

∑
b∗

[(
#b∗ − k − α

(n− 1)k + θ

)
1{#b∗>k} +

(
θ + α#π ′

(n− 1)k + θ

)
1{#b∗=k}

]

= ε
(n−1)
α,θ (π ′).

This completes the proof.

Though we do not pursue it in detail, we conclude this section with the observation that
exchangeable divisible partition structures are in correspondence with Kingman’s paintbox
measures. In particular, the εα,θ -family of measures in (3) is in correspondence with the
Poisson–Dirichlet(α, θ) measures for all k = 1, 2, . . . .

Theorem 3. Under the above deletion scheme, exchangeable divisible partition structures are
in one-to-one correspondence with Kingman’s paintbox measures.

Proof. We need only sketch the proof since the arguments follow by Theorems 1 and 2 and
Kingman’s paintbox representation. Given a collection (	n, n ≥ 1) of exchangeable k-divisible
partitions that is consistent in distribution under the above divisible deletion scheme, we can
obtain a collection (	∗n, n ≥ 1) of exchangeable partitions of (P[n], n ≥ 1) by ‘deflating’ each
block by a factor of k and choosing a representative element 1, . . . , n of each group of size k

within each block. The result will be an exchangeable partition of [n], which must obey one
of Kingman’s paintbox distributions. The rest now follows by analogous argument to previous
theorems.

3.3. Divisible Markov structures

For α > 0 and m ∈ N, the Ewens–Pitman(−α, mα) distribution determines a probability
measure on the subspace P (m)

N
of partitions of N having at most m blocks. Previously,

Crane [3] introduced an exchangeable family of Markov chains on P (m)
N

with marginal transition
probabilities

p(n)
α,m(π, π ′) = m↓#π ′ ∏

b∈π

(∏
b′∈π ′(α/m)↑#(b∩b′)

α↑#b

)
, π, π ′ ∈ P (m)

[n] , (7)

where m↓n := m(m− 1) · · · (m−n+ 1). More recently, structural properties of exchangeable
Feller processes on P (m)

N
have been characterized in full [6]. The transition probabilities in (7)

are reversible with respect to �
(n)
−α,mα for every n ∈ N. We now extend this family to divisible

partitions.
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For α > 0 and m ∈ N, the distribution (3) with parameter (−αk, mαk) is

ε
(n)
−αk,mαk(π) = m↓#π

(
n!

(nk)!
)(∏

b∈π α↑#b/k(#b!/(#b/k)!)
(mα)↑n

)
.

Let p
(n)
α,m denote the transition probabilities in (7), and let P (m)

[nk] | k be the subset of k-divisible
partitions of [nk] with at most m blocks. We describe a Markovian transition procedure on
P (m)
[nk] | k as follows. Fix π ∈ P (m)

[nk] | k .

(i) Independently, for each b ∈ π , randomly partition b into #b/k groups of size k according
to the uniform distribution on such partitions of b. Label the groups uniquely in [n] to
obtain a collection of groups {g1, . . . , gn}.

(ii) Given {g1, . . . , gn} from (i), let π∗ denote the partition of {g1, . . . , gn} obtained by
regarding each group as a single element in π∗, and generate 	′′ ∼ p

(n)
α,m(π∗, ·), as

in (7).

(iii) Given 	′′ = π ′′, obtain the next state π ′ ∈ P (m)
[nk] | k by replacing each gi in π ′′ with the

group of k elements it represents from (i).

Example 2. To illustrate the above transition procedure, let n = 3, k = 2, and π = 1246
35 . We

generate the transition π �→ π ′ as follows.

(i) We randomly partition the blocks of π into sub-blocks of size k and assign labels 1, 2, 3,
for example g1 = 14, g2 = 26, and g3 = 35;

(ii) The above procedure yields a partition π∗ = 12
3 , from which we generate 	′′ according

to p
(n)
α,m(π∗, ·), say π ′′ = 13

2 .

(iii) We obtain π ′ by substituting gi for i in π ′′, i.e. π ′ = g1g3/g2 = 1 345
26 .

As in Example 1, there is more than one way to generate the transition π �→ π ′. We derive the
transition probability in Theorem 4.

In the following theorem, we write π ∧ π ′ to denote the usual meet of π and π ′, i.e.

π ∧ π ′ := {Bi ∩ B ′j : Bi ∈ π, B ′j ∈ π ′} \ {∅}.
Theorem 4. The finite-dimensional transition probabilities of the transition procedure in (i)–
(iii) are

E (n)
α,m(π, π ′) = m↓#π ′ ∏

b∈π

[(
(#b/k)!

#b!
)(

1

α↑#b/k

) ∏
b′∈π ′

(
#(b ∩ b′)!
[#(b ∩ b′)/k]!

)(
α

m

)↑#(b∩b′)/k]
(8)

for π, π ′ ∈ P (m)
[nk] | k satisfying π ∧ π ′ ∈ P[nk] | k . Moreover, for each n ∈ N, E (n)

α,m is reversible

with respect to ε
(n)
−αk,mαk in (3) and is exchangeable with respect to the symmetric group on [nk].

Proof. Fix n ∈ N and let π, π ′ ∈ P (m)
[nk] | k satisfy π ∧ π ′ ∈ P[nk] | k . According to the

transition procedure, we first group elements within each b ∈ π together in groups of size k.
There are

#b!
(k!)#b/k
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ways to group elements and subsequently label them uniquely, each equally likely. Given a
block b ∈ π and the new partition π ′, there are(

(#b/k)!
(k!)#b/k

) ∏
b′∈π ′

(
#(b ∩ b′)!
[#(b ∩ b′)/k]!

)

sets of labeled groups of b for which a transition π �→ π ′ is permissible. (For each b′ ∈ π ′,
there are #(b∩b′)!/(k!)#(b∩b′)/k labeled partitions of the elements of b∩b′ into blocks of size k.
Dividing this number by [#(b ∩ b)/k]! gives the number of unlabeled partitions of b ∩ b′ into
#(b∩b′)/k blocks of size k. Given a partition of b, there are (#b/k)!ways to label the blocks.)
Each permissible partition of b has probability

(k!)#b/k

#b! .

Multiplication of the number of groupings by their probabilities gives a total factor of∏
b∈π

(
(#b/k)!

#b!
) ∏

b′∈π ′

(
#(b ∩ b′)!
[#(b ∩ b′)/k]!

)
. (9)

Given a partition π∗ of n groups of size k, we choose π∗∗ from the transition probabilities
of (7),

m↓#π ′ ∏
b∈π

(∏
b′∈π ′(α/m)↑(#(b∩b′)/k)

α↑#b/k

)
. (10)

Multiplying (9) and (10) gives (8). Reversibility is clear by checking the detailed balanced
condition, and exchangeability is clear by inspection. This completes the proof.

3.4. Divisible Markovian deletion

In the following deletion scheme, we define σ(π) as the image of π ∈ P[n] by a permutation
σ : [n] → [n], i.e. i and j are in the same block of σ(π) if and only if σ−1(i) and σ−1(j) are
in the same block of π .

For n ∈ N, let 	n+1 = (	n+1
1 , 	n+1

2 , . . .) be a Markov chain on P (m)
[(n+1)k] | k . Given

	n+1 = (πn+1
j , j ≥ 1), we obtain the sequence 	n = (πn

j , j ≥ 1) in P (m)
[nk] | k as follows.

(i) Obtain πn
1 from πn+1

1 by the divisible deletion scheme in Section 3.2. Let σ1 be the
permutation, called the displacement, generated in (6).

(ii) For j ≥ 1, given that (	n+1
1 , . . . , 	n+1

j+1) = (πn+1
1 , . . . , πn+1

j+1 ), (	n
1, . . . , 	n

j ) =
(πn

1 , . . . , πn
j ), and displacements σ1, . . . , σj , we put σ (j) = σj ◦ · · · ◦ σ1, denote

π∗ = σ (j)(πn+1
j ) and π ′ = σ (j)(πn+1

j+1 ), and let b∗ ∈ π∗, b′∗ ∈ π ′ be the blocks
containing element nk + 1.

(a) Sequentially, for i = k, . . . , 2, choose u(i) uniformly from

b∗ ∩ b′∗ ∩ ([nk − k + i] \ {nk − k + 1, u(k), . . . , u(i+1)})
and put

σj+1 =
(

nk − k + 2
u(2)

)
· · ·

(
nk

u(k)

)
. (11)

(b) Let π ′′ = σj+1(π
′) and obtain πn

j+1 from π ′′ by deleting {nk + 1, . . . , nk + k}.

https://doi.org/10.1239/jap/1445543836 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543836


632 H. CRANE AND P. MCCULLAGH

Remark 3. The relabeling in (ii) by composing the displacements ensures that the elements
1, 2, . . . are consistently labeled in the restricted sequence. This is needed because of the first
step of the transition procedure, whereby individuals are randomly grouped into sub-blocks of
size k.

Remark 4. For each n = 1, 2, . . . , the Markovian deletion operation 	n+1 −→ 	n is more
than an independent application of the divisible deletion scheme from Section 3.2 at each time.
For each t = 1, 2, . . . , (	n+1

t , 	n
t ) is marginally distributed as a k-divisible partition structure,

but step (ii) of the Markovian deletion scheme incorporates dependence among the deletions
across time.

Definition 2. We call a collection 	 = (	1, 	2, . . .) of Markov chains an (ε, E)-reversible
Markov structure if, for each n ∈ N, 	n is an (ε(n), E (n))-Markov chain that is reversible
with respect to ε(n), and 	′ obtained by applying the above deletion scheme to 	n+1 is an
(ε(n), E (n))-Markov chain.

Theorem 5. For each n ∈ N, let 	n be an (ε
(n)
−αk,mαk, E

(n)
α,m)-Markov chain on P (m)

[nk] | k . Then
	 = (	n, n ∈ N) is an (ε−αk,mαk, Eα,m)-reversible Markov structure.

Proof. Fix n ∈ N and let 	n+1 = (	n+1
j , j ≥ 1) be an (ε

(n+1)
−αk,mαk, E

(n+1)
α,m )-Markov chain.

Let 	n = (	n
j , j ≥ 1) be obtained from 	n+1 by the above deletion scheme. By Theorem 2 and

step (i) of the deletion process, 	n
1 ∼ ε

(n)
−αk,mαk . We induct on j to show that 	n = (	n

j , j ≥ 1)

is an (ε
(n)
−αk,mαk, E

(n)
α,m)-Markov chain.

For j ≥ 1, assume the marginal law of 	n
j is ε

(n)
−αk,mαk and let σ1, . . . , σj be the displacement

permutations used in the Markovian deletion scheme up to step j . By Theorem 1, σ (j)(	n+1
j ) ∼

ε
(n)
−αk,mαk and, by Theorem 4, the conditional distribution of σ (j)(	n+1

j+1) given σ (j)(	n+1
j )

is E (n+1)
α,m (σ (j)(	n+1

j ), ·). Given (σ (j)(	n+1
j ), σ (j)(	n+1

j+1)) = (π, π ′) and 	n
j = π∗, let

π ′′ ∈ P (m)
[nk] | k be such that E (n)

α,m(π∗, π ′′) > 0 and there is a positive probability of obtaining π ′′
from π ′ in the divisible Markovian deletion procedure. Let b∗ ∈ π , b′∗ ∈ π ′ be the blocks
containing nk + 1. We have

E (n+1)
α,m (π, π ′)

E (n)
α,m(π∗, π ′′)

=
(

#b∗/k

(#b∗)↓k

)(
1

α + #b∗/k − 1

)[(
α

m
+ #(b∗ ∩ b′∗)

k
− 1

)(
(#(b∗ ∩ b′∗))↓k

[#(b∗ ∩ b′∗)/k]
)

1{#b′∗>k}

+ k!
(

(m− #π ′)α
m

)
1{#b′∗=k}

]

In step (ii)(a), σj+1 in (11) has probability (#(b∗ ∩ b′∗))/((#(b∗ ∩ b′∗))↓k).
Now for every π ′ with E (n)

α,m(π, π ′) > 0, the block sizes of π ′ are the same as π ′′ except for
the block b′∗ ∈ π ′, which contains k more elements than its corresponding block in π ′′. Given
b′∗, there are (#b∗)↓k/#b∗ partitions π ′′ from which π ′ can be obtained by the even Markovian
deletion process. Each π ′′ corresponds to a unique displacement σj+1 in (11). By the law of
cases, we have

P{	n
j+1 = π ′′ | 	n

j = π∗, 	n+1
j = π}

=
∑
π ′

P{	n
j+1 = π ′′ | 	n

j = π∗, (	n+1
j , 	n+1

j+1) = (π, π ′)}E (n+1)
α,m (π, π ′)
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= E (n)
α,m(π∗, π ′′)

∑
b′∗

∑
σj+1

(
#b∗

(#b∗)↓k

)(
1

α + #b∗/k − 1

)[(
α

m
+ #(b∗ ∩ b′∗)

k
− 1

)
1{#b′∗>k}

+
(

(m− #π ′)α
m

)
1{#b′∗=k}

]

= E (n)
α,m(π∗, π ′′)

∑
b′∗

(
1

α + #b∗/k − 1

)[(
α

m
+ #(b∗ ∩ b′∗)

k
− 1

)
1{#b′∗>k}

+
(

(m− #π ′)α
m

)
1{#b′∗=k}

]
= E (n)

α,m(π∗, π ′′).

By the induction hypothesis and reversibility (Theorem 4), the unconditional law of 	n
j+1 is

ε
(n)
−αk,mαk and 	n is an (ε

(n)
−αk,mαk, E

(n)
α,m)-Markov chain. This completes the proof.

4. Concluding remarks

4.1. Divisible paintbox partitions

We have treated the special case of Kingman’s paintbox process directed by ν = Poisson–
Dirichlet(α, θ); however, we can apply the above descriptions more generally to generate
both divisible partition structures and divisible Markov structures associated to any probability
measure on the ranked-simplex. In this case, we replace the Ewens–Pitman measure by a
paintbox measure �ν in the above statements, but reversibility of the resulting family of Markov
structures is not guaranteed. The Markov partition structures for the k = 1 case have been
studied in [3]; the k > 1 case follows by modifying the work in [3] according to the program
in Section 3.3.

4.2. Divisible random permutations

There is a well-known connection between exchangeable random partitions and random
permutations whose distribution depends only on their cycle sizes. The combinatorial identity
(5) relates divisible permutations and divisible partitions in the usual way. Each partition of
[nk]with blocks of size (n1, . . . , nm) corresponds to

∏m
j=1(nj − 1)! permutations of [nk]with

the corresponding cycle sizes. The usual approach of sampling uniformly from the subset of
permutations corresponding to a given random partition yields a distribution on what we call
k-divisible permutations. Divisible permutations appear in combinatorics; see, for example,
Wilf [19], and the generating function (5) for k-divisible permutations generates known integer
sequences, for example, [17]: A001818 and [17]: A178575.

4.3. Neutral partition structures

We can also consider partitions of a marked population [n]∗ consisting of nk individuals,
with n individuals of each type j = 1, . . . , k. We write 1(j), . . . , n(j) to denote the individuals
of type j = 1, . . . , k. We call a subset of [n]∗ neutral if it contains an equal number of elements
of each type. A partition of [n]∗ is neutral if each of its blocks is neutral. Necessarily, any
neutral partition is k-divisible.

As in the k-divisible case, k = 1 corresponds to ordinary set partitions; however, by adding
more structure to the partitions, the combinatorial arguments for neutral partitions are more
straightforward. The only difference from the k-divisible case is that our seating rule is specified
to preserve neutrality, not just divisibility. For example, the Chinese restaurant process in the
neutral case corresponds to the following seating rule.
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Neutral random seating rule. 1. The first k individuals are seated at the same table, 	1 :=
{1(1), . . . , 1(k)}.
2. After nk arrivals are seated according to 	n, the next k individuals (n+1)(1), . . . , (n+1)(k)

are seated randomly as follows:

(a) independently for each i = 2, . . . , k, (n+ 1)(i) chooses u(i) uniformly among 1(i), . . . ,

(n+ 1)(i) and displaces u(i) in 	n;

(b) the displaced group ((n + 1)(1), u(2), . . . , u(k)) is treated as a single unit and randomly
sits at table b ∈ 	n ∪ {∅} according to CRP(nk, α, θ).

The finite-dimensional distributions on neutral partitions of [n]∗ generated by the above seating
rule are

ν
(n)
α,θ (π) =

(
(θ/α)↑#π

(θ/k)↑n

)(∏
b∈π −(−α/k)↑#b/k[(#b/k)!]k−1

(n!)k−1

)
. (12)

The distribution in (12) is exchangeable with respect to permutations of [n]∗ that permute only
elements with the same type. We obtain the deletion rule by reversing the Chinese restaurant
seating rule, as we have for the k-divisible deletion rule.

Neutral Markov structures are collections of pairs {(ν(n), N (n))}n≥1 so that {ν(n)}n≥1 is
an exchangeable neutral partition structure and {N (n)}n≥1 is a collection of exchangeable
Markovian transition probabilities consistent under an operation of neutral Markovian deletion,
which is analogous to the divisible Markovian deletion scheme. In the neutral setting, we obtain
finite-dimensional transition probabilities corresponding to the Ewens–Pitman Markov chain:

N (n)
α,m(π, π ′) = m↓#π ′ ∏

b∈π

[∏
b′∈π ′(α/m)↑(#(b∩b′)/k)[(#(b ∩ b′)/k)!]k−1

[(#b/k)!]k−1α↑#b/k

]
, (13)

provided π ∧ π ′ is a neutral partition. The transition probability in (13) is reversible with
respect to ν

(n)
−αk,mαk(·) and is exchangeable with respect to permutations of [n]∗ that preserve

neutrality. Connections between exchangeable neutral partition structures and Kingman’s
paintbox measures are analogous to those for divisible partition structures and follow by similar
arguments.
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