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Introduction

Throughout this paper only abelian I-groups will be considered and G will
denote an abelian I-group. G is large in the l-group H or H is an essential ex-
tension of G if G is an Il-subgroup of H and for each Il-ideal L # 0 of H we have
LNG #0. A v-hull of G is a minimal vector lattice that contains G and is an
essential extension of G. Each G admits a v-hull (Conrad (1970)). We shall be inter-
ested in the following properties of G.

1. G admits a scalar multiplication so that it is a vector lattice.

1I. Any two scalar multiplications of G are connected by an [-automorphism
of G.

1II. G admits a unique v-hull.

Suppose that G satisfies I and let - be a scalar multiplication for G. Then
each l-automorphism ¢ determines a new scalar multiplication ®.

r®g = (r - (g¢))¢~* for each reR and geG.

Note that ¢ is a linear /-isomorphism of (G, ®) onto (G, - ) and so connects the
two scalar multiplications. Thus if G satisfies II then G admits essentially only
one scalar multiplication.

Two l-automorphisms « and f of G determine the same scalar multiplication.

if and only if (r - (g))a= 1B = r - (gf) forallreR and g G
if and only if (r - h)a™*f = r-(ha~'f) forallreR and heG
if and only if a=!f is linear with respect to - .

Now let % be the group of all l-automorphisms of G and let % = {ae & |ais
linear with respect to - }. If G satisfies II then there exists a one to one map of
the set of all scalar multiplications of G onto the set of all left cosets of £ in 2.
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We shall show that II is satisfied by a large class of vector lattices and that
each l-group can be embedded in a vector lattice that satisfies II. Whether or not
each I-group satisfies Il remains an open and very difficult question, even for
totally ordered vector lattices.

If G is a vector lattice with respect to two scalar multiplications, then the
I-ideals of G are subspaces under both multiplications. In the unordered case
there is no such preassigned set of subspaces and Example 5.1 shows thatif U £ 0
is an unordered real vector space then II is not satisfied.

An endomorphism « of an I-group G is a p-endomorphism (or a polar pre-
serving endomorphism) if

x,y€G and x~y = 0 imply xa~y = 0.

The set S of all p-endomorphisms of G is a semiring. Thus the subring 2(G)
of the endomorphism ring of G that is generated by S is a directed po-ring with
positive cone S. #(G) is called the ring of polar preserving endomorphisms
of G. If G is archimedean then #(G) is an archimedean f-ring (see Bigard and
Keimel (1969) or Conrad and Diem (1971)). A subring of #(G) that contains
the identity e and is o-isomorphic to R will be called a real subfield of
2(G).

PROPOSITION. There is a natural one to one correspondence between the real
subfields of P(G) and the scalar multiplications on G. In particular, G satisfies
I if and only if 2(G) is a po real vector space.

Proor. If (G, +) is a vector lattice and a € R then define ‘a e (G)
(a)g =a-g for all geG.

The map a — *a is an o-isomorphism of R onto a real subfield of #(G). Since
the only automorphism of the field R is the identity, distinct scalar multiplications
of G map onto distinct real subfields of 2(G). Thus the map # of - onto the real
subfield ‘R is one to one.

Now let D be a real subfield of 2(G) and let © be the o-isomorphism of R
onto D. For each reR and g€ G define

r-g =(nr)g.
Then (G, ) is a vector lattice and ‘R = D. Thus 7 is a one to one map of the

scalar multiplication of G onto the real subfields of 2(G).

Finally each real subfield of 2(G) determines a scalar multiplication of 2(G)
so that it is a po real vector space. Thus G satisfies I if and only if 2(G) contains
a real subfield if and only if 2(G) is a po real vector space.

Let (G, -) and (G,*) be vector lattices and let « be a group automorphism
of G.
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COROLLARY. a is a linear map of (G,-) orto (G,x) if and only if
a*Ra~! =*R,

PrOOF. (—) For each aeR and geG
(v a)g = a(ag) = w(a*g) = a*(xg) = *a(ng) = (*aa)g.

Thus «'a = *ax and hence o' aa~! = *a. Therefore o Ra~1 = *R,
(<) The map ‘a 5 araa~! is an isomorphism of ‘R onto *R, and since
R admits only one automorphism, t is the o-isomorphism ‘a — *a. Thus

aan~! = *q or ara = *qga for all aeR.
Thus for aeR and geG
a(a.g) = a(ag) = (va)g = (*aw)g = *a(ag) = ax*(ag).

Therefore any results we obtain about I or II for G have applications to
#(G) and conversely.

1. Archimedean /-Groups

Throughout this section let G be an archimedean I-group. In Conrad (1970),
it is shown that G admits a unique v-hull G*, and Bleier (1971) proves that G*
is the smallest archimedean vector lattice that contains G. Thus G satisfies III.
Also G satisfies II since it admits at most one scalar multiplication. For if (G, - )
and (G, #) are vector lattices then the identity automorphism of G is linear (see
Conrad (1970)).

Iwasawa (1943) showed that if G is divisible and complete then G satisfies 1.
Thus if G is essentially closed then it satisfies I. If G has a basis and is laterally
complete then G is a cardinal product II1T, of archimedean o-groups T, and hence
G satisfies I if and only if each convex o-subgroup is o-isomorphic to R. If G is
a subdirect sum of integers then the Dedekind-MacNeille completion G~ of G
is a vector lattice if and only if each 0 < g € G is unbounded (see Conrad (1970)).

PROPOSITION 1.1. G satisfies 1 if and only if each principal l-ideal G(g)
satisfies 1.

ProoF. If G satisfies I each l-ideal is a subspace. Now G < G”. Thus since
G® is archimedean each G(g) is a subspace of G* (see Conrad (1970)) and hence
G = [Jeg,G(g) is a subspace of G.

Now 2(G) is an archimedean f-ring and hence squares are positive. Thus
a subring K of #(G) that is isomorphic to R is a totally ordered subring of #(G)
and hence a real subfield provided that ec K.

ProOPOSITION 1.2. If S is an archimedean f-ring with identity e then there
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exists a largest o-subring of S that contains e. In particular, S contains at
most one real subfield.

ProoF. By Bernau’s embedding theorem (Bernau (1965)) we may assume
that S is an [-subring of the ring D(X) of almost finite continuous functions on
a Stone space X and e is the identity for D(X). Let F be an o-subring of S that
contains e. Then F consists of constant functions—for otherwise there exists
fe Fsuchthat 0 < f(x) < f(y) < oo for some pair x, y € X . Thus there are positive
integers m and n such that

nf(x) < me < nf(y) .

Therefore nf and me are not comparable, a contradiction.

COROLLARY. An archimedean I-group G satisfies 1 if and only if the largest
o-subring of #(G) that contains e is a real subfield. Since P(G) contains at
most one real subfield, G admits at most one scalar multiplication.

THEOREM 1.3. An archimedean l-group G contains a largest l-subgroup
H that is a vector lattice. H is the largest subspace of G* contained in G and H
is an l-characteristic subgroup of G.

Proor. If 4 and B are Il-subgroups of G and vector lattices then they are
subspaces of G” (Conrad (1970)). We show that the I-subgroup C of G generated
by A and B is also a subspace of G” and hence a vector lattice.

The group A + B is a subspace of G* and if ce C then
¢c=VxAytly
where the t,, belong to 4 + B and X and Y are finite. Thus for reR
rc = r(V Aty) = V At )eC.

Thus G contains a largest I-subgroup H that is a vector lattice and H is a sub-
space of G”. The above argument shows that if D is a subspace of G’ contained
in G then the I-subgroup of G generated by D is also a subspace of G*. Thus H
is the largest subspace of G contained in G.

Finally suppose that « is an l-automorphism of G, then Hua is an I-subgroup
of G and a vector lattice (any I-homomorphism of a vector lattice into G is ne-
cessarily linear). Therefore Hx < H.

REMARK. If G is an arbitrary I-group and an l-subgroup of a vector lattice
K then the above proof shows that G contains a largest I-subgroup H that is also
a subvector lattice of K, and H is the largest subspace of K contained in G.
Example 5.9 shows that even if G is a vector lattice in its own right it need not
equal H.
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THEOREM 1.4. For an archimedean l-group G the following are equivalent.

1) G satisfies 1.

2) Each principal l-ideal G(g) satisfies 1.

3) 2(G) satisfies L.

4) The largest o-subring of ?(G) is a real subfield.

5) G is divisible and each cut in Q*e contains an element of P(G), where
e is the identity for 2(G).

6) G is divisible and for an arbitrary 0 < ge G each cut in Q*g contains
an element of G.

Proor. We have shown 1), 2), 3), 4) are equivalent and clearly if G satisfies
I then it is divisible. So we shall assume that G and hence 2(G) are divisible.

If 0<g € G then a cut in Q*g contains at most one element from G. For sup-
pose that a, b € G belong to the cut. Then a,b e G(g). Let M be a maximal [-ideal
of G(g). Modulo M a and b determine the same cutin @*g andsoa = b mod M
for all such M. Thus a = b.

(4 > 5). Q*te = F =~ R, where F is the real o-subfield of #(G). Thus each
cut in Q¥ e contains an element of F.

(5 6). Let (L,U) be a cut in Q*g. Then the corresponding cut (L, T) in
Q*e contain a unique element o from 2(G). Thus ga is contained in (L, U).
(6 — 1). Let a be the element in R determined by the cut (L, U)in Q* and let

h be the element in G contained in the corresponding cut (L, U) in Q+g. Define
ag = h. This determines a scalar multiplication on G so that it is a vector lattice.

ProPOSITION 1.5. For a vector lattice H the following are equivalent.
1) H is archimedean.

2) The scalar multiplication on each l-subspace S of H is unique.

Proor. (1 — 2).If S is a vector lattice then it must be a subspace of H (Con-
rad (1970)).

(2 - 1). If H is not archimedean then there exists 0 < b < a in H. The sub-
space Ra ® Rb of H is totally ordered and hence an I-subspace of H. Let f be a
homomorphism of Ra into Rb that is not linear and define

(ria + ryb)t = ria + f(ria) + r,b.

This is an o-automorphism of Ra @ Rb that is not linear and so can be used to
define a new scalar multiplication on Ra @ Rb, but this contradicts (2).
It is an open question whether or not (1) is equivalent to:

3) The scalar multiplication on H is unique. If H is totally ordered then a
slight generalization of the above proof shows that (3) implies (1).
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2. The /-Group V(I',R)

Let I be a po-set such that no incomparable elements have a lower bound —
usually called a root system. Let ¥V = V(I', R) be the set of all functions from I’
into the reals whose support satisfies the ACC. A component v, of v e Vis maximal
if v, # 0 and v, =0 for all y <« €I". Define ve V to be positive if each maximal
component is positive. Then Vis a vector lattice with respect to the natural addi-
tion and scalar multiplication (Conrad, Harvey and Holland (1963)).

Let A be an l-subgroup of V. A v-isomorphism t of A into V is an Il-isomor-
phism such that for each ae€ A4, a, is a maximal component of a if and only if
(at), is a maximal component of arz.

LemMma 2.1. Each v-isomorphism 1 of V into itself is epimorphic.

Proor. Consider 0 < v e V with a maximal component v,. There is an element
u e V with support « for which (ut), = v, since any o-isomorphism of R into R
must be a multiplication by a positive real and hence an epimorphism.

Thus Vz is order dense in ¥ and so 7 preserves all infinite joins and intersec-
tions that exist in ¥ (Bernau (1966)). Now V7 is laterally complete (i.e. each dis-
joint subset of ¥ has a least upper bound) and so the join w of all the ut (one for
each maximal component of v) belongs to V7 and is a-equivalent to v (mw = v
and nv = w for some positive integers m and n). Thus Vis an a-extension of the
a-closed I-group V1 and so V = V. For a proof that V and hence V7 is a-closed
see Conrad (1966).

LemMa 2.2. If A is an l-subgroup of V and (A,*) is a vector lattice then
the scalar multiplication * can be extended to Vso that (V,*) is also a vector
lattice.

Proor. There exists a linear v-isomorphism 7 of (4,#) into V that can be
extended to a v-isomorphism « of Vinto V. For a proof of this see Conrad (1970)
(v is determined by a Banaschewski map for real subspaces but they are also
rational subspaces and so we get a). Now by Lemma 2.1 « is epimorphic. For
reR and veV define

r#v = (r(va))at.
This is a scalar multiplication for ¥ and for a €4 we have
r#a= (@)t = (rraat = ((raaat = rea
so # extends =*.

REMARK. Example 5.4 shows that 4 need not be a subspace of V.
An n-automorphism of V is a v-automorphism that induces the identity on
each V'/V, where
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V' = {veV|v, = 0 for all x>y}, and
v, = {veV|va=0 for all & = y}.

THEOREM 2.3. Each n-characteristic I-subgroup A of V satisfies 11; in fact
any two scalar multiplications on A are connected by an n-automorphism of V.
A satisfies 1 if and only if 4 is a subspace of V.

PROOF. Let = be a scalar multiplication so that (4, *) is a vector lattice. By
Lemma 2.2 * can be extended to V. Thus (see Conrad (1970)) there exists a linear
v-isomorphism o of (V, *) into Vand by Lemma 2.1 « is epimorphic. Now Vo = V?
and V=V, so a induces an o-automorphism on each V'|V,. But V'V, = R
and so these o-automorphisms are multiplications by positive reals. Let @ be the
v-automorphisms of V determined by these multiplications. Then a&~! is a linear
n-automorphism of (V, ) onto V and since A is n-characteristic

(A,%)aa™! = A.
In particular, A is a subspace of V.

COROLLARY 1. Each l-group can be embedded in a vector lattice that satis-
fies 11

Proor. The main theorem in Conrad, Harvey and Holland (1963) asserts
that each l-group can be embedded in a suitable V(I, R).

COROLLARY II. Each l-ideal of V satisfies 1 and 1I.

PrOOF. It suffices to show that if 6 <veV then the principal l-ideal V(v)
generated by v is n-characteristic. For each [l-ideal of V is the join of a directed
set of principal l-ideals and hence is n-characteristic.

Let 7 be an n-automorphism of V. Then clearly v and vt are a-equivalent
and hence

V()yr = V(vr) = V(v).

CoROLLARY I11. Let {AA]AGA} be a set of a-closed o-groups (that is, Hahn
groups). Then the cardinal sum X A, and the cardinal product [] A, of the
A, satisfy 1 and 11.

PrOOF. [] 4, = V(A,R) when A is the join of the I'(4,) and X 4, is an
l-ideal of [] 4,.

CoRrOLLARY IV. If G is an n-characteristic l-subgroup of V then any two
real subfields of #(G) are conjugate by a p-automorphism of G.

ProOF. This follows from the theory in the introduction and the fact that
an n-automorphism of V¥ is a p-automorphism.
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Let N be the group of the n-automorphisms of V. If * is a scalar multipli-
cation of V then Theorem 2.3 asserts that there exist « € N such that

(rv)a = rx(va) for all reR and veV.

Thus each scalar multiplication of ¥V is determined by an ae N and the scalar
multiplications of V determined by «, f € N agree if and only if «8~! is linear.

Let A be a vector lattice. Then we may assume that 4 is an I-subspace of
V =V(I,R) for a suitable I'. Suppose that * is another scalar multiplication
for A. Then we can extend * to V and there exists a linear n-automorphism
of (V, ¥) onto V. In particular, A and At are subspace of V and r*a = (r(at))r~!
for each reR and ae A. Conversely if 7 is an n-automorphism of V and Az is
a subspace of V then for each a€ 4 and re R we define r+a = (r(at))t~!. Then
(4, #) is a vector lattice and 7 is a linear l-isomorphism of (4, %) onto 4.

Therefore the scalar multiplications of A are determined by the n-auto-
morphisms of V that map A onto a subspace of V.

3. The I-Group Z(I', R)
Let ¥V = V(I, R) be the vector lattice investigated in the last section. Let
=X, R) = {ve Vlsupport of v is finite}

F = F(I,R) = {veV|support of v lies on a finite number of
chains in I'}

A value of an element g of an I-group G is an l-ideal of G that is maximal without
containing g. G is finite valued if each g € G has only a finite number of values.
The set I' = I'(G) of all the values of elements in G is a root system.

In Conrad (1974) it is shown that if A4 is a finite valued vector lattice with
countable dimension then there exists a linear l-isomorphism of 4 onto (I, R),
where I is the index set for the set of all the regular subgroups of the I-group A.
In particular, 4 is completely determined by the root system I

THEOREM 3.1. If A is a finite valued l-group then any two scalar multi-
plications of A for which the dimension of A is countable are connected by a
v-automorphism of A.

ProoF. Let * and # be two such scalar multiplications. Then (4, *) = (T, R)
~ (A #).

COROLLARY. Let T" be a countable root system and let T = X(I', R) with the
natural scalar multiplication. If * is a new scalar multiplication for ¥ then ¥
and (X, x) are connected by a v-automorphism if an only if (X, *) has count-
able dimension.
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REMARK. We have been unable to determine whether or not (I, *) always
has countable dimension. If so, then of course T satisfies II.

THEOREM 3.2. Suppose that G is a finite valued l-group and T'(G) satisfies
the DCC.

1) Z(I',R) = F(I',R) is the unique a-closure of G.

2) Z(T',R) is the unique a-extension of G that is a vector lattice.

3) X (T, R) is the unique v-hull of G that is also an a-extension.

ProoOF. Recall that H is an ag-extension of G if H is an I-group, G is an [-sub-
group if H and each 0<h e H is an a-equivalent to an element 0 < g€ G or equi-
valently L— LN G is a one to one mapping of the set of l-ideals of H onto the
l-ideals of G . An a-closure of G is an a-extension of G that does not admit a proper
a-extension. Each group admits an a-closure but usually not a unique one (Conrad
(1966) or Wolfenstein).

We first show that each a-extension H of G is finite valued. Here we do not
need the fact that I satisfies the DCC. For 0 < he H there is an element 0 < ge G
such that ng > h and nh > g for some n > 0. Let {HLIJ.EA} be the set of all
values of & in H. Then they are also values of g. Thus {H, NG lleA} is a set
of values of g in G and hence A is finite.

(1) Let K be an a-closure of G. Then since K is finite valued, divisible and
I'(K) satisfies the DCC there is a value preserving l-isomorphism ¢ of K such that

Ko = X (I, K/K,)

where K" is the intersection of all the l-ideals of K that properly contain K,
(see Theorem 4.9 in Conrad (1970)). In particular, each K'/K, is o-isomorphic
to a subgroup S, of R and so there exists an /-isomorphism 7 of K so that

Kt = Z(T,S,) < = (T,R).

But clearly X (I',R) is an a-extension of X (I',S,) and so since Kt is a-closed,
Kt = £ ([, R). Now F(I, R) is always an a-closure of Z (I',R) (Conrad
(1966) p. 147) and so in our case F = X.
(2) Suppose that K is an a-extension of G that is a vector lattice. Then each
KY/K, = R and so
Kt = X (I,S) = Z(,R).

(3) Since a v-hull of G is a vector lattice this is a special case of (2).

COROLLARY. For a root system I the following are equivalent.
a) X (I,R) is a-closed.
b) X (I,R) = F(I,R).
¢) T satisfies the DCC.
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Proor. We have shown ¢) — a) — b) and since F is always a-closed (b — a).
(@a—c) Ify, >7v,> .- is an inversely well ordered descending chain in I
then let a be the element in V(I', R) such that
4 = 1 if y=1y for some i
" 710  otherwise.
Then an easy computation shows that [a] @ X is an a-extension of  and hence
the chain must be finite.

REMARK. In Conrad (1970) it is shown that for a totally ordered group G
of finite rank a v-hull need not be an a-extension so G need not have a unique
v-hull. Example 5.5 shows that (I, R) need not be an n-characteristic subgroup
of V(I', R) so we cannot conclude from the theory in the last section that Z(I', R)
satisfies II.

THEOREM 3.3. If G is afinite valued I-group and I'(G) satisfies the DCC then
the following are equivalent.

1) G satisfies 1.

2) Each G'|G, is o-isomorphic to R.

3 G=XI(T,R).

4) G is a-closed.

If this is the case then G satisfies 11

PrROOF.1 — 2, and 3 — 1 and 2 are obvious. By Theorem 3.2 % is the unique
a-closure of G and hence 3 < 4.
(2 — 3). Since each G"/G, is divisible there exists a v-isomorphism ¢ such
that
(I, G’/G) < Go < V(I,G'[G,)

(Conrad (1970)) and since G?/G, = R for each y e I' we may assume
2(L,R) < Go = V(T,R).

Now I satisfies the DCC and so by the proof of Theorem 4.9 in Conrad (1970)
we have X(I',R) = Go.
Now suppose that * is another scalar multiplication for £ and for each
yel define e(y)
(1 if a=y
e = { 0 otherwise.

Then E = {e(y) ' y€TI} is a basis for £ and an independent subset of (Z,*) so
the identity map on E can be lifted to linear p-isomorphism 7 of £ into (Z,*).
Since X is a-closed and (Z, *) is an a-extension of £7, 7 is epimorphic and hence
G satisfies II.
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THEOREM 3.4. If G is an a-closed l-group that satisfies

(F) each bounded disjoint subset is finite,

Then G satisfies 1 and 1.

ProoF. F(I', R) is the unique a-closure of an I-group that satisfies (F) (see
Conrad (1966)). Thus G =~ F and so G satisfies 1.

In Conrad (1966) it is shown that if G is a vector lattice that satisfies (F)
then there exists a linear v-isomorphism 7 such that £(I',R) < Gt < F(I',R)
and hence F is an a-extension of Gr. Thus if G is a-closed Gt = F and so Il is
satisfied.

ReMARK. If G satisfies (F) then F(I',R) is an [-ideal of V(I',R) and so
Theorem 3.4 follows immediately from Corollary II of Theorem 2.3. Byrd (1966)
gives an example that shows that in general F(I', R) need not be n-characteristic
in (T, R).

Note that if ['(G) is finite then G satisfies the hypothesis of Theorem 3.2 and
3.3. Also if G satisfies these hypotheses then any two real subfields of 2(G) are
conjugate by a p-automorphism of G.

4. Totally Ordered Groups

Throughout this section G will denote a totally ordered group with I" the index
set for the set of components G?/G, of G. V(I',R) is the unique a-closure of G
(Hahn 1907)). Thus if G is a-closed then G ~ Vand so by Theorem 2.3 G satisfies
I and II and so does each l-ideal of V. The next Proposition shows that this is
all we can conclude from Theorem 2.3.

PROPOSITION 4.1. An n-characteristic subgroup L of V that is also a sub-
space is convex and conversely.

PrOOF. We show that ¥(g) < L for each 0 < geL. Let g, be the maximal
component of g and consider 0 < heV(g). If V(h) # V(g) then h < g and
o there exists an n-automorphism of V that maps g onto g+ h. Then
h=g+h—geL.If V(h) = V(g) then there exists reR such that h, = rg,
and so there exists an n-automorphism of V that maps rg onto h.

Note that we need the total order of G. For if H=R® R then
{(x,x) [ x € R} is an n-characteristic I-subgroup of H and a subspace but it is not
an [-ideal.

Now suppose that I satisfies the DCC then V = X(I', R) and by Theorems
3.1 and 3.2 we have:

V is the unique a-extension of G that is a vector lattice.
V is the unique v-hull of G that is also an a-extension.
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Moreover the following are equivalent: G satisfies I; each G’/G, @ R; G = V;
G is a-closed.

ProrosITION 4.2, For an o-group G the following are equivalent.
1) G satisfies 1.
2) Each G(g) satisfies 1.

ProoF. (1 — 2) Clear.

(2 - 1) Let S be the collection of all pairs (L, ) where L is a convex sub-
group of G and an ordered vector space with respect to the scalar multiplication *
Define (L,*) < (H, #)if (L, %) is a subspace of (H, #). Then by Zorn’s lemma
there exists a maximal element (M,*) in S. We show M = G. Suppose by
way of contradiction that 0 < ge G\M . Then G(g) > M and since M is divisible
G(g) = M @D a lexicographic extension of M by the o-group D. Now by
hypothesis G(g) admits a scalar multiplication # and since M is contained in
G(g), (M, #) is a subspace. Thus G(g)/M = D is also an ordered vector space —
say (D,0). For reR and m+te M @ D define

r-(m+d) =rs«m+rod.

Then (G(g), * ) is an ordered vector space and (M, ) is a subspace, but this contra-
dicts our choice of M and so M = G satisfies 1.

5. Examples and open questions

ExXAaMPLE 5.1. A real non-ordered vector space U does not satisfy 1I. For
let « be a group isomorphism of R onto the direct sum @, R, and for r in the
field R and x in the group R define

rox = (r(xa))o!

where r(xa) is the natural scalar multiplication in ®,R, . Then (R,0) is a real
vector space of dimension ]A [ Thus if ]/\| > 1 then (R,0) and (R, *) are not
connected by a group automorphism.

EXAMPLE 5.2. R = D@® Q lexicographically ordered is a totally ordered
group and a real vector space but it does not satisfy I. Also the cardinal sum D® Q
is an archimedean [-group and a real vector space that does not satisfy L.

EXAMPLE 5.3. Let G be the subgroup of the cardinal product | [;; R; generated
by X%, R; and (1,1,1,---). Then G is an l-group aad each G?/G, = R except
G/XR;, but G does not satisfy I since it is not divisible.

If we totally order [[R; by defining (x;,x,,---) to be positive if the first
non-zero x; is positive, then G is an o-group with each G’/G, = R and G/C satis-
fies I for each non-zero convex subgroup C of G, but G does not satisfy 1.
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Let H= X’ ,R;®0(1,1,1,.--) the divisible hull of G. Then G admits
a scalar multiplication so that it is a real vector space, since its dimension as a
rational vector space is large enough. If we impose the cardinal order on H then
it does not satisfy I; for then it would have to be a subspace of the vector lattice

Z1R;.

One should be able to show that if we impose the above total order on H
then H does not satisfy I. If H does satisfy I then it follows from Lemma 2.2 and
Theorem 2.3 that there exists an n-automorphism 7 of [[R; such that Hrt is a
subspace.

ExaMPLE 5.4. Let V = [[2oR; be totally ordered as in the last example.
Let u be a group isomorphism of R onto []i%,0;

a - (.ul(a)5 #z(a), "')'
Define 1

(ag,ay,az, )t = (ag, u1(ap) + ay, pa(ag) + az ).

Then t is an n-automorphism of V. Now A4 = (X2oR)t is o-isomorphic to
22 0oR; and so it admits a scalar multiplication but it is not a subspace of V.
For pick the a € R for which au = (1,1,1, --+). Then (4,0,0,--)t = (a,1,1,--)e 4
but r(a,1,1,---) ¢ 4 for re R\ Q.

ExaMpLE 5.5. Let ¥V = ]2, R;totally ordered as above and let G = X2 4R;.
Then the map
(1)0509 ”') - (1’ 1, 1’ '“)

(0’ 1103 ) - (09 19 13 "')

determines a linear v-isomorphism ¢ of X into V such that

ZcZoc V.
The map

(1’030"") - (1’ 1’0)0,"')
©,1,0,---) - (0,1,1,0,---)

.........

determines a linear v-isomorphism of  onto a proper subgroup of itself.
The map
(190,0, "') - (19 13 1’ "‘)

(09 1,0, ) - (09 1,0"')
(0,0’1’0,"') - (0,09 1s0$)

.........
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determines a map ¢ of T into V such that I lZa.

EXAMPLE 5.6. Let

r =
1 2 3 *» o 9000

and let ¥V = V(I',R). The map

(1,0,0, ) = (1,1,1, ---)

0,1,0,--) - (0,1,0,---)

,0,1,0,---) - (0,0,1,0,---)
determines an n-isomorphism ¢ of T into V¥ such that ZI [Za.

ExAMPLE 5.7. An a-closed archimedean I-group need not satisfy 1. Let

G=[lzZ<cC<]]R
i=1 i=1

cardinally ordered, where C consists of all the elements of the form g + (xy, X, ***)
where g € Gand 0 < x; £ 1 and the number of distinct x; is finite. Thus C = G+ F,
where F is the group of all elements in [ ] R; with finite range. It is shown in Con-
rad (1966) that C is an a-closure of G. If C is a vector lattice then it must be
a subspace of [T R;, but /2(1,2,3,--)¢C.

Note also that the v-hull G® of G is not an a-extension of G. For clearly G* = C.
Actually

G’ = {ae [] R,| there exists reals ry, -+, 7, such that each component of a
is of the form x;r, + x,ry + --- X1y With x, € Z}.

REMARK. It can be shown that a hyper-archimedean a-closed [-group need
not satisfy I.

EXAMPLE 5.8. A minimal vector lattice that contains the o-subgroup
[11® [/ 2]®[n] of R need not be totally ordered. Let f be a homomorphism
of R into R@ R; f(a) = (f,(a),f,(a)) where

S =(@1,1)
f@) =(2, J2+1)
0 f@) = @+1,m).
F E—
Let and let V= V(I',R).
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Define (aq,a,,a,)t = (aqg,a; + f1(ao), a, + f(ay)). Then t is an n-auto-
morphism of V.

Define r+ (xt) = (rx)t for all xe Vand re R. Then (V,*) is a vector lattice.
r#(ag, ay+ f1(ap), a + fr(ay)) = (rag,ray, ray)t = (rag, ra, + f1(rag), ra, + fo(rag)).
Ifay =1and g, = a, = —1 we have

r*(1,0,0) = (r, —r + f1(r), —r + £2(r).
In particular
v2%(1,0,0) = (/2,0,1)
7 *(1,0,0) = (#,1,0).
Now let G be the o-subgroup of V generated by (1,0,0), (2,0,0) and (x,0,0).

Then Vis a minimal vector lattice that contains G. Of course Vis not the v-hull
of G.

EXAMPLE 5.9. A finite valued l-group G with I'(G) satisfying the DCC that
admits two non-isomorphic v-hulls. Let T’ be the root system

and let V = V(I',R). Let f be an isomorphism of R onto ]_[,f‘;lRi such that
f() = (1,0,0,---) and in general f(x) = (f,(x),/5(x),:+). Define

(X5 X105 %5, -+ )T = (x; %3 +£100), X5 + f2(x), ).

Then 7 is an n-automorphism of V. For ve V and reR define r:(v7) = (rv)t.
Then (V, -) is a vector lattice.

e (x5 [1(X), f2(x), -+)

re(x;0,0,.-)r = (rx; 0,0, )1
(rx; f1(rx), £5(rx), -++) .

In particular for x = 1 we have

r-(1;1,0,0, ) = (r; f1(r),S2(r), ) -

Thus (V, - ) is a v-hull of G = Z(T, R) and G is also a vector lattice with respect
to the natural scalar multiplication. Now G ¥ V since the maximal l-ideal of V
is laterally complete but the maximal l-ideal of G is not.

Note, of course, that the v-hull ¥V of G is not finite valued and it is not an
a-extension of G.
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Some open questions

1) Does II always hold?

2) If G is an archimedean I-group and each G’/G, = R then does G satisfy I?

3) If G is an I-group and each G(g) satisfies I then does G satisfy 1?

4) If G is a vector lattice with a unique scalar multiplication then is G archi-
medean ?
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