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ATOMIC MEASURE SPACES AND
ESSENTIALLY NORMAL COMPOSITION OPERATORS

R.K. SINGH AND T. VELUCHAMY

2
The adjoint of a composition operator C on the L -space of an

atomic measure is computed and a characterization for an operator

to be a composition operator is given in this short note. The

dimensions of kernel and co-kernel of C,_ are calculated in

order to characterise Fredholm composition operators. Finally,

2
essentially normal composition operators are studied on I

1. Introduction

Let (X, S, A) be a sigma-finite measure space and T be a non-

singular measurable transformation from X into itself. Then the mapping

C~ on £ (X) which takes / into f ° T is a linear transformation. If

the range of C~ is in L (X) and C~ is bounded, then we call it a

composition operator on L (X) induced by T . It is known that the

composition transformation C™ is bounded if and only if there exists an

M > 0 such that XT~1(£') 2 M\(E) for all E in S . From this it

follows that if C_ is bounded then the induced measure \T~ is

absolutely continuous with respect to the measure X . Hence, by the

Radon-Nikodym theorem, there exists a positive measurable function fn
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such that X3'~1(£') = fQdX for every E in S . The function f is

called the Radon-Nikodym derivative of the measure XT~ with respect to

X .

A measurable set E is called an atom if X(E) t 0 and if F € S

and F c E , then either X(F) = 0 or \{F) = X(E) . A measure A. is

called atomic if every element E (. S such that X(E) + 0 contains an

atom and in this case we say that {X, S, X) is an atomic measure

2
space. In this paper the adjoint of a composition operator on L (X) is

obtained and the necessary and sufficient condition for an operator on

2
L (X) to be a composition operator is discussed when the underlying

measure X is atomic. Also dimensions of kernel of C_ and kernel of C*

2
are given. Finally essentially normal composition operators on t are

characterised.

2. Composition operators and atomic measure spaces

If {X, S, X) is a sigma-finite atomic measure space, then we can

CO

write X as U E. , where the E.'s are disjoint atoms of finite
^=l

00

measure £7]. These atoms are unique in the sense that if X = U F. ,
i=l v

where the F. 's are disjoint atoms of finite measures, then for every F.

there exists an E. such that X{E. A F.) = X{[E.\F.) U [FAB.)} = 0 . If

a non-singular measurable transformation T on X takes one part of an
atom E. to a subset of an atom E-, and the other part of E. to a sub-

0 " 0

set of another atom 2? , then anyone of the above parts of E- has to be

a null set. As i t is obvious that the image of an atom under a non-

singular transformation cannot be a null set, we can consider a non-

singular measurable transformation T : X -*• X as a transformation taking

atoms into atoms. Hereafter we denote the atom E. by j and by T(j)
0

the atom to which E. is carried over by T . We say that an atom j is
u
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in the range of T if j (. iT(i) : i € N} .

A non-singular measurable transformation T : X •*• X is called one-to-
one almost everywhere i f the inverse image of every atom under T contains
at most an atom. I t is called onto almost everywhere if the inverse image
of every atom under T contains at least one atom. If T is one-to-one
almost everywhere and onto almost everywhere then i t is called invertible

almost everywhere. Also every function / € L (X) is constant almost
everywhere on an atom. Hence the span of the characteristic functions

{A\ : i € N} form a dense subset of L2{\) . Let K. = X./X(i) . Then
ts is Is

the set of functions {K. : i € N} forms an orthonormal basis for L (X) .

The symbol B(H) stands for the C*-algebra of a l l bounded operators on

the Hilbert space H . Throughout th i s paper we assume tha t (X, S, X) i s

an atomic sigma-finite measure space. The following theorem computes the

adjoint of C .

THEOREM 1. Let C 6 B[L2{X)) and let A be defined as

Uf){i) = 1/X(i) fdX almost everywhere for f € L2(X) and for

T~\i)
every atom i . Then A = C* .

Proof. Let / , g € L2{X) . Then

<<?/,$> = [ [c/jgdX

= I j f ° Tgdx

= £ f(i)X(i)(Ag~)(i)
i=l

= </ , Ag) .

Hence A = C* . Hence the proof is completed.

The following theorem gives a necessary and sufficient condition for
an operator to be a composition operator.
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THEOREM 2. Let A € B[L (A)) . Then A is a composition operator

if and only if the set {K. : i £ N} is invariant under A* . In this

case T is determined by A*[K.) = K . ., .

Proof. The proof follows from the above theorem and [3].

The above theorem shows that the functions {%•} play the role of

2
kernel functions for L (A) . In the following theorem we compute the

dimension of ker C_ .

THEOREM 3. Let Cf € B[L2(X)) . Then dim ker Cf equals the number

of atoms in X\{T(i) : i € N} .

Proof. If an atom i i s not in the range of T , then X. € ker C_
Is J.

since XT (i) = 0 . If an atom j is in the range of T , then

AT (j) > 0 and hence CJt. # 0 . Hence ker C- is equal to the closure

of the span of the set {X, : k is not in the range of T\ . Hence the

proof is completed.

Let 3 denote one less than the number of atoms in T (n) if

T (n) has more than one atom, otherwise zero.

oo

THEOREM 4. Let Cf € B[L2(X)) . Then dim ker C* = J ^ .

Proof. From Theorem 2 i t follows tha t

idT x(k) i€T~J-(k)

C*{ I V-) = ( I b.]xk , where b. - jffij a.
(k)

From this it is clear that when the cardinality of T (k) = p > 1 , C*

kills (p-1) basis vectors of the closed subspace spanned by the

characteristic functions iX. : i € T~ (k)\ . Since L (A) is the direct

oo

sum of such closed subspaces, we get dim ker C* = £ 3 . Hence the
1 n=l n
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theorem is proved.

DEFINITION. An operator A 6 B(H) is called Fredholm if A has

closed range and dimensions of kernel of A and co-kernel of A are

finite.

Let X= {x : x (. X and fAx) = 0> . The following theorem gives a

characterization for Fredholm composition operators.

THEOREM 5. Let Cf € B[L2{\)) . Then Cf is Fredholm if and only

if f. is boimded away from zero on the complement of X , range of T

contains all but finitely many atoms of X and T is one-to-one almost

everywhere on the complement of a set with finitely many atoms.

Proof. The proof fo l lows from Theorems 3 and h.

SOME CONSEQUENCES

1. CT is an injection if and only i f T is onto almost everywhere.

2. Cy has dense range if and only if T is one-to-one almost

everywhere.

3. C™ is invertible if and only if T is invertible almost every-

where and / is bounded away from zero.

h. If Cy € B[l ) , then Cf is Fredholm if and only if ft' = 1

except for a finite number of points of N .

In [6] i t has been proved that in case of a general finite measure

space unitary and normal composition operators coincide and isometries and

quasinormal composition operators coincide on B[L (X)] . If the measure

space is atomic, then a l l the above coincide.

THEOREM 6. Let {X, S, \) be a finite atomic measure space and

C~ € B[L (X)) . Then the following are equivalent:

(i) Cy is unitary;

(ii) C- is normal;
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(Hi) C_ is an isometry;

(iv) C_, is quasinormal;

(v) C is a co-isormtry.

Proof. By Theorems 1 and 2 of [6], (i) and (ii) are equivalent, and

(Hi) and (iv) are equivalent. Now suppose C™ is an isometry. Then T

is measure preserving and hence AT (i) = X(i) for every atom i in X .

Let S. denote the set of a l l atoms in X which have the same measure as

i . Then each S. will be a finite set. Also C_ is an isometry implies
7* 1

that T is onto almost everywhere. Since T[S.) c S. for every i ,

T/S. is one-to-one almost everywhere and hence T is one-to-one almost

everywhere. Since an isometry has closed range, this implies that C~ is

invertible and hence £„ is unitary. This gives the equivalence of (i)

and (Hi) . To prove the equivalence of (v) and (i) , suppose C_ is a co-

isometry. Then C_ has dense range and hence T is one-to-one almost

everywhere. Also f o T = 1 almost everywhere. This implies

XT~X{T{i)) = \(i) = A(T(i)) for every i in X . Considering the set S^

as above we have r (S . | c 5. for every £ in X which implies that T
1*' "V

is onto almost everywhere. Hence C_ is invertible and hence C_ is

unitary. This completes the proof of the theorem.

COROLLARY 6.1. If the atoms in the finite atomic measure space

{X, S, X) are such that X(i) # X(j) when i is different from j , then

all the above composition operators coincide with the identity operator.

o
3. Essentially normal composition operators on I

DEFINITION. Let H be a Hiltert space, C(H) denote the ideal of

compact operators in B{H) and IT from B[H) to the Calkin algebra

B(H)/C(H) be the canonical epimorphism. Then an operator A in B{H) is

said to be essentially normal, essentially unitary or an essential isometry

if TT(4) is normal, unitary or an isometry respectively in the C*-algebra
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B(H)/C(H) (refer [1]). We say that A is quasi-unitary if A*A - I and

AA* - I are finite rank operators. A is Fredholm is equivalent to saying

that Ti(i4) is invertible in the Calkin algebra.

We know from [4] that invertible, normal, unitary and isometric
2

composition operators are not different in I . The same is true about

Fredholm, essentially normal, essentially unitary and essential isometric

composition operators. This we shall exhibit in the following theorem.

THEOREM 7. Let C € B[l2) . Then the following are equivalent:

(i) Cn, is Fredholm;

(ii) C_ is essentially normal;

(iii) Cy is quasi-unitary;

(iv) C_ is essentially unitary;

(v) C_ is an essential isometry.

Proof. First we prove the equivalence of (i) and (ii). Let C be

Fredholiti. Then /_ = 1 except for a finite number of points of N . Now

~ *T

Mf _f or o n R a n CT '
Jo •'o

Mf on ker C*, = (Ran Cf) .

Since C_ i s Fredholm fr\=fn°^ e x c e P t f o r a f i n i t e number of points

of N and ker C£ i s f i n i t e dimensional. Hence C%PT -
 Cn£w i s o f

f in i t e rank and hence C™ i s essen t ia l ly normal. Conversely, suppose C™

is essen t ia l ly normal. I f possible l e t dimension of ker C™ = °° . Then by

Theorem 3 there ex is t s an i n f i n i t e subset 5. = {n , n , . . . } of M such

tha t fQ[\) = 0 for i = 1 , 2 , . . . . For n € N l e t e ^ be the

function on N taking value zero a t points di f ferent from n and value 1

at n . Then the sequence \e } tends to zero weakly. But the sequence
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1} d°eS nOt tend t0 Zer°" This sh0WS that
is not compact. Th\is C™ is not essentially normal which is a

contradiction. Hence dim ker Cy < «> . Similarly, if ker C* is

infinite dimensional, then we can prove that [CZP--C C*) is not compact.

Hence dim ker C*, < °° . Thus C™ is Fredholm, since every composition

2
operator on I has closed range.

If C™ is Fredholm, then / = 1 except for a finite number of

points of N . Hence C*PT - I = M„ is of finite rank. Also

Mf °T-1 O n H a n CT

Since / - o T = 1 except for a finite number of points of M and ker Ci,

is finite dimensional, ^ijp% - -T is also of finite rank and hence Cm is

quasi-unitary. Hence (i) implies (iii). Obviously (Hi) implies (iv) and

(iv) implies (v). Now, le t C_ be an essential isometry. Then C*CT - I

is compact which implies M-. is compact. This implies f' = 1 except
•r0~

for a finite number of points of N . Hence C™ is Fredholm. Thus (v)

implies (i) and the theorem is proved.

2
THEOREM 8. Let Cm be a quasinormal composition operator on I .

Then C is essentially normal if and only if it is normal.

2
Proof. Since a quasinormal composition operator on I is an

injection, it is essentially normal if and only if ker C* is finite

dimensional. Also / = f o T . This, in the light of Theorem 3, implies

that Cm is essentially normal if and only if ker C* is zero

dimensional. Thus C_ is essentially normal if and only if C is

normal. Hence the theorem is proved.
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