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ApstrACT. The effect of a basal water layer on the equilibrium dimensions of an ice sheet is examined.
A thick water layer can decrease the equilibrium thickness of an ice sheet such as covers Antarctica (which
contains no significant ablational areas) by a factor of the order of 2. Similar large changes in the equilibrium
dimensions occur for ice-age ice sheets (which have extensive ablation areas). The extent of the ablation area
of an ice-age ice sheet which may be covered with morainal debris is also calculated.

Risume. Effet d’une couche d’eau basale sur les dimensions d’un indlandsis. 1’effet d’une couche d’eau basale sur
les dimensions d’équilibre d’un indlandsis est étudié. Une couche d’eau épaisse peut diminuer 1'épaisseur
d’¢équilibre d’un indlandsis tel que celui qui couvre I’Antarctique (qui ne posséde pas de zones d’ablation
significatives) par un facteur de I'ordre de 2. Des changements importants similaires des dimensions d’équilibre
affectent les indlandsis des anciennes glaciations (possédant des zones d’ablation importantes). L’auteur
calcule aussi Pextension de la zone d’ablation d’un ancien indlandsis pouvant étre couverte par des débris
morainicues.

ZUSAMMENFASSUNG. Einfluss einer Wasserschicht am Untergrund auf die Dimensionen von Eisschilden. Es wird der
Einfluss einer Wasserschicht am Untergrund auf die Gleichgewichtsdimensionen eines Eisschildes untersucht.
Eine dicke Wasserschicht kann die Gleichgewichtsdicke eines Eisschildes wie des antarktischen (der keine
merklichen Ablationsgebiete enthélt) um einen Faktor von der Gréssenordnung 2 vermindern. Ahnlich
grosse Anderungen in den Gleichgewichtsdimensionen kommen eiszeitlichen Eisschilden zu (die ausgedehnte
Ablationsgebiete besitzen). Die Grisse des Ablationsgebictes eines eiszeitlichen Eisschildes, der mit
Morinenschutt bedeckt sein kann, wird ebenfalls berechnet.

INTRODUCTION

This paper is an extension of a previous article (Weertman, 1961[c]) which analyzed the
stability of ice sheets. Since the 1961 article was written there has been a new development
relevant to ice sheet stability. It is the purpose of the present paper to incorporate this develop-
ment into the analysis.

It now is clear that a water layer at the bottom of a glacier or an ice sheet may be able to
influence profoundly the velocity at which the ice slides over its bed (Meier, 1960; Elliston
[Union Géodésique et Géophysique Internationale], 1963, p. 65-66; Paterson, 1964 ; Ostenso
and others, 1965; Friese-Greene and Pert, 1965; Weertman, 1962, 1964; see, however, Meier,
1965). Therefore, an analysis of the stability of ice sheets must consider the effect of a basal
water layer.

We also shall undertake a quantitative examination of a recent ice-age theory of Wilson
(1964) which involves an extensive spreading out of the Antarctic Ice Sheet in a relatively
short time period. This spreading is assumed to occur when the bottom surface of the ice sheet
reaches the melting point. Wilson’s theory is purely descriptive. Only by developing it
quantitatively can its plausibility be established.

Finally, I wish to determine the extent to which the top surface of an ice-age ice sheet may
be covered by morainal material. The stability of ice-age ice sheets obviously is affected by a
widespread morainal cover.

Throughout this paper it will be assumed for the sake of simplicity that an ice sheet is
uniform in cross-section and infinitely long in one direction. Thus, the ice sheet problems
treated are two-dimensional ones. A further simplification will be made by developing the
analysis using the perfect plasticity approach to glacier mechanics. This approach has one
great advantage over the more nearly exact theory of glacier mechanics. Meaningful results
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can be obtained without unduly complicated analyses. The next section will show how the
more precise theory of glacier mechanics can be recast into the perfect plasticity theory.

Two varieties of ice sheets will be treated in this paper. One of these is the Antarctica type
of ice sheet which contains no significant ablation areas. The other is the ice-age type of ice
sheet, characterized by extensive ablation areas.

AntarcTicA TYPE ICE SHEET

~ An Antarctica type ice sheet contains no significant ablation areas. Its size is limited by the
extent of its land base. The profile of such an ice sheet is found easily from a mass balance
argument (Nye, 1959; Weertman, 1961[a], 1961[c]). Suppose that the accumulation rate a
(given in equivalent of high-density ice) is constant. Between the center of an ice sheet and a
point x (see Figure 1) an amount of ice ax is deposited in a unit time per unit length of ice
sheet. If the ice sheet is in a steady-state condition, a like amount of ice must flow past the
point x. The quantity ax thus equals the product of the average ice velocity and the ice

thickness.
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Fig. 1. Cross-section of an ice-age ice sheet. The ice sheet is made inlo one of the Antarctica type by eliminating the ablation zone
through setting R = L and Hy = ho = hs = 0

The ice sheet shown in Figure 1 rests on a land surface which originally was flat but now
is depressed because of the weight of the ice sheet. The ice elevation above the original land
surface is £ at point x. The lower surface is at a depth A below the original surface. This
amount of isostatic depression occurs because the rock of the Earth’s crust is approximately
three times denser than ice.

Under steady-state conditions the average velocity v of the ice at x is given by

vh = 2ax(3. (1)

The average ice velocity v arises from creep deformation within the ice sheet as well as
from sliding at the bottom. Both of these mechanisms lead to the following approximate
equation (Nye, 1959; Weertman, 1961[a], 1961[c])

v == B(1[70)™ (2)
where 7 is the shear stress acting at the bottom, m is a constant of the order of 2 to 3, and B
and 7o are constants. If 7, is set equal to 1 bar, a reasonable value of B is 8o m./yr. if (normal)
sliding occurs and 40 m./yr. if no sliding occurs and if the ice in the lower part of the ice sheet
is within approximately 5° to 10°C. of the melting point.

Equations (1) and (2) can be combined in the following

him+vim dhldy = —(2ax/3B)1/™(270/3pg) (3)
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since the shear stress 7 is equal to 3pgh|dh/dx|/2. Integration leads to

/ /
hemtnim — H(zm+1)lm7(ﬂ) ( 27“) (3"')I mx(m+.1!m
m—+1 )\3pg/\3B

_ 2m-+1 27e) [ 24 1m{[‘(mﬂ)«’m_ximﬂlf‘m}
m+1 /\3pg/\3B

where 3H/2 is the total thickness of the ice sheet at its center and L is the half-width of the
ice sheet.

The profile of an ice sheet predicted by perfect plasticity theory is obtained by setting m
equal to infinity. This profile is

h* = H*—(47/3pg) x = (47/3pg) (L—x) (5)
where 7 has replaced 7.. In perfect plasticity theory 7 is the stress level below which no plastic
deformation can occur and above which an infinite amount occurs. The stress 7 is the shear
stress acting at the bottom of an ice sheet.

Equation (5) is a much simpler equation than (4). I would like to retain the simplicity of
this equation and others analogous to it and yet, somehow, maintain the greater accuracy of
equation (4). Both of these desires may be satisfied to a large extent by the compromise of
using equation (5) and analogous equations but adjusting the value of = so that both equations
(4) and (5) give the same thickness at the center of an ice sheet.*

(4)

2 fa\ 2] i/ zmtr)
Thus PR oo mﬂ) P_g_L) 3) (6)
2m—+2 Qm_}_l‘ 37o B
am—41\}[ fam+-2 plgL') [ a\ 2]/ tamta)
— .4 I3 “
and H= 1L (2m+2) [(2m+ [)(31_" (B) ] . (7)

Application to Wilson’s ice-age theory : Wilson (1964) assumed that the Antarctic Ice Sheet
will spread out rapidly (as a floating ice shelf) once its bottom surface reaches the melting
point. His assumption is based on Robin’s (1955) theory of catastrophic glacier advances.
When the bottom of an ice sheet previously frozen to its bed reaches the melting point and
thus becomes able to slide, the effective value of = decreases since B increasest roughly by a
factor of 2. According to equations (5) and (6) the ice thickness & diminishes by a factor of
(3)v3m+0 ~ 1/1-123, a 12 per cent decrease. In other words the effect of reaching the
melting point is the same as would be obtained by perturbing the equilibrium thickness of
the ice sheet by 12 per cent. A perturbation of this magnitude in the thickness of the Antarctic
Ice Sheet would require a time period of the order of 5,000 yr. to be removed (Nye, 1959).
It hardly seems possible therefore that the Antarctic Ice Sheet will spread out rapidly into
vast floating ice shelves as required by Wilson’s theory if the ice sheet slides with normal
sliding velocities.

Effect of a water layer: The sliding velocity of an ice sheet can be increased greatly if a
water layer of appreciable thickness is present at the bottom. According to theory the sliding
velocity increases by a large amount when the water layer thickness becomes comparable to,
or larger than, the “controlling obstacle size” of sliding (Weertman, 1962, 1964). The

* Since 2m -+ 1 =~ 6 the shear stress 7 is roughly constant. Its dependence on B will be taken into account
throughout this paper. However its dependence on such quantities as accumulation rate will be ignored. It will
become obvious how results such as are plotted in Figure 2 through 6 can be modified so as to take into account
the dependence of = on these other variables.

t This increase would occur if the temperature at the bottom surface changed from slightly below the freezing
point to the freezing point. Larger changes in B will oceur if the temperature change is larger since the creep rate
of'ice increases by a factor of 2-5 for a temperature increase of 10°C. (calculated using an activation energy of
creep of 14,000 cal./mole). However, it is expected that a temperature rise at the bottom surface would occur
gradually. The rapid change in B that is required by Wilson’s theory would only take place once the freezing
point is reached.
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controlling obstacle size A depends on the applied shear stress and is given by the equation
A=Clr (8)
where C is a constant. The constant C depends on the roughness of the bed, being smaller the
smoother is the bed. Therefore it is difficult to ascribe an exact value to C; its value ought to
be of the order of 0* 4 cm. bar (Weertman, 1964).
The thickness D of the water layer is given by equation (4A) of the Appendix:

D =~ (12pU]pg|dh|dx|)? (9)
where p is the viscosity of water and [/ is the volume of water in the water layer moving past x
in unit time, per unit length of the ice sheet. When only a negligible amount of heat is con-
ducted down the temperature gradient within the ice sheet, the volume U equals

U= [(Q+ISrTDIH*) ds (10)

where Q is the geothermal heat, § is the sliding velocity, 7 is the mechanical equivalent of
heat, and H* is the latent heat of melting.

Under steady-state conditions S7 = Bpgax|dh/dx|, where 8 is equal to } if about one-half
of the ice motion is due to sliding and is equal to 1 if almost all of the ice motion is due to
sliding. Hence

U = (QxIH)+ (BogalgH?) || hds—he{. ()
If equation (5) is used to determine A, this equation reduces to
U = (Qx/H*)+(2Bpgal3TH*) (4713pg)* LI[1 — (1 —x/L)} (1 +-x/2L)] (12)
and the heat of sliding Q¢ is
Qs = 87|F = Prax[h] = Pax(37pg|4)}[F(L—x) (13)

Equation (12) can be simplified if the mean value of £, which is equal to 2H[3, is used in the
expression for Qs:
‘ U o (Q/H¥)+ (38ra | JHHY) (14)
According to theory (Weertman, 1964), when the water layer thickness D is equal to or
Jarger than the controlling obstacle size A the sliding velocity is one or more orders of magni-
tude larger than normal. The sliding velocity S is given by
S =~ (10BD70/C) (7| 70)3. (15)
Since this equation is of the same form as equation (2) the increase in the sliding velocity can
be considered as caused by an increase in the effective value of B in that equation. For an
equilibrium ice sheet the effective value of the shear stress = of perfect plasticity theory may
be regarded as reduced when a thick water layer is present. In those regions where a thick
water layer is present the effective shear stress 7* acting at the bottom can be obtained by
combining equations (2), (6) and (15) and setting 2m+1 = 6.

* o~ 7(Cl10D70)} when D = 4 (16a)
and g = when D < A (16b)
where 7 is the value of the shear stress when the water layer is very thin. A combination of
equations (16a) and (9) leads to

* = 7(C[1070)}(7*/ 120 UR)"2. (17a)
Since 7* depends on I/ and £ only to a §th power this stress is virtually independent of these
variables. Therefore it is reasonable to approximate v* by

* — 7| M (17b)
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where M is a constant greater than 1. For + = 7, = 1 bar, D must be equal to or larger than
C/ when equation (16a) is valid. Hence M must be larger than (10)* =~ 2. Another estimate
of M can be obtained from the velocity of catastrophic glacier advances if it is assumed that
these rapid advances are indeed caused by a thick water layer (Weertman, 1962). The
velocities of these advances are larger than normal velocities by a factor of 50 to 100. Therefore
M should be of the order of 50! to 100! or approximately 4. A reasonable estimate for M is a
value in the range from 2 to 4.

Ice-sheet profile for thick water layer: Consider an ice sheet whose bottom surface everywhere
is at the melting point. The water produced at the bottom flows outward and at a distance A
from the center is of a sufficient thickness that D = A. The ice sheet profile is found by
setting 3pgh|dh/dx|[2 equal to 7 or to +* and integrating. The profile is given by

B = H'—(47[3pg) x o0=x =]
K = H'—(47/3Mpg) (x-+[M—1] X) = (47/3Mpg)(L—x)  (x = X)

where H = (47/3Mpg) L+ [M—1] N = (4mav Lj3pg)".
Here 74y = L~'[A7+(L—A) 7*] is the average value of the shear stress over the whole of
the bottom of the ice sheet.

An approximate profile of the ice sheet can be obtained if it is assumed that the shear
stress is constant everywhere and is equal to 7ay. This profile is given by the equations:

h* = H*—(47av/3pg) X = (47av/3pg) (L—2). (18b)
The distance A can be estimated by combining equations (8), (g) and ( 14) and making
the approximation that pg|dh/dx| ~ 2+/3H. Thus

(18a)

A = (G H*|97* pHQ ) [{1+[x+(2aC? H*|3FH* Q? u7)]H. (19)
Should the geothermal heat be the predominant factor in equation (14) this equation
reduces to
A= 3 H*[187 uHQ. (20a)
On the other hand if the heat of sliding predominates equation (19) reduces to
A = (C3 FH*[54pB7 a)*. (20b)

If in these equations A should turn out to be greater than L of course the water layer does
not affect the ice sheet. If A < L the ice thickness H will vary between (47/3Mpg)* and
(47/3pg)* as A varies between 0 and L. Since M ~ 2 to 4 it can be seen that the presence of
a water layer could reduce the equilibrium ice thickness by a factor of 1 "4 to 2 from the value
it would have if the ice sheet were frozen to its base. A change of this magnitude is no longer
a small perturbation and it could very well lead to the kind of catastrophic spreading of an
ice sheet envisaged by Wilson in his ice-age theory. It should be strongly emphasized, however,
that since the value of the constant € appearing in the sliding velocity equations is not well
known (and since the sliding theory itself is not yet established (or disproved) through
experimental and field work) one cannot, at the present time, make a reliable prediction as to
whether or not the catastrophic spreading of an ice sheet can occur.

It also should be emphasized strongly that even if catastrophic spreading takes place it
still remains unlikely that the very extensive ice shelves which are required in Wilson’s theory
will be formed. A catastrophic spreading is likely to take place at velocities found in catastrophi-
cally advancing glaciers. These advance at speeds of the order of 10 km. /yr. Hence it would
require 50 to 100 yr. for the Antarctic Ice Sheet to spread. There appears to be no reason why
the mechanisms which operate today to bound this ice sheet and its ice shelves to within
continental limits cannot keep pace with an advance that occurs over such a long period of
time,

The constant (' is determined by the degree of roughness of the bed of the ice sheet. If we
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choose the value of ¢ which is required to predict reasonable sliding velocities in glaciers
(C = 0.4 cm. bar) and if we take 7 to be 1 bar, equation (20a) predicts that A = 600 km.
Here we have used the values p = 5-7 %1071 bar yr. = 0-018 dyn. sec./cm.?; H* = 8o
cal.Jem.3; F = 41-8bar cm./cal.; Q = 40 cal./cm.2yr.; and H = 2 km. Equation (20b) predicts
that A = 230 km. if 8 = } and a = 20 cm.[yr., while equation (19) gives A = 190 km.
Since this last value of A is much smaller than L for the Antarctic Ice Sheet the water layer
effect obviously could be of great importance to this ice sheet. Consequently, that part of
Wilson’s ice-age theory which invokes a wide spreading of the Antarctic Ice Sheet cannot be
dismissed lightly.

Ice-Ace TypE IcE SHEET

For an Antarctica type ice sheet variables such as the accumulation rate and the condition
of the bottom surface influence only the thickness of the ice sheet and not its horizontal extent.
In contrast an ice-age type ice sheet’s horizontal dimensions, as well as its thickness, are a
strong function of accumulation and ablation rates and of the clevation of its snow line
(Weertman, 1961[c]). For certain ranges of these variables an ice-age ice sheet cannot even
exist. In this section I will extend the previous results to cover the situation in which a thick
water layer exists at the ice-sheet bottom. The results will be developed using perfect plasticity
theory rather than the more nearly exact theory used in my previous paper.

It can be shown* that the perfect plasticity approach gives a shear stress = which is
essentially the same as that calculated in the last section.

Consider now how the profile of the ice sheet of Figure 1 may be calculated. It is assumed
that the right-hand (southern) side of this ice sheet has an accumulation area wherever the
upper surface is higher than the snow-line elevation. The snow-line elevation A is given by

hs = hots(L+x) (21)

where s is the rate of rise of the snow line and ko is a constant. An ablation area occurs whenever
the upper ice surface is beneath the snow-line elevation.

The left-hand (northern) side of the ice sheet is assumed to have no ablation area. The
northern half of Figure 1 is of the Antarctica type and it loses its surplus accumulation through
flow into the ocean.

In the accumulation areas the accumulation rate @ will be taken to be a constant;
in the ablation areas the ablation rate a likewise is a constant. Both a and @ are positive
quantities. Let H, represent the elevation of the intersection of the upper surface with the
snow-line elevation ks; let the elevation & of the upper surface again be given by equation (5);
let ¥+ — R be the horizontal distance at which & = h¢ (Fig. 1). Thus

H = ho+s(L+R) = (47/3pg) (L—R)* (22)

* For example, consider a symmetric situation in which the snow-line elevation is given by hs = s|x| for
both the right and left hand sides of Figure 1. The ice-sheet profile obtained from the analysis that previously

led to equation (4) now gives
HGm+oim — REEL (B E r Ltm+dim
m-+1 J\3pg/\3B

- \zmiiim fom 1 1 270 a2q\Vm /g a
L= ()" GGG @)

The effective stress = corresponding to equation (6) now is
am-+1\[f2m b2\ (pgl\/ a\*/ a \*"|"emn
=G E6) @)
am+1\/ 2a \tm/ a \Vmti,
-G
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When the ice sheet of Figure 1 is in equilibrium the total ice accumulation aR on its right-
hand side must equal the total ablation a(f.— R). Hence

R = all(a+ta). (23)
Combining the last two equations gives rise to the following equation for L:
L = W1 —(h[X) £ [1—(2ha'[X']5} (24)
where A = 4rala+-a)[3s* pgla+24)?
and he' = 2ho(a-ta)[s(a+2a).

When h, is less than zero there is one solution of this equation for L (with a positive value).
When A, is greater than zero there is either no real solution for L or there are two solutions.
In the latter case it was shown previously (Weertman, 1961[c]) that the larger value of L
represents a stable equilibrium ice sheet whereas the smaller value represents an unstable
equilibrium ice sheet. By the terms “stable” and “unstable™ is meant the following: If the
value of L were different than that given by equation (24) the right-hand side of the ice sheet
would have a total budget surplus or deficiency. Therefore L must change with time, Near a
stable equilibrium value of L the total budget is such that the ice sheet will shrink with time
if the half-width is greater than the equilibrium value and it will grow if the half-width is
smaller than the equilibrium value. The opposite behavior occurs when the ice sheet is near
an unstable equilibrium value of L. It is impossible for a nonequilibrium ice sheet to adjust
[. with time to the unstable equilibrium half~width.
If 4 is equal to zero,

L = gra(a+a)|[3s* pgla+2d):. (25)

This value of L represents the half-width of a stable equilibrium ice sheet.
When the radical of equation (24) is imaginary no real solution of I, exists. Therefore an
ice-age ice sheet cannot exist whenever

hos(a+2a)la > 7[3pg. (26)

Effect of water layer: The existence of a thick water layer under cxtensive regions of the
bottom surface of an ice sheet causes a modification in the ice-sheet profile. Let the modified
profile be given by the approximate equation (18h). The half-width £ of the ice sheet is given
by equation (24), provided that 7,y is substituted for 7 in that equation. The average stress
Tav 18

Tay = (/L) (A+[L—A]IM) (27)
il = A
When Ao — 0 and A <€ L the half-width L is
L = gra(a+a)[3Ms? pgla-t2q)2. (28)

When this equation is compared with equation (25) it can be seen that the existence of a
water layer reduces the equilibrium half-width by a factor of M ~ 2 1o 4.

The general solution for . is found most casily by a graphical method. This method is
illustrated in Figure 2. One curve in this figure is a plot of 74y versus L. The stress 74, is found
from equation (27) using the values A = 250 km., M = 4, and 7 = 1 bar. The other curves
arc plots of = versus L obtained from equation (24). The curves are plotted using £, — g00 m.
and s = 1073 for various ratios of d/a. Figure 3 shows a plot similar to Figure 2 except that
various values of ki, are employed for a constant ratio d/a — 2. The equilibrium widths are
given (approximately) by the intersections of the sets of curves. For any onc curve of 7 versus L
the intersection with the smaller L gives the unstable equilibrium half-width whereas the
intersection with the larger L is the stable equilibrium half-width. If there is no intersection
the ice sheet cannot exist for those particular values of /i, s and d/a.
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Fig. 2. Plots of + versus L given by equation (24) for various values of dla and constant values of ho and s. Also plotted is vy
versus L given by equation (27) for + = r bar and A = 250 km.
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Fig. 3. Same plot as Figure 2 except that ho is varied instead of afa
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When A =~ 0 the inequality corresponding to inequality (26) is

ho s{a+2d)/a > 7/3Mpg. (29)
If the inequality holds, an ice sheet with a thick water layer almost everywhere at its bottom
surface cannot exist. Upon comparing inequalities (26) and (29) it is seen that the effect of
the water layer is equivalent to reducing the accumulation rate or increasing the ablation
rate or increasing fo or s by a factor M =~ 2 to 4. These are large equivalent changes in these
quantities. It is clear that the presence or absence of a thick water layer at the bottom of an
ice-age ice sheet is of extreme importance to the very existence of the ice sheet.
From plots such as Figures 2 and § it is possible to obtain curves of the half-width L versus
parameters such as ko, etc. Figure 4 shows the relationship between I and h, and Figure 5

3000 T I T
da=20
$= 1073
A =250 km.
s M= 4 —
2000 =
L,km | -
TETyy, T =1 bar

( WATER LAYER) (NO WATER LAYER)

1000 —

] 1
g 0

-500 500 1000

ho, M
Fig. 4. Plot of half-width L versus ho for constant values of dla, s and A

between L and d/a. In both figures the curves are drawn for the two cases of a thick water
layer present and a thick water layer absent. It can be seen that in general the presence of the
water layer causes the stable equilibrium half-width to decrease by a factor 2.

Figures 6 and 7 show plots of /i, versus d/a for constant values of the half-width L. The solid
curves in these figures indicate the half-width for the case in which there is no thick water
layer. The dashed curves give L when there is a thick water layer beyond x = A = 250 km.
No ice sheet can exist in the region above the heavy solid line; and no ice sheet whose bottom
surface has a thick water layer everywhere (that is, A = 0) can exist in the region above the
heavy dashed line in these two figures. The change in the half-width of an ice sheet when it
reaches the melting point is found in Figures 6 and 7 from the intersections of the solid lines
with the dashed lines. Again it can be seen that a water layer can lead to a large reduction
in the equilibrium half-width.

Effect of a permeable bed: T have assumed so far that the bed of an ice sheet is impermeable
to water. This is a reasonable assumption for major areas of the ice-age ice sheets of N. America,
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Europe and Asia. These ice sheets were centered on ancient crystalline shield areas whose
rock is rather impermeable.

Suppose an ice sheet were to rest on a permeable (or fractured) rock bed of uniform
thickness D* which is underlaid by impermeable rock. Water will flow through this permeable
layer. The amount of flow can be found by using Darcy’s law. It states that the volume of fluid

3000 T T T

s=107

hg=300m,

X\ #250 km.

M4 =1

2000

T=1bar —‘

(NO WATER LAYER)

L, km.

T=T,

a
1909 (WATER LAYER)

(=1]=1}

Fig. 5. Plot of half-widith L versus ala for constant values of he, s and A

1000

o P

-1000

-2000

alai

Fig. 6. Plot of ho versus dla for constant values of L. The solid curves represent the case of a thin water layer and the dashed
curves for a thick water layer
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Fig. 7. Same plot as Figure 6 but on a different scale

flowing through a porous solid is proportional to the pressure gradient, the cross-sectional

arca and the inverse of the viscosity of the fluid. The constant of proportionality A defines the
permeability of the solid.

The water flow U* through the permeable layer at an ice-sheet bed thus will be given by

U* = KD* pga/u (30)

where p is the viscosity of water and pgoe = pg|dh/dx| is the pressure gradient at the base

of the ice sheet (see the Appendix). The volume of water flow U in the water layer at the
base is given by either equation (3A) or (g). It is

U= D3 pgaji2p (31)
where D is the water-layer thickness. From a comparison of these last two equations it is seen
that when

D* < D312K (32)
water flow in the basal water layer is more important than flow through the permeable zone.
As an illustrative example, suppose that the permeable rock has a permeability of a typical
oil sand. Thus K ~ o-1 Darcy ~ 1077 cm.? (Krumbein and Sloss, 1963, p. 120). If D is
greater than about o-4 cm. then D* would have to be thicker than o-5 km. before the
permeable zone could present a ‘“short-circuiting™ path for the water flow and thus prevent
the water-layer effect from occurring. One may conclude that an ice sheet can rest on a
fairly permeable and thick stratum without the occurrence of an appreciable decrease in the
thickness of its basal water layer. Of course near the edge of an ice sheet where ice may rest
on highly permeable, unconsolidated till a thick water layer is not expected to exist.

FracTion or ABLATION AREA COVERED BY MORAINAL MATERIAL

The rate of ablation of an ice-age ice sheet would be affected strongly by the amount of
morainal material at its top surface and the extent of the area covered. Morainal material
can be incorporated into an ice sheet through a freezing of melt water at the bottom surface
(Weertman, 1961[b]). It is conceivable that the water layer of an ice sheet can affect its size
and stability indirectly through this process. The following chain of events might occur. A
small, unstable ice sheet may grow from a small to a large size with its bottom surface every-
where below the freezing point. The larger and thicker the ice sheet becomes the more
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probable is it that at the bottom of its central region the temperature will rise to the melting
point (Robin, 1955). When this happens sliding occurs there. The geothermal heat and the
heat of sliding melt ice from the bottom. (The geothermal heat ~4o cal./yr. can melt ~o0-5
cm.? per cm.3 of ice per year. A sliding velocity of 8o m. per year under a 1 bar shear stress
can produce sufficient heat to melt about g cm.3 of ice per cm.z.) The water so produced
flows towards the edge. The temperature gradient nearer the edge can be sufliciently large
so that more heat can be conducted away than is produced by sliding or from the geothermal
supply. In this region under these conditions water will freeze to the bottom of the ice sheet
(Weertman, 1961[b]). Rock particles eroded from the bed and being pushed to the edge by
the sliding motion will become frozen into the ice sheet. This process is illustrated in Figure 8.
The thickness of the layer of “dirty” ice containing morainal material is calculated easily.
Ice is melting at the bottom surface of the central region of the ice sheet of Figure 8. The
debris layer produced in the center by erosion must therefore be of insignificant thickness.
The ice at the bottom surface in this region has a velocity component downwards and it is
impossible to bring dirt and rock particles up into the ice mass.

Within the freezing zone of Figure 8 the ice at the bottom surface has a velocity component
upwards. A thick layer of debris-filled, dirty ice can be created here. For simplicity suppose
that the amount of water being frozen to the ice sheet per unit time and area in the freezing
zone is a constant everywhere and is equal to »’. Assume also that 2 is much smaller than e or 4.

The ice velocity in the vertical direction at the bottom surface must equal (8y/0t),o = ¢’
at the bottom surface, where y is measured from the bottom surface. The vertical ice velocity
when » # o is simply

ot = v'—é (33)
where € is the longitudinal strain-rate. The strain-rate is approximately equal to the accumu-
lation or ablation rate divided by the ice thickness for an equilibrium ice sheet. In the accumu-
lation zone € =~ 2a/3h and in the ablation zone € =~ —2d/3k.

Integration of equation (33) yields the thickness of the debris-filled layer of dirty ice. It is
necessary to know only the elevation of a piece of ice which originally is frozen to the ice sheet
at x = x*, where x* is the boundary position (Fig. 8) separating the regions where ice is
melted from the ice sheet and water is frozen to the ice sheet. Let ' represent the elevation
above the bed of the top of the debris layer of dirty ice. Let S’ represent the horizontal
velocity at y = 3. Equation (33) can be rewritten as

o fot = 8 &' [ox = v'—¢. (34)
Consider the left-hand side of the ice sheet of Figure 8. It contains only an accumulation

FREEZING MELTING FREE ZING

" .
DEBRIS FILLED ICE

*

'/ ROCK

Fig. 8. Cross-section of an ice sheet containing morainal material

https://doi.org/10.3189/50022143000019213 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019213

EFFECT OF BASAL WATER LAYER ON DIMENSIONS OF ICE SHEETS 203

area and hence the debris layer always is under an accumulation area. In this region
§" = yax|/gh — yv where v is the average ice velocity and y is the ratio of §’ to ». The value
of 8 is approximately } to 1. The distance x is considered to be positive quantity. Equation
(34) can be rewritten as

Y dy'[dx = (3hv'[2ax) —(¥'[%) (35)

2y = (3h'[2a)[1— (x*[x) "] (36)

if & and v are assumed to be roughly constant.

As x increases the thickness of the ice layer containing morainal material reaches the value
gho'[2a. This thickness can be appreciable. For example, if 2" = 1 to 3 cm./yr., a = 20 to
40 cm./yr., and h = 2,000 meters, the thickness of the dirty ice layer »* is between 75 and
450 m. This calculated thickness is of the same magnitude as the (presumed) morainal layer
measured using seismic techniques in Antarctica (Bentley and Ostenso, 1961; Behrendt, 1963;
Bentley, [ ¢1964]) or measured directly through a bore hole in a thin portion of the ice sheet
near its edge (Yevteyev, 1964). The theory leads, therefore, to reasonable results.

Consider next the thickness of the dirty ice layer in the right-hand side of Figure 8. Assume
that x* lies beneath the accumulation zone as shown. When x* = x = R equations (35)
and (36) are still valid. Beyond x > R equation (35) is replaced with

Y dy'[dx = [(3hv'[2a) +y']/(L—%) (37)

since 8 = (2v/3h)[aR—a(x—R)] = (2vd[sh)(L—x). If h and vy are assumed again to be
roughly constant the solution of this equation is

y' = [(3hv'[28) +5'o] (L —R) [(L—x)]"'Y— (3h' [22) (38a)

where y'o is the thickness of the debris-filled layer at x = R. This last equation can be written
in the form

which has the solution

¥ = (3hv'[2a){[(afa) +1—(x*|R)¥][(L—R) [(L—x)]"'Y—(a]d)}. (38D)

The layer of ice filled with morainal material reaches the upper surface at the point at
which 3 = gh/2. Thus, the horizontal distance x = R* at which this happens is
approximately*

L—R* = (L—R){[(a/@)+1— (x*/R)"/"]|[(2a/30") +-(ala)}". (392)

If the start of the freezing zone lies under an ablation area (x* > R) this last equation is
replaced by

L—R* = (L—x*)|[(2a/3v")+1]. (39b)

When a/@ and x*/R are small, the ratio of the area covered by morainal material to the
total ablation area approximates

(L—R*)|(L—R) =~ (3v'[20)". (40)

The arca covered by morainal material can be appreciable. For example, if " =1 to 3
cm./yr., a = 20 to 40 cm./yr., and ¥ = } to 1, the ratio given by this last equation ranges
from about 0-04 to 0.5 (4 to 50 per cent).

* Another expression for the fraction of ablational area covered by morainic debris is found using a mass
balance argument. Let @* represent the ablation rate in the region R¥ < x = L which is covered with morainal
material and let @ represent the ablation rate elsewhere. At equilibrium aR = a(R*—R)4-a*(L—R) if the
amount of water escaping from beneath the ice sheet is negligible. The amount of ice 4%(L— R*) which is melted
in the morainal region B* < x = L must equal »’(L—x*). Combining these expressions gives

(L—R¥)[(L—R) = [a@'(L—x*)/a*]/[aR+{o"(L—x*) (@—&*)[a*}].

When a* < a the ratio (L—R*)/(L—R)=1; when a* »d, (L—R*)/(L—R)= a'(L—x*)/ad* R; and
when @* = a, (L—R*)/(L—R) = v’(L—x*)/aR. The fraction of the ablation arca covered with debris can
range from o to almost 1.
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Even if x* > R the ratio (L—R*)[(L—R) can still be appreciable. In this situation
equation (39b) becomes

(L—R*)[(L—R) == (3¢'|2a)"(L—x*)/(L—R). (41)

For o/ =1 to gem./yr,, a=4 to em.[yr, y= } to 1 and (L—x*)/(L—R) = {, this ratio
lies between 0-002 to 015 (0+2 to 15 per cent).

The results of this section show that it is possible to have an appreciable fraction of the
ablation area covered by morainal debris if water is being frozen to the bottom surface of an
ice sheet. A water layer can influence the size of an ice sheet indirectly through this freezing

process.

DiscussioN AND SUMMARY OF RESULTS

The results of the analysis show that a water layer can have a profound effect on Antarctica
and ice-age type ice sheets. When a thick water layer is present the average shear stress at the
bottom of an equilibrium ice sheet must be smaller than normal. The reduced shear stress
requires that the thickness of the ice sheet be reduced. For an ice-age type ice sheet the
horizontal extent is reduced as well.

Unfortunately, it is not possible to obtain from the analysis a reliable estimate of the
importance of the water-layer effect to the Antarctic Ice Sheet or the ice sheets that formerly
covered parts of North America, Europe and Asia. The reason for this uncertainty is that
quantities appearing in equations in the theory such as roughness of the bed are not well
known. Moreover, the analysis is based on a sliding theory which awaits verification or
disproof. At the present time it is not possible either to dismiss the water-layer effect or to
accept the premise that it inevitably will produce, or has produced, large changes in the
dimensions of ice sheets. In the future the uncertainty will be removed when field and experi-
mental work lead to a firmer understanding of the sliding of glaciers and the effect of a water
layer on this sliding.

Phenomenological arguments can be advanced in favor of the idea that a water layer is
important to ice sheets. It seems certain now that the velocity fluctuations of glaciers arise
from wvariations in the amount of surface melt water which reaches the bottom surface. The
sudden, rapid advances (catastrophic advances) of some glaciers seems inexplicable except by
some kind of water-layer effect. It is to be regretted that little field work has been done on
rapidly advancing glaciers. An understanding of catastrophic advances is one of the more
important problems remaining to be solved in glaciology. If glaciers exhibit phenomena such
as rapid advances which may be produced by water layers, there is no reason why ice sheets
may not show the same effect. In fact, from the equations developed in this paper it can be
seen that if all other factors remain constant the larger is an ice sheet (or glacier) the more
likely is the water-layer eflect to become important.

The very fast velocity of the Jakobshavn Isbra (Bauer, 1961) which drains part of the
Greenland Ice Sheet (its maximum velocity, ~5 km./yr., is of the same magnitude as those
of catastrophically advancing glaciers) may be evidence that a water-layer effect is playing an
important role at the present time in the mechanics of this ice sheet. Salinity studies of the sea-
water in the immediate vicinity of the end of this glacier presumably could establish whether
or not there is an appreciable water flow at its base.

Should the water-layer effect be important the Antarctic Ice Sheet may very well go
through the cycle pictured by Wilson (1964). In part of the cycle the ice sheet is frozen to its
bed. In this stage the ice thickness builds up because the shear stress at the base is relatively
high when the ice sheet is in equilibrium. The thicker the ice sheet becomes the more probable
is it that the bottom surface will reach the melting point. If the water-layer effect occurs at
this stage the ice sheet must reduce its thickness substantially in order to be in an equilibrium
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state. It does so by spreading out into floating ice shelves surrounding the Antarctic continent.
The ice sheet then refreezes to the bottom surface because it is thinner. *

One might picture the following series of events in the history of ice-age ice sheets which
involve the water-layer effect. A small ice cap such as one of those that exist in northern
Canada today may become unstable and start to grow to a large size. (The ice cap is originally
frozen to its bed and remains frozen as it grows.) When it becomes large its mere existence
changes the world’s climate and causes other ice sheets to grow in Europe and Asia. The
increase in thickness of the ice sheet eventually leads to its hottom surface reaching the
melting point. Through the water-layer effect the equilibrium size of the ice sheet is reduced.
In time the ice sheet will shrink and approach the new equilibrium size. (The shrinking may
be preceded temporarily by a spreading and thinning of the ice sheet similar to that proposed
by Wilson for the Antarctic Ice Sheet.) It is possible that no equilibrium ice sheet can exist in
which case the ice sheet will disappear. The reduction in size or disappearance of one ice-age
ice sheet in the Northern Hemisphere would affect the world’s climate and cause a change in
size and the possible disappearance of the other ice sheets, thus ending the ice age.

It would be tempting to describe the ending of an ice age in the manner just outlined. It
must be conditionally rejected, however, because it would lead to a nonsynchronous behavior
of the ice-age ice sheets of North America and Europe during the end of the last ice age,
whereas carbon dating evidence appears to indicate synchronous behavior. Although the
existence of a thick water layer at the bottom of an ice-age ice sheet may not be a sufficient
condition for ending an ice age it may be a necessary condition since it reduces significantly
the change in the climate required to make the ice sheet disappear.

Another way in which a water layer may bring about changes in an ice sheet involves the
morainal material brought up into the ablation area. This debris can increase the ablation
rate if it occurs in only very small amounts or it can decrease the ablation rate if there is enough
material to form a protective layer on the upper ice surface, Since the debris changes the
albedo of an ice sheet it also may influence the elimate and hence the size of the ice sheet, The
presence of morainal material thus can cause both increases and decreases in the size of ice-age
ice sheets. Tt is difficult to assess how important a role the morainal debris plays in the waxing
and waning of ice-age ice sheets although obviously the effect can be large,

In these and previous (Weertman, 1961 [c¢]) considerations of the equilibrium size of ice sheets
I am impressed with the fact that as far as the mechanics of ice sheets is concerned the main
problem for ice-age ice theories to explain is not how an ice age starts but rather how it ends.t
Ice caps of the size now existing in the Arctic do not require much change in their budget and
in the snow line elevation in order to make them unstable and cause them to grow. Relatively
trivial but long-term changes in climate whose origin may be beyond the ability of any theory
to explain because of their small magnitude easily could lead to the large-scale growth of
existing ice caps. It is much more difficult to make a large ice sheet disappear. If these ice
sheets exist they are in stable equilibrium and a finite change in their accumulation or ablation
rate or in the snow line elevation is required to produce the condition in which they cannot
exist. The water layer effect can bring about the equivalent of this finite change in accumula-
tion rate, etc., but unfortunately the synchronous behavior of the ice sheets during the end of
the last ice age eliminates this effect as a mechanism for ending ice ages.

MS. received 5 Seplember 1905

* Another strong objection to Wilson’s ice-age theory can be raised regarding his requirement that the
extensive floating ice shelves which are produced by the spreading of the ice sheet remain in existence to the close
of an ice age. It is difficult to imagine how they could remain in existence for the long period between the start
and the end of an ice age.

* Of course, the start of the first ice age of the Pleistocene is an important problem in itself. Once the earth has
cooled sufficiently from whatever cause or the land level of the northern continents is raised to a high enough level
to start the first ice age, the explanation of the start of succeeding ice ages becomes a secondary problem compared
to explaining their endings.
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APPENDIX

Water FrLow at THE BorToMm OF AN Ice MAss

In this appendix I will develop in more detail than I did previously (Weertman, 1962) the equations for
governing water flow at the bottom of a glacier or an ice sheet.

The melt water produced by the geothermal heat and the frictional heat of sliding cannot accumulate in sifu
but must flow towards the edge of an ice mass. The force causing a small volume element of water to move is
found as follows. Consider Figure g. Shown here is a section of an ice mass of density p whose upper surface is a

et

__ |DEBRIS ZONE
iz pt) it

70

Fig. 9. Forces on an element of water in the waler film at bottom of a glacier or ice sheet
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distance h above a reference horizontal base line. The ice rests on an impermeable rock surface of elevation A*.
A debris-filled ice zone of average density p’ exists at the bottom of the ice mass. It extends to an elevation ko’
above the base reference line. It will be assumed that |dh/dx|, |dh*[dx|, and |dh’[dx| are all small compared to 1.
Here x is horizontal distance towards the right in Figure g. For the moment it will be assumed that A, A%, and A’
do not vary with the horizontal distance z which is perpendicular to x.

The force per unit volume on a segment of the water film extending from x to x-- dx is found with the aid of
the insert of Figure g. Gravity produces a downward force per unit volume of water of py g, where py, is the
density of water and g is the gravitational acceleration. This force has a component py ge*, where o* = |dh*|dx|,
in the direction parallel to the bed. The overburden pressure P on the water layer at x is equal to
[p(h—h")+ p’(k"—Hh*)] g. The gradient in pressure dP/dx gives rise to a force per unit volume parallel to the
bed equal to [p(a—e’)+p'(«’—a*)] g, where « = |dh/dx| and «” = |dh’[dx|.

The total force I, per unit volume on an element of water in the water film is

Fz = glpat-(p'—p) &'+ (pw—p’) @*]. (14)
If the debris zone has a uniform thickness (a” = «*) or if its density is essentially that of ice (p” = p) the effect
of this layer drops out of the equation, which reduces to

Fy = glpat (pw—p) o*]. (1A7)

If b, h* and h* of Figure g are functions of z (the horizontal distance perpendicular to the plane of the figure)

as well as x an element of water will experience an additional component of force ¥, parallel to the bed but at
right angles to that given by equation (1A). This force is given by

Fz = glpB+(p"—p) B'+(pw—p’) B*] (24)
where B = |ehjoz|, B’ = |ok’'[3z], and PpB* = |3h*[/8z|.

Since (pw—p')/p == {y and since (p’— p)/p also can be expected to be small, it can be seen that the slope of
the upper ice surface determines predominantly the force on a volume element of water provided that o* and «
are not an order of magnitude larger than « (or f* and B’ are larger than g).

The direction of flow of water at the base of a glacier or ice sheet thus is controlled largely by the slope of the
upper surface rather than the slope of the bed. The upper surface slope will favour flow as a thin sheet of water,
The slope of the bed will favor the flow of water in channels and streams.

The rate of flow of water in the water film under an applied force I¥ will be a function of this force as well as
the thickness D of the water layer and the viscosity p of water. For the one-dimensional flow problem in which
F ~ pga the average velocity V of water in the water film is (Weertman, 1g62)

. ) ) V = D? pgaf12p. (3A)
This equation can be rewritten as
D = (12pU/pge)’ (4A)

where U/ = VD is the volume of water moving past x per unit time and unit distance in the z direction.
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