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Abstract

We examine the dynamics of fermentation process in a yeast cell. Our investigation
focuses on the main branch pathway: pyruvate and acetaldehyde branch points. We
formulate the kinetics for all enzymatic reactions as Michaelis–Menten models. Since
the activity of an enzyme mainly depends on the conformational changes of the enzyme
structure, the enzyme requires a certain period of time to reset its structure, until it is
ready to bind substrates again. For this situation, a rate-limiting step exists, for which
the catalytic process suffers a delay. Since all conversion processes are catalysed by
enzymes, each reaction can experience a delay at a different time. To investigate how
the delay affects the reaction processes, especially at the branch points, we propose
that the rate-limiting step takes place at the first reaction. For this reason, a discrete time
delay is introduced to the first kinetic model. We find a bifurcation diagram for the delay
that depends on the rate of glucose supply and kinetic parameters of the first enzyme. By
comparison, our analysis agrees with the numerical solution. Our numerical simulations
also show that there is a certain glucose supply that may optimize ethanol production.

2010 Mathematics subject classification: primary 92C45; secondary 34K60, 34K99.
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1. Introduction

Metabolism is a highly regulated chemical reaction involving many enzymes, which
cooperate to transform nutrient molecules into the cell’s own characteristic molecules.
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The system consists of thousands of interconnected chemical reactions catalysed by
different enzymes which have well-defined molecular structures and involves the
measurement of the kinetic parameters, such as maximum enzyme activity, substrate
binding, and inhibition constant. Any change in the kinetic properties of the enzyme
influences the survival and functional performance of a metabolic system. Theoretical
studies on the problem of designing the kinetic properties of enzymes to produce
optimal performance have been developed mostly to overcome various industrial
problems [7, 11–13, 15]. These studies aim to determine possible strategies for
controlling or manipulating the metabolic processes.

Kinetic modelling has been widely used to integrate and elaborate the properties of
a metabolic system. Many structured kinetic models have been developed to describe
the metabolic state of the cell in stationary and time-dependent states, particularly
in a normal physiological condition, i.e. when the enzyme activity is not disturbed
[2, 5, 14, 19, 30]. However, the change in the activity of an enzyme certainly affects
the metabolic process. One of the possible causes is the existence of the rate-limiting
step in the conversion process. From the experiments, it was reported that the enzyme
activity mainly depends on the conformational changes of the enzyme structure, which
take place from the moment an enzyme complex is formed until the product is released
[1, 3, 4, 9, 16]. Consequently, the enzyme requires a certain time to reset its structure
until it is ready to bind the substrate again. The interesting question is how we elucidate
the structure completion process in terms of a delay process and how this affects the
whole catalytic process. In the present work, we study a kinetic model which takes
into account the effect of delay on the substrate conversion. We focus on the main
pathway of a yeast cell: the pyruvate and acetaldehyde branch points as shown in
Figure 1. Our mathematical model is based on the Michaelis–Menten kinetic model
with discreet time delay, which is likely to play an important role in causing oscillatory
behaviour.

The paper is organized as follows. In Section 2 we describe the formulation of
a kinetic model of the fermentation pathway with delay effect. In Section 3 we
investigate the stability of the delay differential system. In Section 4 we show the
numerical simulations and compare our theoretical results with these simulations.
A summary and some concluding remarks are presented in Section 5.

2. Formulation of kinetic model with delay effect

In this section we derive a mathematical model to describe the dynamics of the
branched metabolic pathway in a yeast cell. The pathway is a series of enzyme-
catalysed reactions which convert substrate molecules to other molecules and generate
final metabolites. This work follows along the lines of Lei et al. [19], but for a different
pathway (see Figure 1). The model is based on the following assumptions.
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Figure 1. Schematic representation of enzymatic reactions at the pyruvate and acetaldehyde branch points
in Saccharomyces cerevisiae. The symbol G refers to the rate of glucose supply. All reactions are
catalysed by the following enzymes: E1 = pyruvate kinase, E2 = pyruvate carboxylase, E3 = pyruvate
dehydrogenase complex, E4 = pyruvate decarboxylase, E5 = alcohol dehydrogenase, E6 = acetaldehyde
dehydrogenase, E7 = acetyl-CoA synthetase. The TCA cycle is the tricarboxylic acid cycle [24].

(1) The model describes the anaerobic growth of a yeast cell under ideal
fermentation conditions. The uptake of glucose (G) is assumed to be constant per
unit time, and it is metabolized via the glycolysis pathway to produce substrate
S1. Then enzyme E1 catalyses the first reaction to produce substrate S2 which
is the last product of the glycolysis pathway. In the present work we shall focus
on the investigation of the enzymatic reaction process inside a single yeast cell.
We do not include the product inhibition effects on the growth of the yeast cell.
This feature will be considered in a later paper.

(2) The first overflow metabolism occurs at the first branch, where the substrate S2 is
converted into three intermediate substrates, S3, S4, S5, through catalysis of the
three different enzymes. Substrates S3 and S4 are then used in the tricarboxylic
acid (TCA) cycle which is a series of enzyme-catalysed chemical reactions that
become a key part of the aerobic respiration in the yeast cell, and substrate
S5 is preferably converted to acetate by enzyme E6. However, saturation of
enzyme E5 leads to ethanol production. Moreover, through catalysis of enzyme
E7, substrate S6 is converted into S4, which will end in the TCA cycle as well.

(3) The modelling of all reaction rates is based on Michaelis–Menten kinetic
models. Due to the properties of all enzymes, all reactions are irreversible
except for the fifth reaction [22, 24]. The rate equation for the irreversible
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reactions is

ui(t) =
ViS i(t)

S i(t) + Ki
, i = 1, . . . , 4, 6, 7, (2.1)

and for the reversible reaction it is

u5(t) =
V f

5 Kb
5S5(t) − Vb

5 K f
5 S7(t)

K f
5 Kb

5 + Kb
5S5(t) + K f

5 S7(t)
. (2.2)

The derivation of (2.2) is given in the Appendix. Equations (2.1) and (2.2) are
single enzyme–substrate reaction rates which refer to the reaction rates catalysed
by enzyme i with maximum reaction rate Vi for i = 1, . . . , 7 and Michaelis
constant Ki. Note that indices f and b in (2.2) refer to the forward and backward
direction in the reversible reaction, respectively (see [18]). In this work, we do
not model the equations for the enzyme species since we focus on the dynamics
of the substrates and the products only.

(4) The activity of an enzyme mainly depends on the conformational changes in the
enzyme structure [1, 3, 4, 9, 16]. The enzyme structure change takes place from
the moment an enzyme complex is formed until a product is released. It is based
on the fact that when an enzyme catalyses a reaction, its structure changes due to
the binding of a substrate to an enzyme at the active site [22]. Consequently, the
enzyme requires a completion time to reset its structure before it is ready to bind
a substrate again [1, 4, 9]. Thus, there is a rate-limiting step in reaction which
induces a delay from the moment an enzyme–substrate complex is formed until
a product molecule is released. Hence, a recovery time is needed to reset the
conformational change of the enzyme [17, 27]. Since all conversion processes
are catalysed by enzymes, each reaction can experience a delay at a different
time. In the absence of specific knowledge or experimental evidence any given
step is a rate-limiting step in the fermentation pathway, we assume that the rate-
limiting takes place at the first reaction. Indeed, when the first reaction suffers a
delay, the other reactions are also affected by this delay. To investigate how the
delay affects the fermentation reaction process, we introduce a single discreet
time delay in the first kinetic,

u1(t − τ) =
V1S1(t − τ)

S1(t − τ) + K1
, τ > 0,

where S1(t − τ) is defined as the concentration of the first metabolite when delay
occurs for time τ, where τ is the length of time required by E1 to convert S1

into S2. Using the mass action rate law [18], we derive the delay differential
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equations as follows:

(a)
dS1(t)

dt
= G − u1(t − τ),

(b)
dS2(t)

dt
= u1(t − τ) − u2(t) − u3(t) − u4(t),

(c)
dS3(t)

dt
= u2(t) − δ1S3(t),

(d)
dS4(t)

dt
= u3(t) + u7(t) − δ2S4(t),

(e)
dS5(t)

dt
= u4(t) − u5(t) − u6(t),

(f)
dS6(t)

dt
= u6(t) − u7(t) − δ3S6(t),

(g)
dS7(t)

dt
= u5(t) − δ4S7(t).

(2.3)

The conditions imposed on the problem are S1(t) = S 0
1 (a constant) for [−τ, 0] and

Si(0) = 0 for i > 1. Outflows in (2.3)(c, d, f, g) are assumed to be linear functions
of Si, where δi is a constant for i = 3, 4, 6, 7. All parameters are assumed to be
positive. Furthermore, the maximum rate of inflow should be less than the maximum
rate of outflow in every stage, e.g. at the first stage G < V1, at the first branch point,
V1 < Vi, i = 2,3,4, and at the second branch point V4 < V6 < (V6 + V f

5 ). These physical
intuitions will be confirmed in Section 3. Rescaling all variables via Si = K1xi and time
scale t = τt̃, we get the dimensionless system,

(a)
dx1( t̃ )

dt̃
= G̃ −

ν1x1(t̃ − 1)
x1(t̃ − 1) + 1

,

(b)
dx2( t̃ )

dt̃
=

ν1x1(t̃ − 1)
x1(t̃ − 1) + 1

−
ν2x2( t̃ )

x2( t̃ ) + κ2
−

ν3x2( t̃ )
x2( t̃ ) + κ3

−
ν4x2( t̃ )

x2( t̃ ) + κ4
,

(c)
dx3( t̃ )

dt̃
=

ν2x2( t̃ )
x2( t̃ ) + κ2

− σ1x3( t̃ ),

(d)
dx4( t̃ )

dt̃
=

ν3x2( t̃ )
x2( t̃ ) + κ3

+
ν7x6( t̃, )

x6( t̃, ) + κ7
− σ2x4( t̃ ),

(e)
dx5( t̃ )

dt̃
=

ν4x2( t̃ )
x2( t̃ ) + κ4

−
ν5 f κ5bx5( t̃ ) − ν5bκ5 f x7( t̃ )
κ5 f κ5b + κ5bx5( t̃ ) + κ5 f x7( t̃ )

−
ν6x5( t̃ )

x5( t̃ ) + κ6
,

(f)
dx6( t̃, )

dt
=

ν6x5( t̃ )
x5( t̃ ) + κ6

−
ν7x6( t̃, )

x6( t̃, ) + κ7
− σ3x6( t̃, ),

(g)
dx7( t̃ )

dt̃
=

ν5 f κ5bx5( t̃ ) − ν5bκ5 f x7( t̃ )
κ5 f κ5b + κ5bx5( t̃ ) + κ5 f x7( t̃ )

− σ4, x7( t̃ ),

(2.4)
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where the dimensionless parameters are given by

G̃ =
τG
K1
, ν j =

V jτ

K1
, κ j =

K j

K1
, κ5 f =

K1

K f
5

, κ5b =
K1

Kb
5

, σi = δiτ

for i = 1, . . . , 4 and j = 1, . . . , 7.

3. Stability analysis

In this section, we analyse the steady-state solution of system (2.4) defined in the
restriction region,

R7
+ = {(x1, x2, x3, x4, x5, x6, x7) ∈ R7 | xi ≥ 0, i = 1, . . . , 7}.

Equation (2.4) is defined in the region R7
+, because the vector field on the boundary of

R7
+ does not point to the exterior of R7

+. Furthermore, the equilibria of system (2.4) can
be determined by setting ẋi = 0, for i = 1, . . . ,7. Fixing the right-hand side of (2.4)(a) to
zero gives x∗1 = G̃/(ν1 − G̃). This is in R7

+ as long as ν1 > G̃. This condition guarantees
the existence of the equilibrium solution of the first substrate, and it directly confirms
our physical assumption made earlier. For equation (2.4)(b), with x∗1 = G̃/(ν1 − G̃), we
find a cubic equation,

a1(x2)3 + a2(x2)2 + a3x2 + a4 = 0, (3.1)

with
a1 = (ν2 + ν3 + ν4) − G̃,
a2 = (ν3 + ν4 − G̃)κ2 + (ν4 + ν2 − G̃)κ3 + (ν2 + ν3 − G̃)κ4,
a3 = (ν2 − G̃)κ3κ4 + (ν3 − G̃)κ2κ4 + (ν4 − G̃)κ2κ3,
a4 = −G̃κ2κ3κ4.

If νi > G̃ for i = 2, 3, 4, then coefficient a3 is positive, as well as a1 and a2. Using
Descartes’ rule of signs [21], we observe that equation (3.1) has only one positive root
since there is only one turnover sign on its coefficients. Thus from (3.1), we obtain
only one positive equilibrium solution. Since the first reaction is rate-limiting, we
have conditions, i.e. G̃ < ν1 < νi, i = 2,3,4, that make x∗1 and x∗2 positive. Furthermore,
equations (2.4)(c, d) have equilibrium solutions,

x∗3 =
ν2x∗2

(x∗2 + κ2)σ1
and x∗4 =

1
σ2

[ ν3x∗2
(x∗2 + κ3)

+
ν7x∗6

(x∗6 + κ7)

]
,

which depend on x∗2 and x∗6. Note that x∗6 is a root of (2.4)(f) which will be analysed
below (see equation (3.5)). Now, from equations (2.4)(e, g), we have

(a) ξ1 −
ν5 f κ5bx5 − ν5bκ5 f x7

κ5 f κ5b + κ5bx5 + κ5 f x7
−

ν6x5

x5 + κ6
= 0,

(b)
ν5 f κ5bx5 − ν5bκ5 f x7

κ5 f κ5b + κ5bx5 + κ5 f x7
− σ4x7 = 0,

(3.2)
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with ξ1 = ν4x∗2/(x∗2 + κ4). From (3.2)(b) we obtain

x∗5 =
κ5 f x7[ν5b + σ4(κ5b + x7)]

κ5b(ν5 f − σ4x7)
,

which depends on x7 and will be positive if x7 < ν5 f /σ4. By substituting x∗5 into
(3.2)(a), we get

b1(x7)3 + b2(x7)2 + b3(x7) + b4 = 0, (3.3)

with

b1 = −σ2
4κ5 f ,

b2 = κ5bσ
2
4(κ6 − κ5 f ) − κ5 fσ4(ν6 − ξ1 + ν5b),

b3 = −(ν6 − ξ1)(ν5bκ5 f + σ4κ5bκ5 f ) − (ξ1σ4κ5bκ6 + ν5 fσ4κ5bκ6),
b4 = ξ1κ6κ5bν5 f .

Now consider the cubic polynomial

C(x7) = b1(x7)3 + b2(x7)2 + b3(x7) + b4, (3.4)

whose roots are given by (3.3). Since b1 < 0 and b4 > 0, equation (3.4) has at least
one positive root. The positive root x∗7 of (3.4) should be in the required range,
0 < x∗7 < ν5 f /σ4, which we will discuss further. By substituting x7 = ν5 f /σ4 into
equation (3.4), we get

C

(ν5 f

σ4

)
= (ξ1 − ν6 − ν5 f )(ν5b + κ5bσ4 + ν5 f ),

with 0 < ξ1 = ν4x∗2/(x∗2 + κ4) < ν4. Since the maximum inflow at the second branch
point should be less than the maximum outflow, ν4 < ν6 < (ν6 + ν5 f ), 0 < ξ1 < ν4 <
ν6 < (ν6 + ν5 f ). Consequently, we get C(ν5 f /σ4) < 0. We also find that C(0) = b4 > 0.
Applying the intermediate value theorem, the cubic polynomial in (3.4) has a positive
root x∗7 in the required range which leads to a positive x∗5. Since 0 < ξ1 < ν6, we have
b3 < 0. Thus, the roots that depend on b2 are either positive or negative. As reported
by Lei et al. [19] and Rizzi et al. [25, 26, 31], the magnitude of the Michaelis constant
for enzyme alcohol dehydrogenase (κ5 f ) is higher than that of enzyme acetaldehyde
dehydrogenase (κ6), and so b2 is negative. Therefore, only one positive root
(equilibrium point) is observed. For b2 > 0, there could be three positive roots in the
required range. However, hitherto we have lacked information about this case from
experiments.

Next, by solving ẋ6 = 0, we have

c1(x6)2 + c2(x6) + c3 = 0, (3.5)

with c1 = σ3, c2 = σ3κ7 + ν7 − ξ2, c3 = −ξ2κ7, ξ2 = ν6x∗5/(x∗5 + κ6). Since c1 > 0 and
c3 < 0, it has only one positive root denoted by x∗6.
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Recall that system (2.4) has only one positive steady state,

xE =

[ G̃
ν1 − G̃

, x∗2,
ν2x∗2

(x∗2 + κ2)σ1
,

1
σ2

( ν3x∗2
x∗2 + κ3

+
ν7x∗6

x∗6 + κ7

)
,

κ5 f x∗7[ν5b + σ4(κ5b + x∗7)]
κ5b(ν5 f − σ4x∗7)

, x∗6, x
∗
7

]
,

if it satisfies G̃ < ν1 < νi (i = 2, 3, 4), ν4 < ν6 < (ν6 + ν5 f ), and κ6 < κ5 f . Linearizing
system (2.4) using a Jacobian matrix evaluated at the positive equilibrium xE , we
obtain a set of linear systems,

ζ̇ = J1ζ + J2ζτ,

where ζ = (x1( t̃ ), . . . , x7( t̃ )), ζτ = (x1(t̃ − 1), . . . , x7(t̃ − 1)), and J1 =
[ A 0

C D

]
and

J2 =
[ Ad 0

0 0

]
are block matrices with

A =



0 0 0

0 −

4∑
i=2

νiκi

(x∗2 + κi)2 0

0
ν2κ2

(x∗2 + κ2)2 −σ1


,

Ad =


−

(ν1 − G̃)2

ν1
0 0

(ν1 − G̃)2

ν1
0 0

0 0 0


,

C =



0
ν3κ3

(x∗2 + κ3)2 0

0
ν4κ4

(x∗2 + κ4)2 0

0 0 0
0 0 0


,

D =



−σ2 0
ν7κ7

(x∗6 + κ7)2 0

0 −Λ1 0 Λ2

0
ν6κ6

(x∗5 + κ6)2 −Λ3 0

0 Λ4 0 −Λ5


= [di j],
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where

Λ1 =
ν6κ6

(x∗5 + κ6)2 +
κ5 f κ5b[κ5bν5 f + x∗7(ν5 f + ν5b)]

(κ5 f κ5b + κ5bx∗5 + κ5 f x∗7)2 ,

Λ2 =
κ5 f κ5b[κ5 f ν5b + x∗5(ν5 f + ν5b)]

(κ5 f κ5b + κ5bx∗5 + κ5 f x∗7)2 ,

Λ3 =
ν7κ7

(x∗6 + κ7)2 + σ3,

Λ4 =
κ5 f κ5b[κ5bν5 f + x∗7(ν5 f + ν5b)]

(κ5 f κ5b + κ5bx∗5 + κ5 f x∗7)2 ,

Λ5 =
κ5 f κ5b[κ5 f ν5b + x∗5(ν5 f + ν5b)]

(κ5 f κ5b + κ5bx∗5 + κ5 f x∗7)2 + σ4.

The characteristic equation is

det[λIn − J1 − J2e−λ] = det
[
λI3 − (A + Ade−λ) 0

−C λI4 − D

]
= 0,

where In is the n × n identity matrix. Since A, Ad and D are square matrices (see, for
instance Meyer’s book [20])

det
[
λI3 − (A + Ade−λ) 0

−C λI4 − D

]
= det[λI3 − A − Ade−λ] det[λI4 − D] = 0. (3.6)

Equation (3.6) leads to

det[λI4 − D] = (λ + σ2)
{
λ +

(
ν7κ7

(x∗6 + κ7)2 + σ3

)}
(λ2 + αλ + β) = 0, (3.7)

with α = (d32 + d42) + (d24 + σ4), β = d32d24 + (d32 + d42)σ4, or

det[λI3 − A − Ade−λ] =

{
λ +

4∑
i=2

νiκi

(x∗2 + κi)2

}
(λ + σ1)

{
λ +

(ν1 − G̃)2

ν1
e−λ

}
= 0. (3.8)

Solutions of (3.7) are λ1 = −σ2, λ2 = −({ν7κ7/(x∗6 + κ7)2} + σ3), and λ3,4 are roots of
the quadratic polynomial in (3.7). Since α and β are positive, λ3,4 have negative real
parts. Consequently, all solutions of (3.7) have negative real parts. Furthermore, from
the first and the second terms of (3.8), we obtain λ5 = −

∑4
i=2{νiκi/(x∗2 + κi)2}, λ6 = −σ1,

and from the last term

λeλ = −
(ν1 − G̃)2

ν1
= a11. (3.9)

Equation (3.9) is a transcendental equation which has several solutions, all of which
can be expressed in terms of the Lambert function W(x) defined by W(x) exp
(W(x)) = x, where x can be a complex number (see [8, 32]). Since a11 < 0, we have
the following three conditions:

λ1 < λ2 < 0 if − e−1 < a11 < 0,
λ1 = λ2 = −1 if a11 = −e−1,
no real roots if a11 < −e−1.

(3.10)
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(i)

(ii)

(iii)

Figure 2. The curve for expression (3.10), when a11 < 0: (i) two different negative solutions; (ii) two
equal negative solutions; (iii) complex conjugate solutions.

Expression (3.10) is shown in Figure 2. It indicates that for −e−1 ≤ a11 < 0 all the real λ
are negative, and it generates a locally asymptotically stable solution for system (2.4).
When a11 < −e−1, oscillatory behaviours may appear in our solutions. To investigate
this, suppose that λ = λR + iλI . Substituting this into (3.9) and then separating its real
and imaginary parts, we obtain

(a) λR = a11e−λR cos λI ,
(b) λI = −a11e−λR sin λI .

(3.11)

Taking the ratio of both equations, we get

λR = −λI cot λI . (3.12)

By substituting (3.12) into (3.11)(b), we find the following relation between a11 and λI:

λI = −a11eλI cot λI sin λI . (3.13)

Following the same method as above, the relation between a11 and λR is given by

λR = a11e−λR cos
(√

a2
11e−2λR − λ2

R

)
. (3.14)

The graphs of (3.13) and (3.14) as functions of a11 are depicted in Figure 3.
For the special case when λR = 0, we have cos λI = 0 and a11 sin λI = −λI from

(3.11). Since a11 < 0, it implies that

a11 = −λI , for all λI =
π

2
+ 2nπ, n ∈ N. (3.15)

After some modifications, the dimensionless form (3.15) becomes

τ̄n = λI(1 − r)−2,

where τ̄n = τV1/K1 and r = G/V1 < 1, which is the ratio between the rate of glucose
supply and the maximum reaction rate of the first enzyme. The τ̄n is a critical delay
for the appearance of a periodic solution in the neighborhood of a steady state. Here,
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Figure 3. Plots of equations (3.13) and (3.14): the real part (top) and the imaginary part (bottom) of λ.
Dashed lines denote real solutions (λI = 0) and solid lines denote complex solutions (λI , 0). The
intersection point at a11 = −(π/2) ≈ −1.57 is the point where λI , 0, and the sign of λR changes from
negative to positive.

the stability changes due to the crossing of a conjugate of λ over the imaginary axis,
which leads to a Hopf bifurcation (see [10, Chapter 11, Theorem 1.1]).

Although the parameter τ̄ depends only on r, the (real) delay τ actually depends
on the three parameters of the first stage reaction: V1, K1, and G. Since we may
not directly change the kinetic properties of an enzyme without such interventions
as adding a molecule effector, that is inhibitor, activator, or inducer [22], the rate
of glucose supply is the only parameter that can be controlled from outside. Here
changing r means changing the rate of glucose supply in the system for a fixed kinetic
parameter of the enzyme. Experimentally, it can be changed by regulating the dilution
rate of the growth medium (glucose). By changing the medium flow rate, the growth
of the yeast can be easily controlled; for example, Heinrich et al. [12] observed the
ethanol production for different medium flow rates. As an illustration, fixing λI = π/2,
we have a graph of r with respect to τ̄ as shown in Figure 4. Note that for simplicity,
we write τ̄0 = τ̄. In this figure, we have λR = 0 along the curve, and λR , 0 off the
curve. Inspecting points off the curve, we have λR < 0 below the curve, indicating a
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Figure 4. Bifurcation diagram for a critical delay τ̄ with respect to r.

stable solution, and λR > 0 above the curve, indicating an unstable solution. These
facts allow us to design some strategies or regulations to produce a stable reaction,
particularly when delay occurs and the properties of the enzymes are known.

4. Numerical results

We present numerical simulations for three different values of r to validate the
analytic results obtained above. Simulations are obtained by using Runge–Kutta
methods for delay differential equations (see Shampine and Thompson [29] for details
about the method). We use the kinetic parameters shown in Table 1. For our
simulations, we take initial concentrations S1(t) = 3 g l−1 for all t ∈ [−τ, 0], and zero
otherwise. We choose (r, τ̄) in the regions I, II, and III in Figure 4, i.e. r = 0.3, r = 0.4
and r = 0.5, for fixed τ̄ = 4.4, respectively.

Figure 5 shows the numerical result for r = 0.3. The positive equilibrium solutions
(in g l−1) are S ∗1 = 1.04, S ∗2 = 4.71, S ∗3 = 33.18, S ∗4 = 1.35, S ∗5 = 0.92, S ∗6 = 12.60, S ∗7 =

2.66. The delay leads to an undamped oscillatory behaviour, which leads in turn to
the instability of the system. For systems without delay, all solutions tend to approach
the equilibrium solution exponentially (see the dashed lines in Figure 5). Moreover,
the delay at the first stage affects effectively the oscillations for the first three solutions
only.

For r = 0.4, we still observe an oscillatory behaviour, but effectively for the first
two solutions only (see Figure 6). The solutions are almost periodic with constant
amplitudes. For this case, the equilibrium solutions are S ∗1 = 1.62, S ∗2 = 7.14, S ∗3 =

49.78, S ∗4 = 1.35, S ∗5 = 0.92, S ∗6 = 12.60, S ∗7 = 2.66.
For r = 0.5, we obtain equilibrium solutions given by S ∗1 = 2.43, S ∗2 = 9.62,

S ∗3 = 66.38, S ∗4 = 1.35, S ∗5 = 0.92, S ∗6 = 12.60, S ∗7 = 2.66 (see Figure 7). A damped
oscillatory behaviour is observed for the first solution only; the amplitude decreases
in time. For all cases mentioned above, results from our analyses and simulations are
in agreement. An interesting observation comes from the fact that when the kinetic
parameters of the first enzyme are known, we can design the value of glucose supply
to produce a stable reaction with or without any oscillations.
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Table 1. The kinetic parameters∗ reported by Lei et al. [19] and [28].

Par Value Unit Ref.

δi 0.38 [h−1] [19]
K1 2.43 [g l−1] [28]
V1 63.07 [g g−1 h−1] [28]
K2 237.5 [g l−1] [28]
V2 648 [g g−1 h−1] [28]
K3 2 × 10−5 [g l−1] [19]
V3 0.501 [g g−1 h−1] [19]
K4 5 × 10−7 [g l−1] [19]
V4 5.81 [g g−1 h−1] [19]
K f

5 0.034 [g l−1] [19]
V f

5 2.82 [g g−1 h−1] [19]
Kb

5 0.057 [g l−1] [19]
Vb

5 0.0125 [g g−1 h−1] [19]
K6 2.64 × 10−4 [g l−1] [19]
V6 4.8 [g g−1 h−1] [19]
K7 0.0102 [g l−1] [19]
V7 0.0104 [g g−1 h−1] [19]
∗The units of the kinetic parameters
from [28] were converted by using the
molecular weight of E1, E2 in [28].

To complete our study, we consider the ratio at which the product (ethanol) leaves
the cell at the same rate as the reactant (glucose) enters the cell, i.e.

Qethanol =
δ4S7

G
.

In Figure 8 (top), we show a steady-state diagram for Qethanol as a function of G. We
observe that there is a certain supply G in which the production of ethanol achieves
a minimum production and a maximum production. For small values of G, the
ethanol production is low. By increasing G, the production also increases until it
achieves a certain supply Ḡ. However, if G increases further from Ḡ, the production
decreases. This phenomenon was also observed experimentally by Lei et al. [19] and
Postma et al. [23].

We also give the steady-state diagrams of Qi as a function of G for all products
(Figure 8 (bottom)). We observe that ethanol is not the highest product according to the
data we used. When ethanol is not the highest product, the metabolic process should
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Figure 5. Dynamic observation of metabolic system (2.3) with delay (solid line) and nondelay (dashed
line) for r = 0.3 and τ̄ = 4.4 which shows an undamped oscillation: small time (left), large time (right).
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Figure 6. Dynamic observation of metabolic system (2.3) with delay (solid line) and nondelay (dashed
line) for r = 0.4 and τ̄ = 4.4 which shows a damped oscillation: small time (left), large time (right side).
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Figure 7. Dynamic observation of metabolic system (2.3) with delay (solid line) and nondelay (dashed
line) for r = 0.5 and τ̄ = 4.4 which shows the solution converging exponentially: small time (left), large
time (right).
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Figure 8. Steady-state diagram for Qethanol as a function of G (top) and Qi as a function of G for all
products (bottom).

be regulated to achieve optimal production of ethanol. This issue can be handled by
using a metabolic control analysis, which is the subject of our ongoing research.

5. Conclusions

In this paper, we derived a mathematical model describing the delay effect on
the microbial fermentation process. The mathematical formulations presented the
transient behaviours of all metabolite concentrations. Analytically, we found a critical
delay which depends on the operating parameters of the first stage, i.e. the kinetic
parameters of the first enzyme and the rate of constant supply of glucose. This
critical delay parameter can be considered as a Hopf bifurcation point that leads to the
appearance of oscillatory behaviour in the neighbourhood of the positive equilibrium
solution. The existence of the delay in the conversion process directly changed the
dynamic behaviour of metabolic system. We found three types of regimes for the
solutions: undamped oscillations, damped oscillations, and nonoscillatory behaviour.
Numerical results showed that for a fixed kinetic parameter of the enzyme, a rate
of glucose supply which can be controlled from the outside, a stable fermentation
reaction occurred. Furthermore, there were certain supply values at which ethanol
concentration was lowest and highest.
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Appendix. The Michaelis–Menten kinetic equation for the reversible reaction

Consider the reversible mechanism for the fifth reaction

S5 + E5
k1


k−1

E5S5
k2


k−2

E5 + S7

in Figure 1. In both the forward and backward reaction, enzyme E5 catalyses the
conversion of substrate S5 to produce S7 at the same constant rate ki. The dynamics
for these reactions are modelled by the following equations:

(a)
dS5

dt
= k−1E5S5 − k1E5 · S5,

(b)
dE5S5

dt
= −(k−1 + k2)E5S5 + (k1S5 + k−2S7)E5,

(c)
dE5

dt
= (k−1 + k2)E5S5 − (k1S5 + k−2S7)E5,

(d)
dS7

dt
= k2E5S5 − k−2E5 · S7.

(A.1)

The reaction rate is given by

u5 = −
dS5

dt
=

dS7

dt
. (A.2)

To solve (A.2), some assumptions have been made to simplify the reaction system.
Briggs and Haldane [6] assumed that during the reaction, there is a certain time at
which a state is reached by the transition state (enzyme complex E5S5). It is called a
quasi-steady state condition [18], which is mathematically described as

dE5S5

dt
= 0. (A.3)

Since enzyme is neither produced nor consumed, its total concentration is always
constant, Etotal

5 = E5 + E5S5. Consequently,

dE5

dt
= 0. (A.4)

From (A.1)(b, c), by using (A.3) and (A.4) we obtain

E5 =
(k−1 + k2)Etotal

5

k1S5 + k−2S7 + (k−1 + k2)
(A.5)
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and

E5S5 =
(k1S5 + k−2S7)Etotal

5

k1S5 + k−2S7 + (k−1 + k2)
. (A.6)

Substitution of (A.5) and (A.6) in (A.2) yields

u5 = k2E5S5 − k−2E5 · S7

=
k2(k1S5 + k−2S7)Etotal

5

k1S5 + k−2S7 + (k−1 + k2)
−

k−2(k−1 + k2)Etotal
5 S7

k1S5 + k−2S7 + (k−1 + k2)
. (A.7)

Rewriting this equation in terms of V f
5 , V

b
5 , K f

5 , and Kb
5 , with V f

5 = k2Etotal
5 , Vb

5 =

k−1Etotal
5 , K f = (k−1 + k2)/k1, and Kb

5 = (k−1 + k2)/k−2, we get the reaction rate for the
reversible reaction as

u5 =
V f

5 S5Kb
5 − Vb

5 S7K f
5

K f
5 Kb

5 + Kb
5S5 + K f

5 S7

=
V f

5 S5

K f
5 + S5 + (K f

5 /K
b
5 )S7

−
Vb

5 S7

Kb
5 + S7 + (Kb

5/K
f
5 )S5

= v f
5 − vb

5.

The constants V f
5 and Vb

5 are the maximum velocity for the forward and backward
reactions, respectively. K f

5 and Kb
5 are the Michaelis constants. In both cases, the

denominator includes an extra term that shows that S5 and S7 are in competition for
the same enzyme. Thus each ‘substrate’ exhibits a competitive inhibition effect on the
utilization of the other. For S5 = 0 or S7 = 0, the expression for v f

5 or vb
5 yields the

Michaelis–Menten equation for an irreversible reaction.
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