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Abstract

Various properties of continuity for the class of lower semicontinuous convex functions are considered
and dual characterizations are established. In particular, it is shown that the restriction of a lower
semicontinuous convex function to its domain (respectively, domain of subdifferentiability) is continuous
if and only if its subdifferential is strongly cyclically monotone (respectively, a-cyclically monotone).
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1. Introduction

Let X be a Banach space and / : X -*• R U {+00} a lower semicontinuous (in
short lsc) function. A recent result of Correa, Jofre and Thibault [3] asserts that /
is convex if and only if its Clarke-Rockafellar subdifferential 9/ is monotone. The
same equivalence has also been established for abstract notions of subdifferentials (see
[1], for example). In the aforementioned cases, since any notion of subdifferential
of a convex function coincides with the classical Fenchel-Moreau subdifferential,
it follows that 9/ is not only monotone, but also cyclically monotone (see [6], for
example). This latter property (that is, cyclicity) is not just a stronger property than
mere monotonicity, but it expresses a behaviour of certain type. This behaviour has
already been discussed in relation with integration problems ([2], for example) as well
as in generalized convexity [5].

While cyclic monotonicity describes the behaviour of an operator around a 'cycle'
of finite points, a variant of it—called a -cyclic monotonicity—was introduced and
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studied in [4]. Compared with cyclic monotonicity, this new property carries additional
information on the operator, since it describes its behaviour along infinite cycles
formed by converging sequences. In particular, the fact that the subdifferential 3/ of
a function/ is a-cyclically monotone guarantees a certain continuity property for the
lsc convex function / .

In this article we show that the restriction of a lsc convex function to its domain
of subdifferentiability is continuous if and only if its subdifferential is a -cyclically
monotone; (this result was conjectured in [4]). We also introduce the strong cyclic
monotonicity, and show that this property characterizes the subdifferentials of the lsc
convex functions having a continuous restriction to their domain, see Section 4.

The paper is organized as follows. In Section 2 ̂ e give some preliminary results
and we fix our notation. In Section 3 we prove a local version of Rockafellar's
formula [8] concerning the representation of the lsc convex functions. This local
representation—apart from its independent interest—will be in use in Section 4,
where we establish dual characterizations of the continuity of the functions / |dom/
and / |dom3/ for a lsc convex function / . Finally, in the same section, we give some
criteria for an operator to be strongly cyclically monotone (respectively, a -cyclically
monotone) and we classify the various concepts of cyclic monotonicity.

2. Preliminaries

In the sequel, X will denote a Banach space and X* its dual. For any x e X and
x* e X* we denote by {x*, x) the value of x* at x. For x e X and e > 0 we denote
by B(x, e) the closed ball centered at x with radius e > 0, while for x, v 6 X we
denote by [x, y] the closed segment [tx + (1 - t)y : t e [0, 1]}. For any closed
segment [x, y] in X and any e > 0 we denote by B([x, y], e) the ^neighbourhood of
the segment [x, y], that is,

B([x, y ] , e ) : = { w e X : 3 z e [x, y ] wi th \\z - w\\ < s ) .

Given a function / : X -*• KU {+oo}, we denote by dom/ :— [x € X :
f (x) € R) its domain. We say that / is continuous (respectively lsc), if it is
continuous (respectively lsc) at every point x e X, where U. U {+00} is equipped with
the topology generated by the family 3 R U {]x, +00], x e K} (3R being the usual
topology of 05). Note that such functions may take infinite values, as for instance the
function/ : K -*• OS U {+00} with/(x) = l/x if* > 0 and +00 if* < 0.

Concurrently, a function / is said to have a continuous restriction to a subset S of
its domain, if / \s is a continuous (real-valued) function, see also [7, page 82].

Throughout this article we shall deal with proper (that is, not identically equal to
{+00}) lsc convex functions. Let us remark that the class of lsc convex functions
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[3] Dual characterizations of relative continuity of convex functions 213

with a continuous restriction in their domain is much larger than the one of convex
continuous functions. It contains in particular all indicator functions of closed convex
sets, as well as many other non-continuous functions, see [6, Example 3.8 (a)].

We recall from [6] that the subdifferential 3/ of the function/ at a point x € dom/
is defined as follows

(1) df (x) = {x* e X* : f (y) - f (x) > (x*,y - x), Vy e X).

Finally, T : X =4 X* will denote a multivalued operator defined on X and taking as
values subsets of X*. We denote by dom T := {x € X : T(x) ^ 0} its domain. We
recall that T is cyclically monotone if for any n € N, for any x0, xit... , xn in X and
for any x£ e T(x0), x* e T(xt),... , x* e T(xn) we have

(2)
;=o

where xn+l := x0- Moreover, if T is not strictly contained (in the graph sense) in
any other cyclically monotone operator, then it is called maximal cyclically monotone.
Typical (and in fact exclusive) examples of maximal cyclically monotone operators
are the subdifferentials 3/ of convex lsc functions (see [6], for example).

3. Representation of convex functions

Rockafellar has proved in [8] that if T is cyclically monotone, then there exists a
lsc convex function / such that T c 3 / . The proof of this result involves a typical
construction based on T. In particular, starting from any point x0 of the domain of T
(which is supposed to be nonempty), he defined the following lsc convex function fT

(3) fT{x) - sup | (x*, x - xn) + £](**, xi+i - x{) | + c,

I <=o J
where c is an arbitrary constant and the supremum is taken over all n > 1, all
X\,x2,... , xn in dom T and all x£ e T(xo),x* e T(xt),... , x* e T(xn).

Let us note that x0 appears in all sums at the right hand side of (3) and that cyclic
monotonicity property guarantees that/r(x0) = c, hence, in particular, dom/ r ^ 0.

It is proved in [8] that the function fT is unique up to a constant, whenever the
operator T is maximal cyclically monotone, in which case T = 3 / r .

Applying this result to the maximal cyclically monotone operator 3 / , (3) yields
(for c — f (xo)) the following representation for the lsc convex function /

(4) / (jc) = sup « , x - xn) + X > * , xi+l -xA+f (jc0),

I J
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where the supremum is taken over all n > 1, all xx, x2, • • • , xn in dom 3 / and all
** 6 3 / (xo), x* 6 3 / (or,), . . . , < € 3 / (*„).

This representation is global, in the sense that there is no limitation for the choice
of the points xu x2, •. • , xn in the above supremum. Let us now produce a localized
version of the formula (4) which will be useful in the sequel.

PROPOSITION 1. Let x0 e dom 3 / . For any x € X and s > Owe have

(5) /(*)=/Oco) + sup j (x*n,x-xn) + £ ( * ; , JC/+1 - X i ) ,

where the supremum is taken over all n > 1, all

(6) x\,X2,...,xn in domdf C\ B([xo,x], e)

andallx* e df(xo),x* e df(xx),... ,x*e df(xn).

Note that comparing with (4), the choice of the points x{, x2,..., xn is constrained
into the £-neighbourhood of [x0, x].

PROOF. Let us consider the indicator function h of the closed set B([x0, x], s),
given by

JO ifyefl([jto.*],e);
y (+oo ify$B([xo,x],e).

Since B([x0, x], s) is convex, for every y € B([x0, x], e) and y* € dh(y) we have

(7) {y\x'-y)<O,Vx'eB([xo,x],e).

Let us now consider the lsc convex function g(y) = f (y) + h(y) and let us remark
that dom3g c dom^ c B([x0, x], e). Since dom/ n intdomfc ^ 0, it follows [6,
Proposition 3.15] that

(8) 3g(y) = df(y) + dh(y),

for all y e S([xo»^], «)•
Applying formula (4) for the lsc convex function g at the point x, and using the

fact that g(y') = f ( / ) for all / € S([JC0, JC], e), we get

(9) f(x)=f (*o) + sup I « , x - *„) +
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where the supremum is taken over all n > 1, all X\, x2,..., xn in domdg and all
x* e dg(xo),x* 6 dg(Xl), ...,x*ne dg(xn).

In particular, for any M < f (x) —f(x0), there exist x\, x2,... , xn in B([xo, x], e)
andx* e 9g(x0), JC* e 9g(x,),.. . ,x* e 3g(xn), such that

n - l

M < (x* x — x ) + Y^fo:* X-J.1 — x )
1=0

Using (8), for / = 0, 1 , . . . ,n , we can write x* = z* + y*, where z* e 9/ (*,•) and
y* G 9ft(x,). It now follows from (7) that

n - l

M < (z*, * - * „ ) + ^ ( z * , x / + 1 - x,->.
;=o

Since M is arbitrarily chosen, the proof is complete. D

4. Main results

In this section we establish dual characterizations for the class of proper lsc convex
functions/ such that/|dOm8/ (respectively / |dom/) is continuous. These characteri-
zations involve properties stronger than (but reminiscent of) cyclic monotonicity for
the subdifferential 9/.

Let us first state the following interesting result.

PROPOSITION 2. Letx0 e dom 9/. Then the following are equivalent:

0) / I dom/ is continuous at XQ;
(ii) / Idoma/ is continuous at x0.

PROOF. We obviously have (i) implies (ii). For the inverse implication, suppose
that / |dom/ is not continuous\at x0- There then exists £ > 0 such that for all i > 1,
there exists x{ € dom/ D B(x0, 1/ 0 with

\f(x,)-f(xo)\>e.

Now for each i > 1, we may find yt € dom 3/ n B(x0, 2/ i) with

\f(x,)-f(yi)\<~

(this is possible because dom9/ is graphically dense in dom/). Then we have
{yt} - • *o and 1/ (yd — f (*o)l > e/2 for all i > 1, which contradicts (ii). •
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4.1. Relative continuity on dom 3 /
We recall from [4] the following definition.

DEFINITION 3. (i) Let x0 € X. An operator T is called a-cyclically monotone
at x0, if

n

(10) lim sup £]{*; , xi+i - *,-) < 0
,-=o

for all ^o e T(x0), for all {*,},>i in dom T satisfying linvxx,.*; = x0 and all {**},•>!
in X* satisfying x* e T(xt) for all i > 1.

(ii) The operator T is called a-cyclically monotoite, if it is a -cyclically monotone
at every x0 e X.

Let us note that Definition 3 implies (in a trivial way) that T is a-cyclically
monotone at any x £ dom T.

It is also easily seen that every a -cyclically monotone operator is cyclically mono-
tone. Indeed, given points XQ,X\, ... ,xn'vn. dom T, it suffices to consider the sequence
{*,},>! in dom T, where x{ = x0, for i > n + 1. Then relation (10) clearly yields (2).

The following theorem gives a positive answer to a conjecture raised in [4].

THEOREM 4. Letx0 e dom 9/. The following are equivalent:

(i) / 1 dom 3/ is continuous at x0;
(ii) 3/ is a-cyclically monotone at x0.

PROOF, (i) implies (ii). Let {JC,},>I be any sequence in dom 3/ such that lim^oo*/ =
x0. For any x* e 3/ (*,-), relation (1) implies

(11) /Oc,-+i) - / (* ,-) > <*;,*,+i -*,-) .

Adding (11) from i = 0 to an arbitrary integer n we obtain

i = 0

As n -*• +00, the continuity of/ |doma/ at x0 yields (10).
(ii) implies (i). Suppose that / |dOma/ is not continuous at x0- Since / is lsc at

x0, we deduce the existence of a sequence {.x,},>i in dom 3 / , such that xt -> J:0 and
jo/ (jc,-) > / (^o)- Take any e > 0 such that

Let us fix i e N. Using Proposition 1 for the points x{ e dom 3/ and xi+i e X
and for the number l/(i + 1) > 0, we deduce the existence of a finite sequence
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yi.i,ya, ••• , yix in dom df n B([xh xi+l], l / ( i + 1)) and of y*0 e df (v,,0), y*A e
3 / (v , , i ) , . . . , y*kl e df (y a , ) such that

; = 0

where by convention yi0 := JC,, y,,t,+i := xi+l. Summing (12) from i = 0 to an
arbitrary integer n, we obtain

i=0 ;=0 i=0

Taking the upper limit as n —• oo, the last inequality yields

n k,

lim sup ]jP ^2(y*j» y.j+i ~ y«j) - £-

Since the sequence {yo,o, • • •, yo.^, Ji,o, • • •, yi,*,, • . . } is norm converging to x0, we
conclude that 3 / is not CT-cyclically monotone. D

We can easily deduce the following corollary.

COROLLARY 5. The following statements are equivalent:

(i) fldomdf is continuous;
(ii) df is a-cyclically monotone.

We state below some typical examples of lsc convex functions such that / Idoma/ is
discontinuous.

EXAMPLE 1 ([7, page 83]). Let the function/ : R 2 ^ i U {+00} be defined by

x\/x\ if X\ > 0;

0 if x\ = x2 = 0;

+00 elsewhere.

The above function is lsc and convex (the latter can be verified by calculating the
Hessian). Considering the sequence ( l / « 3 , l/n) we conclude that /|doma/ is not
continuous at (0,0).

EXAMPLE 2. Let the function / : { 2 ( N ) - > R U {+00} be defined by

/« = 11*111:=
1=0
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for every x = {*,} € £2(N). Since / is the pointwise supremum of the convex
continuous functions /„ : £2(N) - > R U {+00} defined for all x = {.*,} G £2(N) by
fn(x) = Yl"=o I*'!' i1 *s obviously convex and lsc. However, / |dom3/ is discontinuous
at any point of its domain. (Note that in this example the domain of the function / is
dense).

4.2. Relative continuity on dom /
Let us first give the following definition.

DEFINITION 6. Let x0 6 X. An operator T is called strongly cyclically monotone
at x0, if for every e > 0 there exists 8 > 0 such that for̂ every x\ e dom T D B(xQ, 8),
for every sequence {*,},>2 in dom T satisfying lim,_>00 xt = x0, and for every sequence
{**},>! in X* satisfying x* € T(XJ) for all i > 1, we have

(13) l imsup^(x*,*,+i -Xj) < e.

Let us note that T is strongly cyclically monotone (in a trivial way) at every point
in the complement of dom T.

PROPOSITION 7. Let x0 € X. IfT is strongly cyclically monotone at x0, then T is
also a-cyclically monotone at XQ. The converse is true whenever XQ € dom T.

PROOF. Suppose that T is strongly cyclically monotone at x0. It suffices to consider
only the case x'o e dom T. If {*,},>! is any sequence in dom T such that lim.^oox, =
x0, then for any £ > 0 we can apply (13) for the sequence {y,},>i defined by yx := x0

and j , := x,_i for all i > 2 (note that yx € dom T n B(x0, S) for all S). Since e is
arbitrary, we easily conclude that (10) is verified, hence T is CT-cyclically monotone.

Conversely, suppose that x0 G dom T and that T is CT-cyclically monotone at x0-
We shall show that T is strongly cyclically monotone at x0. Let e > 0. Then pick
any ** in T(^o) and set S = S/\\XQ\\ (if x£ = 0, then take S = 1). Then for every
xi e dom T D B(x0, 8), we have

(14) ! ( * £ , * , - J C O ) | < £ .

Since T is CT-cyclically monotone at x0, it follows that for every sequence {JC,},>2 in
dom T satisfying lim^oo x, = x0, and for every sequence {**},>i in X* satisfying
x* e T(Xi) for all i > 1, we have

(15) l imsup^(^*,x1 + 1 -xt) < 0.
,-=o

Combining (14) and (15) we conclude that T is strongly cyclically monotone atx0. •

https://doi.org/10.1017/S1446788700002615 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002615


[9] Dual characterizations of relative continuity of convex functions 219

Consider now the case where T = 9 / . Since d o m / = dom9/ , we conclude
that 9/ is CT-cyclically monotone at every x0 € X \ dom 9/ and strongly cyclically
monotone at every x0 e X \ d o m / . It now follows from Proposition 7 that for any
x0 € dom 9/ , 9/ is strongly cyclically monotone at x0 if and only if 9/ is CT-cyclically
monotone at x0 (if and only i f / |doma/ is continuous at x0). The following theorem
(analogue to Theorem 4) deals with the case x0 G d o m / .

THEOREM 8. Letx0 e d o m / . The following are equivalent:

(i) / Idom/ is continuous at XQ',
(ii) 9/ is strongly cyclically monotone at x0.

PROOF, (i) implies (ii). Let e > 0. According to (/), there exists S > 0 such that

for all x € dom 9/ n B(x0, 8)

(16) \f(x)-f(xo)\<s.

Fix any x{ in dom 9/ n B(xo,S). Consider now any sequence {*,•},•>! in dom 9/
satisfying lim^oox, = x0. Then for all i > 1 and all x* e 9/ (JC,), we have

(17) /(*,-+,) - / ( * , - ) > (*;,*,•+, - J C , ) .

Adding (17) from i = 1 to an arbitrary integer n, we obtain

f iXn+\) —f(Xl) > 7 (X*,Xi+l —X().
i = l

As n ->• +00, the continuity of/ |dom/ together with (16) yields (13).

(ii) implies (i). Suppose that / |d o m / is not continuous at x0. Then since / is lsc,
there exists s > 0 and {JC,-},->I in d o m / satisfying lim^ooxt = x0 such that

(18) lim inf / (JC,-) > / (JC0) + 3e.

Since dom 9/ is graphically Sense in d o m / ([6, Theorem 3.17]), without loss of

generality we assume that {.*,•},•> 1 is in dom df. Moreover, for any 8 > 0, we may

choose xits in dom 9/ n B(x0, 8) such that

It follows that

(19) liminf/(jc,-)

Applying Proposition 1 successively for the points {JCI.J.^I} and {JC,-, jt;+i} for i > 1,
and repeating the arguments of the final part of the proof of Theorem 4 ((ii) implies (i))
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we deduce the existence of a sequence {z,}, in X satisfying zo •= xitS and lim^oo z, =
x0, and of a sequence {z*}/>i satisfying z* € 3/ (z,) for all i, such that for every n we
have

for some increasing function <p : N —> N. As n —>• oo, thanks to (19), we obtain
n

limsup^(z*,z,+i -Zt)( , , + i t) > e.
,=o

Thus 3/ is not strongly cyclically monotone at x0. D

We shall say that 3/ is strongly cyclically monotone on dom/ if it is strongly
cyclically monotone at every point of dom/ . The following corollary is analogue to
Corollary 5.

COROLLARY 9. The following are equivalent:

(i) / Idom/ " continuous;
(ii) 3/ is strongly cyclically monotone on dom/.

REMARK. Combining Proposition 2 with Theorem 4 and Theorem 8 we obtain an
indirect way to establish Proposition 7 for the special case 7 = 3 / .

Finally, the following proposition shows that 3/ is not strongly monotone at any
x0 e dom/ \ dom/ .

PROPOSITION 10. Let x0 € dom/ \ dom/. 77ien 3/ is no/ strongly cyclically
monotone at x0.

PROOF. Since/ is lsc and x0 £ dom/ , it follows that for any sequence {*,},>! in
dom 3/ satisfying lim,-^*, = ^0 we have lim,_oo/(.x,) = +oo. Using the same
arguments as in the proof of Theorem 8 ((ii) implies (i)), for every M > 0 we obtain
the existence of a sequence {z,},>i in X satisfying z\ := *i and lim,_).0Oz, = x0, and
of a sequence [z*}t>\ satisfying z* e 3/ (z,) for all i > 1, such that for n large enough

,*> z.-+i - Zi) > M.

Thus 3/ cannot be strongly cyclically monotone at x0. •

Let us now show that Theorem 4 and Theorem 8 characterize different classes of
functions. This is illustrated in the following example.
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EXAMPLE. Consider the following proper lsc convex function/ : IR2 -> KU{+oo}
defined by

f(xux2) =
x\/xx — ^/x[ if xi > 0;
0 ifxi =JC2 = 0;

+oo elsewhere.

It is easily seen that

dom 3/ = {(xux2) G IR2 : xi > 0},

while

dom/ = dom 3/ U {(0,0)}.

Clearly, the function / |dOm3/ is continuous. On the other hand, the function / |dom/
is discontinuous at (0,0), as can be shown by considering the sequence (1/n3, 1/n)
which converges to (0, 0).

REMARK. The above example exhibits in particular the difference between Defini-
tion 3 and Definition 6 for x0 € dom T \ dom T (compare also with Proposition 2).

4.3. Classification of the various concepts of cyclic monotonicity
We first give the following definitions.

DEFINITION 11. We say that
(i) 3/ is locally bounded on dom/, if for every x0 e dom/ there exist M > 0 and
S > 0 such that

(20) Vz € dom df n B(x0, 8), Vz* e df (z), \\z*\\ < M.

(ii) 3/ has a locally bounded ^election on dom/, if for every x0 e dom/ there exist
M > 0 and 8 > 0 such that

(21) Vz e domdf nB(xo,8), 3 z * e 3 / ( z ) , \\z*\\<M.

Let us observe that if / is the indicator function of any closed convex subset K
of X, then the operator 9/ has a locally bounded selection on dom/, without being
locally bounded (unless K = X).

The following result is well known (see [6], for example).

THEOREM 12. / is continuous if and only ifdf is locally bounded on dom/.
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In the above case, it follows that dom/ is open and dom/ = dom3/. Let us
remark that it is possible to have dom/ ^ X. It suffices to consider the function
/ : R - ^ K U {+00} with

j+oo if,<0;
[l/x if* >0 .

We now state the following sufficient condition for strong cyclic monotonicity.

PROPOSITION 13. If 3/ has a locally bounded selection on dom/, then 3/ is
strongly cyclically monotone on dom/.

PROOF. Let x0 e dom/. In view of Theorem 8 it suffices to show that the function
/ Idom/ is continuous at x0. Since 3/ has a locally bounded selection on dom/
and since dom 3/ is dense in dom/, there exists S > 0 such that for every x €
dom/ n B(x0, S) we can find a sequence {*,•}*>! in dom 3/ satisfying lim^oo*, = x
and a sequence {**},•>i in X* satisfying x* e 3/(x,) and ||JC*|| < M for all i > 1.
Then (1) yields that

Since / is lsc, we conclude as i ->• +oo that

(22) / ( * ) < / ( * O )

Since (22) holds for all x € dom/ n B(x0, 8), it follows that

lim sup/ |d o m / (x) < f (x0).

X-*Xo

Since / is lsc we conclude that / |dom/ is continuous at x0. •

The converse of Proposition 13 is not true as it is shown by the following example.

EXAMPLE. Consider the function/ : R - > K U {+00} with

'-J^x ifJC < 0;

[+00 if* >0 .

Then the restriction / |dom/ is obviously continuous. On the other hand, 3/ does not
have a locally bounded selection (take x0 = 0).
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Thus, between the various concepts we have considered, the following implications
hold, and none other:

3/ locally bounded on dom/ <=> / continuous

3/ locally bounded selection on dom/ i}.

3/ strongly cyclically monotone on dom/ «=>• / |domy continuous

JJ. 4
3/ a -cyclically monotone <=• / |dOm a/ continuous
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