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A theoretical investigation on the space–time evolution of low-frequency dust acoustic
waves (DAWs) in opposite polarity dusty plasmas reveals that they undergo phase mixing
for arbitrary initial amplitudes, causing them to suffer a gradual loss in coherency. Both
positively and negatively charged dynamical dust grains have been considered to coexist
in the plasma, in addition to Maxwell–Boltzmann distributed hot electrons and ions. A
perturbative analysis of the governing fluid-Maxwell equations leads us to conclude that
the competing dynamics of the opposite polarity dust grains is what causes the DAWs to
phase mix. An estimate for the phase-mixing time has also been obtained, which has been
found to be profoundly influenced by the values of the various plasma parameters, such as
the equilibrium densities of the plasma species, the masses of the opposite polarity dust
grains and the electron and ion temperatures. The investigation has also been extended
to include phase mixing of DAWs in electron-depleted dusty plasmas. The findings of
this study are expected to have relevance in various astrophysical and laboratory plasma
environments.
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1. Introduction

The study of dusty plasmas has been a cornerstone of research in plasma physics
for the past few decades. Such an enormous interest in this regard can primarily be
attributed to the fact that these plasmas are ubiquitous in various cosmic as well as
terrestrial environments, such as in the planetary ring systems, in the Jovian magne-
tosphere, in cometary tails, in supernova remnants, in the Earth’s polar mesosphere,
in the Earth’s magnetosphere, etc. (Goertz 1989; Havnes et al. 1996; Verheest 2000;
Wahlund et al. 2009; Shukla & Mamun 2010; Morooka et al. 2011). They have
also been extensively investigated in numerous laboratory environments (Barkan,
Merlino & D’Angelo 1995; Merlino et al. 1998; Nakamura & Bailung 1999; Merlino
et al. 2012b). Dusty plasmas differ significantly from other multicomponent plasmas
and they are often far more complex than the usual plasmas in terms of the physics
involved. It is the presence of massive charged dust grains in addition to the usual
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electrons, ions and neutral atoms, in the plasma medium that is responsible for
the increased complexity, as it leads to new collective phenomena on completely
different space and time scales. Another layer of complexity arises from the con-
sideration of the physical processes that lead to the charging of the dust grains
(Whipple, Northrop & Mendis 1985; Shukla & Mamun 2010). The most widely
used dusty plasma models assume the dust grains to be negatively charged. Such
an assumption is justified given that the major method by which the dust grains
essentially acquire charge is through the capture of background plasma particles
(viz. electrons and ions), and since electrons are much more mobile than ions, the
massive dust grains tend to capture more electrons and become negatively charged.
Nevertheless, other important charging mechanisms have been identified that lead
to positively charged dust grains, for e.g. secondary electron emission from the dust
grain surface (Chow, Mendis & Rosenberg 1994), ultraviolet photon flux-induced
photoemission (Rosenberg & Mendis 1995), thermionic emission due to radiative
heating (Rosenberg, Mendis & Sheehan 1999), etc.

There is also direct evidence for the existence of dusty plasmas containing both
positively and negatively charged dust grains, in addition to the usual plasma parti-
cles. Such plasmas are called opposite polarity dusty plasmas, and they have been
found in different space environments, such as cometary tails, the Earth’s polar
mesosphere, etc. (Mendis & Rosenberg 1994; Horányi 1996; Havnes et al. 1996).
The existence of opposite polarity dusty plasmas has been theorised quite a while
ago. Meyer-Vernet (1982) reported that different charging histories could lead dust
grains with similar electrical properties, present in the same plasma, to acquire oppo-
site polarities. Chow, Mendis & Rosenberg (1993) theoretically showed that the size
of the dust grains influences the process of secondary electron emission from the
grain surface, and as such concluded that insulating dust grains with different sizes
can acquire different polarities, the larger grains being negative while the smaller
ones are positive. However, the opposite case, where the larger dust grains acquire
a positive charge and the smaller ones negative, is also possible by means of tribo-
electric charging (Shukla & Rosenberg 2006). This has been predicted on the basis
of observations in the Martian environment (Farrell et al. 2004) as well as in labora-
tory devices (Zhao et al. 2002, 2003). Thus, arguably, the most important property
of opposite polarity dusty plasmas is that the ratio of the size of the negative to the
size of the positive dust grains can be smaller or greater or even equal to unity.

Like any other plasma medium, dusty plasmas are also capable of supporting a
number of waves, with the two most notable ones being the dust acoustic waves
(DAWs) and the dust ion acoustic waves. Rao, Shukla & Yu (1990) first theoret-
ically predicted the existence of DAWs in plasmas containing electrons, ions and
negatively charged dust grains. Dust acoustic waves are very low-frequency waves
and are characterised by a phase velocity that is much smaller than the electron
and ion thermal speeds. For dust acoustic oscillations, the dust grains are consid-
ered to be inertial, as they provide the necessary inertia for the oscillation. On the
other hand, the electron and ion thermal pressures are responsible for providing
the requisite restoring force. The dust grains, being much more massive than the
electrons and ions, have a comparatively higher oscillation period. Thus, during dust
dynamics, there is ample time for the electrons and ions to balance out the electric
force with the pressure gradient, and hence become inertialess in the process. As
a result, the electrons and ions are described using the Maxwell–Boltzmann (MB)
distribution. Ever since their prediction, DAWs in dusty plasmas with either single
or opposite polarity dust grains have been at the forefront of research in plasma
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physics, and there exists numerous studies on them, both theoretical (Verheest et al.
1997; Rao 1998; Sakanaka & Shukla 2000; Shukla 2000; D’Angelo 2001; Shukla
2001; Rosenberg 2002; Singh 2002; Shukla 2003; Verheest, Hellberg & Kourakis
2008; Verheest 2009; Mamun & Shukla 2011; Mamun & Mannan 2011; Merlino
et al. 2012a; El-Taibany 2013; Merlino 2014; Chakrabarti & Ghosh 2015) and exper-
imental (Barkan et al. 1995; D’Angelo & Merlino, 1996; Rosenberg & Kalman
1997; Merlino et al. 1998; Bandyopadhyay et al. 2008; Merlino 2009; Merlino et al.
2012b; Deka et al. 2017). Here, we should mention that an important and plausible
situation for opposite polarity dusty plasmas is the almost complete depletion of
electrons, on account of them being captured by the dust grains during the charg-
ing process. This gives rise to what is known as electron-depleted dusty plasmas.
Such plasmas are widely encountered in various space observations (Goertz 1989;
Mendis & Rosenberg 1994; Morooka et al. 2011) as well as in laboratory envi-
ronments (Goertz, Greiner & Piel 2011; Petersen et al. 2022). The properties of
nonlinear DAWs in electron-depleted dusty plasmas has also been extensively stud-
ied (Tribeche & Merriche 2011; Mamun, Ferdousi & Sultana 2015; Tadsen et al.
2015; Shikha et al. 2019).

It is a known fact that plasmas cannot sustain waves of arbitrarily large ampli-
tudes. Rather, for every plasma there exists a characteristic threshold value of wave
steepness beyond which it can no longer sustain the wave. In fact, the moment the
steepness of the wave goes beyond the threshold value, the wave no longer remains
coherent, and this is indicated by the multivalued nature of the resultant waveform.
This is termed as wave breaking (Dawson 1959; Davidson 1972) and it has been
extensively studied over the years (Coffey 1971; Katsouleas & Mori 1988; Maity
et al. 2013; Maity & Karmakar 2023; Biswas & Maity 2024b). The phenomenon
has also been well investigated for DAWs (Heinrich, Kim & Merlino 2009; Shukla
& I 2010; Flanagan & Goree 2011; Heinrich et al. 2012; Trukhachev et al. 2019).
The cause for the steepening and the subsequent breaking of the high amplitude self-
excited DAWs in these studies has been attributed to the generation of secondary
harmonics, which arise inadvertently due to the inherent nonlinearity of the system.
In this paper, we report that DAWs in opposite polarity dusty plasmas can also
undergo wave breaking via a novel process, called phase mixing.

Phase mixing is a process through which excited waves/oscillations in plasmas
lose their coherence and break even when their amplitude is well below the thresh-
old value (Sen Gupta & Kaw 1999). Thus, phase mixing causes the waves to break at
arbitrary amplitudes. It is a physical process which comes into effect on account of
the characteristic frequency of the relevant plasma mode acquiring a spatial depen-
dence. This causes the plasma species at different locations to oscillate with their
respective local frequencies, which in turn leads to a secular increase in the phase
difference between the neighbouring oscillators with time. Ultimately, a moment
arrives when their trajectories overlap, causing the waves to lose their coherence
and break. Over the years, extensive studies on phase mixing of a host of different
waves and oscillations have been performed. This has allowed us to identify multiple
physical processes and scenarios, such as finite ion inertia (Sen Gupta & Kaw 1999),
inhomogeneity in the background ion density (Infeld, Rowlands & Torvén 1989),
relativistic mass variation of electrons (Drake et al. 1976; Infeld & Rowlands 1989;
Xu, Sheng & Zhang 2006; Maity et al. 2013; Pramanik & Maity 2021), inhomoge-
neous magnetic field (Maity, Chakrabarti & Sengupta 2012), multi-species dynamics
(Verma 2011; Maity 2014; Pramanik, Maity & Chakrabarti 2015; Pramanik & Maity
2017, 2018; Maity & Pramanik 2020; Biswas & Maity 2024a; Pramanik, Biswas &
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Maity 2024; Biswas, Maity & Pramanik 2025), etc. which have been identified as the
underlying cause for phase mixing. A number of numerical and experimental studies
(Xu et al. 2006; Sengupta et al. 2009; Yu et al. 2016; Sahai 2017) have verified the
validity of the phase-mixing process.

When an excited wave in a plasma breaks, the electrostatic wave energy associated
with it is irreversibly converted into random particle motion. This causes the plasma
medium to heat up, and as such phase mixing plays an important role in the field
of plasma heating (Hasegawa & Chen 1974; Koch & Albritton 1974). Another area
where phase mixing has an important application is in the field of plasma-based
particle accelerators (Joshi et al. 1984; Modena et al. 1995; Malka 2012). When an
electron beam or an intense laser is directed through a plasma medium, it leads
to the generation of wake waves through charge separation. The strong electric
field associated with the wake waves is then responsible for accelerating charged
particles. This mechanism allows us to accelerate charged particles up to energies of
the order of giga-electron volts over very small distances. This acceleration process
is profoundly influenced by the phase-mixing process. If the phase-mixing time is
shorter than the ‘dephasing time’, it can prevent the charged particles from acquiring
maximum energy within the ‘dephasing length’.

In this paper, we use the one-dimensional fluid-Maxwell equations to model the
opposite polarity dusty plasmas, and employ a straightforward perturbation scheme
(Nayfeh 2000; Holmes 2013) to study the explicit space–time evolution of the excited
DAWs. The perturbative scheme used has been demonstrated to be capable of
effectively capturing the essential aspects of the phase-mixing process, a key one
being the appearance of secular terms in the analytical expressions for the fluid-field
variables (Sen Gupta & Kaw 1999). We expect the results of our study to have rel-
evance in various astrophysical scenarios, such as Saturn’s magnetosphere (Kopnin,
Shokhrin & Popel 2022), the Martian atmosphere (Izvekova, Reznichenko & Popel
2020), etc., as well as laboratory environments, such as fusion devices (De Angelis
2006), where the existence of DAWs has been well established. We also believe
that the present study might lead to a better understanding of collective nonlinear
phenomena in dusty plasmas.

The layout of the paper is as follows: in § 2 we have presented the basic fluid-
Maxwell equations governing the dynamics of the DAWs in opposite polarity
dusty plasmas. We have presented the relevant linear dispersion relation as well.
Section 3 contains the nonlinear analysis of the basic equations using a simple per-
turbative expansion method, which demonstrates the phase mixing of the excited
DAWs. The section also contains an approximate expression for the phase-mixing
time. In § 4, a detailed discussion on how the phase-mixing time is affected by
the plasma parameters is presented. Finally, we summarise our results and draw
appropriate conclusions in § 5.

2. Basic equations and linear dispersion relation

We consider a four-component collisionless, homogeneous and unmagnetised
dusty plasma consisting of cold positively and negatively charged dust grains, hot
singly ionised isothermal ions and hot isothermal electrons. The quasineutrality con-
dition for the plasma is given as n+0 + ni0 = n−0 + ne0, where n+0 (n−0), ni0 and
ne0 are the equilibrium densities of the positive (negative) dust grains, the ions
and electrons, respectively. We have defined n+0 = Z+N+0 (n−0 = Z−N−0), where
Z+ > 0 (Z− > 0) and N+0 (N−0) denote the constant amount of charge and equilib-
rium number densities of the positive (negative) dust grains, respectively. Here, we
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have neglected the dust charge fluctuations due to varying electron and ion currents
to the dust particles. Our analysis involves the utilisation of the one-dimensional
fluid model along the x -direction. For low-frequency DAWs, the hot ions and elec-
trons are considered to be inertialess fluids, and as such their densities (ni and ne,
respectively) are given by the MB-distribution, as follows:

ni = ni0 exp
(

−eφ

Ti

)
, (2.1)

ne = ne0 exp
(

eφ

Te

)
. (2.2)

Here, e is the electronic charge, φ is the electrostatic wave potential and Ti (Te) is the
temperature of the ions (electrons) in energy units. Note that the ion temperature is
always less than the electron temperature, i.e. Ti < Te.

The cold dust grains (both positive and negative), on the other hand, take part in
the wave dynamics and as a result have been considered inertial. The continuity and
momentum equations govern the dynamics of the charged dust grains which are,
respectively,

∂t n± + ∂x(n±v±)= 0, and (2.3)

∂tv± + v±∂xv± = ± Z±e

m±
E, (2.4)

for positively charged dust grains (+) and negatively charged dust grains (−). Here,
n±, v± and m± denote the densities, the x -component of the fluid velocities and
masses of the two types of charged dust grains in the plasma. Note that, in accor-
dance with our previous definition, the dust densities are given as n+ = Z+N+ for
the positively charged grains, and as n− = Z−N− for the negatively charged grains,
with N+ and N− denoting the respective number densities. Also, E represents the
x−component of the electric field, and is related to the electrostatic wave potential
φ as E = −∂xφ. Finally, to close the system of equations, namely (2.3) and (2.4), we
use the Poisson’s equation as

∂x E = −∂2
xφ = 4πe(ni + n+ − ne − n−). (2.5)

A straightforward linearisation of (2.1) to (2.5) yields the following dispersion
relation:

1 + 1
k2λ2

D

= ω2
+ +ω2

−
ω2

, (2.6)

where ω+ = √
4πN+0 Z 2+e2/m+ is the dust plasma frequency of the positively charged

dust grains, ω− = √
4πN−0 Z 2−e2/m− is the dust plasma frequency of the negatively

charged dust grains and 1/λ2
D = 1/λ2

Di + 1/λ2
De with λDi = √

Ti/4πe2ni0 being the ion
Debye length and λDe = √

Te/4πe2ne0 being the electron Debye length. In addition to
this, ω and k represent the frequency and wavenumber of the excited DAWs, respec-
tively. In the long wavelength limit (k2λ2

D � 1) we can rewrite the above dispersion
relation as

ω= kCD A

√
1 + Zημ, (2.7)
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where CD A = Z 1/2
− (n−0/ni0)

1/2(Ti/m−)1/2[1 + (ne0Ti/ni0Te)]−1/2 is the dust acoustic
speed, Z = Z+/Z−, η= n+0/n−0 and μ= m−/m+. The factor Zημ in (2.7) appears
as a consequence of considering two different kinds of dynamical dust grains (pos-
itively and negatively charged), and accordingly it vanishes if either η→ 0 (or,
n+0 → 0), implying that there are no positively charged dust grains, or if μ→ 0 (or,
m+ → ∞), implying that positively charged dust grains are present, but are static. In
§ 3, we will illustrate that when a nonlinear analysis of the problem is performed, it is
the presence of this factor which yields interesting effects for the DAWs in plasmas
with opposite polarity dust grains, one of them being phase mixing. Note that, in
the absence of the positively charged dust grains, the dispersion relation given by
(2.6) or (2.7) immediately reduces to the form as reported in Rao et al. (1990) and
Shukla & Mamun (2010).

3. Nonlinear analysis
3.1. Perturbation method and first-order solutions

Before commencing with the perturbative analysis, we first introduce the fol-
lowing new normalised variables, with the objective of simplifying the subsequent
calculations

�ns =�n+ +�n−, �nd =�n+ −�n−,
�vs = v+ + v− and �vd = v+ − v−, (3.1)

where �n+ = n+ − η and �n− = n− − 1. Thus, the basic (2.3) to (2.5) can be
rewritten in terms of these new variables as

∂t(�nd)+ 1
2
∂x [(η+ 1)�vd + (η− 1)�vs +�ns�vd +�nd�vs] = 0, (3.2a)

∂t(�ns)+ 1
2
∂x [(η+ 1)�vs + (η− 1)�vd +�ns�vs +�nd�vd] = 0, (3.2b)

∂t(�vs)+ 1
4
∂x(�v

2
s +�v2

d)= −(1 − Zμ)E, (3.2c)

∂t(�vd)+ 1
2
∂x(�vs�vd)= (1 + Zμ)E, (3.2d)

∂x E =�nd − δi

[
1 − exp

(
−σφ

T

)]
+ δe

[
1 − exp

(
φ

T

)]
. (3.2e)

Here, we have utilised the respective normalised expressions for the densities of the
hot MB-distributed ions and electrons which are

ni = δi exp
(

−σφ
T

)
, (3.3)

ne = δe exp
(
φ

T

)
. (3.4)

The normalisations for all the variables involved in (3.2a) to (3.2e), and (3.3)
and (3.4) have been presented in table 1. Also, we have defined σ = Te/Ti ,
T = Z−Tek2/m−ω2

−, δi = ni0/n−0 and δe = ne0/n−0, such that η= 1 + δe − δi in
accordance with the quasineutrality condition.
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Variables Normalised by Normalised variables
Space k−1 x
Time ω−1− t
Densities n−0 n+, n−, ni , ne

Dust fluid velocities ω−k−1 v+, v−
Electric field m−ω2−Z−1− e−1k−1 E
Electrostatic potential m−ω2−Z−1− e−1k−2 φ

TABLE 1. Normalisation scheme.

The spatio-temporal evolution of the excited DAWs is investigated by employing a
simple perturbative expansion method where all the fluid-field variables ψ(x, t) are
expanded as ψ(x, t)= ∑∞

j=0 ψ
( j)(x, t) (Nayfeh 2000; Holmes 2013). Here, the j th

expansion term ψ( j) is proportional to the j th power of a small expansion param-
eter ε. We then insert this expansion into (3.2a) to (3.2e) and solve for successive
orders of the perturbations in the fluid-field variables, subject to the following initial
conditions:

�nd(x, 0)= −(1 + Zημ) ε cos x, (3.5a)

�ns(x, 0)= (1 − Zημ) ε cos x, (3.5b)

�vd(x, 0)=�vs(x, 0)= 0. (3.5c)

Here, the small expansion parameter ε serves as the perturbation amplitude. In
terms of the original unnormalised variables, these initial conditions are

n−(x, 0)= n−0(1 + ε cos kx), (3.6a)

n+(x, 0)= n+0(1 − Zμε cos kx), (3.6b)

v+(x, 0)= v−(x, 0)= 0. (3.6c)

Note that, when we expand exp(φ/T ) and exp(−σφ/T ), we retain only the linear
terms and ignore all the higher-order ones. In other words, we expand them as
1 + (φ/T ) and 1 − (σφ/T ), respectively. This is justified as eφ� Ti , Te for DAWs.

On substituting the perturbative expansions of the fluid-field variables into (3.2a)
to (3.2e), and collecting terms that are proportional to ε, yields the following first-
order equations for all the variables involved:

∂t(�n(1)d )+
1
2
∂x [(η+ 1)�v(1)d + (η− 1)�v(1)s ] = 0, (3.7a)

∂t(�n(1)s )+
1
2
∂x [(η+ 1)�v(1)s + (η− 1)�v(1)d ] = 0, (3.7b)

∂t(�v
(1)
s )= −(1 − Zμ)E (1), (3.7c)
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∂t(�v
(1)
d )= (1 + Zμ)E (1), (3.7d)

∂x E (1) =�n(1)d −
(
σδi + δe

T

)
φ(1). (3.7e)

In keeping with our goal of investigating the spatio-temporal evolution of DAWs,
we aim to construct solutions to (3.7a) to (3.7e) that are separable, i.e. solutions that
can be written as products of two functions, one which has an explicit dependence on
x , while the other has an explicit dependence on t (standing wave solutions). Since,
the initial (first-order) perturbation has been taken to be proportional to ε cos x , we
can write ∂x E (1) = −∂2

xφ
(1) = φ(1), which allows us to write the following expression

for φ:
φ(1) = γ1�n(1)d , (3.8)

with γ1 = (1 + (σδi + δe)/T )−1. On using (3.7a) to (3.7e) along with (3.8), we obtain
the following homogeneous differential equation for �n(1)d

∂2
t (�n(1)d )+�2�n(1)d = 0, (3.9)

where �= √
γ1(1 + Zημ). Finally, on utilising the initial conditions given by (3.5a)

to (3.5c), we arrive at the following expressions for the first-order perturbations in
the fluid-field variables (first-order solutions):

�n(1)d = −εa1 cos x cos�t, (3.10a)

�n(1)s = εa2 cos x cos�t, (3.10b)

�v
(1)
d = −εb1 sin x sin�t, (3.10c)

�v(1)s = εb2 sin x sin�t, (3.10d)

φ(1) = −εγ1a1 cos x cos�t, (3.10e)

E (1) = −εγ1a1 sin x cos�t, (3.10f )

where we have defined a1 = 1 + Zημ, a2 = 1 − Zημ, b1 =�(1 + Zμ) and b2 =
�(1 − Zμ). As expected, the first-order solutions, given by (3.10a) to (3.10f ), are
purely standing wave solutions, obtained as the superposition of two travelling waves
propagating in opposite directions. Expectedly, as of now the first-order equations
show no indication of phase mixing, meaning we must extend our analysis to the
second-order perturbations in the fluid-field variables.

3.2. Second-order solutions
Proceeding in a similar fashion as in § 3.1, we can construct the equations for the

second-order perturbations in the fluid-field variables by substituting the perturbative
expansions of the variables into (3.2a) to (3.2e), and collecting terms that are pro-
portional to ε2. Just as before, we aim for solutions that are separable, i.e. standing
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wave solutions. Owing to the convective nonlinearity of the plasma medium, the per-
turbations in the second-order analysis will be proportional to ε2 cos 2x . As a result,
this allows us to write ∂x E (2) = −∂2

xφ
(2) = 4φ(2). Thus, we have

φ(2) = γ2

4
�n(2)d , (3.11)

where γ2 = (1 + (σδi + δe)/4T )−1. Using the second-order equations so constructed
along with (3.11), we obtain the following non-homogeneous differential equation
for �n(2)d :

∂2
t (�n(2)d )+�2

1�n(2)d = 1
4
(η+ 1) ∂2

x

[
�v(1)s �v

(1)
d

]
+ 1

8
(η− 1) ∂2

x

[
�v(1)

2

s +�v
(1)2

d

]
− 1

2
∂x∂t

[
�n(1)s �v

(1)
d +�n(1)d �v

(1)
s

]
, (3.12)

where �1 = √
γ2(1 + Zημ). On utilising the proper initial conditions, �n(2)d (x, 0)= 0

and ∂t�n(2)d (x, 0)= 0, we end up with the following expression for �n(2)d :

�n(2)d = ε2 cos 2x

[
d0

�2
1

(1 − cos�1t)+ d1

�2
1 − 4�2

(cos 2�t − cos�1t)

]
. (3.13)

Once we have �n(2)d , it is straightforward to obtain the relevant expressions for
the second-order perturbations in the remaining fluid-field variables (second-order
solutions) from the second-order equations. These remaining second-order solutions
turn out to be as follows:

φ(2) = 1
2
ε2 cos 2x (e0 + e1 cos�1t + e2 cos 2�t), (3.14a)

E (2) = ε2 sin 2x (e0 + e1 cos�1t + e2 cos 2�t), (3.14b)

�v(2)s = −ε2 sin 2x (g0t + g1 sin�1t + g2 sin 2�t), (3.14c)

�v
(2)
d = ε2 sin 2x (h0t + h1 sin�1t + h2 sin 2�t), (3.14d)

�n(2)s = ε2 cos 2x [αt2 + c1(1 − cos�1t)+ c2(1 − cos 2�t)]. (3.14e)

The expressions for all the coefficients in the second-order solutions are presented
below

d0 = −(η+ 1)b1b2

4
+ (η− 1)(b2

1 + b2
2)

8
,

d1 = (a1b2 + a2b1)�

2
+ (η+ 1)b1b2

4
− (η− 1)(b2

1 + b2
2)

8
.

e0 = d0γ2

2�2
1

, e1 = −d0γ2

2�2
1

− d1γ2

2(�2
1 − 4�2)

, e2 = d1γ2

2(�2
1 − 4�2)

,

g0 = e0(1 − Zμ)+ 1
8
(b2

1 + b2
2), g1 = e1

�1
(1 − Zμ),

g2 = 1
2�

[
e2(1 − Zμ)− 1

8
(b2

1 + b2
2)

]
,
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h0 = e0(1 + Zμ)+ 1
4
(b1b2), h1 = e1

�1
(1 + Zμ), h2 = 1

2�

[
e2(1 + Zμ)− 1

4
(b1b2)

]
,

α = 1
2
[(η+ 1)g0 − (η− 1)h0], c1 = 1

�1
[(η+ 1)g1 − (η− 1)h1],

c2 = 1
2�

[
(η+ 1)g2 − (η− 1)h2 −

(
a1b1 + a2b2

4

)]
. (3.15)

The second-order solutions clearly depict that, during the evolution of the excited
DAWs, higher harmonics in both space and time are generated. This is a direct con-
sequence of the inherent nonlinearity of the plasma medium. In addition to this, we
also see that there now exists a new mode of oscillation with frequency �1. This new
mode arises due to the presence of the MB-distributed hot ions and electrons whose
number densities are always dependent on φ, i.e. ni,e ≡ ni,e(φ). Another important
feature of the second-order solutions is the presence of direct current (DC) and secu-
lar terms, the DC terms being those that have no dependence on t , while the secular
terms are those that are proportional to t or t2, and as such have an unbounded
growth with evolving time. It must be stressed here that the presence of such secular
terms, which are driven by terms like ∼ ∂2

x

(
�v(1)

2

s +�v(1)
2

s

)
and ∼ ∂2

x

(
�v(1)s �v

(1)
s

)
in the second-order equations, are in no way an artefact of the perturbation method
employed. Rather, such secular terms serve as important signatures of phase mix-
ing (Sen Gupta & Kaw 1999). Consider the secular term ∼ (ε2α cos 2x)t2 in the
expression for �n(2)s . Physically, such a secular term is indicative of rapid bunching
of plasma particles in space with time. Here, the constant α is given as

α = 1
2
[(η+ 1)g0 − (η− 1)h0], (3.16)

which, on using the expressions for g0 and h0 and simplifying appropriately, can be
rewritten as

α = Zημγ1

2
(1 + Zμ). (3.17)

Thus, we notice that the presence and the subsequent effects of the secular term in
�n(2)s on the evolution of DAWs in opposite polarity dusty plasmas is determined
solely by the values of the plasma parameters η and μ. In the limit η→ 0, which
implies the absence of positively charged dust grains, we end up with α→ 0. This
indicates that there would be no secular terms in the second-order solutions in the
presence of only single polarity dust grains. Alternatively, in the limit μ→ 0, imply-
ing that the positively charged dust grains are stationary, we again end up with
α→ 0. Thus, in order to ensure the appearance of secular terms in the second-order
solutions, it is not only necessary to have both positive and negative polarity dust
grains, but also necessary to consider them both to be dynamical.

On examining the expression for E (2) (and φ(2) as well), we notice the presence of
a DC term, which signifies the existence of a non-zero ponderomotive force. This
becomes evident when one averages the electric field over the oscillation time scale.
The plasma particles respond to this non-zero ponderomotive force and undergo
a spatial rearrangement, thereby rendering the plasma medium inhomogeneous. In
such an inhomogeneous medium, the characteristic frequency of the relevant mode
acquires a spatial dependence, and is no longer constant. What happens is that, as
the DAWs self-consistently evolve in space and time, the plasma particles start to
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accumulate at certain locations while moving away from others, giving rise to spikes
in the density profile. This is embodied by the presence of the secular term in �n(2)s .
Thus, the excited DAWs eventually lose their coherency, and are said to be phase
mixed.

3.3. Estimating the phase-mixing time
To obtain an estimate of the phase-mixing time, we first construct an approximate

evolution equation for �nd correct up to third order as

∂2
t �nd +�2

[
1 + 1 + Zμ

2(1 + Zημ)
�ns

]
�nd ≈ 0. (3.18)

On substituting the leading-order secular term for �ns , which is �n(2)s ≈
(ε2α cos 2x)t2, (3.18) transforms to

∂2
t �nd +�2(1 +Bt2 cos 2x)�nd ≈ 0, (3.19)

where

B = ε2α

2

(
1 + Zμ

1 + Zημ

)
.

Using the initial conditions �nd(x, 0)= −a1ε cos x and ∂t�nd(x, 0)= 0, we write
the following Wentzel–Kramers–Brillouin (WKB) solution (Bender & Orszag 2009)
for (3.19):

�nd ≈ −a1ε cos x cos
[
�t

(
1 + Bt2

6
cos 2x

)]
. (3.20)

Notice that, in accordance with our earlier discussion, the characteristic frequency
of the dust acoustic mode has indeed acquired a spatial dependence, in addition to
a dependence on η and μ. This is what leads to the phase mixing of the excited
DAWs.

The initial perturbation to the plasma at t = 0 excites the primary mode of the
DAWs. As time progresses, higher harmonics are generated. This happens at the
expense of the electrostatic energy that was initially loaded into the primary mode,
wherein it cascades irreversibly to the higher harmonics with evolving time. As a
result, the primary mode suffers an eventual collisionless decay. This becomes evi-
dent when we expand (3.20) in terms of a Bessel series (Watson 2006) as follows:

�nd≈−1
2

a1ε

+∞∑
l=−∞

Jl

(
1
6
B�t3

) [
cos

(
�t + lπ

2

)
{cos (2l + 1)x + cos (2l − 1)x}

+ sin
(
�t + lπ

2

)
{sin (2l + 1)x + sin (2l − 1)x}

]
.

(3.21)

(3.21) shows that the amplitude of the primary mode (l = 0) varies as ∼ J0(B�t3/6),
which clearly indicates the decay of the primary mode as time progresses.
Additionally, (3.21) depicts the subsequent generation of higher harmonics (l =
1, 2, . . .) as well. Finally, on using J0(B�t3/6)≈ J0(1), we obtain an approximate
expression for the phase-mixing time ω−tmix as

ω−tmix = 1√
γ1

[
24

√
1 + Zημ

ε2 Zημ(1 + Zμ)2

]1/3

. (3.22)
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Note that, when η→ 0 (implying that there are no positive dust grains), the phase-
mixing time becomes infinitely high, i.e. ω−tmix → ∞. This is also the case when the
limit μ→ 0 (implying that the positive dust grains are at rest) is considered. Thus,
in keeping with the discussion in § 3.2, we note that, for the excited DAWs to phase
mix, the presence of both positively and negatively charged dynamical dust grains in
the plasma is crucial.

Here, we must point out an apparent asymmetry in the applicability of (3.22) in
determining the phase-mixing time of DAWs in plasmas with single polarity dust
grains. Up until now, the utilisation of proper limits has allowed us to successfully
apply (3.22) to predict the phase-mixing time for DAWs in plasmas containing only
negatively charged dynamical dust grains, which is found to be infinitely high. But it
turns out that (3.22) cannot be used to do the same for DAWs in plasmas with only
positively charged dust grains. To put it somewhat crudely, in the present analysis it
is possible to switch off the positively charged dust grains (density and dynamics), but
not the negatively charged ones. In other words, one cannot obtain the phase-mixing
time for DAWs in plasmas with just positively charged dynamical dust grains from
(3.22), by simply utilising the limits η→ ∞ and/or μ→ ∞. Evidently, this is due
to the fact that, for such limits, the phase-mixing time becomes zero (ω−tmix → 0),
which bears no physical meaning. The reason behind this apparent asymmetry lies
in the fact that the initial conditions chosen for the above analysis, given by (3.5a) to
(3.5c) or (3.6a) to (3.6c), do not support such an operation and in the limits η→ ∞
and μ→ ∞, the initial conditions become meaningless. One must bear in mind that
the situation where only the negatively charged dynamical dust grains are present is
completely different from the one where it is just the positively charged dynamical
dust grains. This is made evident by the stark contrast in the quasineutrality relation
and the basic equations for the two cases.

In order to be able to switch off the negatively charged dust grains and obtain
the correct estimate for the phase-mixing time in plasmas with positively charged
dynamical dust grains, we must consider an alternative set of initial conditions.
This would yield a different expression for the phase-mixing time in comparison
with (3.22), which would allow us to switch off the negatively charged dust grains
by utilising the appropriate limiting conditions. But, this new set of initial condi-
tions would also suffer from the same asymmetry as it would no longer allow us
to switch off the positively charged dust grains. However, the final conclusion, i.e.
that excited DAWs in dusty plasmas undergo phase mixing only if the plasma con-
tains both positively and negatively charged dynamical dust grains, would remain
unaltered.

3.4. Phase-mixing time of DAWs in electron-depleted dusty plasmas
A plausible scenario for a dusty plasma with opposite polarity dust grains is one

where, during the charging of the dust grains, almost all the electrons have attached
themselves onto the surface of the grains. Thus, the resulting plasma is almost
entirely depleted of electrons, and now consists of just three major components,
the positively charged dust grains, the negatively charged dust grains and the hot
isothermal ions. Note that the keyword here is almost, since a complete depletion of
the electrons is not possible. This is due to the fact that the minimum value for the
ratio of the electron to ion equilibrium number density is given by the square root
of the ratio of the electron to ion mass, when the electron and ion temperatures are
approximately equal and the grain surface potential is zero (Shukla & Mamun 2010;
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Tribeche & Merriche 2011). Thus, for electron-depleted dusty plasmas we have

ne0

ni0
=

√
me

mi
, (3.23)

where me (mi ) denotes the mass of the electrons (ions). If we consider the ions
to be that of hydrogen (H+), then the electron to ion mass ratio has the value
me/mi = 1/1836. On using (2.1) and (2.2), and normalising the electron and ion
densities in (3.23) appropriately (see table 1), we obtain the minimum value of δe in
an electron-depleted dusty plasma as

δe ≈ 0.023δi , (3.24)

which leads to the following quasineutrality condition:

η+ 0.977δi = 1. (3.25)

As it turns out, such electron-depleted plasmas can still support DAWs, and
accordingly, the linear dispersion relation is found to be

1 + 1.023
k2λ2

Di

= ω2
+ +ω2

−
ω2

, (3.26)

which in the long wavelength limit can be written as

ω= kCD A

√
1 + Zημ. (3.27)

Here, CD A = 0.9887Z 1/2
− (n−0/ni0)

1/2(Ti/m−)1/2 is the dust acoustic speed. These
DAWs will also undergo phase mixing, with the estimate for the phase-mixing time
being given as

ω−tmix =
√

1 + δi

βi

[
24

√
1 + Zημ

ε2 Zημ(1 + Zμ)2

]1/3

, (3.28)

where βi = Z−k2Ti/1.023m−ω2
− is a constant. The above estimate for the phase-

mixing time has been directly obtained from (3.22), after having modified the
expression for γ1 as γ1 = (1 + δi/βi)

−1.

4. Parametric analysis of the phase-mixing time

In this section, we investigate how the phase-mixing time of DAWs in the usual
opposite polarity dusty plasmas as well as in electron-depleted dusty plasmas, is
affected by variations in the values of the different plasma parameters η, μ and σ .
In order to proceed with the parametric analysis, we choose certain typical values
for the various plasma quantities (Barkan et al. 1995; D’Angelo & Merlino 1996;
D’Angelo 2001; Shukla & Mamun 2010; Mamun & Shukla 2011). These are pre-
sented in table 2. In the discussions that follow, the values for the plasma parameters
that have been utilised are in conjunction with the values in table 2. For instance, if
we use σ = 100 in our discussions, then this would immediately provide us with the
value for Te as 2.5 eV, since we have chosen Ti to be equal to 0.025 eV.
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Plasma quantity Value
Z− 103

Z+ 10
Ti 0.025 eV
N−0 104 cm−3

m− 2.3 × 10−15 g
k 1 cm−1

TABLE 2. Typical values for the plasma quantities.

In the usual opposite polarity dusty plasmas, on utilising the values in table 2
and setting η= 1.2, δi = 0.2, σ = 50 and μ= 100, which implies that the negatively
charged dust grains are heavier in comparison with the positively charged ones,
the corresponding plasma frequencies for the positively and negatively charged dust
grains turn out to be ω+ = 3887 and ω− = 3548 rad s−1, respectively. This in turn
yields 427.5 rad s−1 as the DAW frequency ω, which is approximately 68 Hertz.
Similarly, on setting μ= 0.01 instead, i.e. on considering the positively charged dust
grains to be heavier than the negatively charged ones, the corresponding DAW
frequency turns out to be approximately 46 Hertz. Thus, the frequency of DAWs in
either case is quite low, which is expected (Shukla & Mamun 2010). Proceeding in a
similar fashion, one can obtain a typical value for the DAW frequency in electron-
depleted plasmas as well by utilising the values in table 2 and considering η= 0.8,
δi = 0.2047 and μ= 100 or μ= 0.01. The relevant DAW frequency then turns out
to be approximately 61 Hertz when μ= 100, and approximately 45.8 Hertz when
μ= 0.01, which is expectedly quite low again.

4.1. Variation of the phase-mixing time with η
In figure 1, we show the variation of the phase-mixing time with η for four dif-

ferent cases. Recall that η is the ratio of the equilibrium density of the positively
charged dust grains to that of the negatively charged ones (η= n+0/n−0). Thus, an
increasing value of η essentially signifies an increasing value of n+0 in comparison
with n−0. In figures 1(a) and 1(b), the variation in the phase-mixing time with η is
shown, whilst keeping δi fixed at 0.2. Following from the quasineutrality condition,
such a consideration immediately constrains the values that η can attain, as now
we must have η > 1 − δi (which is η > 0.8 in our case), in order to ensure that δe

always remains positive. Thus, we have considered the variation in η for the two
plots to be in the range 0.805� η� 25. On the other hand, in figures 1(c) and 1(d),
we have kept δe fixed at 0.4, and have allowed δi to be modified with changing
η. This again imposes a constraint on the values that η can attain, which turns
out to be η < 1 + δe (i.e. η < 1.4 in our case). Just as before, this constraint on η
follows from the quasineutrality condition, and the fact that δi is always positive.
Accordingly, the variation in η for the two plots in this case has been considered
to lie in the range 0.05� η� 1.39. Additionally, the variations in figures 1(a) and
1(b) with fixed δi = 0.2 is shown for two different values of μ, i.e. μ= 0.01 and
μ= 100, respectively. This has also been done for figures 1(c) and 1(d) with fixed
δe = 0.4. The consideration of two different values for μ has been made in order
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FIGURE 1. Variation of phase-mixing time (ω−tmix ) with η (= n+0/n−0) for (a) δi = 0.2, σ =
50 and μ= 0.01, (b) δi = 0.2, σ = 50 and μ= 100, (c) δe = 0.4, σ = 50 and μ= 0.01 and (d)
δe = 0.4, σ = 50 and μ= 100. Here, Z = 10−2 and ε = 0.08.

to take into account the fact that dust grains with either polarity can be heav-
ier than the other. Lastly, we have considered σ = 50, Z = 10−2 and ε = 0.08, as
well.

Our primary observation is that, in figures 1(a) and 1(b), for small values of η the
phase-mixing time is quite high, and as η increases, the phase-mixing time gradually
decreases. But this decrease happens only up to a certain value of η, i.e. for η= ηc,
and on increasing the value of η beyond ηc, the phase-mixing time starts to increase.
In other words, for η= ηc, the phase-mixing time exhibits a minimum. In stark
contrast to this, the variations in figures 1(c) and 1(d) depict that, with increasing η,
the initially high phase-mixing time decreases gradually, but exhibits no minimum.
The reason behind such distinctly different variations in the two sets of plots lies in
the fact that the quasineutrality condition for the plasma is profoundly influenced by
whether we allow δe or δi to be modified with increasing η, whilst keeping the other
fixed. This becomes evident when we consider the expression for the phase-mixing
time for the two cases. If we keep δi fixed then the quasineutrality condition dictates
that, with increasing η, δe increases as well. The expression for the phase-mixing
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time, given by (3.22), is then modified as

ω−tmix =
[

24
√

1 + Zημ

ε2 Zημ(1 + Zμ)2

(
αi + η

T

)3/2
]1/3

, (4.1)

where αi = 1 + (δi(σ + 1)− 1)/T . On the other hand, if we keep δe fixed, the
quasineutrality condition dictates that, with increasing η, δi decreases and the
expression for the phase-mixing time is then modified as

ω−tmix =
[

24
√

1 + Zημ

ε2 Zημ(1 + Zμ)2

(
αe − ση

T

)3/2
]1/3

, (4.2)

where, αe = 1 + (δe(σ + 1)+ σ)/T . Thus, (4.1) and (4.2) clearly show how the
choice of considering either δi or δe to be fixed leads to vastly different quasineu-
trality situations for the plasma, which in turn affects the phase-mixing time of
DAWs.

The secondary observation that we make is that a higher value of μ leads to lower
overall values for the phase-mixing time. This is true irrespective of whether we keep
δi or δe fixed, as seen from figures 1(a) to 1(d). A detailed discussion on this is
presented in § 4.2. Note that, for the variation with fixed δi in figures 1(a) and 1(b),
we find that the value of μ also affects the value of ηc. Indeed, this becomes evident
when one writes the expression for ηc as follows:

ηc = Zμαi T − 1 + √
1 + Z 2μ2α2

i T 2 + 14Zμαi T

4Zμ
. (4.3)

Accordingly, for μ= 0.01, we have ηc = 18.49 in figure 1(a), while for μ= 100, we
have ηc = 5.75 in figure 1(b). Note that (4.3) shows us that ηc is also dependent
on σ , and as such, the variation of ηc with μ and σ is presented in figures 2(a)
and 2(b), respectively. In figure 2(a), the variation in μ has been taken to lie in the
range 0.01�μ� 100, and we can clearly see that, with increasing μ, ηc decreases
continuously. On the other hand, figure 2(b) shows us that on increasing the value
of σ in the range 10� σ � 200, the value of ηc increases, almost linearly. Thus, the
increasing values of the parameters μ and σ have completely opposite effects on the
value of ηc, i.e. the former causes it to decrease monotonically while the latter causes
it to increase monotonically.

In figure 3, we have again shown the variation of the phase-mixing time as a func-
tion of η, but for two different values of σ , which are (1) σ = 50 (denoted as the
red solid line) and (2) σ = 150 (denoted as the blue dashed line). Just as before,
we have considered the two different cases of either keeping δi fixed at 0.2 (see
figure 3a), or keeping δe fixed at 0.4 (see figure 3b), whilst allowing the other param-
eter to change with changing η. As expected, in figure 3(a), the phase-mixing time
exhibits a minimum. Note that, for smaller values of η, the two curves correspond-
ing to the two different σ values are almost merged as one. In reality, however, the
phase-mixing time for σ = 150 is lower than that for σ = 50, but the difference is
quite small in comparison with the overall variation with η. As η increases, we notice
that the two curves start to deviate from one another, and as η is increased further,
the phase-mixing time gradually approaches its minimum value at η= ηc, Here, we
notice that, for the higher value of σ = 150, the value for the minimum phase-mixing
time is much lower in comparison with that for σ = 50.
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FIGURE 3. Variation of phase-mixing time (ω−tmix ) with η (= n+0/n−0) for (a) δi kept fixed
at 0.2, and (b) δe kept fixed at 0.4. The variation in both (a) and (b) is shown for two distinct
values of σ , (1) σ = 50 (red solid curve) and (2) σ = 150 (blue dashed curve). In panel (b) a
zoomed in version of the original plot around η= 1.202 is embedded, in order to clearly bring
forth the effect of σ on the phase-mixing time. Also, we have considered μ= 10, Z = 10−2 and
ε = 0.08.

In figure 3(b), as δe has been kept fixed, we observe no minimum for the phase-
mixing time. Here, we see that the two curves, (1) and (2), corresponding to two
different values of σ = 50 and σ = 150, respectively, are completely merged as one.
What has happened is that the overall variation in the phase-mixing time with η is so
large in comparison with the variation in it for two different σ , that the two curves
seem to have merged into a single one. In order to alleviate any confusion regarding
this and to confirm that different values of σ do indeed affect the phase-mixing
time even in this case, we have embedded in the figure 3(b) a zoomed in version
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of the original plot at around η= 1.202. This clearly shows that, just as before, a
higher value of σ leads to a lower phase-mixing time. We discuss the variation of the
phase-mixing time with σ in greater detail in § 4.2.

4.2. Variation of the phase-mixing time with μ and σ
In this section we conduct a detailed parametric analysis of the variation of the

phase-mixing time with μ and σ . Recall that μ is defined as the ratio of the mass
of the negatively charged dust grains to that of the positively charged ones (i.e.
μ= m−/m+), while σ is defined as the ratio of the temperature of the MB-distributed
electrons to that of the MB-distributed ions (i.e. σ = Te/Ti ). Thus, increasing values
of μ and σ signify an increasing value of m− and Te, respectively, in comparison
with m+ and Ti , respectively.

The variation of the phase-mixing time with μ is depicted in figure 4(a) for δi = 0.2,
η= 1.2, σ = 50, Z = 10−2 and ε = 0.08. The range of values for μ has been chosen
to be 0.01�μ� 100, which ensures that the variation depicted as such takes into
account the fact that it is possible for dust grains with either polarity to be heavier
than the other, or they might even have equal masses. Figure 4(a) shows that the
value of the phase-mixing time decreases very drastically for very small values of μ
(i.e. for values corresponding to m+ 	 m−). This is represented by the almost vertical
drop that the curve exhibits for values of μ that are very small. In order to bring out
the variation in the phase-mixing time for such small values of μ, we have embedded
a zoomed in version of the original plot in the figure. The zoomed in plot depicts
the phase-mixing time at around μ= 1. After the initial drastic fall in phase-mixing
time, we observe that, as the value of μ increases, the phase-mixing time continues to
decrease, albeit the rate at which it happens slows down considerably. Thus, higher
values of μ cause the excited DAWs to phase mix quicker. This is in agreement
with the secondary observation made from figure 1. Physically, what happens is that
higher values of μ cause the overall initial perturbations in the fluid-field variables,
given by (3.5a) to (3.5c), to become higher as well, even though the perturbation
amplitude is kept constant at ε = 0.08. This results in a quicker phase mixing of the
excited DAWs.
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FIGURE 5. Variation of phase-mixing time (ω−tmix ) in an electron-depleted dusty plasma, with
(a) η for μ= 100, and (b) μ for η= 0.8. Additionally, here we have considered δe = 0.023δi ,
Z = 10−2 and ε = 0.08.

In figure 4(b) we have plotted the variation of the phase-mixing time with σ for
δi = 0.2, η= 1.2, μ= 100, Z = 10−2 and ε = 0.08. Here, we have considered the
variation in σ to lie in the range 10� σ � 200. Note that, since the electrons are
much lighter than the ions, the electron temperature is always higher than the ion
temperature. As such, we have σ > 1 always. From the figure, we see that, as σ
increases, there is a monotonic decrease in the phase-mixing time, which immedi-
ately corroborates our observation from figure 3. The reason behind this is that a
higher temperature for the electrons means a higher value of the electron thermal
pressure, which in turn leads to a higher value of the electron pressure gradient
force (∼ Te∂x Pe). Thus, in order to maintain a MB-distribution for the electrons, a
stronger electric field is required to nullify the higher value of the electron pressure
gradient force. Such a stronger electric field leads the plasma medium to acquire a
greater spatial inhomogeneity, which ultimately causes the excited DAWs to phase
mix quicker.

4.3. Variation of the phase-mixing time in electron-depleted dusty plasmas
In § 3.4, we discussed the possibility of phase mixing of DAWs in electron-depleted

dusty plasmas, and presented an expression for the phase-mixing time as well, given
by (3.28). In this section we analyse how this phase-mixing time varies with param-
eters η, μ and βi (or, equivalently Ti ), which are characteristic to electron-depleted
plasmas. Following the discussion in § 3.4, an electron-depleted dusty plasma cannot
be completely depleted of electrons. Rather, there is a minimum value for the den-
sity of electrons in such plasmas. For our purposes, this value is considered to be
δe = 0.023δi .

In figure 5(a), the variation of the phase-mixing time with η is depicted. Here,
we have considered μ= 100, βi = 1.35 × 10−3 (which is equivalent to Ti = 0.025
eV), Z = 10−2 and ε = 0.08. Here, η lies in the range 0.05� η� 0.99, which is in
accordance with the constraint η < 1. As this is an electron-depleted dusty plasma,
meaning that the value of δe is fixed (at 0.023δi ), the nature of the variation of
the phase-mixing time is similar to the ones depicted in figures 1(c) and 1(d), i.e.
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electron-depleted dusty plasma for η= 0.8, δi = (1 − η)/0.977, δe = 0.023δi , μ= 100, Z =
10−2 and ε = 0.08.

with increasing η, the phase-mixing time decreases gradually, and exhibits no min-
imum. In figure 5(b), we have shown the variation of the phase-mixing time as
a function of μ, where μ lies in the same range as before, which is 0.01�μ�
100. In addition to this we have considered η= 0.8, δi = (1 − η)/0.977 = 0.2047,
δe = 0.023δi , βi = 1.35 × 10−3, Z = 10−2 and ε = 0.08. The variation in this case
is almost entirely similar to that depicted in figure 4(a). For small values of μ
the phase-mixing time is very high, and it drastically drops in value for slight
increments in μ. Similar to figure 4(a), here too we have zoomed in at around
μ= 1, in order to clearly bring forth the change in the phase-mixing time with
small values for μ. As μ keeps on increasing, the phase-mixing time continues
to decrease, with the rate of decrement becoming smaller with higher values of
μ. As discussed in § 4.2, the reason for such a variation can be realised from the
fact that the value of μ greatly influences the initial perturbations to the fluid-field
variables.

Figure 6 depicts the variation in the phase-mixing time of DAWs in electron-
depleted dusty plasmas with βi , which is defined as βi = Z−k2Ti/1.023m−ω2

−. Note
that increasing βi essentially implies increasing values for the ion temperature Ti ,
and hence the variation in the phase-mixing time has in reality been analysed as a
function of Ti . The variation in βi in the figure has been considered to be in the
range 0.0541 × 10−3 � βi � 1.62 × 10−3, which is equivalent to 0.001 eV � Ti � 0.03
eV. Additionally, we have also considered η= 0.8, δi = (1 − η)/0.977 = 0.2047,
δe = 0.023δi , μ= 100, Z = 10−2 and ε = 0.08. As expected, we find that, for increas-
ing values of βi , the phase-mixing time decreases monotonically. This is also similar
to the variation depicted in figure 4(b). Just as before, the reason behind such
behaviour of the phase-mixing time with βi is that, as βi increases, or as Ti increases,
the corresponding ion thermal pressure increases as well. This in turn leads to an
increase in the pressure gradient force which then requires a higher electric field to
balance it out, so as to maintain the MB-distribution for the ions. This increase in
the electric field leads to an increase in the spatial inhomogeneity of the plasma,
thereby ultimately reducing the phase-mixing time.
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In figures 1 to 6, the phase-mixing time has been scaled using the oscillation
period of the negatively charged dust grains (ω−1

− ). In the usual opposite polarity
dusty plasmas, on considering certain particular values for the plasma parameters,
say for η= 0.2, δi = 0.2, σ = 50 and μ= 100, the phase-mixing time is found to
be ω−tmix ≈ 129. In the actual time scale, this is equivalent to approximately 0.23
seconds. In terms of the period of the excited DAWs, the above phase-mixing time
scales to ωtmix ≈ 16. Similarly, in electron-depleted dusty plasmas, the phase-mixing
time turns out to be ω−tmix ≈ 144, for η= 0.8, δi = 0.2047, μ= 100 and βi = 1.35 ×
10−3. Again, this is equivalent to approximately 0.26 seconds, and in terms of the
DAW period it is ωtmix ≈ 15.67.

5. Conclusion

We have studied the space–time evolution of DAWs in opposite polarity dusty
plasmas, consisting of MB-distributed hot electrons and ions, and cold dynamical
dust grains with opposite polarities. Our analysis, which involved using a simple per-
turbative treatment of the governing fluid-Maxwell equations, revealed that DAWs
in such opposite polarity dusty plasmas undergo phase mixing, causing them to
break at arbitrary amplitudes. We found that the competing dynamics of the two
dust species was the sole reason behind the phase mixing of DAWs. As such, the
coexistence of positively and negatively charged dynamical dust grains in the plasma
medium is absolutely crucial for phase mixing of DAWs. The analysis has also been
extended to include phase mixing of DAWs in electron-depleted dusty plasmas,
where the density of the electrons was reduced to as low a value as theoretically
possible. Our analytical findings illustrate that, as the DAWs evolve in space and
time, a non-zero ponderomotive force is self-consistently generated, which causes
the plasma medium to acquire a spatial inhomogeneity. This causes the character-
istic mode frequency to become spatially dependent, which is what ultimately leads
to phase mixing. An estimate for the phase-mixing time has also been presented
for DAWs in both opposite polarity as well as electron-depleted dusty plasmas.
One must bear in mind that the phase-mixing time of DAWs in certain limiting
cases, such as in dusty plasmas with only positively charged dust grains, cannot be
fruitfully extracted from the presented expression. This is due to the fact that the
expression for the phase-mixing time obtained is specific to the initial conditions
that we have used for our analysis. Utilisation of a different set of initial conditions
is required for this purpose, but they too would turn out to be insufficient for some
other limiting case. In other words, we have not been able to pinpoint any such set
of initial conditions that would successfully incorporate all the limiting cases. The
phase-mixing phenomenon for DAWs with certain alternative initial conditions will
be addressed in future communications. Here, we must stress that, although the use
of different initial conditions would lead to different expressions for the phase-mixing
time, the final conclusion as to phase mixing of DAWs in opposite polarity dusty
plasmas would remain identical to the one that we have obtained in our present
study.

The present investigation also involves a detailed analysis of the effects that the var-
ious plasma parameters have on the phase-mixing time of DAWs, in both the usual
opposite polarity dusty plasmas as well as in the electron-depleted dusty plasmas.
We have found the phase-mixing time to be greatly influenced by the equilibrium
densities of the plasma species, wherein it exhibits a minimum with increasing values
of the ratio of the equilibrium dust density of the positively charged grains to that of
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the negatively charged ones. But this is true only if we allow the equilibrium density
of the electrons to be modified with the increasing values of the ratio, whilst keeping
the equilibrium ion density fixed. For the alternative case, however, no such min-
imum is observed. The phase-mixing time has also been noticed to be profoundly
affected by the masses of the dynamical dust grains, such that it becomes very high
if the positively charged ones are considered to be more massive than the negatively
charged ones. Alternatively, if the opposite case is considered, then the phase-mixing
time is found to be much lower. In addition to this, the temperature of the inertialess
species has also been observed to considerably affect the phase-mixing time. Lastly,
we would like to mention that studies have revealed that the electrons and ions in
various space environments often obey certain distributions that deviate from the
usual MB-distribution (Asbridge, Bame & Strong 1968; Lundin et al. 1989; Cairns
et al. 1995; Futaana et al. 2003; Hellberg, Mace & Cattaert 2005), and as dusty plas-
mas capable of sustaining DAWs are ubiquitous in such environments, the present
study can be extended to include such non-isothermal distributions for electrons and
ions, and the dust charge fluctuations due to varying electron and ion currents. An
investigation in this regard will be addressed in future publications. We believe that
the results of our present investigation might bear relevance in space plasma as well
as laboratory environments.
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