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W -GRAPHS AND GYOJA’S W -GRAPH ALGEBRA

JOHANNES HAHN

Abstract. Let (W, S) be a finite Coxeter group. Kazhdan and Lusztig

introduced the concept of W -graphs, and Gyoja proved that every irreducible

representation of the Iwahori–Hecke algebra H(W, S) can be realized as a W -

graph. Gyoja defined an auxiliary algebra for this purpose which—to the best of

the author’s knowledge—was never explicitly mentioned again in the literature

after Gyoja’s proof (although the underlying ideas were reused). The purpose

of this paper is to resurrect this W -graph algebra, and to study its structure

and its modules. A new explicit description of it as a quotient of a certain path

algebra is given. A general conjecture is proposed which would imply strong

restrictions on the structure of W -graphs. This conjecture is then proven for

Coxeter groups of type I2(m), B3 and A1–A4.

§1. Introduction

Let (W, S) be a finite Coxeter group. Kazhdan and Lusztig introduced

W -graphs in [7] in an attempt to capture certain combinatorial features of

Kazhdan–Lusztig-cells and of the cell representations associated to them.

By definition, every cell representation is a W -graph representation. The

converse is not true.

Gyoja proved that every irreducible representation (and hence every

reducible representation as well) of the Hecke algebra H(W, S) can be

realized as a W -graph representation if W is finite (see [4, 2.3.(1)]). In that

proof, the Iwahori–Hecke algebra is embedded into a larger algebra, which

I denote Ω in this paper, and it is proven that there exists a left inverse of

this embedding. The W -graph algebra Ω is constructed in such a way that

its modules correspond to W -graphs (up to choice of an appropriate basis).

Using any one of these left inverses, every H-module can be considered as

an Ω-module, and the result follows.

Gyoja’s proof is nonconstructive, as it does not provide a concrete left

inverse of the embedding H ↪→ Ω and does not offer additional information

about the W -graphs that were constructed in this fashion or any information
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2 J. HAHN

about general W -graphs. In my thesis [5], I discovered that a careful analysis

of Ω reveals a fine structure that gives much more detailed information about

W -graphs. An explicit left inverse utilizing Lusztig’s asymptotic algebra is

also provided in [5, Satz 4.3.2].

The starting point for this analysis is the observation that Ω is a quotient

of a path algebra over a quiver which is describable entirely in terms of the

Dynkin diagram, a fact that is implicitly contained in Gyoja’s paper but

was not interpreted in that way. Gyoja’s definition [4, 2.5] gives elements of

Ω that basically realize the vertex idempotents and the edge elements of a

path algebra. (This is made precise in Lemma 7.) The first main result of my

paper is to give an explicit set of relations for this quotient (Theorem 13).

The relations are inspired by the work of Stembridge [8], where similar

equations appear for the edge weights of so-called admissible W -graphs,

although they were neither formulated for general W -graphs nor interpreted

as relations for an underlying algebra. This set of relations seems to be

different from the presentation Gyoja gives in the appendix of his paper.

Once this new presentation of Ω is established, it is applied to breaking

down the structure of Ω further. At the moment, this is only done for some

small Coxeter groups by a case-by-case analysis, but the proofs are so similar

in spirit that I proposed a general conjecture in my thesis whose essence is

that Ω should also be a quotient of a generalized path algebra over a different

quiver which should have Irr(W ) as its vertex set and should be acyclic. The

algebras associated to the vertices should be matrix algebras.

In the cases for which the conjecture is true, it has several important

consequences like the following.

• kΩ is finitely generated as a k-module, where k is a so-called good ring

for (W, S); that is, a ring k ⊆ C with 2 cos(2π/mst) ∈ k for all s, t ∈ S and

p ∈ k× for all bad primes p. (See [3, Table 1.4] for a detailed description

of what that means for each type of finite Coxeter group.)

• The Jacobson radical rad(kΩ) is finitely generated by an explicitly

describable finite list of elements and kΩ/rad(kΩ)∼=
∏
λ∈Irr(W ) k

dλ×dλ ,

where dλ denotes the degree of the irreducible character λ. This implies

that Gyoja’s conjecture (cf. [4, 2.18]) holds.

• There is an enumeration λ1, . . . , λn of Irr(W ) such that every kΩ-module

V has a natural filtration

0 = V 0 ⊆ V 1 ⊆ · · · ⊆ V n = V,
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which realizes the decomposition of V into irreducibles in the sense that

V i/V i−1 is isomorphic to a direct sum of irreducibles of isomorphism

class λi.

Because of the last consequence I named the conjecture the “W -graph

decomposition conjecture”. The second consequence, and in particular

the connection to Gyoja’s conjecture, was my original motivation for

investigating the W -graph algebra and its fine structure. At the time of

writing, the decomposition conjecture has been proven for Coxeter groups

of types A1–A4, I2(m) and B3.

The paper is organized as follows. The first section introduces some

notation, recalls the definition of W -graphs (following [3], which is slightly

more general than Kazhdan and Lusztig’s), the definition of the W -

graph algebra (following [4] though with a different notation) and proves

some basic lemmas establishing the connection between W -graphs and Ω-

modules. Section 3 is devoted to stating and proving an explicit description

of Ω in terms of generators and relations which are the basis for all

subsequent proofs. Section 4 contains the statement of the decomposition

conjecture and a short discussion of its consequences, while Section 5 is

devoted to the proofs of the conjecture for small Coxeter groups.

§2. Preliminaries

2.1 Notation

Throughout the paper, fix a finite Coxeter system (W, S). The Iwahori–

Hecke algebra H =H(W, S) of (W, S) is the Z[v±1]-algebra (where v is an

indeterminate), which is freely generated by (Ts)s∈S subject only to the

relations

∀s ∈ S : T 2
s = 1 + (v − v−1)Ts and

∀s, t ∈ S : ∆mst(Ts, Tt) = 0,

where mst denotes the order of st ∈W and ∆m(x, y) is the mth braid

commutator of ring elements x and y, which is defined as follows:

∆m(x, y) := xyx . . .︸ ︷︷ ︸
m factors

− yxy . . .︸ ︷︷ ︸
m factors

.

In particular, ∆0(x, y) = 0, ∆1(x, y) = x− y, ∆2(x, y) = xy − yx,

∆3(x, y) = xyx− yxy, and so on.
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4 J. HAHN

Also fix a good ring for (W, S); that is, a ring k ⊆ C with 2 cos(2π/mst) ∈
k for all s, t ∈ S and p ∈ k× for all so-called bad primes p. (See [3, Table 1.4]

for a detailed description of what that means for each type of finite Coxeter

group.)

A ring is good if it is big enough for the purposes of representation theory

of Coxeter groups. For example, every good field is a splitting field for W .

If A is a k-algebra and k′ is a commutative k-algebra, then k′A is used

as shorthand for the k′-algebra k′ ⊗k A. Similarly, the abbreviation k′V is

used for the k′A-module k′ ⊗k V if V is an A-module.

2.2 W -graphs

Definition 1. (Cf. [7] and [3]) A W -graph with edge weights in k is

a triple (C, I, m) consisting of a finite set C of vertices, a vertex labeling

map I : C→{I | I ⊆ S} and a family of edge weight matrices ms ∈ kC×C for

s ∈ S (here, kC×C denotes the ring of matrices whose rows and columns are

indexed with C and whose entries are elements of k) such that the following

conditions hold.

(1) ∀x, y ∈ C :ms
xy 6= 0 =⇒ s ∈ I(x) \ I(y).

(2) The matrices

ω(Ts)xy :=


−v−1 · 1k if x= y, s ∈ I(x),

v · 1k if x= y, s /∈ I(x),

ms
xy otherwise

induce a matrix representation ω : k[v±1]H → k[v±1]C×C.

The associated directed graph is defined as follows. The vertex set is C and

there is a directed edge x← y if and only if ms
xy 6= 0 for some s ∈ S. If this

is the case, then the value ms
xy is called the weight of the edge. The set I(x)

is called the vertex label of x.

Note that condition 1 and the definition of ω(Ts) already guarantee

ω(Ts)
2 = 1 + (v − v−1)ω(Ts), so that the only nontrivial requirement in

condition 2 is the braid relation 0 = ∆mst(ω(Ts), ω(Tt)).

The definition seems to allow up to |I(x) \ I(y)| different edge weights for

a single edge x← y. We prove later that all values ms
xy with s ∈ I(x) \ I(y)

are in fact equal.
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W -GRAPHS AND GYOJA’S W -GRAPH ALGEBRA 5

Given a W -graph as above, the matrix representation ω turns the space

k[v±1]C of column vectors indexed with C with entries in k[v±1] into a left

module for the Hecke algebra k[v±1]H. It is natural to ask whether the

converse is true. In situations where the Hecke algebra is split semisimple,

the answer is yes, as shown by Gyoja.

Theorem 2. (Cf. [4]) Let K ⊆ C be a splitting field for W . Every

irreducible representation of K(v)H can be realized as a W -graph module

for some W -graph with edge weights in K.

2.3 Gyoja’s W -graph algebra

Definition 3. Define Ξ as the Z-algebra that is freely generated by

es, xs for s ∈ S with respect to the following relations:

(1) ∀s ∈ S : e2s = es;

(2) ∀s, t ∈ S : eset = etes;

(3) ∀s ∈ S : esxs = xs, xses = 0.

Furthermore, define

ι(Ts) :=−v−1es + v(1− es) + xs ∈ Z[v±1]Ξ

for all s ∈ S. The braid commutator ∆mst(ι(Ts), ι(Tt)) can be written as∑
γ∈Z y

γ(s, t)vγ with uniquely determined elements yγ(s, t) ∈ Ξ.

The W -graph algebra Ω is defined as the Z-algebra obtained as the

quotient of Ξ modulo the relations yγ(s, t) = 0 for all s, t ∈ S and all γ ∈ Z.

By abuse of notation, the quotient map Ξ→ Ω is not explicitly mentioned

for the remainder of this paper, and symbols like es, xs and ι(Ts) are

therefore used for elements of Ξ as well as the corresponding elements of Ω.

The definition, and in particular the observation x2s = (esxs)(esxs) = 0,

immediately implies that Ts 7→ ι(Ts) defines a homomorphism of Z[v±1]-

algebras ι :H → Z[v±1]Ω (which is in fact injective, as we prove in Corol-

lary 10). This observation also appears in Gyoja’s paper [4, Remark 2.4.3].

2.4 Morphisms

Giving an algebra by generators and relations means having a universal

property for homomorphisms on the resulting algebra. Since the relations

for Ω are not explicit enough to be verifiable by explicit calculations, we use

the following universal property instead.
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6 J. HAHN

Lemma 4. Consider the category of all rings. Then, precomposing with

the quotient Ξ→ Ω is a natural isomorphism

Hom(Ω, A)∼=

{
f : Ξ→A

∣∣∣∣∣the induced map Z[v±1]Ξ→ Z[v±1]A

annihilates ∆mst(ι(Ts), ι(Tt)) for all s, t ∈ S

}
.

Proof. Precomposing with the quotient map certainly is an injective

natural transformation Hom(Ω,−)→Hom(Ξ,−). We prove that its image

is exactly the subset of the claim.

Choose s, t ∈ S and write ∆mst(ι(Ts), ι(Tt)) =
∑

γ∈Z y
γ(s, t)vγ as before.

Thus, for any homomorphism f : Ξ→A, the induced map Z[v±1]Ξ→
Z[v±1]A satisfies

f(∆mst(ι(Ts), ι(Tt))) =
∑
γ∈Z

f(yγ(s, t))vγ .

Because an element
∑

γ aγv
γ ∈ Z[v±1]A with aγ ∈A is zero if and only if

aγ = 0 for all γ ∈ Z, the map f descends to a well-defined homomorphism

Ω→A if and only if f annihilates all yγ(s, t) if and only if the induced map

annihilates all braid commutators ∆mst(ι(Ts), ι(Tt)).

The following easy corollary establishes symmetries of Ω which are used

to simplify the proofs of the decomposition conjecture in the last section of

the paper.

Corollary 5.

(1) If α : S→ S is a bijection with ord(α(s)α(t)) = ord(st) (in other words,

a graph automorphism of the Dynkin diagram of (W, S)), then there is

a unique automorphism of Ω with es 7→ eα(s), xs 7→ xα(s).

(2) There is a unique antiautomorphism δ of Ω with es 7→ 1− es, xs 7→ −xs.

2.5 Modules and W -graphs

The following definition appears in Gyoja’s paper [4, Definition 2.5],

although with different notation.

Definition 6. In Ξ, define the following elements for all I, J ⊆ S, s ∈ S:

EI :=

(∏
t∈I

et

)( ∏
t∈S\I

(1− et)
)

Xs
IJ := EIxsEJ .

https://doi.org/10.1017/nmj.2016.69 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.69


W -GRAPHS AND GYOJA’S W -GRAPH ALGEBRA 7

What Gyoja did not mention in his paper is that these elements actually

give Ω the structure of a quotient of a path algebra. This is the content of

the following lemma.

Lemma 7. With the above notation, the following statements are true.

(1) EIEJ = δIJEI ,
∑

I⊆S EI = 1 and es =
∑

I⊆S
s∈I

EI .

(2) Xs
IJ = 0 if s /∈ I \ J and xs =

∑
I,J⊆S
s∈I\J

Xs
IJ .

(3) Ξ is isomorphic to the path algebra ZQ over the quiver Q whose vertex

set is the power set of S and which has exactly |I \ J | edges I ← J for

every pair of vertices I, J ⊆ S.

Proof. The first equation follows immediately from the definition,

es(1− es) = (1− es)es = 0 and the fact that the es commute with each

other. The decomposition of the identity follows by expanding 1 =∏
s∈S(es + (1− es)), and the expression for es follows by applying the

decomposition of the identity in es · 1.

The expression for xs follows by applying the decomposition of the

identity twice in 1 · xs · 1.

The path algebra ZQ can be described as the algebra freely generated by

{ẼK , X̃s
IJ |K, I, J ⊆ S, s ∈ I \ J} with respect to the relations

ẼIẼJ = δIJ ẼI ,
∑
I⊆S

ẼI = 1 and X̃s
IJ = ẼIX̃

s
IJ ẼJ .

This implies that ẼI 7→ EI , X̃
s
IJ 7→Xs

IJ induces a ring homomorphism

ZQ→ Ξ. Going in the other direction, one readily verifies that the unique

ring homomorphism Ξ→ ZQ with es 7→
∑

I⊆S
s∈I

ẼI and xs 7→
∑

I,J⊆S
s∈I\J

X̃s
IJ is

inverse to the first morphism.

Remark 8. For later use, we observe the following.

(1) The algebra automorphism induced by a graph automorphism α maps

EI 7→ Eα(I) and Xs
IJ 7→X

α(s)
α(I)α(J).

(2) The antiautomorphism δ maps EI 7→ EIc and Xs
IJ 7→ −Xs

JcIc , where Ic

denotes the complement of I in S.

The following theorem also appears in Gyoja’s paper as a remark without

proof and establishes the connection between Ω and W -graphs.
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8 J. HAHN

Theorem 9. (Cf. [4, Remark 2.7]) Let k be a commutative ring. There

is a correspondence between Ω-modules and W -graphs by the choice of a

suitable basis. More precisely, the following statements hold.

(1) (From W -graphs to Ω-modules)

Let (C, I, m) be a W -graph with edge weights in k. Define ω : kΩ→
kC×C by

ω(es)xy :=

{
1 x= y, s ∈ I(x)

0 otherwise
and ω(xs) :=ms.

Then, ω is a well-defined k-algebra homomorphism such that the

composition

k[v±1]H
ι−→ k[v±1]Ω

ω−→ k[v±1]C×C

is exactly the matrix representation of H attached to (C, I, m).

(2) (From Ω-modules to W -graphs)

Let V be a kΩ-module with representation ω : kΩ→ Endk(V ). Define

VI := EIV for all I ⊆ S.

If VI is a finitely generated free k-module and CI ⊆ VI is a k-basis for

all I ⊆ S, define (C, I, m) as follows: set C :=
⋃
I⊆S CI , set I(x) := I

for all x ∈ CI and define ms to be the matrix of ω(xs) with respect to the

basis C. With these definitions, (C, I, m) is a W -graph and its W -graph

module is k[v±1]⊗k V .

Proof. (1) The matrices ω(es) and ω(xs) satisfy the relations of Ξ by

definition of W -graphs. We therefore view ω as an algebra homomorphism

Ξ→ kC×C. Because ω(ι(Ts)) is exactly equal to the matrices ω(Ts) in the

definition of W -graphs, and those matrices satisfy the braid relations, it

follows that ω descends to a homomorphism Ω→ kC×C by the universal

property.

(2) The second assertion is easily verified. The condition ms
xy 6= 0 =⇒

s ∈ I(x) \ I(y) follows from Xs
IJ 6= 0 =⇒ s ∈ I \ J . The matrices occurring

in the definition of W -graphs are exactly the matrices ω(ι(Ts)), and hence

satisfy the necessary braid relations because the elements ι(Ts) ∈ Ω satisfy

them.

Corollary 10. If W is finite, then the following hold.

(1) ι : k[v±1]H → k[v±1]Ω is injective.

(2) All EI are nonzero as elements of kΩ.
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In particular, H is considered as a subalgebra of the scalar extension

Z[v±1]Ω for the rest of this paper.

Proof. Consider the Kazhdan–Lusztig-W -graph as defined in [7]. It is a

W -graph (C, I, m) with C :=W , I(w) := {s ∈ S | sw < w} and integer edge

weights such that the associated W -graph module is the regular H-module.

This can be considered as a W -graph with edge weights in k.

The representation k[v±1]H
ι−→ k[v±1]Ω→ k[v±1]W×W induced by thisW -

graph equals the map k[v±1]H → Endk[v±1](k[v±1]H), h 7→ (x 7→ hx). The

latter map is injective, so that ι : k[v±1]H → k[v±1]Ω is injective too.

If W is finite, then all the elements EI ∈ kΩ are nonzero because there are

w ∈ C with I(w) = I (for example, the longest elements of the corresponding

parabolic subgroup WI).

Remark 11. The finiteness condition is in fact superfluous. A more

carefully phrased version of the definition of W -graphs and of Theorem 9

which also includes the infinite-dimensional case makes the same proof work

for the first statement. The second statement, however, cannot be proved in

the same way because there is an element w ∈W with I(w) = I if and only

if WI is finite, so that this proof does not work for infinite Coxeter groups

(contrary to what I believed when I wrote my thesis, which contains the

special proof for the general statement). An alternative general proof of the

second statement will be contained in my next paper [6].

§3. Ω as a quotient of a path algebra

It is observed in Lemma 7 that Ξ is a path algebra. In this section, we

give an explicit set of relations for the quotient Ξ→ Ω in terms of this

path algebra structure. The proof is inspired by equations appearing in

Stembridge’s paper [8].

We need the following lemma, which is a slight generalization of [8,

Proposition 3.1].

Lemma 12. Define polynomials τr ∈ Z[T ] by the following recursion:

τ−1 := 0, τ0 := 1, τr := Tτr−1 − τr−2.

With this notation the following holds.
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If R is any ring, and x, y ∈R are solutions of the equation T 2 = 1 + ζT

for some fixed ζ ∈R, then their braid commutators satisfy

∆r+1(x, y) = (−1)rτr(x+ y − ζ) · (x− y).

Observe that τr is a monic polynomial of degree r for all r ∈ N. In

particular, {τ0, . . . , τr} is a Z-basis of {f ∈ Z[T ] | deg(f)6 r}. Furthermore,

τr is an even polynomial for even r and an odd polynomial for odd r; that

is, τr(−T ) = (−1)rτr(T ). This follows immediately from the recursion.

Proof. The claim for the braid commutator is true for r =−1 and r = 0.

Furthermore, the following holds:

(x+ y)∆r+1(x, y) = x2 yx . . .︸ ︷︷ ︸
r

− xyx . . .︸ ︷︷ ︸
r+2

+ yxy . . .︸ ︷︷ ︸
r+2

−y2 xy . . .︸ ︷︷ ︸
r

= (1 + ζx) yx . . .︸ ︷︷ ︸
r

− xyx . . .︸ ︷︷ ︸
r+2

+ yxy . . .︸ ︷︷ ︸
r+2

−(1 + ζy) xy . . .︸ ︷︷ ︸
r

= 1 · yx . . .︸ ︷︷ ︸
r

−1 · xy . . .︸ ︷︷ ︸
r

+ζx yx . . .︸ ︷︷ ︸
r

−ζy xy . . .︸ ︷︷ ︸
r

−
(
xyx . . .︸ ︷︷ ︸
r+2

− yxy . . .︸ ︷︷ ︸
r+2

)
= −∆r(x, y) + ζ∆r+1(x, y)−∆r+2(x, y)

=⇒ ∆r+2(x, y) = (−1)
(
(x+ y − ζ)∆r+1(x, y) + ∆r(x, y)

)
.

The claim follows by induction.

Theorem 13. For all I, J ⊆ S, s, t ∈ S and r ∈ N, define

P rIJ (s, t) := EI xsxtxs . . .︸ ︷︷ ︸
r factors

EJ

=



0, r = 0, I 6= J,

EI , r = 0, I = J,∑
I1,...,Ir−1⊆S

Xs
II1X

t
I1I2X

s
I2I3 . . . X

s
Ir−1J , r > 0, 2 - r,

∑
I1,...,Ir−1⊆S

Xs
II1X

t
I1I2X

s
I2I3 . . . X

t
Ir−1J , r > 0, 2 | r.

With this notation, the kernel of the quotient Ξ→ Ω is generated by the

following elements.
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(α) For all s, t ∈ S, the elements

Pm−1IJ (s, t) + am−2P
m−2
IJ (s, t) + · · ·+ a1P

1
IJ (s, t) + a0P

0
IJ (s, t)

for all I, J ⊆ S, where either

• s ∈ I, t /∈ I, s ∈ J , t /∈ J and 2 -mst or

• s ∈ I, t /∈ I, s /∈ J , t ∈ J and 2 |mst

holds. The ai denote the coefficients of the polynomial τm−1; that is,

τm−1(T ) = Tm−1 + am−2T
m−2 + · · ·+ a1T + a0.

(β) For all s, t ∈ S and all I, J ⊆ S with s, t ∈ I \ J , the elements

P 1
IJ (s, t)− P 1

IJ (t, s), P 2
IJ (s, t)− P 2

IJ (t, s), . . . , PmIJ (s, t)− PmIJ (t, s).

These relations are used throughout the rest of the paper. We refer to

them as the (αst)-relation and the (βst)-relation, respectively.

Proof. Consider V := Z[v±1]Ξ and fixed s, t ∈ S. Define the four sub-

spaces

V00 :=
⊕
I⊆S

s/∈I,t/∈I

V EI , V01 :=
⊕
I⊆S

s∈I,t/∈I

V EI ,

V10 :=
⊕
I⊆S

s/∈I,t∈I

V EI , V11 :=
⊕
I⊆S

s∈I,t∈I

V EI .

Note that, given an algebra A and a decomposition into pairwise

orthogonal idempotents 1A =
∑n

i=1 ei, every element a ∈A can be uniquely

written as a=
∑

i,j aij , with aij ∈ eiAej , and this additive decomposition

behaves like matrices behave with respect to multiplication; that is, (ab)ik =∑
j aijbjk.

We therefore write elements of Z[v±1]Ξ as matrices when we want to

display such a decomposition in an efficient way. Note that one can view

these matrices equivalently either as d× d-matrices with entries in the

Laurent polynomial ring Z[v±1]Ξ or as Laurent polynomials over the matrix

ring Ξd×d. In other words, Z[v±1]⊗ (Ξd×d) = (Z[v±1]⊗ Ξ)d×d. It is therefore

sensible to speak of the coefficient of vk of a matrix.
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The matrices of ι(Ts) =−v−1es + xs + v(1− es) and ι(Tt) are given by

ι(Ts) = −v−1


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

+


0 0 0 0
B1 0 A1 0
0 0 0 0
D1 0 C1 0

+ v


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



=


v 0 0 0
B1 −v−1 A1 0
0 0 v 0
D1 0 C1 −v−1


and

ι(Tt) = −v−1


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

+


0 0 0 0
0 0 0 0
B2 A2 0 0
D2 C2 0 0

+ v


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



=


v 0 0 0
0 v 0 0
B2 A2 −v−1 0
D2 C2 0 −v−1

 ,

respectively, where

A1 =
∑
I,J⊆S
s∈I,s/∈J
t/∈I,t∈J

Xs
IJ and A2 =

∑
I,J⊆S
s/∈I,s∈J
t∈I,t/∈J

Xt
IJ ,

B1 =
∑
I,J⊆S
s∈I,s/∈J
t/∈I,t/∈J

Xs
IJ and B2 =

∑
I,J⊆S
s/∈I,s/∈J
t∈I,t/∈J

Xt
IJ ,

C1 =
∑
I,J⊆S
s∈I,s/∈J
t∈I,t∈J

Xs
IJ and C2 =

∑
I,J⊆S
s∈I,s∈J
t∈I,t/∈J

Xt
IJ , as well as

D1 =
∑
I,J⊆S
s∈I,s/∈J
t∈I,t/∈J

Xs
IJ and D2 =

∑
I,J⊆S
s∈I,s/∈J
t∈I,t/∈J

Xt
IJ .

Finally, define z to be v + v−1.
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Step 1. We claim that for all r ∈ N,

(∗) ∆r+1(ι(Ts), ι(Tt)) = (−1)r

 0 0 0
τr(A)JB τr(A)J(A− z) 0
Xr −Cτr(A)J 0


holds, where

A :=

(
0 A1

A2 0

)
, B :=

(
B1

B2

)
, C :=

(
C2 C1

)
, J :=

(
1 0
0 −1

)
and

Xr :=
r−1∑
i=0

(−1)iCτi(z)τr−1−i(A)JB + (−1)rτr(z)(D1 −D2).

In order to prove this claim, define

E := ι(Ts) + ι(Tt)− (v − v−1) =

 z 0 0
B A 0

D1 +D2 C −z

 and

F := ι(Ts)− ι(Tt) =

 0 0 0
JB J(A− z) 0

D1 −D2 −CJ 0

 .

By Lemma 12, ∆r+1(ι(Ts), ι(Tt)) = (−1)rτr(E)F . Therefore, we inductively

show that τr(E)F equals the matrix in (∗). For r =−1 and r = 0, this is

clear. The induction step follows from

τr+1(E)F = Eτr(E)F − τr−1(E)F

=

 z 0 0
B A 0

D1 +D2 C −z

 ·
 0 0 0
τr(A)JB τr(A)J(A− z) 0
Xr −Cτr(A)J 0


−

 0 0 0
τr−1(A)JB τr−1(A)J(A− z) 0
Xr−1 −Cτr−1(A)J 0


=

 0 0 0
Aτr(A)JB − τr−1(A)JB H 0

L K 0

 ,
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where we use the abbreviations

H := Aτr(A)J(A− z)− τr−1(A)J(A− z),

K := Cτr(A)J(A− z) + zCτr(A)J + Cτr−1(A)J and

L := Cτr(A)JB − zXr −Xr−1.

At the positions (2, 1) and (2, 2), the term is clearly equal to the desired

result. At position (3, 2), we use JA=−AJ and simplify the expression as

follows:

K = Cτr(A)JA− Cτr(A)Jz + zCτr(A)J + Cτr−1(A)J

= −Cτr(A)AJ + Cτr−1(A)J

= −Cτr+1(A)J.

Using the recursive definition of τr+1, it is also a routine calculation to show

that

L=

r∑
i=0

(−1)iCτi(z)τr−i(A)JB + (−1)r+1τr+1(z)(D1 −D2).

This shows (∗).

Step 2. Simplify the result

Now, let K = ker(Ξ→ Ω). By definition, this ideal is generated by the

coefficients of the vγ in ∆m(ι(Ts), ι(Tt)) ∈ Z[v±1]Ξ. Therefore, we consider

the coefficients of

(1) R1 := τm−1(A)JB,

(2) R2 := τm−1(A)J(A− z),
(3) R3 :=

∑m−2
i=0 (−1)iCτi(z)τm−2−i(A)JB + (−1)m−1τm−1(z)(D1 −D2)

and

(4) R4 := Cτm−1(A)J .

The coefficient of the highest power of v in R2 is −τm−1(A)J because

z = v + v−1, so that the coefficient of the highest power of z is also the

coefficient of the highest power of v in any Laurent polynomial. Now, R2 is

contained in K[v±1] (remember that we view these matrices as elements of

Z[v±1]Ξ, so that this makes sense) if and only if τm−1(A) ∈ K, because J is

invertible. Conversely, R1, R2 and R4 are in K[v±1] if τm−1(A) ∈ K holds.
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Let us have a closer look at R3: the polynomial τr has degree r. The

coefficient of the highest power of v in R3 equals (−1)m−1(D1 −D2).

Therefore, D1 −D2 ∈ K, and R3 is in K[v±1] if and only if D1 −D2 ∈ K

and R′3 =
∑m−2

i=0 (−1)iCτi(z)τr−2−i(A)JB ∈ K[v±1]. Looking repeatedly at

the coefficient of the highest power of v and shortening the term, we get that

R′3 is in K[v±1] if and only if Cτ0(A)JB, Cτ1(A)JB, . . . , Cτm−2(A)JB ∈ K.

Because {τ0, . . . , τm−2} is a Z-basis of {f ∈ Z[T ] | deg(f)6m− 2}, these

terms are in K if and only if CA0JB, CA1JB, . . . , CAm−2JB are.

Thus, we obtain the generating set

(α) Rα := τm−1(A),

(β) Rβ :=D1 −D2 and

(γ) Rγ,k := CAkJB for 06 k 6m− 2,

for the ideal K.

Step 3. The relations.

Again, we decompose Ξ as
⊕

I ΞEI and use R ∈ K if and only if EIREJ
in K for all I, J ⊆ S.

To determine EIRαEJ , we consider EIA
kEJ . For k = 0, this simplifies to

EIA
0EJ = δIJEI = P 0

IJ . For k > 0, we obtain

Ak =



(
(A1A2)

k/2 0

0 (A2A1)
k/2

)
if 2 | k,(

0 (A1A2)
(k−1)/2A1

(A2A1)
(k−1)/2A2 0

)
if 2 - k,

and substitute

A1 =
∑
I,J⊆S
s∈I,s/∈J
t/∈I,t∈J

Xs
IJ , A2 =

∑
I,J⊆S
s/∈I,s∈J
t∈I,t/∈J

Xt
IJ

to obtain ∑
I0,I1,...,Ik⊆S

Xs
I0I1X

t
I1I2X

s
I2I3 . . . ,

where the sum is over all Ii that satisfy s ∈ I2i \ I2i+1 and t ∈ I2i+1 \ I2i when

we consider A1A2A1 . . .. Because Xs
IJ = 0 if s /∈ I \ J , only the conditions

for I = I0 and Ik = J are not vacuous. Therefore, we could just sum over all
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paths of length k that go to I from J . We therefore obtain

A1A2 . . .︸ ︷︷ ︸
k

=



∑
I,J⊆S
s∈I,s∈J
t/∈I,t/∈J

P kIJ (s, t) if 2 | k,

∑
I,J⊆S
s∈I,s/∈J
t/∈I,t∈J

P kIJ (s, t) if 2 - k.

For the other product, we similarly obtain

A2A1 . . .︸ ︷︷ ︸
k

=



∑
I,J⊆S
s/∈I,s/∈J
t∈I,t∈J

P kIJ (t, s) if 2 | k,

∑
I,J⊆S
s/∈I,s∈J
t∈I,t/∈J

P kIJ (t, s) if 2 - k.

Multiplying with EI from the left and with EJ from the right, this equals

either 0 or P kIJ (s, t) and P kIJ (t, s), respectively. The element EIτm−1(A)EJ ∈
K is, if it is not zero, equal to

Pm−1IJ (s, t) + am−2P
m−2
IJ (s, t) + · · ·+ a2P

2
IJ (s, t) + a1P

1
IJ (s, t) + a0P

0
IJ (s, t),

where τm−1(T ) = Tm−1 + am−2T
m−2 + · · ·+ a2T

2 + a1T
1 + a0, and simi-

larly for the symmetric situation where s, t are swapped.

The second kind of generator is easier: Rβ is equal to∑
I,J⊆S
s∈I,s/∈J
t∈I,t/∈J

Xs
IJ −Xt

IJ .

For those I, J that do not occur in this sum, EIRβEJ = 0. For all others, we

obtain the element Xs
IJ −Xt

IJ = P 1
IJ (s, t)− P 1

IJ (t, s). This is the first case

in the relations of type (β).

Finally, there is only one kind of generator left, namely Rγ,k = CAkJB.

We already know the powers of A, and therefore obtain

CAkJB =

{
C2(A1A2)

k/2B1 − C1(A2A1)
k/2B2 if 2 | k,

−C2(A1A2)
(k−1)/2A1B2 + C1(A2A1)

(k−1)/2A2B1 if 2 - k.
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We substitute the definitions

B1 =
∑
I,J⊆S
s∈I,s/∈J
t/∈I,t/∈J

Xs
IJ , B2 =

∑
I,J⊆S
s/∈I,s/∈J
t∈I,t/∈J

Xt
IJ ,

C1 =
∑
I,J⊆S
s∈I,s/∈J
t∈I,t∈J

Xs
IJ , C2 =

∑
I,J⊆S
s∈I,s∈J
t∈I,t/∈J

Xt
IJ .

If s, t ∈ I or s, t /∈ J is not satisfied, then EICA
kJBEJ = 0, because either

EIC = 0 or BEJ = 0. Otherwise,

EICA
kJBEJ =

∑
I0,...,Ik⊆S

Xt
II0X

s
I0I1 . . . X

t
Ik−1Ik

Xs
IkJ

−Xs
I,I0X

t
I0I1 . . . X

s
Ik−1Ik

Xt
IkJ

= P k+2
IJ (t, s)− P k+2

IJ (s, t)

holds if 2 | k and

EICA
kJBEJ =

∑
I0,...,Ik⊆S

−Xt
II0X

s
I0I1 . . . X

s
Ik−1Ik

Xt
IkJ

+Xs
II0X

t
I0I1 . . . X

t
Ik−1Ik

Xs
IkJ

= −P k+2
IJ (t, s) + P k+2

IJ (s, t)

holds if 2 - k. This provides the other elements in the relations of

type (β).

Because of the (β)-relation Xs
IJ −Xt

IJ = P 1
IJ (s, t)− P 1

IJ (t, s) = 0 in Ω, the

upper index of these elements does not matter, and it is well defined to

write XIJ for the common value of Xs
IJ ∈ Ω for all s ∈ I \ J . We adopt this

notation for the rest of this article.

Additionally, (α) implies that Xs
IJ =Xt

JI = 0 holds in Ω for all I, J ⊆
S, s ∈ I \ J , t ∈ J \ I with mst = 2 (i.e., s and t are not connected in the

Dynkin diagram of (W, S)). This allows us to think of Ω as a quotient of a

path algebra over a much simpler quiver, which was defined by Stembridge

[8, Section 4].

Definition 14. The compatibility graph of (W, S) is the directed graph

QW with vertex set {I | I ⊆ S} and a single edge I ← J if and only if I \ J 6=
∅ and no element of I \ J commutes with any element of J \ I.
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An edge I ← J with I ⊇ J is called an inclusion edge; all other edges are

called transversal edges.

Note that transversal edges always occur in pairs of opposite orientation

because their definition is symmetric: I ← J is a transversal edge if and only

if I \ J 6= ∅, J \ I 6= ∅ and all s ∈ I \ J are connected to all t ∈ J \ I in the

Dynkin diagram of (W, S).

Corollary 15. Ω is a quotient of the path algebra ZQW .

Proof. Denote the vertex elements in ZQW by ẼI and the edge elements

by X̃IJ . Then, ẼI 7→ EI and X̃IJ 7→Xs
IJ with any s ∈ I \ J extends to a

well-defined algebra homomorphism ZQW → Ω by the (β)-relation. It is

surjective because all elements Xs
IJ ∈ Ω are either zero by some (α)-type

relation as seen above or contained in the image of this morphism, and Ω is

generated by the elements Xs
IJ and EI .

Example 16. Figure 1 displays the compatibility graphs of the finite

irreducible Coxeter groups of rank 64. For the sake of clarity, inclusion edges

are only displayed in rank 2 and rank 3 and only between those I, J ⊆ S
that satisfy |I \ J |= 1. Pairs of transversal edges I � J are combined into

one (bold) undirected edge.

§4. The decomposition conjecture

While trying to prove Gyoja’s conjecture1 and to better understand the

internal structure of Ω and W -graphs, I found a number of very similar

proofs for some small types of Coxeter groups. The essence of these proofs

is captured by the following four conjectural properties of Ω.

Conjecture 17. Let k ⊆ C be a good ring for (W, S). There exists a

family (F λ)λ∈Irr(W ) of elements of kΩ with the following properties.

(Z1) The F λ are pairwise orthogonal idempotents and decompose the

identity

∀λ, µ ∈ Irr(W ) : F λFµ = δλµF
λ, 1 =

∑
λ∈Irr(W )

F λ.

1This conjecture states that the Jacobson radical of KΩ has codimension |W | if K is
a sufficiently large field of characteristic zero, or equivalently that two irreducible KΩ-
modules are isomorphic if and only if their restrictions to K(v)H are isomorphic (see
[4, Remark 2.18], [5, Theorem 4.3.7]).
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Figure 1.

Compatibility graphs for small Coxeter groups: top left for I2(m); top right for

A3, B3 and H3; bottom left for A4, B4 and F4; bottom right for D4.

(Z2) This decomposition is compatible with the decomposition induced by

the path-algebra structure:

∀λ ∈ Irr(W )∀I ⊆ S : EIF
λ = F λEI .
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(Z3) There is a partial order � on Irr(W ) such that only downward edges

exist: if F λkΩFµ 6= 0, then λ� µ.

(Z4) There are surjective k-algebra morphisms ψλ : kdλ×dλ � F λkΩF λ for

all λ ∈ Irr(W ), where dλ denotes the degree of the character λ.

Remark 18. The edge terminology in (Z3) refers to the quiver Λ in the

next theorem.

The decomposition conjecture is of interest because it implies several

important properties of the W -graph algebra and its modules (that is, W -

graphs), as the following theorem demonstrates.

Theorem 19. Assume that the decomposition conjecture is true for the

finite Coxeter group (W, S) and k a good ring for (W, S). Then, the following

properties hold.

(1) Consider the quiver Λ which has Irr(W ) as its set of vertices and

an edge λ← µ if and only if λ≺ µ. Then, kΩ is a quotient of the

generalized path algebra (cf. [2]) over the quiver Λ which has kdλ×dλ

as vertex algebras.

(2) kΩ is finitely generated as a k-module.

Furthermore, if k is a field then the following hold:

(3) The Jacobson radical rad(kΩ) is generated by the elements F λXIJF
µ

with λ≺ µ and kΩ/rad(kΩ)∼=
∏
λ∈Irr(W ) k

dλ×dλ.

(4) A kΩ-module V is simple if and only if the restriction of k(v)V to

k(v)H is simple. Furthermore (after reindexing the family (F λ)λ∈Irr(W )

if necessary), the latter has isomorphism class λ if and only if F λV = V

holds.

(5) Every kΩ-module V has a family of natural submodules (V �λ)λ∈Irr(W )

such that

• λ� µ =⇒ V �λ 6 V �µ and

• V �λ/V ≺λ is isomorphic to a direct sum of irreducibles of isomor-

phism class λ, where V ≺λ :=
∑

µ≺λ V
�µ.

Remark 20. Given that the Kazhdan–Lusztig-W -graph is indecompos-

able but not irreducible, it cannot be expected that an arbitrary Ω-module

decomposes as a direct sum of its irreducible constituents. The special

filtration appearing in the above theorem is the next best thing one can
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hope for: one finds the irreducible constituents in the layers of a natural

filtration, and even nicely grouped into isomorphism classes. This fact and

the first part of the theorem, saying that Ω itself is composed of much

simpler parts like matrix algebras and path algebras, motivates the name

decomposition conjecture.

To the best of my knowledge, the decomposition conjecture has neither

directly nor in a similar form been stated before in the literature, apart from

my dissertation [5]. The above consequences of Conjecture 17 also have not

been considered or proved before, even in special cases, as far as I know.

Proof. Denote with kΩ̃ this generalized path algebra, and recall that it

is characterized by the following properties:

• it contains a set of pairwise orthogonal idempotents fλ corresponding to

the vertices such that
∑

λ fλ = 1 and fλkΩ̃fλ = kdλ×dλ ;

• it contains a set of elements yλµ corresponding to the edges λ← µ such

that yλµ = fλyλµfµ;

• it satisfies the universal mapping property with respect to these features:

for any k-algebra A, any set of elements {f ′λ, y′λµ|λ, µ ∈ Irr(W )} satisfying

these properties and any ψλ : kdλ×dλ → f ′λAf
′
λ, there exists a unique

morphism of k-algebras ψ : kΩ̃→A with ψ(fλ) = f ′λ, ψ(yλµ) = y′λµ and

ψ|fλAfλ = ψλ.

We define elements Yλµ :=
∑

I,J⊆S F
λXIJF

µ ∈ kΩ. Note that Yλµ = 0

if λ 6� µ, by (Z3). The universal property ensures that the morphisms

from (Z4) ψλ : kdλ×dλ → kΩ together with fλ 7→ F λ and yλµ 7→ Yλµ uniquely

extend to an algebra morphism ψ : kΩ̃→ kΩ (this uses (Z1)).

We verify that this is an epimorphism. By construction,

F λI
(Z2)
= F λEIF

λ ∈ F λkΩF λ
(Z4)
= im(ψλ)⊆ im(ψ)

for all I ⊆ S, λ ∈ Irr(W ). Therefore, EI =
∑

λ F
λ
I ∈ im(ψ). Also, XIJ

(Z3)
=∑

λ F
λXIJF

λ +
∑

λ≺µ Yλµ ∈ im(ψ) for all I, J ⊆ S. Because we already

know that {EI , XIJ | I, J ⊆ S} generates kΩ, we are done.

Because ψ : kΩ̃→ kΩ is surjective, kΩ is finitely generated as a k-module

because kΩ̃ is, and ψ(rad(kΩ̃))⊆ rad(kΩ) holds. The morphism ψ therefore

induces a surjection kΩ̃/rad(kΩ̃)� kΩ/rad(kΩ).

Now consider the case that k is a field. The radical of the generalized path

algebra is then easily seen to coincide with the ideal generated by the edge
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elements yλµ because the quiver Λ is acyclic. (See [2, Proposition 1.3] for a

more general characterization of the radical of generalized path algebras.)

In fact, kΩ̃/rad(kΩ̃) =
∏
λ k

dλ×dλ .

This implies dimk kΩ/rad(kΩ)6
∑

λ d
2
λ. We show that

∏
λ k

dλ×dλ is in

fact a quotient of kΩ to establish equality. For each λ, choose aW -graph with

edge weights in k realizing the irreducible k(v)H-module of isomorphism

class λ (this is possible by Gyoja’s work [4, Theorem 2.3]), and consider the

induced kΩ-module Vλ (in particular, dimk Vλ = dλ); set V :=
⊕

λ Vλ and

denote the associated representation kΩ→ Endk(V ) by ω. By construction,

im(ω)⊆
∏
λ k

dλ×dλ holds. Now, consider k(v)V as a module for k(v)H ⊆
k(v)Ω by restriction. Because k(v)V contains each irreducible module of the

Hecke algebra exactly once, ω(k(v)H) =
∏
λ k(v)dλ×dλ holds. By comparing

dimensions, we obtain the desired equality above.

The fourth item follows from this. On one hand, a kΩ-module V is

certainly simple if its restriction to a subalgebra is already simple. Because

every simple k(v)H-module can be realized by a W -graph, choosing one

W -graph for each isomorphism class induces an injective map Irr(W )∼=
Irr(k(v)H)→ Irr(kΩ) with the restriction map as a left inverse. Because of

kΩ/rad(kΩ)∼=
∏
λ k

dλ×dλ , the number of elements in both sets is the same,

so that the map is actually a bijection.

Define F�λ :=
∑

µ�λ F
µ. By (Z3), the right ideals F�λkΩ are actually

two-sided ideals. For any kΩ-module V , define V �λ := F�λV . This is a

submodule of V for all λ; λ� µ =⇒ V �λ 6 V �µ holds by construction,

and F λ acts as the identity on V �λ/V ≺λ.

Now consider the equation 1 =
∑

λ F
λ. It shows that there must be at

least one λ with F λV 6= 0 if V 6= 0. A λ that is �-minimal with respect

to this property satisfies 0 6= F λV = F�λV , so that F λV = V follows if V

is simple. Therefore, for each simple kΩ-module V , there is exactly one λ

with F λV = V . Conversely, Rλ := F�λkΩ/F≺λkΩ is a finite-dimensional,

nonzero kΩ-module with F λRλ =Rλ, so that for each λ ∈ Irr(W ), there

must be at least one simple kΩ-module V with F λV = V . This establishes

another bijection between Irr(kΩ) and Irr(W ). By reindexing the F λ, one

can achieve that these two bijections are in fact the same, so that F λV = V

holds if and only if the restriction of k(v)V to k(v)H is of isomorphism

class λ.

Now, consider again an arbitrary V and the quotient Rλ := V �λ/V ≺λ.

Because FµRλ = 0 for all µ 6= λ, the representationkΩ→ Endk(W ) must
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annihilate Fµ for all µ 6= λ, and therefore all F κXIJF
κ′ with κ 6= κ′. Hence,

the representation vanishes on the radical and Rλ is therefore semisimple.

However, again FµRλ = 0 for all µ 6= λ, so that the simple constituents of

Rλ must all lie in the isomorphism class λ.

§5. Proving the decomposition conjecture

The rest of the paper is devoted to proving that the W -graph decompo-

sition conjecture holds for Coxeter groups of types I2(m), A1–A4 and B3.

These proofs all proceed by the same pattern: the relations from Theorem 13

are used to find orthogonal decompositions EI =
∑

λ∈Irr(W ) F
λ
I of the vertex

idempotents EI ∈ kΩ into smaller idempotents F λI , some of which may be

zero. The idempotents F λ in the decomposition conjecture are then obtained

as F λ :=
∑

I F
λ
I .

These decompositions are graphically represented as refinements of the

compatibility graph QW . That is, the single vertex corresponding to EI is

split into up to |Irr(W )| many vertices corresponding to the idempotents

F λI (some of which might be zero), and similarly the edge corresponding to

the element XIJ is split into up to |Irr(W )|2 many edges corresponding to

the elements F λI XIJF
µ
J , most of which will also be zero.

Direct computations are used to show that enough edge elements are zero

to satisfy the decomposition conjecture.

Remark 21. A reviewer of this paper remarked that the computations

in the rest of this paper feel like they are instances of a general algorithmic

approach to the question of whether or not a particular Coxeter group

satisfies the decomposition conjecture. I share this feeling, but to my

frustration I have not been able to pin down such an algorithm and prove

its correctness as of the time of writing this paper. Part of the complication

stems from the fact that almost nothing useful about Ω is known to me

in the absence of the decomposition conjecture. In particular, it is hard to

algorithmically decide whether or not an element is zero without having a

nice, faithful representation of Ω at hand. Even proving finite dimensionality

or even that the relations in Theorem 13 are a noncommutative Gröbner

basis (and therefore the problem’s amenability to certain general algorithms)

is beyond my capabilities as of now.

If and when these problems get resolved, the lengthy calculations in this

chapter may be replaced with a computer proof.
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5.1 Auxiliary lemmas

The first lemma that is repeatedly used allows us to transport a

decomposition into pairwise orthogonal idempotents from one EI to an

adjacent EJ in the compatibility graph, and immediately recognize most

of the possible new edge elements as zero.

Definition 22. In any algebra, define a partial order on the set of

idempotents by e6 f ⇐⇒ e= ef = fe.

Lemma 23. Let I, J ⊆ S be arbitrary but fixed subsets. Let A be a

finite indexing set, and let (eα)α∈A be pairwise orthogonal idempotents

6 EI , with XIJXJI =
∑

α∈A σαeα for some σα ∈ k×. Denote the idempotent

EI −
∑

α eα by e0. With these notations, the following statements hold.

(1) ẽα := σ−1α XJI eαXIJ and ẽ0 := EJ −
∑

α∈A ẽα are pairwise orthogonal

idempotents 6 EJ .

(2) XIJ ẽα = eαXIJ and XJI eα = ẽαXJI for all α ∈A ∪ {0}.
(3) r :=XJI e0XIJ satisfies r2 = 0, r = ẽ0rẽ0 and XJIXIJ =

∑
α∈A σαẽα +

r. In particular, r = 0 holds if XJIXIJ is an idempotent itself.

(4) XIJ ẽαXJI = σαeα for all α ∈A. In other words, applying this construc-

tion twice gives back the original idempotents.

Proof. All claims are easily verified by using the definition. For example,

ẽαẽβ = σ−1α σ−1β XJI eαXIJXJI eβXIJ

= σ−1α σ−1β XJI eα

(∑
γ

σγeγ

)
eβXIJ

=
∑
γ

σγ
σασβ

XJI eαeγeβXIJ

=

{
0, α 6= β,

ẽα, α= β.

See [5, Lemma 4.5.25] for complete proofs of the other claims.

Definition 24. In the above construction, the ẽα are said to be

obtained by transporting idempotents from I to J . The e0 and ẽ0 are called

leftover idempotents of this transport.

The following well-known result is also used repeatedly to construct the

morphisms ψλ in conjecture (Z4).
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Lemma 25. The matrix algebra kd×d is freely generated by the generators

{eij | 16 i, j 6 d, |i− j|6 1} with respect to the relations

eiiejj = δijeii, 1 =
d∑
i=1

eii, eiieijejj = eij and eijeji = eii.

Note that this can be equivalently stated by saying that kd×d is the

quotient of the path algebra of the quiver

by the relations that declare every directed loop to be equal to (the

idempotent corresponding to) its base point.

While proving (Z4), the surjectivity of the constructed morphisms is

often implied by the fact that F λkΩF λ is generated as a k-algebra by the

elements F λI = F λEIF
λ and F λXIJF

λ. This follows from the fact that kΩ is

generated by the EI and XIJ together with the observation that (Z1)–(Z3)

imply that a product of the form

F λ1XI1,I2 . . . XIk−1,IkF
λk =

∑
λ2,...,λk−1

F λ1XI1,I2F
λ2 . . . F λk−1XIk−1,IkF

λk

can only be nonzero if there are λ2, . . . , λk−1 with F λjXIj ,Ij+1F
λj+1 6= 0

for all 16 j < k. By (Z3), this implies that λ1 � λ2 � · · · � λk. Thus, if

λ1 = λk = λ, then all intermediate λj must be equal to λ as well, so that

F λXI1,I2 . . . XIk−1,IkF
λ is expressible as a product of elements of the form

F λXIJF
λ, as claimed.

5.2 Rank 1

Theorem 26. The decomposition conjecture is true for all Coxeter

groups (W, S) of type A1 × · · · ×A1.

Proof. Groups of this particular type have the property that all s, t ∈ S
commute. In particular, there are no transversal edges in the compatibility

graph but only inclusion edges, so that QW is acyclic and the trivial

decomposition EI = EI is already sufficient to satisfy (Z1)–(Z4).

5.3 Rank 2

While good rings for An and Bn are easy to understand, the following

lemma is needed to establish the existence of certain elements in a good

ring for Coxeter groups of I2(m), which is used in the proof of the
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decomposition conjecture. Note that a good ring for I2(m) always contains

Z[2 cos(2π/m), 1/m].

Lemma 27. Let m ∈ N>1, and let k be a good ring for I2(m). The

following assertions are true.

(1) 2 cos(a(2π/m)), 4 cos(a(π/m))2 ∈ k for all a ∈ Z.

(2) 4 cos(a(π/m))2 ∈ k× for all a ∈ Z \ (m/2)Z.

(3) 4 cos(a(π/m))2 − 4 cos(b(π/m))2 ∈ k× for all 16 a < b6 bm/2c.

Proof. Set ζn := exp(2πi/n) for all n ∈ N>1. With this notation,

2 cos(a(2π/n)) = ζan + ζ−an holds. It follows from T a + T−a ∈ Z[T + T−1]

that 2 cos(a(2π/n)) ∈ k for all a ∈ Z. The fact that 4 cos(a(π/m))2 ∈ k
follows from the double-angle formula 2 cos(θ/2)2 = cos(θ) + 1.

The proofs of the second and third claims use that

Z
[
2 cos

(
2π

n

)]
= Z[ζn + ζ−1n ]⊆ Z[ζn]⊆ Z[ζnl]

are integral ring extensions for all l ∈ N>1, and integral extensions R⊆ S
have the property R ∩ S× =R×. Therefore, it suffices to show that the

elements are units in Z[ζml, 1/m] for some l ∈ N>1.

Step 1. 4 cos(a(π/m))2 is invertible for all a ∈ Z \ (m/2)Z.

This follows from∏
16a<m/2

(
2 cos

(
a
π

m

))2

=

{
1 if 2 -m,
m

2
if 2 |m,

which is easily shown using 2 cos(a(π/m)) = ζa2m + ζ−a2m. Therefore,

4 cos(a(π/m))2 is invertible too.

Step 2. 2 sin(a(π/m)) is invertible for all a ∈ Z \mZ.

This follows from
m−1∏
a=1

2 sin

(
a
π

m

)
=m,

which similarly can be shown using 2 sin(a(π/m)) = (1/i)(ζa2m − ζ
−a
2m).

Hence, all 2 sin(a(π/m)) are units for a ∈ Z \mZ. This then proves

the third claim because 4 cos(a(π/m))2 − 4 cos(b(π/m))2 = 2 sin((a+

b)(π/m)) · 2 sin((a− b)(π/m)) holds.

Theorem 28. Let m be a natural number > 3. The decomposition

conjecture is true for all Coxeter groups of type I2(m).
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Figure 2.

Refined compatibility graphs for I2(m): left-hand side for m odd; right-hand side

for m even.

Proof. The idea of the proof is to use a spectral decomposition of the

loops X1,2X2,1 and X2,1X1,2, and construct a refinement of the compatibility

graph as in Figure 2.

The next important observation is that there are only two transversal

edges if the rank of (W, S) is two, namely X1,2 and X2,1. Therefore, the

only relations in Ω of type (α) are

0 =
m−1∑
j=0

aj X1,2X2,1 . . .︸ ︷︷ ︸
j

and 0 =
m−1∑
j=0

aj X2,1X1,2 . . .︸ ︷︷ ︸
j

,

where the aj are the coefficients of τm−1.

Step 1. Preparations.

For all n ∈ N, define τ̃n ∈ Z[X] by

τ̃n :=

{
τn(
√
X) if 2 | n,

τn(
√
X)
√
X if 2 - n.

Recall that τn is an even polynomial if n is even and an odd polynomial

if n is odd. Therefore, τ̃n really is a polynomial in X. It has degree dn/2e
and is monic. Since the n zeros of τn are given by 2 cos((a/n+ 1)π) for

a= 1, . . . , n (cf. [1, 22.16]), the zeros of τ̃n are given by 4 cos((a/n+ 1)π)2

for a= 1, . . . , dn/2e. In particular, the zeros of τ̃m−1 are equal to σa :=

4 cos(a(π/m))2 for a= 1, . . . , bm/2c.
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Step 2. Construction of the idempotents.

If m is odd, then the (α)-type relations are already of the form

τ̃m−1(X1,2X2,1) = 0 and τ̃m−1(X2,1X1,2) = 0, respectively. If m is even, then

one can multiply the relation with X1,2 and X2,1, and obtain the same

equations.

By defining

F1,a :=
∏

b=1,...,bm/2c
b6=a

X1,2X2,1 − σbE1

σa − σb
and

F2,a :=
∏

b=1,...,bm/2c
b6=a

X2,1X1,2 − σbE2

σa − σb
(1)

for all a= 1, . . . , bm/2c, we get a set of pairwise orthogonal idempotents

F1,a, F2,a ∈ kΩ with

E1 =

bm/2c∑
a=1

F1,a and X1,2X2,1 =

bm/2c∑
a=1

σaF1,a, and

E2 =

bm/2c∑
a=1

F2,a and X2,1X1,2 =

bm/2c∑
a=1

σaF2,a.

Denote the irreducible characters of W (I2(m)) of degree two by λa for

a= 1, . . . , m− 1/2 if m is odd and a= 1, . . . , m− 2/2 if m is even. If m

is even, there are two one-dimensional characters other than the trivial and

the sign character, which will be denoted by ε1 and ε2, respectively.

Now define the idempotents (F λ)λ∈Irr(W ) as

F 1 = E∅,

F λa = F1,a + F2,a,

F sgn = E{1,2},

and, if m is even, define further

F ε1 = F1,m/2 and

F ε2 = F2,m/2.

Now, (Z1) and (Z2) hold by construction. It remains to verify (Z3) and (Z4).
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Step 3. Proving (Z3).

Now that we have the idempotents F1,a, F2,a splitting E1 and E2,

respectively, we can consider Ω as a quotient of the quiver which is obtained

from QW by splitting the vertices labeled {1} and {2} into bm/2c vertices

each. A priori this could lead to the edge elements X1,2, X2,1 being split into

bm/2c2 new edge elements F1,aX1,2F2,b and F2,aX2,1F1,b, respectively. We

show that this does not happen and instead all edge elements not depicted

in Figure 2 vanish.

This follows from Lemma 23 because F1,a can be obtained from F2,a

by idempotent transporting and vice versa. Note that σa is invertible for

16 a <m/2, and σa = 0 for a=m/2. This means that F1,m/2 and F2,m/2

are the leftover idempotents. The lemma for idempotent transporting can

be applied. Now, the following holds:

bm/2c∑
a=0

σaX1,2F2,aX2,1 =X1,2

(∑
a

σaF2,a︸ ︷︷ ︸
=E2

)
X2,1 =X1,2X2,1 =

bm/2c∑
a=0

σaF1,a.

Moreover, because X1,2F2,aX2,1 is an idempotent, for 16 a <m/2, both

sides of the equation
∑

a σaX1,2F2,aX2,1 =
∑

a σaF1,a describe the spectral

decomposition of X1,2X2,1. Since the σa are pairwise distinct, one obtains

F1,a =X1,2F2,aX2,1, and for symmetry reasons X2,1F1,aX1,2 = F2,a for all

16 a <m/2.

Now, Lemma 23 additionally implies F1,aX1,2 =X1,2F2,a, so that

F1,aX1,2F2,b = 0 for a 6= b. Moreover, for symmetry reasons, also

F2,aX2,1F1,b = 0 for a 6= b.

If m is even, then it is also true that there are no edges F1,m/2� F2,m/2.

This can be seen as follows. By construction,

∏
16b<m/2

(X2 − σb) =
τ̃m−1(X

2)

X2
=
τm−1(X)

X
=

m−1∑
j=1

ajX
j−1

holds. By inserting X2,1X1,2 for X2 and multiplying by X1,2, this gives

X1,2

∏
16b<m/2

(X2,1X1,2 − σb) =

m−1∑
j=0

aj X1,2X2,1 . . .︸ ︷︷ ︸
j factors

(α)
= 0.
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Now, multiplication with the denominator of (1) gives X1,2F2,m/2 = 0,

so that there are no edges from F2,m/2 to any vertex labeled with {1}.
Moreover, for symmetry reasons, there can be no edge from F1,m/2 to any

vertex labeled with {2}.
Therefore, the only edges that can exist are edges F1,a� F2,a, edges ∅→

Fi,a, the edge ∅→ {12} and edges Fi,a→{12}. This means that (Z3) is

satisfied if we define a partial order on Irr(W ) by declaring sgn as the

top element, 1 as the bottom element and all other elements as mutually

incomparable.

Step 4. Proving (Z4).

For the characters of degree one, define ψλ : k1×1→ F λkΩF λ by

ψλ(e11) := F λ. This homomorphism is surjective because of the lack of

closed loops based at F λ in the quiver displayed in Figure 2. Therefore,

F λkΩF λ = k · F λ holds and ψλ is surjective.

For the characters of degree two, define ψλa : k2×2→ F λakΩF λa by(
e11 e12
e21 e22

)
7→
(

F1,a F λaX1,2F
λa

σ−1a F λaX2,1F
λa F2,a

)
.

This is a well-defined algebra homomorphism by construction of F λ. It

is surjective because F λakΩF λa is generated by the elements F λaI and

F λaXIJF
λa , all of which are contained in the image of ψλa .

5.4 Rank 3

Theorem 29. The decomposition conjecture is true for type A3.

We do not prove this in detail, since it is very similar to (although not

formally a consequence of) the proof for A4, which is presented in the next

section. Full details can also be found in [5, Section 4.5].

Theorem 30. The decomposition conjecture is true for type B3.

Proof. We aim for a refinement of the compatibility graph as depicted

in Figure 3 (where inclusion edges are again omitted for the sake of clarity).

The relations of type (α) are crucial for this undertaking. We write (αst)

to denote that we have used the relation of type (α) belonging to the edge

s− t of the Dynkin diagram.

First, note that every good ring for B3 contains Z[1/2], so that one is

allowed to divide by two.
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Figure 3.

Refined compatibility graph of B3.

Step 1. (Z1) and (Z2).

We define elements F λ,µI for all I ⊆ S and all (λ, µ) ∈ Irr(W ) according

to Table 1, where absent entries are understood to be defined as zero. We

therefore prove that the F λ,µI are pairwise orthogonal idempotents with

EI =
∑

λ,µ F
λ,µ
I .

The (α21)-relation E2 =X2,1X1,2 implies that F ′1 :=X1,2X2,1 is an idem-

potent 6 E1. The (α12)-relation

E1 =X1,2X2,1 +X1,02X02,1

implies that F ′′1 :=X1,02X02,1 also is an idempotent 6 E1 which is orthogo-

nal to F ′1. These two idempotents are decomposed further.

Recall that relations of type (α) use the polynomial τm−1, which for m= 4

has the form τ4−1(T ) = T 3 − 2T . Therefore, (α01) and (α10) imply

0 = X0,1X1,0X0,1 +X0,1X1,02X02,1 − 2X0,1,(2)

0 = X1,0X0,1X1,0 +X1,02X02,1X1,0 − 2X1,0.(3)
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By setting f :=X1,0X0,1, multiplying the first equation by X1,0 from the

left and the second by X0,1 from the right, we obtain

0 = f2 + fF ′′1 − 2f,(4)

0 = f2 + F ′′1 f − 2f.(5)

Thus,

f ′′ := fF ′′1 = F ′′1 f and f ′ := fF ′1 = F ′1f

are idempotents. We multiply (4) with F ′′1 and (5) with F ′1, and obtain

0 = f ′′2 − f ′′,(6)

0 = f ′2 − 2f ′.(7)

This gives us the following decomposition into orthogonal idempotents:

(8) E1 = F ′1 + F ′′1 =
(

1
2f
′︸︷︷︸

=F ,
1

)
+
(
F ′1 − 1

2f
′︸ ︷︷ ︸

=F ,∅
1

)
+
(
f ′′︸︷︷︸

=F ,
1

)
+
(
F ′′1 − f ′′︸ ︷︷ ︸
=F ,

1

)
.

With these notations, X1,0X0,1 = 2F ,
1 + F ,

1 holds. We see that the

other idempotents are now related either by transporting of idempotents

along {1}→ {0} or {1}→ {2}, or by applying the antiautomorphism δ to

previously constructed elements. In particular, the F λ,µI defined in Table 1

are pairwise orthogonal idempotents.

Step 3. Verifying (Z3).

We check that in Figure 3 only upward edges appear, so that the partial

ordering on Irr(W ) can be read off from the picture. We in fact show that

the only edges not depicted in Figure 3 are inclusion edges.

The following holds:

X0,1F
,∅

1 = X0,1

(
F ′1 − 1

2f
′)

= X0,1

(
E1 − 1

2X1,0X0,1

)
F ′1

= 1
2(2X0,1 −X0,1X1,0X0,1)F

′
1

(1)
= 1

2(X0,1F
′′
1 )F ′1

= 0,

X0,1F
,

1 = X0,1(F
′′
1 − f ′′)
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= X0,1(E1 −X1,0X0,1)F
′′
1

= (X0,1 −X0,1X1,0X0,1)F
′′
1

(1)
= (X0,1F

′′
1 −X0,1)F

′′
1

= 0.

This means that there cannot be edges from F ,∅
1 or F ,

1 to vertices labeled

with {0}. Since the idempotents labeled by {0} were defined by transport

of idempotents, it follows from Lemma 23 that F ∅,0 X0,1 = 0 holds; that is,

there are no edges from vertices labeled with {1} to F ∅,0 .

Analogously, both F ,∅
1 X1,0 = 0 and F ,

1 X1,0 = 0 also hold. Therefore,

there cannot be edges from vertices labeled with {0} to F ,∅
1 or F ,

1 . Again,

it follows from Lemma 23 that X1,0F
∅,
0 = 0 holds; that is, there are no

edges from F ∅,0 to vertices labeled with {1}.
Because the idempotents F ,

0 and F ,
0 were defined by transport of

idempotents, there are no edges F ,
0 � F ,

1 or F ,
0 � F ,

1 . Similarly,

there are no edges F ,∅
2 � F ,

1 or F ,
2 � F ,∅

1 .

Now, we use the symmetry given by δ and obtain the same result for

vertices labeled with {01}, {02} and {12}.
It remains to verify that there are no edges F ,

1 � F ,
02 or F ,

1 � F ,
02 .

To this end, we prove that the idempotents F ,
02 and F ,

02 are also given by

a transport of idempotents. This follows from an application of the (α10)-

relation:

(9) 0 =X02,1X1,0X0,1 +X02,1X1,02X02,1 +X02,12X12,02X02,1 − 2X02,1.

Multiplying with X1,02 from the left, and using X1,0X0,1 = F ,
1 + 2F ,

1 as

well as X02,12X12,02 = F ,
02 + 2F ,

02 and F ′′02 :=X02,1X1,02 = δ(F ′′1 ), we obtain

0 = X02,1(F
,

1 + 2F ,
1 )X1,02 + F ′′02F

′′
02 + (F ,

02 + 2F ,
02 )F ′′02 − 2F ′′02

= X02,1(F
,

1 + 2F ,
1 )X1,02 + F ,

02 F
′′
02 + 2F ,

02 F
′′
02︸ ︷︷ ︸

=0

− F ′′02
= X02,1(F

,
1 + 2F ,

1 )X1,02 + F ,
02 − F

′′
02

= X02,1(F
,

1 + 2F ,
1 )X1,02 + (−F ,

02 ).

Hence, we obtain

F ,
02 =X02,1F

,
1 X02,1 + 2 ·X02,1F

,
1 X1,02.
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The (α21)-relation

0 =X02,1X1,2

implies X02,1F
′
1 = 0, so that X02,1F

,
1 = 0, because F ,

1 6 F ′1. Therefore,

we obtain

F ,
02 =X02,1F

,
1 X1,02.

That is, F ,
02 is a transported idempotent along the edge {02}� {1}.

Because of F ′′1 = F ,
1 + F ,

1 ,we also obtain

F ,
02 =X02,1F

,
1 X1,02,

which, together with Lemma 23, implies that there are no edges other than

the ones displayed in Figure 3 between vertices labeled with {1} and {02}.
This shows that (Z3) holds.

Step 4. Verifying (Z4).

There is not much to do for the characters of degree one. We define ψλ,µ :

Z[1/2]1×1→ F λ,µZ[1/2]ΩF λ,µ to be the only possible morphism, namely

ψλ,µ(e11) := F λ,µ. The surjectivity of these maps is automatic because the

four components for the one-dimensional characters in the refined compat-

ibility graph have no edges, and therefore F λ,µZ[1/2]ΩF λ,µ = Z[1/2]F λ,µ.

Table 2 lists all of the morphisms ψλ,µ : Z[12 ]dλ,µ×dλ,µ → F λ,µZ[12 ]ΩF λ,µ for

the characters of degree two and three, where we use the notation Xλ,µ
IJ :=

F λ,µXIJF
λ,µ.

We have used again that Z[1/2]d×d is the Z[1/2]-algebra given by the

presentation in Lemma 25. These relations are satisfied by construction of

the F λ,µ, and therefore all of the maps in the table are well-defined algebra

morphisms.

The construction of ψλ,µ ensures that all idempotents F λ,µI for all I ⊆ S
and all F λ,µXIJF

λ,µ for transversal edges I � J are contained in the image

of ψλ,µ. For (λ, µ) ∈ {(∅, ), ( , ∅), ( , ), ( , )} , this is already enough

to guarantee surjectivity, because all edges in the component of F λ,µ are

transversal edges.

For χ , , on the other hand, there could be an inclusion edge {0}→
{0, 2}, and for χ , ,there could be an inclusion edge {1}→ {1, 2}. To

complete the proof, we show that this is not the case by using the (β20)-

relation:

X ,
02,0 = F , X02,0F

,
0

= F , X02,0(X0,1F
,

1 X1,0)
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Table 2.
Morphisms ψλ,µ : Z[1/2]dλ,µ×dλ,µ � Fλ,µZ[1/2]ΩFλ,µ for 26 dλ,µ 6 3.

Character χλ,µ Map ψλ,µ

χ ,∅

(
e11 e12
e21 e22

)
7→

F ,∅
1 X ,∅

1,2

X ,∅
2,1 F ,∅

2


χ∅,

(
e11 e12
e21 e22

)
7→

 F ∅,02 −X∅,02,01
−X∅,01,02 F ∅,01



χ ,

e11 e12
e21 e22 e23

e32 e33

 7→


F ,
0 X ,

0,1

1
2X

,
1,0 F ,

1 X ,
1,2

X ,
2,1 F ,

2



χ ,

e11 e12
e21 e22 e23

e32 e33

 7→


F ,
12 −X ,

12,02

−1
2X

,
02,12 F ,

02 −X ,
02,01

−X ,
01,02 F ,

01



χ ,

e11 e12
e21 e22 e23

e32 e33

 7→


F ,
0 X ,

0,1

−X ,
1,0 F ,

1 X ,
1,02

X ,
02,1 F ,

02



χ ,

e11 e12
e21 e22 e23

e32 e33

 7→


F ,
12 X ,

12,02

X ,
02,12 F ,

02 −X ,
02,1

−X ,
1,02 F ,

1



= F , (X02,0X0,1)F
,

1 X1,0

(β20)
= F , (X02,2X2,1 +X02,12X12,1 −X02,01X01,1)F

,
1 X1,0

= (X ,
02,2X

,
2,1 +X ,

02,12X
,

12,1 −X
,

02,01X
,

01,1)F
,

1 X1,0.

All summands within the brackets disappear because the , component in

the graph of Figure 3 has no vertices labeled {2}, {12} or {01}. Using the

symmetry given by δ, the equation F ,
12 X12,1 = 0 also holds.
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5.5 Rank 4

Theorem 31. The decomposition conjecture is true for type A4.

Proof. We use an analogous strategy to that used before and use the

relations of type (α). Again, we write (αst) to denote that we have used the

relation of type (α) belonging to the edge s− t of the Dynkin diagram, and

similarly for (β)-type relations.

Our goal is to decompose the compatibility graph as in Figure 4(a)

(inclusion edges have been omitted for the sake of clarity).

Step 1. Verifying (Z1) and (Z2).

We define idempotents F λI 6 EI for all I ⊆ S, λ ∈ Irr(W ), and set F λ :=∑
I F

λ
I . First, note that, by Lemma 25, the idempotents of a matrix algebra

are given by evaluating loops in the quiver. Looking at the quiver, we want

to arrive at Figure 4(a). We therefore define the idempotents F λI either

as one of the EI at the boundary of the compatibility graph or as loops

connecting inner vertices to those outer vertices. More precisely, we use the

definitions in Figure 4(b), where all F λI not appearing there are understood

to be defined as zero.

Once these elements have been defined, we have to prove that they are

in fact idempotents and EI =
∑

λ F
λ
I is an orthogonal decomposition. (Z2)

will then be satisfied because F λEI = F λI = EIF
λ holds by definition.

The (α12)-relation implies

E1 =X1,2X2,1,

from which it follows that F2 is an idempotent 6E2; namely, the

idempotent obtained by transport of E1 6 E1 along the edge {1}→ {2}.
From the (α12)-relation

E2 =X2,1X1,2 +X2,13X13,2,

we deduce that F2 is the leftover idempotent of this transport. By

applying the nontrivial graph automorphism, we obtain that F3 and F24

are idempotents as well, and by applying the antiautomorphism δ, we

find that F134, F13, F124 and F2,4 are idempotents too. Moreover, because

Lemma 23 also gives us orthogonality with the leftover idempotent, we are

done with all except the two-element subsets of S.
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(a) (b)

Figure 4.

(a) The refined compatibility graph for A4 and (b) vertex idempotents of the

refined compatibility graph for A4.

By transporting F2 =X2,13X13,2 along {2}→ {13}, we obtain the

idempotent

X13,2F2 X2,13 = X13,2E2X2,13 −X13,2F2 X2,13

= X13,2X2,13 −X13,2X2,1X1,2X2,13︸ ︷︷ ︸
=0 by (α12)

= F13 .

By applying δ and the graph automorphism, we find that F13, F24

and F134 are also idempotents.

The (α23)-relation

E12 =X12,13X13,12

implies that F13 is the idempotent obtained by transporting E12 along

{12}→ {13}.

https://doi.org/10.1017/nmj.2016.69 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.69


W -GRAPHS AND GYOJA’S W -GRAPH ALGEBRA 39

Considering the (α32)-relations

E13 = X13,2X2,13 +X13,12X12,13 +X13,124X124,13 = F13 + F13 + F13,

0 = X2,13X13,12 =X2,13X13,124,

0 = X12,13X13,2 =X12,13X13,124,

0 = X124,13X13,2 =X124,13X13,12,

we find that F13 , F13 , F13 constitute an orthogonal decomposition of E13.

By applying the graph automorphism, we find that F24 , F24 and F24 are

pairwise idempotents as well.

We are now almost done. We still need to look at the innermost vertices

{2, 3} and {1, 4} of the compatibility graph. The following (α34)-relation

holds:

E13 =X13,14X14,13 +X13,124X124,13.

This means that X13,14X14,13 = F13 + F13 . Transporting these two idem-

potents along {13}→ {14}, we obtain F14 and F14 . By symmetry, F23

and F23 are idempotents as well.

From the (α43)- and (α21)-relations

E14 =X14,13X13,14 and E23 =X23,13X13,23,

we can infer that the two leftover idempotents for these transports vanish.

Therefore, we get orthogonal decompositions E14 = F14 + F14 and E23 =

F23 + F23 .

Step 2. Verifying (Z3).

We prove that the only edges between the components not displayed in

Figure 4(a) are inclusion edges, from which it follows that the dominance

ordering on {λ ` 5} is the sought-after partial ordering. Because we have

constructed all idempotents by transport of idempotents, most transversal

edges split into parallel edges. This eliminates almost all possible transversal

edges between different components.

The (α32)-relation

X13,2X2,3 = 0

implies that F2 X2,3 = 0 , so that there is no transversal edge emanating

from E3 = F3 + F3 and going to F2 . By symmetry, there are no
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transversal edges going from E2 to F3 , which shows that there are only

inclusion edges between the and the component. Applying δ, we find

the same between the and the component.

The only other possibility is transversal edges of the form {14}� {24}
and {23}� {24}, because we have not used idempotent transport along

these edges. Instead, we worked with {13}� {14} and {13}� {23}.
Consider the (β24)-relation

X24,23X23,13 +X24,2X2,13 =X24,14X14,13 +X24,134X134,13,

which implies

F24 ·X24,14 · F14

= F24 ·X24,14 ·X14,13︸ ︷︷ ︸ F13 X13,14

(β24)
= F24 · (−X24,134X134,13 +X24,23X23,13 +X24,2X2,13)F13 X24,14

=−X24,3 X3,24X24,134︸ ︷︷ ︸
=0 by (α32)

X134,13F13 X24,14

+X24,3 X3,24X24,23︸ ︷︷ ︸
=0 by (α43)

X23,13F13 X24,14

+X24,3X3,24X24,2 X2,13F13︸ ︷︷ ︸
=0

X24,14

= 0.

Similarly, combining the (β)- and (α)-relations, one shows that the transver-

sal edge {14}→ {24} splits into a pair of parallel edges, as displayed in

Figure 4(a), and all four of the possible cross-component edges are indeed

zero. Applying δ, we find that the same holds between the and the

component.

This shows that, even for the edges {14}� {24} and {23}� {24}, the

idempotents on both sides are given by transporting idempotents, and hence

there can only be parallel edges, as depicted in Figure 4(a). The only other

possible edges are those not depicted in this picture; in other words, the

inclusion edges.
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Step 3. Verifying (Z4).

We construct surjective homomorphisms ψλ : Zdλ×dλ → F λΩF λ. We use

the presentation of Zdλ×dλ from Lemma 25.

We use the abbreviation Xλ
IJ := F λXIJF

λ. By construction, the equation

Xλ
IJX

λ
JI = F λI holds for all transversal edges I � J if F λI and F λJ are both

nonzero, as well as Xλ
IJ =Xλ

JI = 0 otherwise.

If we denote the vertices of a component in Figure 4(a) with its index

set (which is possible without conflicts since no index set occurs more than

once), then

ψλ : Zdλ×dλ → F λΩF λ, eII 7→ F λI , eIJ 7→Xλ
IJ

defines a morphism ψλ : Zdλ×dλ → F λΩF λ for those components that are

straight lines without their inclusion edges; that is, all components except

the one labeled with λ= .We prove surjectivity of ψλ, which is equivalent

to showing that all Xλ
IJ are contained in the image ψλ. For the transversal

edges, this is clear from the construction. Therefore, we are done for λ= ,

, and .For λ= , we must consider the inclusion edges X13,3 and

X24,2. We use the relations of type (β):

X24,2 = F24 ·X24,2 · F2

= X24,3X3,24 · (X24,2 ·X2,13)X13,2

(β42)
= X24,3X3,24(X24,14X14,13 +X24,134X134,13 −X24,23 X23,13)X13,2︸ ︷︷ ︸

=0

= X24,3X3,24X24,14X14,13X13,2 +X24,3 X3,24X24,134︸ ︷︷ ︸
=0

X134,13X13,2

= X24,3X3,24X24,14X14,13X13,2 because X24,2 ∈ F ΩF

∈ im(ψ ).

By applying the graph automorphism, we obtain X13,3 ∈ im(ψ ) ,and by

applying the antiautomorphism δ, we obtain X124,24, X134,13 ∈ im(ψ ).

Therefore, all Xλ
IJ are contained in the image of ψλ for λ= , , and

surjectivity holds in both cases.

It remains to handle the case λ= . We sort the two-element sets in the

order {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, and claim that the following
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homomorphism ψ : Z6×6→ F ΩF is well defined:

e11 e12
e21 e22 e23

e32 e33 e34
e43 e44 e45

e54 e55 e56
e65 e66



7→



F λ12 Xλ
12,13

Xλ
13,12 F λ13 Xλ

13,14

Xλ
14,13 F λ14 Xλ

14,13X
λ
13,23

Xλ
23,13X

λ
13,14 F λ23 Xλ

23,24

Xλ
24,23 F λ24 Xλ

24,34

Xλ
34,24 F λ34


.

Most relations from Lemma 25 are satisfied by construction of the idempo-

tents. We still need to verify

Xλ
14,13X

λ
13,23 ·Xλ

23,13X
λ
13,14 = F λ14 and

Xλ
23,13X

λ
13,14 ·Xλ

14,13X
λ
13,23 = F λ23.

These equations follow from the (α)-relations E13 =X13,23X23,13 and E24 =

X24,14X14,24.

We verify the surjectivity of ψλ. By construction, most Xλ
IJ are already

contained in the image. We only have to consider the edges between F λ14�
F λ24 and F λ13� F λ23:

Xλ
23,13 = Xλ

23,13F
λ
13

= Xλ
23,13(X

λ
13,14X

λ
14,13)

= (Xλ
23,13X

λ
13,14)X

λ
14,13 ∈ im(ψλ)

and

Xλ
24,14 = Xλ

24,14F
λ
14

= Xλ
24,14(X

λ
14,13X

λ
13,14)

= (Xλ
24,14X

λ
14,13)X

λ
13,14
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(β)
= (Xλ

24,23X
λ
23,13)X

λ
13,14

= Xλ
24,23(X

λ
23,13X

λ
13,14) ∈ im(ψλ).

Applying δ, we find Xλ
13,23, X

λ
14,24 ∈ im(ψλ) as well. Therefore, ψλ is surjec-

tive.
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