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W-GRAPHS AND GYOJA’S W-GRAPH ALGEBRA

JOHANNES HAHN

Abstract. Let (W, S) be a finite Coxeter group. Kazhdan and Lusztig
introduced the concept of W-graphs, and Gyoja proved that every irreducible
representation of the Iwahori-Hecke algebra H (W, S) can be realized as a W-
graph. Gyoja defined an auxiliary algebra for this purpose which—to the best of
the author’s knowledge—was never explicitly mentioned again in the literature
after Gyoja’s proof (although the underlying ideas were reused). The purpose
of this paper is to resurrect this W-graph algebra, and to study its structure
and its modules. A new explicit description of it as a quotient of a certain path
algebra is given. A general conjecture is proposed which would imply strong
restrictions on the structure of W-graphs. This conjecture is then proven for
Coxeter groups of type I2(m), Bz and Ai1—Aa.

81. Introduction

Let (W, S) be a finite Coxeter group. Kazhdan and Lusztig introduced
W-graphs in [7] in an attempt to capture certain combinatorial features of
Kazhdan—Lusztig-cells and of the cell representations associated to them.
By definition, every cell representation is a W-graph representation. The
converse is not true.

Gyoja proved that every irreducible representation (and hence every
reducible representation as well) of the Hecke algebra H(W,S) can be
realized as a W-graph representation if W is finite (see [4, 2.3.(1)]). In that
proof, the Iwahori—-Hecke algebra is embedded into a larger algebra, which
I denote €2 in this paper, and it is proven that there exists a left inverse of
this embedding. The W-graph algebra €2 is constructed in such a way that
its modules correspond to W-graphs (up to choice of an appropriate basis).
Using any one of these left inverses, every H-module can be considered as
an {3-module, and the result follows.

Gyoja’s proof is nonconstructive, as it does not provide a concrete left
inverse of the embedding H — 2 and does not offer additional information
about the W-graphs that were constructed in this fashion or any information
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2 J. HAHN

about general W-graphs. In my thesis [5], I discovered that a careful analysis
of Q) reveals a fine structure that gives much more detailed information about
W-graphs. An explicit left inverse utilizing Lusztig’s asymptotic algebra is
also provided in [5, Satz 4.3.2].

The starting point for this analysis is the observation that € is a quotient
of a path algebra over a quiver which is describable entirely in terms of the
Dynkin diagram, a fact that is implicitly contained in Gyoja’s paper but
was not interpreted in that way. Gyoja’s definition [4, 2.5] gives elements of
Q) that basically realize the vertex idempotents and the edge elements of a
path algebra. (This is made precise in Lemma 7.) The first main result of my
paper is to give an explicit set of relations for this quotient (Theorem 13).
The relations are inspired by the work of Stembridge [8], where similar
equations appear for the edge weights of so-called admissible W-graphs,
although they were neither formulated for general W-graphs nor interpreted
as relations for an underlying algebra. This set of relations seems to be
different from the presentation Gyoja gives in the appendix of his paper.

Once this new presentation of (2 is established, it is applied to breaking
down the structure of ) further. At the moment, this is only done for some
small Coxeter groups by a case-by-case analysis, but the proofs are so similar
in spirit that I proposed a general conjecture in my thesis whose essence is
that  should also be a quotient of a generalized path algebra over a different
quiver which should have Irr(TV) as its vertex set and should be acyclic. The
algebras associated to the vertices should be matrix algebras.

In the cases for which the conjecture is true, it has several important
consequences like the following.

e k() is finitely generated as a k-module, where k is a so-called good ring
for (W, S); that is, a ring k C C with 2 cos(27/mg) € k for all s,¢ € S and
p € k* for all bad primes p. (See [3, Table 1.4] for a detailed description
of what that means for each type of finite Coxeter group.)

e The Jacobson radical rad(kf2) is finitely generated by an explicitly
describable finite list of elements and kQ/rad(kQ) = [T crrw kdrxdx,
where d) denotes the degree of the irreducible character A. This implies
that Gyoja’s conjecture (cf. [4, 2.18]) holds.

e There is an enumeration Aq, . .., A, of Irr(W) such that every kQ2-module
V has a natural filtration

0=vVocvlic...cvr=v,
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which realizes the decomposition of V' into irreducibles in the sense that
Vi/Vi=l is isomorphic to a direct sum of irreducibles of isomorphism
class \;.

Because of the last consequence I named the conjecture the “W-graph
decomposition conjecture”. The second consequence, and in particular
the connection to Gyoja’s conjecture, was my original motivation for
investigating the W-graph algebra and its fine structure. At the time of
writing, the decomposition conjecture has been proven for Coxeter groups
of types A1—Ay, Io(m) and Bs.

The paper is organized as follows. The first section introduces some
notation, recalls the definition of W-graphs (following [3], which is slightly
more general than Kazhdan and Lusztig’s), the definition of the W-
graph algebra (following [4] though with a different notation) and proves
some basic lemmas establishing the connection between W-graphs and 2-
modules. Section 3 is devoted to stating and proving an explicit description
of  in terms of generators and relations which are the basis for all
subsequent proofs. Section 4 contains the statement of the decomposition
conjecture and a short discussion of its consequences, while Section 5 is
devoted to the proofs of the conjecture for small Coxeter groups.

§2. Preliminaries

2.1 Notation

Throughout the paper, fix a finite Coxeter system (W, S). The Iwahori—
Hecke algebra H = H(W, S) of (W, S) is the Z[v*!]-algebra (where v is an
indeterminate), which is freely generated by (7s)scs subject only to the
relations

Vs€S:T?2 =1+ (v—v )T, and
Vs, t € S: Ap,, (Ts, Ty) =0,

where mg denotes the order of st € W and A,,(z,y) is the mth braid
commutator of ring elements x and y, which is defined as follows:

Ap(z,y):=zyx ... —yzy....
—_— = —

m factors  m factors

In particular, Ag(z,y) =0, Ai(z,y)=z-y, As(z,y)=mry—yx,
As(z,y) = zyx — yxy, and so on.
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Also fix a good ring for (W, S); that is, a ring k C C with 2 cos(27/mg) €
k for all s, t € S and p € k™ for all so-called bad primes p. (See [3, Table 1.4]
for a detailed description of what that means for each type of finite Coxeter
group.)

A ring is good if it is big enough for the purposes of representation theory
of Coxeter groups. For example, every good field is a splitting field for W.

If Ais a k-algebra and k' is a commutative k-algebra, then k’A is used
as shorthand for the k’-algebra k' ®; A. Similarly, the abbreviation £’V is
used for the £’ A-module k' @, V if V is an A-module.

2.2 W-graphs

DEFINITION 1. (Cf. [7] and [3]) A W-graph with edge weights in k is
a triple (€, Z, m) consisting of a finite set € of vertices, a vertex labeling
map Z: ¢ — {I|I C S} and a family of edge weight matrices m* € k<€ for
s € S (here, k%% denotes the ring of matrices whose rows and columns are
indexed with € and whose entries are elements of k) such that the following
conditions hold.

(1) Vz,ye&:m;, #0 = se€Z(z)\ I(y).
(2) The matrices

vl 1 if x=y,s€ (),
W(Tg)y :=qv-1g if t=y,s¢Z(x),

S

2y otherwise

m

induce a matrix representation w : k[v™|H — k[v®!]¢x¢,

The associated directed graph is defined as follows. The vertex set is € and
there is a directed edge x <y if and only if mj3, # 0 for some s € S. If this
is the case, then the value mj, is called the weight of the edge. The set I (x)
is called the vertex label of x.

Note that condition 1 and the definition of w(7s) already guarantee
w(Ts)? =1+ (v—v 1w(Ty), so that the only nontrivial requirement in
condition 2 is the braid relation 0 = A, _, (w(Ts), w(13)).

The definition seems to allow up to |[I(x) \ I(y)| different edge weights for
a single edge = <— y. We prove later that all values mj3, with s € I(x) \ I(y)
are in fact equal.
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Given a W-graph as above, the matrix representation w turns the space
k[v¥1]¢ of column vectors indexed with € with entries in k[v*!] into a left
module for the Hecke algebra k[vT!']H. It is natural to ask whether the
converse is true. In situations where the Hecke algebra is split semisimple,
the answer is yes, as shown by Gyoja.

THEOREM 2. (Cf. [4]) Let K CC be a splitting field for W. FEvery
irreducible representation of K(v)H can be realized as a W-graph module
for some W -graph with edge weights in K.

2.3 Gyoja’s W-graph algebra
DEFINITION 3. Define = as the Z-algebra that is freely generated by
es, Ts for s € S with respect to the following relations:

(1) VseS:e?=eg
(2) Vs, t€S:eser =epes;
(3) Vse S:esxs=uxg, xse5=0.

Furthermore, define
U(Ty) = —v tes +v(1 — e5) + x5 € Z[vF)=E

for all s € S. The braid commutator A, (¢(Ts), t(T¢)) can be written as
Z'yEZ Y7 (s, t)vY with uniquely determined elements y7 (s, t) € =.
The W-graph algebra € is defined as the Z-algebra obtained as the
quotient of = modulo the relations y” (s, t) =0 for all s, € S and all v € Z.
By abuse of notation, the quotient map = — €2 is not explicitly mentioned
for the remainder of this paper, and symbols like es, zs and ¢(Ts) are
therefore used for elements of = as well as the corresponding elements of 2.

The definition, and in particular the observation z2 = (esx4)(esxs) =0,

immediately implies that T}, ~— +(Ts) defines a homomorphism of Z[v*!]-
algebras ¢ : H — Z[v*')Q (which is in fact injective, as we prove in Corol-
lary 10). This observation also appears in Gyoja’s paper [4, Remark 2.4.3].

2.4 Morphisms

Giving an algebra by generators and relations means having a universal
property for homomorphisms on the resulting algebra. Since the relations
for £ are not explicit enough to be verifiable by explicit calculations, we use
the following universal property instead.
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LEMMA 4. Consider the category of all rings. Then, precomposing with
the quotient = —  is a natural isomorphism

H 0 A= = 3 A
om(2, A) {f 7 annihilates Ay, ((Ts), L(Ty)) for all s,t € S

the induced map Zv*1= — Z[vF] A }

Proof. Precomposing with the quotient map certainly is an injective
natural transformation Hom(2, —) — Hom(Z, —). We prove that its image
is exactly the subset of the claim.

Choose s, t € S and write A, (¢(T5),

u(Ty)) = Z'yEZ Yy (s, t)vY as before.
— A,

Thus, for any homomorphism f: the induced map Z[vT1]= —

Z[vT1) A satisfies

F (A (UT), (L)) = Y f(y7 (s, 1)o7

YEZ

Because an element . a,v7 € Z[v* A with a, € A is zero if and only if
a, =0 for all v € Z, the map f descends to a well-defined homomorphism
Q — A if and only if f annihilates all 7 (s, ¢) if and only if the induced map
annihilates all braid commutators A, (¢(T5), ¢(T}))- [

The following easy corollary establishes symmetries of {2 which are used
to simplify the proofs of the decomposition conjecture in the last section of
the paper.

COROLLARY 5.
(1) Ifa:S—S is a bijection with ord(a(s)a(t)) = ord(st) (in other words,
a graph automorphism of the Dynkin diagram of (W, S)), then there is

a unique automorphism of 0 with es > €q(s), Ts > Tq(s)-
(2) There is a unique antiautomorphism 6 of Q with es — 1 — eg, x5 — —x5.

2.5 Modules and W-graphs
The following definition appears in Gyoja’s paper [4, Definition 2.5],
although with different notation.

DEFINITION 6. In =, define the following elements for all I, J C S, s € S:

(1) (o)

tel teS\I
Xi;:=ErxsEj.
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What Gyoja did not mention in his paper is that these elements actually
give {2 the structure of a quotient of a path algebra. This is the content of
the following lemma.

LEMMA 7. With the above notation, the following statements are true.

(1) E]EJ:5[JE[, ZICSEI:l and es:ZIQS E[.
B sel
(2) X7, =0ifs¢I\J andxs=> 1jcs X},
sel\J
(3) E is isomorphic to the path algebra Z.Q over the quiver Q whose vertex

set is the power set of S and which has exactly |I\ J| edges I < J for
every pair of vertices I, J C S.

Proof. The first equation follows immediately from the definition,
es(1 —es) =(1—es)es =0 and the fact that the e; commute with each
other. The decomposition of the identity follows by expanding 1=
[I;cg(es + (1 —es)), and the expression for e, follows by applying the
decomposition of the identity in e - 1.

The expression for zs follows by applying the decomposition of the
identity twice in 1 -z, - 1.

The path algebra ZQ can be described as the algebra freely generated by
{Ex, XfJ\K, I,JC S, sel\ J} with respect to the relations

EiBy=byEn, S Bi=1 and X} =EX5E).
ICS

This implies that E;r—E T, X 77+ Xj; induces a ring homomorphism
7.Q — =Z. Going in the other direction, one readily verifies that the unique

ring homomorphism E — ZQ with es — Y 1cs E; and x5 — Yorgcs X is
sel seI\J
inverse to the first morphism.

REMARK 8. For later use, we observe the following.

(1) The algebra automorphism induced by a graph automorphism « maps
Er e Eypy and X3, Xj((j))am.
(2) The antiautomorphism 6 maps Ej +— Ere and X7, — —X 9. ., where I¢

denotes the complement of I in S.

The following theorem also appears in Gyoja’s paper as a remark without
proof and establishes the connection between €2 and W-graphs.
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THEOREM 9. (Cf. [4, Remark 2.7]) Let k be a commutative ring. There
18 a correspondence between Q-modules and W -graphs by the choice of a
suitable basis. More precisely, the following statements hold.

(1) (From W-graphs to Q-modules)
Let (€,Z,m) be a W-graph with edge weights in k. Define w : kQ —
k.€><€ by

1 z=y,seI(x)
w(es)py 1= and w(xs) :i=m°.
(es)ay {0 otherwise ()

Then, w is a well-defined k-algebra homomorphism such that the
composition
ko' H 5 E[o')Q 2 klv™]o¢

is exactly the matriz representation of H attached to (€, Z, m).

(2) (From Q-modules to W -graphs)
Let V' be a kQ2-module with representation w : kS — Endy (V). Define
Vi:=FErV forall 1 CS.
If Vi is a finitely generated free k-module and € C Vi is a k-basis for
all I C S, define (€,Z,m) as follows: set €:=J;cq Cr, set I(x):=1
for all z € €1 and define m® to be the matriz of w(xs) with respect to the
basis €. With these definitions, (&€, Z, m) is a W -graph and its W -graph
module is k[vF] @y, V.

Proof. (1) The matrices w(es) and w(z,) satisfy the relations of Z by
definition of W-graphs. We therefore view w as an algebra homomorphism
Z — k<€, Because w(t(T})) is exactly equal to the matrices w(T}) in the
definition of W-graphs, and those matrices satisfy the braid relations, it
follows that w descends to a homomorphism € — k%*¢ by the universal
property.

(2) The second assertion is easily verified. The condition mg3, #0 =
s€I(x)\ I(y) follows from Xj; #0 = s € I\ J. The matrices occurring
in the definition of W-graphs are exactly the matrices w(:(7s)), and hence
satisfy the necessary braid relations because the elements ¢(Ts) € Q satisfy
them. [

COROLLARY 10. If W is finite, then the following hold.

(1) ¢: k[T H — k[vt)Q is injective.
(2) All Er are nonzero as elements of kS).
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In particular, H is considered as a subalgebra of the scalar extension
Z[v*TQ for the rest of this paper.

Proof. Consider the Kazhdan—Lusztig-W-graph as defined in [7]. It is a
W-graph (€, Z, m) with €:=W, Z(w) ;= {s € S| sw < w} and integer edge
weights such that the associated W-graph module is the regular H-module.
This can be considered as a W-graph with edge weights in k.

The representation k[T H % E[v*]Q — kv " >*W induced by this -
graph equals the map k[v*']H — Endy,2y(k[v*']H), h (z — ha). The
latter map is injective, so that ¢ : k[v™!|H — k[vT1]Q is injective too.

If W is finite, then all the elements E; € k) are nonzero because there are
w € € with Z(w) = I (for example, the longest elements of the corresponding
parabolic subgroup W7). [

REMARK 11. The finiteness condition is in fact superfluous. A more
carefully phrased version of the definition of W-graphs and of Theorem 9
which also includes the infinite-dimensional case makes the same proof work
for the first statement. The second statement, however, cannot be proved in
the same way because there is an element w € W with Z(w) = I if and only
if W7 is finite, so that this proof does not work for infinite Coxeter groups
(contrary to what I believed when I wrote my thesis, which contains the
special proof for the general statement). An alternative general proof of the
second statement will be contained in my next paper [6].

83. () as a quotient of a path algebra

It is observed in Lemma 7 that = is a path algebra. In this section, we
give an explicit set of relations for the quotient = — 2 in terms of this
path algebra structure. The proof is inspired by equations appearing in
Stembridge’s paper [8].

We need the following lemma, which is a slight generalization of [8,
Proposition 3.1].

LEMMA 12. Define polynomials 7, € Z[T) by the following recursion:
7_1:=0, 70 :=1, T =TT 1 — Tr_o.

With this notation the following holds.
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If R is any ring, and x,y € R are solutions of the equation T? =1+ (T
for some fired ( € R, then their braid commutators satisfy

Ar+1(x7 y) = (_1)TTT(‘T +y— C) ’ (JZ B y)

Observe that 7, is a monic polynomial of degree r for all » € N. In
particular, {7p, ..., 7} is a Z-basis of { f € Z[T] | deg(f) < r}. Furthermore,
7, is an even polynomial for even r and an odd polynomial for odd r; that
is, 7.(=T) = (=1)"7(T"). This follows immediately from the recursion.

Proof. The claim for the braid commutator is true for r = —1 and r = 0.
Furthermore, the following holds:

(z+y)Argi(z,y) =22 yz ... —xyz. .. fyzy ... —y>zy . ..
—_— ——\— - ——
r r42 r+2 r
=1+¢x)yxr...—zyx...+yzxy ... —(1+ y)ay. ..
— —— - ——
r r+2 r+2 r
=l-yr...—-1l-2zy... +Cxyr... —Cyxy...
e ~—— e~ ~——
T T T T
—(zyz...—yzy...)
S—— =
r+2 r+2

= _AT('I7 y) + CAT+1(:C7 y) - AT+2(377 y)
== AT+2<xv y) = (—1)((%’ +Ty— G)AT—H({B’ y) + Ar(x7 y))

The claim follows by induction. 0

THEOREM 13. Forall I,JCS, s, t€S andr €N, define

Pi;(s,t) := Er vsvixs ... By
—_———

r factors
07 r= 07 I 7& J7
Eq, r=0,1=1J,
S t s s
= Z X111X1112X1213 <o XIT_1J> r>0,21{r,
I, I, 1 CS
S t s t
Z Xin XnnXh - X1, 7>0,2]r
I,.,I,1CS

With this notation, the kernel of the quotient = — ) is generated by the
following elements.
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(o) For all s,t €S, the elements
P}rjfl(s, t) + am,gP}"fQ(s, t)+ -+ alP}J(s, t)+ (LOPIOJ(S, t)

for all I,J C S, where either

escl, t¢l, seJ,t¢J and2tmg or
escl, t¢l, s¢J, ted and2|mgy

holds. The a; denote the coefficients of the polynomial Tp,—1; that is,
Tm-1(T) =T 0T 2+ -+ a1 T + ag.
(8) Foralls,t€ S and all I,J C S with s,t €1\ J, the elements
P},(s,t) — P}(t,s), P4 (s, t) — P¥(t,s),..., PP (s, t) — PP(t, s).

These relations are used throughout the rest of the paper. We refer to
them as the (a*!)-relation and the (3%!)-relation, respectively.
Proof. Consider V :=Z[v*!]Z and fixed s,t € S. Define the four sub-

spaces

Vo= € VE, Vu:i= € VEI

ICS ICS
s¢Itel selt¢l
Vie:r= € VE, Vu=  VEL
ICS ICS
sgltel seltel

Note that, given an algebra A and a decomposition into pairwise
orthogonal idempotents 14 = > | e;, every element a € A can be uniquely
written as a = Z” a;;j, with a;; € e;Ae;, and this additive decomposition
behaves like matrices behave with respect to multiplication; that is, (ab);, =
Zj aqj bjk-

We therefore write elements of Z[vﬂ]

= as matrices when we want to
display such a decomposition in an efficient way. Note that one can view
these matrices equivalently either as d x d-matrices with entries in the
Laurent polynomial ring Z[v*1]Z or as Laurent polynomials over the matrix
ring 2%, In other words, Z[v*!] @ (29%9) = (Z[v*!] ® Z)?*%. Tt is therefore

sensible to speak of the coefficient of v* of a matrix.
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The matrices of +(Ty) = —v~tes + x5 + v(1 — e;) and «(T}) are given by

0 00O 0 0 0 O 1 000
01 00 By 0 A1 O 0000
_ -1 1 1
UT)==""19 00 0|" 0o 0o 0o ol o0 1 0
0 001 Dy 0 C;p 0 0000
v 0 0 0
N By —’Uf1 Al 0
B 0 v 0
Dy 0 ¢ —v!
and
0 000 0 0 00 1 0 00
L(T)__Ul()OOO_i_O OOO_H)OlOO
e 0010 By Ay 0 0 0000
0 001 Dy, Cy 00 0 00O
v 0 0 0
10 v 0 0
o By As —p~ ! 0 ’
Dy Oy 0 —p !
respectively, where
Ay= )" Xj;  and  Ay= ) X},
1,JCS 1,JCS
sel,s¢J s¢l,sed
teIted teltgJ
Bi= Y Xj; and By= Y Xj,
1,JCS 1,JCS
s€l,s¢J s¢l,s¢J
teltedJ teltdJ
Cy = Z Xiy and Cy= Z X4, as well as
1,JCS 1,JCS
sel,s¢J sel,seJ
telted telt¢J

Di= Y Xj; and Dy= Y X,

1,JCS 1,JCS
sel,s¢J sel,s¢J
telt¢J telt¢J

Finally, define z to be v + v1.
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Step 1. We claim that for all r € N,

0 0 0
() At (T, o(T) = (-1 (a(A)JB P (A)I(A — 2) o)
X, —C1-(A)J 0

holds, where

(0 A (B . (1 0
A._<A2 0), B._(BQ>, Ci=(Cy ), J.—<O _1>

and

r—1
X, = S (1 ()1 (A)T B + (~1)' 7 (2)(Dy — D).
=0

In order to prove this claim, define

z 0 O
E:=uT)+uTy) —(v—v )= B A 0 and
Di+Dy C —z

) |

By Lemma 12, A, 1(¢(Ts), t(T3)) = (—1)"7.(E)F. Therefore, we inductively
show that 7,.(E)F equals the matrix in (). For r=—1 and r =0, this is
clear. The induction step follows from

0 0
F = Ts)—u(T) = ( JB J(A—2)
Dy — Dy -CJ

o O O

Tr41(E)F = ET.(E)F — 1._1(E)F
z 0 O 0 0 0
= ( B A 0 ) : (TT(A)JB Tr(A)J(A - z) 0)
Di+Dy C —z X, —CTT(A)J 0

0 0 0
— (Trl(A)JB Tr—1(A)J(A — 2) 0)
Xr—l —CTr_l(A)J 0

0 0 0
= | Ar.(A)JB—-71,_1(A)JB H 0],
L K 0
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where we use the abbreviations

H:=Ar.(A)J(A—z) —1_1(A)J(A — 2),
K :=C71(A)J(A—2)+ 2C1-(A)J + C1r_1(A)J and
L:=C7.(A)JB —z2X, — X,_1.

At the positions (2, 1) and (2, 2), the term is clearly equal to the desired
result. At position (3, 2), we use JA = —AJ and simplify the expression as
follows:

K =Cr.(A)JA - Cr.(A)Jz + 2C1.(A)J + C1r1(A)J
= —C1.(A)AJ + Crrq1(A)J
= —07'7»+1 (A)J

Using the recursive definition of 7,41, it is also a routine calculation to show
that

L= Z Y CTi(2)Tr—i(A)JB + (—1)" 141 (2) (D1 — Dy).

This shows (x).

Step 2. Simplify the result

Now, let 8 =ker(E — Q). By definition, this ideal is generated by the
coefficients of the v7 in A, (¢«(Ty), t(T})) € Z[vT1]Z. Therefore, we consider
the coefficients of

(1) R1 IZTm_l(A)JB,

(2) Ro:=Tm— 1( )J(A — 2),

(3) Rs:=Y 1 (=1)'Cri(2)Tim—2-i(A)JB + (=1)™ 7, _1(2)(D1 — D)
and

(4) Ry :=Crp-1(A)J.

The coefficient of the highest power of v in Ry is —7,,—1(A)J because
z=v+v~!, so that the coefficient of the highest power of z is also the
coefficient of the highest power of v in any Laurent polynomial. Now, Rs is
contained in &[v*!] (remember that we view these matrices as elements of
Z[v*T1Z, so that this makes sense) if and only if 7,,_1(A) € &, because J is
invertible. Conversely, Ry, Ry and Ry are in &fv!] if 7,,,_1(A) € & holds.
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Let us have a closer look at Rs: the polynomial 7, has degree r. The
coefficient of the highest power of v in R3 equals (—1)""1(D; — Dy).
Therefore, D1 — Dy € &, and R3 is in &[v™!] if and only if D; — Dy € &
and R} = S 73 (—1)'Cri(2)7—2-i(A)JB € K[v*!]. Looking repeatedly at
the coeflicient of the highest power of v and shortening the term, we get that
R} is in 8[v*!] if and only if Cro(A)JB, C1i(A)JB, ..., CTry_2(A)JB € &
Because {70, ..., Tm—2} is a Z-basis of {f € Z[T] | deg(f) < m — 2}, these
terms are in £ if and only if CA°JB, CA'JB, ..., CA™ 2JB are.

Thus, we obtain the generating set

() Ro :=Tm—1(4),

(5) ng = D1 — DQ and

(7) Ry :=CAFJB for 0< k<m — 2,

for the ideal 8.

Step 3. The relations.

Again, we decompose = as @; =E7 and use R € R if and only if E;RE;
inRforalll,JCS.

To determine E;R,E s, we consider E;A*E ;. For k = 0, this simplifies to
ErAYE; =61;Er = PY;. For k > 0, we obtain

(Ardy)"/2 0 if 2|k
1 )
4 0 (ApAy)k/?
- 0 (A1 Ag) (=172 44 i 21k
1 )
(AQAl)(k_l)/2A2 0

and substitute

A=) XY, A= ) X

1,JCS 1,JCS
sel,s¢J s¢l,sed
t¢lted teltgJ

to obtain

s t s
E X]011X11[2X121'3 R
Io,I1,.... IxCS

where the sum is over all I; that satisfy s € I; \ I;11 and t € Iy \ I2; when
we consider A;AsA; .. .. Because X7, =0 if s¢ I\ J, only the conditions
for I = Iy and I, = J are not vacuous. Therefore, we could just sum over all
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paths of length k that go to I from J. We therefore obtain

Z PﬁJ(Svt) 1f2‘k7
1,JCS
sel,seJ
tglt¢J

N / k .
Jf E PIJ(S,t) lfQ*k
1,JCS
se€l,s¢J
\ t¢1te]

For the other product, we similarly obtain

Z PIkJ(tas) 1f2‘ka
1,JCS
sl s¢J
terte]
Agdy .. =

k .
— g Pri(t,s) if 21k.
1,JCS
s¢l,sed
\ tel t¢J

Multiplying with E; from the left and with E; from the right, this equals
either 0 or PF,(s, t) and PF,(t, s), respectively. The element E;7,,—1(A)E; €
R is, if it is not zero, equal to

PImJ_l(s, t) + am_gP}f}_Q(s, )+ + agPIQJ(s, t) + alP}J(s, t) + aoP?J(s, t),

where 7, 1(T) =T™ " + apm oT™ 2+ -+ axT? + a1 T + ap, and simi-
larly for the symmetric situation where s, t are swapped.
The second kind of generator is easier: Rg is equal to

> X§ - X))

1,JCS

sel,s¢J

teltg¢J
For those I, J that do not occur in this sum, E7RgE; = 0. For all others, we
obtain the element X§, — X, = P}, (s, t) — P},(t, s). This is the first case
in the relations of type (5).

Finally, there is only one kind of generator left, namely R, = CAFJB.

We already know the powers of A, and therefore obtain

Co(A1A2)F2By — C1(A2A1)F/2 By if 2k,

CA*JB =
{—02(A1A2)<k—1>/2A132 + C1(AgA)*=D/2 4, By if 21k,
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We substitute the definitions

Bi= Y Xj. B= ) Xi,

I1,JCS I1,JCS
s€l,s¢J s¢l,s¢J
tgIted ] teltd]
t
G = Z Xir Co = E X1
1,JCS 1,JCS
s€l,s¢J sel,seJ
telted telt¢J

If s,t €I or s,t¢.J is not satisfied, then E;CA*JBE; =0, because either
E;C=0or BE;=0. Otherwise,

E/CA*JBE; = Y  XiXipn .. X5 X5,
Io,..., IxCS
- Xi[oX;()Il R X}gk_llkXZQJ
= P (t, 5) = Pi2(s, 1)
holds if 2 | k and
E/CA*JBE; = > =X Xin ... X5 5.Xh
Io,....,IxCS
+ XISIOX]t'()Il ct e X;k_lkaISkJ
— _Pk+2(t )+Pk+2( t)
7 \L:S 1 \S

holds if 2tk. This provides the other elements in the relations of
type (5). 0

Because of the (3)-relation X§; — X!, = P}, (s, t) — P}, (t,s) =0in €, the
upper index of these elements does not matter, and it is well defined to
write X7y for the common value of X, € Q for all s€ I\ J. We adopt this
notation for the rest of this article.

Additionally, («) implies that X3, = X%, =0 holds in Q for all I, JC
S,selI\J,teJ\I with mg=2 (i.e.,, s and ¢ are not connected in the
Dynkin diagram of (W, .S)). This allows us to think of © as a quotient of a
path algebra over a much simpler quiver, which was defined by Stembridge
[8, Section 4].

DEFINITION 14. The compatibility graph of (W, S) is the directed graph
Qw with vertex set {I | I C S} and a single edge I < J if and only if I \ J #
() and no element of I\ J commutes with any element of J \ I.
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An edge I + J with I D J is called an inclusion edge; all other edges are
called transversal edges.

Note that transversal edges always occur in pairs of opposite orientation
because their definition is symmetric: I < J is a transversal edge if and only
if I\J#0, J\I#0 and all s€ I\ J are connected to all ¢ € J\ I in the
Dynkin diagram of (W, S).

COROLLARY 15. € is a quotient of the path algebra ZQyy .

Proof. Denote the vertex elements in ZQyy by E; and the edge elements
by X'U. Then, E[b—>E1 and XUb—)X}’J with any s €I\ J extends to a
well-defined algebra homomorphism ZQyw — Q by the (5)-relation. It is
surjective because all elements X7, € Q are either zero by some (a)-type
relation as seen above or contained in the image of this morphism, and ) is
generated by the elements X7; and Ej. 0

ExaMpPLE 16. Figure 1 displays the compatibility graphs of the finite
irreducible Coxeter groups of rank <4. For the sake of clarity, inclusion edges
are only displayed in rank 2 and rank 3 and only between those I, J C S
that satisfy |I'\ J| = 1. Pairs of transversal edges I < J are combined into
one (bold) undirected edge.

84. The decomposition conjecture

While trying to prove Gyoja’s conjecture! and to better understand the
internal structure of 2 and W-graphs, I found a number of very similar
proofs for some small types of Coxeter groups. The essence of these proofs
is captured by the following four conjectural properties of €.

CONJECTURE 17. Let k CC be a good ring for (W,S). There exists a
family (F)‘),\Em(w) of elements of k) with the following properties.

(Z1) The F» are pairwise orthogonal idempotents and decompose the
identity

VA, p € Tir(W) : FAFF = 6, F2, 1= Y FA
Aelrr(W)

IThis conjecture states that the Jacobson radical of KQ has codimension |W| if K is
a sufficiently large field of characteristic zero, or equivalently that two irreducible K-
modules are isomorphic if and only if their restrictions to K(v)H are isomorphic (see
[4, Remark 2.18], [5, Theorem 4.3.7]).
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Compatibility graphs for small Coxeter groups: top left for I>(m); top right for

Figure 1.
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As, Bs and Hs; bottom left for A4, B4 and Fy; bottom right for Dy.

(Z2) This decomposition is compatible with the decomposition induced by

the path-algebra structure:

YAerr(W)VIC S : E;F? = F E;.
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(Z3) There is a partial order =< on Irr(W) such that only downward edges
exist: if FEQF! #£0, then A\ < p.

(Z4) There are surjective k-algebra morphisms ¥y : k> — FALQF for
all X € Irr(W), where dy denotes the degree of the character \.

REMARK 18. The edge terminology in (Z3) refers to the quiver A in the
next theorem.

The decomposition conjecture is of interest because it implies several
important properties of the W-graph algebra and its modules (that is, W-
graphs), as the following theorem demonstrates.

THEOREM 19. Assume that the decomposition conjecture is true for the
finite Coxeter group (W, S) and k a good ring for (W, S). Then, the following
properties hold.

(1) Consider the quiver A which has Irr(W) as its set of vertices and
an edge X< if and only if N <. Then, k§) is a quotient of the
generalized path algebra (cf. [2]) over the quiver A which has k™
as vertex algebras.

(2) kQ is finitely generated as a k-module.

Furthermore, if k is a field then the following hold:

(3) The Jacobson radical rad(kSY) is generated by the elements FAX;FH
with A < p and kQ /rad(kQ) = H)\Elrr(W) Eaxxdx

(4) A kQ-module V is simple if and only if the restriction of k(v)V to
k(v)H is simple. Furthermore (after reindezing the family (F’\)AGIH(W)
if necessary), the latter has isomorphism class X if and only if FAV =V
holds.

(5) Ewvery kQ-module V' has a family of natural submodules (VjA)AeIrr(W)
such that

o\ = VEALVER and
o V2N V=X s isomorphic to a direct sum of irreducibles of isomor-
phism class X, where V<X =37\ VI

REMARK 20. Given that the Kazhdan—Lusztig-W-graph is indecompos-
able but not irreducible, it cannot be expected that an arbitrary 2-module
decomposes as a direct sum of its irreducible constituents. The special
filtration appearing in the above theorem is the next best thing one can
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hope for: one finds the irreducible constituents in the layers of a natural
filtration, and even nicely grouped into isomorphism classes. This fact and
the first part of the theorem, saying that 2 itself is composed of much
simpler parts like matrix algebras and path algebras, motivates the name
decomposition conjecture.

To the best of my knowledge, the decomposition conjecture has neither
directly nor in a similar form been stated before in the literature, apart from
my dissertation [5]. The above consequences of Conjecture 17 also have not
been considered or proved before, even in special cases, as far as I know.

Proof. Denote with k€ this generalized path algebra, and recall that it
is characterized by the following properties:

e it contains a set of pairwise orthogonal idempotents f) corresponding to
the vertices such that >, fy =1 and FrkSLfy = kdxda

e it contains a set of elements y,, corresponding to the edges A - p such
that Yxp = It s

e it satisfies the universal mapping property with respect to these features:
for any k-algebra A, any set of elements { f}, yg\ul)\, p € Irr (W) } satisfying
these properties and any oy : kX — fAASy, there exists a unique
morphism of k-algebras ¢ : kQ — A with ¥(f)) = Uy = yg\ﬂ and
YIAAf =P

We define elements Yy, : =3 ; jcg FAX;F* € k. Note that Yy,=0
if A& u, by (Z3). The universal property ensures that the morphisms
from (Z4) ¢y : k%9 — kQ together with fy — F* and Yau + Y, uniquely
extend to an algebra morphism t : kQ — k€ (this uses (Z1)).

We verify that this is an epimorphism. By construction,

L P e PP L im(g)) € im(y)

Fyp
for all 1 C S, A € Irr(W). Therefore, E; =Y, F} € im(¢). Also, Xy Z)
S\ FAX P+ > a<p Yo €1m(yp) for all I, JCS. Because we already
know that {Ey, X5 | I, J C S} generates kS), we are done.

Because 1 : EQ — kQ is surjective, kS2 is finitely generated as a k-module
because kS is, and (rad(k$2)) C rad(k€2) holds. The morphism 1 therefore
induces a surjection kQ/rad(kQ) —» kQ/rad(kS).

Now consider the case that k is a field. The radical of the generalized path
algebra is then easily seen to coincide with the ideal generated by the edge
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elements y,, because the quiver A is acyclic. (See [2, Proposition 1.3] for a
more general characterization of the radical of generalized path algebras.)
In fact, kQ/rad(kQ) = [T, kxdr,

This implies dimy, kQ/rad(kQ) <Y, d3. We show that [], k¥ is in
fact a quotient of k€2 to establish equality. For each A, choose a W-graph with
edge weights in k realizing the irreducible k(v)H-module of isomorphism
class A (this is possible by Gyoja’s work [4, Theorem 2.3]), and consider the
induced kQ-module V) (in particular, dimy V) =dy); set V :=&, V) and
denote the associated representation k2 — Endg (V') by w. By construction,
im(w) C ], kP*% holds. Now, consider k(v)V as a module for k(v)H C
k(v)$2 by restriction. Because k(v)V contains each irreducible module of the
Hecke algebra exactly once, w(k(v)H) =[] k(v)™* holds. By comparing
dimensions, we obtain the desired equality above.

The fourth item follows from this. On one hand, a k{2-module V is
certainly simple if its restriction to a subalgebra is already simple. Because
every simple k(v)H-module can be realized by a W-graph, choosing one
W-graph for each isomorphism class induces an injective map Irr(W') =
Irr(k(v)H) — Trr(kS2) with the restriction map as a left inverse. Because of
kQ/rad (k) =[], k%9 the number of elements in both sets is the same,
so that the map is actually a bijection.

Define F=* := > < ¥ By (Z3), the right ideals F=AKQ are actually
two-sided ideals. Foriany kQ-module V, define V=*:= FEAV. This is a
submodule of V for all \; A=< p = V=*<V=H holds by construction,
and F* acts as the identity on V=2 /V=A,

Now consider the equation 1 =13, F*. It shows that there must be at
least one A\ with FAV #0 if V #0. A X that is <-minimal with respect
to this property satisfies 0 # FAV = FZAV, so that FAV =V follows if V/
is simple. Therefore, for each simple kS2-module V', there is exactly one A
with FAV = V. Conversely, R* := F*kQ/F=*kQ is a finite-dimensional,
nonzero kQ-module with FAR* = R}, so that for each A &€ Irr(W), there
must be at least one simple kQ-module V with FAV = V. This establishes
another bijection between Irr(k2) and Irr(W). By reindexing the F*, one
can achieve that these two bijections are in fact the same, so that FAV =V
holds if and only if the restriction of k(v)V to k(v)H is of isomorphism
class A.

Now, consider again an arbitrary V and the quotient R := V=2 /T =,
Because FFR*=0 for all p# )\, the representationk) — Endy (W) must
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annihilate F* for all ju # A, and therefore all F* X ;F" with x # «/. Hence,
the representation vanishes on the radical and R* is therefore semisimple.
However, again F*R* =0 for all % ), so that the simple constituents of
R must all lie in the isomorphism class . 0

§5. Proving the decomposition conjecture

The rest of the paper is devoted to proving that the W-graph decompo-
sition conjecture holds for Coxeter groups of types Is(m), A;—A4 and Bs.
These proofs all proceed by the same pattern: the relations from Theorem 13
are used to find orthogonal decompositions E; = Aehir(W) F I)‘ of the vertex
idempotents E € kS into smaller idempotents F?, some of which may be
zero. The idempotents F in the decomposition conjecture are then obtained
as FA =Y, F}.

These decompositions are graphically represented as refinements of the
compatibility graph Q. That is, the single vertex corresponding to Ey is
split into up to |Irr(W)| many vertices corresponding to the idempotents
F f\ (some of which might be zero), and similarly the edge corresponding to
the element Xj; is split into up to |11r1r(I/V)\2 many edges corresponding to
the elements FI’\X 17 F", most of which will also be zero.

Direct computations are used to show that enough edge elements are zero
to satisfy the decomposition conjecture.

REMARK 21. A reviewer of this paper remarked that the computations
in the rest of this paper feel like they are instances of a general algorithmic
approach to the question of whether or not a particular Coxeter group
satisfies the decomposition conjecture. I share this feeling, but to my
frustration I have not been able to pin down such an algorithm and prove
its correctness as of the time of writing this paper. Part of the complication
stems from the fact that almost nothing useful about (2 is known to me
in the absence of the decomposition conjecture. In particular, it is hard to
algorithmically decide whether or not an element is zero without having a
nice, faithful representation of {2 at hand. Even proving finite dimensionality
or even that the relations in Theorem 13 are a noncommutative Grébner
basis (and therefore the problem’s amenability to certain general algorithms)
is beyond my capabilities as of now.

If and when these problems get resolved, the lengthy calculations in this
chapter may be replaced with a computer proof.
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5.1 Auxiliary lemmas

The first lemma that is repeatedly used allows us to transport a
decomposition into pairwise orthogonal idempotents from one E; to an
adjacent Ej in the compatibility graph, and immediately recognize most
of the possible new edge elements as zero.

DEFINITION 22. In any algebra, define a partial order on the set of
idempotents by e < f <= e=cef = fe.

LEMMA 23. Let I,JCS be arbitrary but fired subsets. Let A be a
finite indexing set, and let (eq)aca be pairwise orthogonal idempotents
< Ep, with Xy X 51 = EaeA oata for some o, € k*. Denote the idempotent
Er =3, ea by eg. With these notations, the following statements hold.

(1) €n:=0, X rea X1y and € := Ej — Y acA €a are pairwise orthogonal
idempotents < Ej.

(2) Xijeqa = e X1y and X jreq =ex Xy for allaeAU{O}.

(3) r:=XjreoXyy satisfies r> =0, r =éyrég and X X5 = Y acA Taa +
r. In particular, r =0 holds if X ;1 X1; is an idempotent itself.

(4) Xpjea Xy = oqeq for alla € A. In other words, applying this construc-
tion twice gives back the original idempotents.

Proof. All claims are easily verified by using the definition. For example,

gagg = O—(;laﬁ_lijeaX[JXJjeﬁX]J

= G(;IJEIXJIGQ <Z 0767> e X1y
Y

o

-

= Z Xyreqereg Xy
Y

0008
_ Oa Q # B?
e a=p
See [5, Lemma 4.5.25] for complete proofs of the other claims. [

DEFINITION 24. In the above construction, the €, are said to be
obtained by transporting idempotents from I to J. The eg and €y are called
leftover idempotents of this transport.

The following well-known result is also used repeatedly to construct the
morphisms 1 in conjecture (Z4).
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LEMMA 25. The matriz algebra k%*? is freely generated by the generators
{eij | 1<, 5 <d,|i —j| <1} with respect to the relations

d
eiiejj = Oijeii, 1= Z sy €ii€ij€jj = €ij and €ij€ji = €.
i=1
Note that this can be equivalently stated by saying that k%*? is the
quotient of the path algebra of the quiver

by the relations that declare every directed loop to be equal to (the
idempotent corresponding to) its base point.

While proving (Z4), the surjectivity of the constructed morphisms is
often implied by the fact that FAkQF? is generated as a k-algebra by the
elements FI)‘ = FAE;F* and FAX;F>. This follows from the fact that k€ is
generated by the Er and X together with the observation that (Z1)—(Z3)
imply that a product of the form

A A A A Ak— A
FMXp gy Xy g Y= Y FMXp P PN X P
A2y A1

can only be nonzero if there are Ao, ..., A\p_1 with F’\J'XIJ.JHIF/\J'H #£0
for all 1 <j<k. By (Z3), this implies that A\; < Ao < -+ =< A;. Thus, if
A1 = A; = A, then all intermediate \; must be equal to A as well, so that

F/\Xll,lg X FAis expressible as a product of elements of the form
FAX[;F*, as claimed.

5.2 Rank 1
THEOREM 26. The decomposition conjecture is true for all Coxeter
groups (W, S) of type A; x - -+ x Aj.

Proof. Groups of this particular type have the property that all s,t € .S
commute. In particular, there are no transversal edges in the compatibility
graph but only inclusion edges, so that Qyy is acyclic and the trivial
decomposition E; = Ey is already sufficient to satisfy (Z1)—(Z4). [

5.3 Rank 2

While good rings for A, and B,, are easy to understand, the following
lemma is needed to establish the existence of certain elements in a good
ring for Coxeter groups of Iz(m), which is used in the proof of the
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decomposition conjecture. Note that a good ring for Io(m) always contains
Z[2 cos(2m/m), 1/m)].

LEMMA 27. Let m € Nsy, and let k be a good ring for Is(m). The
following assertions are true.

(1) 2cos(a(2m/m)), 4 cos(a(n/m))? € k for all a € Z.

(2) 4cos(a(m/m))? €KX for alla € Z\ (m/2)Z.

(3) 4cos(a(m/m))? — 4 cos(b(m/m))? € kX for all 1 <a<b< |m/2].
Proof. Set (,:=exp(2mi/n) for all neN>;. With this notation,

2 cos(a(2m/n)) = (¢ + ¢, holds. It follows from T+ T~% € Z[T + T~ 1]

that 2cos(a(2n/n)) €k for all a € Z. The fact that 4 cos(a(r/m))? €k

follows from the double-angle formula 2 cos(#/2)? = cos(6) + 1.
The proofs of the second and third claims use that

Z [2 cos(%j)} =Z[¢n + ('] S Z[Cn] C Z[Gn

are integral ring extensions for all [ € N5, and integral extensions R C S
have the property RN S* = R*. Therefore, it suffices to show that the
elements are units in Z[(,;, 1/m] for some | € N> ;.

Step 1. 4 cos(a(m/m))? is invertible for all a € Z \ (m/2)Z.
This follows from

T 2 1 if 2¢m,
H 2cos| a— =<m if 9
1<a<m/2 m 9 ! [,

which is easily shown wusing 2cos(a(m/m))=(S, + (5m- Therefore,
4 cos(a(m/m))? is invertible too.

Step 2. 2sin(a(n/m)) is invertible for all a € Z \ mZ.

This follows from .
H 2 sin <a7r) =m,
a=1 m

which similarly can be shown using 2sin(a(m/m)) = (1/i)(¢5,, — Com)-
Hence, all 2sin(a(r/m)) are units for a € Z\mZ. This then proves
the third claim because 4 cos(a(m/m))? — 4 cos(b(r/m))? =2 sin((a +
b)(w/m)) - 2sin((a — b)(7w/m)) holds. [

THEOREM 28. Let m be a natural number > 3. The decomposition
conjecture is true for all Cozeter groups of type Ia(m).
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Figure 2.
Refined compatibility graphs for I2(m): left-hand side for m odd; right-hand side
for m even.

Proof. The idea of the proof is to use a spectral decomposition of the
loops X1 2X> 1 and X5 1.X1 2, and construct a refinement of the compatibility
graph as in Figure 2.

The next important observation is that there are only two transversal
edges if the rank of (W, S) is two, namely X2 and X 1. Therefore, the
only relations in  of type («) are

m—1 m—1
0= a]‘ X172X271 . e and 0= a]‘ X271X172 ooy
- ~—— - ~————
=0 =0
J J J J

where the a; are the coefficients of 7,_1.

Step 1. Preparations.
For all n € N, define 7,, € Z[X]| by

- Tn(VX) if 2| n,
" WXV if 24

Recall that 7, is an even polynomial if n is even and an odd polynomial
if n is odd. Therefore, 7, really is a polynomial in X. It has degree [n/2]
and is monic. Since the n zeros of 7, are given by 2 cos((a/n + 1)) for
a=1,...,n (cf. [1, 22.16]), the zeros of 7, are given by 4 cos((a/n + 1)m)?
for a=1,...,[n/2]. In particular, the zeros of 7,,_1 are equal to o4 :=
4 cos(a(r/m))2 fora=1,...,|m/2].
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Step 2. Construction of the idempotents.

If m is odd, then the (a)-type relations are already of the form
Tm—1(X12X21) =0 and 7p,—1(X2,1 X7 2) =0, respectively. If m is even, then
one can multiply the relation with X;2 and X5, and obtain the same

equations.
By defining
X12X01 —opE
Fi 4= H 12422, — b1 and
Oq — O
b=1,...,[m/2]
b#a
Xo01X19 — opE
(1) Fog = H 2,141,2 — OpL22
Oq — Op
b=1,...,|m/2]
b#a

forall a=1,...,|[m/2], we get a set of pairwise orthogonal idempotents
Fl,aa FQ’a € kQ with

[m/2] lm/2]

E1: Z Fl,a and X172X271: Z O'aFl,a, and
a=1 a=1
lm/2] [m/2]
Ey = Z s, and X1 X120 = Z 0als 4.
a=1 a=1

Denote the irreducible characters of W (I3(m)) of degree two by A, for
a=1,...,m—1/2if misodd and a=1,...,m —2/2 if m is even. If m
is even, there are two one-dimensional characters other than the trivial and
the sign character, which will be denoted by €; and es, respectively.

Now define the idempotents (F*) A€Tre(W) @S

F' = Ey,
FA = F 4+ Fyg,
F8" = By 9y,

and, if m is even, define further

FGI = Fl,m/2 and
F2 = Fyppo

Now, (Z1) and (Z2) hold by construction. It remains to verify (Z3) and (Z4).
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Step 3. Proving (Z3).

Now that we have the idempotents Fi,, Fo, splitting Fq; and Es,
respectively, we can consider {2 as a quotient of the quiver which is obtained
from Qu by splitting the vertices labeled {1} and {2} into |m/2] vertices
each. A priori this could lead to the edge elements X1 2, X5 1 being split into
|m/2]? new edge elements Fi o X12F>p and Fp X9 1F) p, respectively. We
show that this does not happen and instead all edge elements not depicted
in Figure 2 vanish.

This follows from Lemma 23 because Fj, can be obtained from F»,
by idempotent transporting and vice versa. Note that o, is invertible for
1<a<m/2, and o, =0 for a =m/2. This means that F; ,, /o and F,, /5
are the leftover idempotents. The lemma for idempotent transporting can
be applied. Now, the following holds:

|m/2] [m/2]

E 0aX12F5 4 X201 = X1,2< E UaF2,a> Xo1=X12X01= E 0ak 4.
a=0 a a=0
—_———
=y

Moreover, because Xj2F5,X2,1 is an idempotent, for 1 <a < m/2, both
sides of the equation ), 04X 2F5 ¢ X021 =), 0aF1,, describe the spectral
decomposition of X X5 1. Since the o, are pairwise distinct, one obtains
Fi4=X12F54X21, and for symmetry reasons Xg1F X192 =F>, for all
1<a<m/2.

Now, Lemma 23 additionally implies FjqX12= X12F5,, so that
F1,X12F5p,=0 for a#b. Moreover, for symmetry reasons, also
FQ’GXQJFL[) =0 for a 75 b.

If m is even, then it is also true that there are no edges Fy ,,/2 S F /2
This can be seen as follows. By construction,

~ —1
2 _ Tmfl(XZ) _ Tmfl(X) _ < i—1
[l &-o)="—"=" _} " a; X7
1<b<m/2 J=

holds. By inserting X5 1.X1 o for X? and multiplying by X1 2, this gives

m—1
X Xy X - X10X ©
1,2 H (X291 X120 —o0p) = aj X12X21...=0.
N— '
1<b<m/2 7=0 j factors
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Now, multiplication with the denominator of (1) gives Xi 2[5 /2 =0,
so that there are no edges from Fj,, /o to any vertex labeled with {1}.
Moreover, for symmetry reasons, there can be no edge from Fy ,, /o to any
vertex labeled with {2}.

Therefore, the only edges that can exist are edges Fi , S Fa,, edges 0 —
F; 4, the edge ® — {12} and edges F;, — {12}. This means that (Z3) is
satisfied if we define a partial order on Irr(W) by declaring sgn as the
top element, 1 as the bottom element and all other elements as mutually
incomparable.

Step 4. Proving (Z4).

For the characters of degree one, define 1y : k"1 — FAEQFY by
Ya(e11) ;= F. This homomorphism is surjective because of the lack of
closed loops based at F in the quiver displayed in Figure 2. Therefore,
FMeQF? =k - F holds and 1y, is surjective.

For the characters of degree two, define 1, : k2*% — FAakQF* by

e ez Fiq FAa Xy oFa
€21 €22 o LY X Fha Fyq

This is a well-defined algebra homomorphism by construction of F*. It
is surjective because FAkQF*« is generated by the elements FI/\“ and
FAaX;F* all of which are contained in the image of U, - 0

5.4 Rank 3
THEOREM 29. The decomposition conjecture is true for type As.

We do not prove this in detail, since it is very similar to (although not
formally a consequence of) the proof for A4, which is presented in the next
section. Full details can also be found in [5, Section 4.5].

THEOREM 30. The decomposition conjecture is true for type Bs.

Proof. We aim for a refinement of the compatibility graph as depicted
in Figure 3 (where inclusion edges are again omitted for the sake of clarity).
The relations of type («) are crucial for this undertaking. We write (o)
to denote that we have used the relation of type (a) belonging to the edge
s —t of the Dynkin diagram.

First, note that every good ring for Bs contains Z[1/2], so that one is
allowed to divide by two.
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Figure 3.
Refined compatibility graph of Bs.

Step 1. (Z1) and (Z2).

We define elements F' I/\ # for all I C S and all (A, u) € Irr(W) according
to Table 1, where absent entries are understood to be defined as zero. We
therefore prove that the F I’\ # are pairwise orthogonal idempotents with
Er=Y,, FM.

The (a?!)-relation Ey = X51X1 2 implies that F] := X1 2X5 is an idem-
potent < Ej. The (a!?)-relation

E1 = X12X21 4+ X1,02X02,1
implies that F}' := X 02X¢2,1 also is an idempotent < E; which is orthogo-
nal to FJ. These two idempotents are decomposed further.

Recall that relations of type («) use the polynomial 7,1, which for m =4
has the form 74_1(T) = T® — 2T. Therefore, (a®!) and (a'%) imply

(2) 0 = Xo0,1X1,0X0,1 + X0,1X1,00X02,1 — 2X0,1,
(3) 0 = X1,0X0,1X1,0 + X1,00X02,1X1,0 — 2X1 0.
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By setting f := X1,0Xo,1, multiplying the first equation by X; o from the
left and the second by Xo 1 from the right, we obtain

(4) 0= f*+ fF —2f,
(5) 0=f2+F/'f-2f.
Thus,

ff=fF'=Ff ad f=fF=Ff
are idempotents. We multiply (4) with F{" and (5) with F], and obtain

(6) 0= f//2 _ //’
(7) 0= f?-2f.

This gives us the following decomposition into orthogonal idempotents:

® B F = () < (E A0+ (L) (FH ).

MmO _ Om
=F A =F] —pon

With these notations, Xi0Xo1 :2F1[D’D+F1D’ED holds. We see that the
other idempotents are now related either by transporting of idempotents
along {1} — {0} or {1} — {2}, or by applying the antiautomorphism J to
previously constructed elements. In particular, the FI)‘ # defined in Table 1
are pairwise orthogonal idempotents.

Step 3. Verifying (Z3).
We check that in Figure 3 only upward edges appear, so that the partial
ordering on Irr(W) can be read off from the picture. We in fact show that

the only edges not depicted in Figure 3 are inclusion edges.
The following holds:

Xo 1 FFY = Xou(F - Lf)
= Xo1(B1 — 5X10Xo0,1) F{
= %(QXOJ — X01X1,0X01)F]

—~
N

= $(Xo 1 F{)F]
— 0,

Xo 1FlH’EI Xo1(FY = )

)
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= Xo1(E1 — X1,0X0,1)F/
= (Xo1 — Xo01X1,0X0,1)F

—~
N

= (Xo 1 F{ — Xoq1)FY
0.

This means that there cannot be edges from FlEP D or Flg’m to vertices labeled
with {0}. Since the idempotents labeled by {0} were defined by transport
of idempotents, it follows from Lemma 23 that Fg) ’IEXOJ =0 holds; that is,
there are no edges from vertices labeled with {1} to Fom =

Analogously, both FlEP ’®X170 =0 and FlEI’DXLO =0 also hold. Therefore,
there cannot be edges from vertices labeled with {0} to FlEP Dor F 1B’D. Again,
it follows from Lemma 23 that Xl,oFg) =0 holds; that is, there are no
edges from Fg) ™ to vertices labeled with {1}.

Because the idempotents Fg’m and FSD ™ were defined by transport of
idempotents, there are no edges Fg’m ‘:Flm “ or FSD = FlEI ™ Similarly,
there are no edges FzEp’@ s Flm’m or FZED’D S FlEP’@.

Now, we use the symmetry given by § and obtain the same result for
vertices labeled with {01}, {02} and {12}.

It remains to verify that there are no edges Fy A= Fgf r F| 89 Fgém.
To this end, we prove that the idempotents Fo é and Fi; 2 are also given by

a transport of idempotents. This follows from an application of the (a!°)-

relation:
(9) 0= Xo2,1X1,0X0,1 + Xo02,1X1,020X02,1 + X02,12X12,02X02,1 — 2X02,1-

Multiplying with X1 o2 from the left, and using X; 0 Xo1 = Flm’ED + 2F1ED’ as
well as X02,12X12,02 = Fg; -+ ngéB and FéIQ = X0271X1’02 = (S(F{/), we obtain

0 = Xoo1 (FPF + 2FP) X 09 + FlbFily + (FSY + 2FS0) Fhy — 2FY,

= Xoz 1 (F7™ + 2F™) X102 + Foy — Ffy =0

( )

= Xoo1 (FPF + 2F59) X g0 + Foy Flly + 2F0y Flly — FlY
N——

( ")

= Xog1 (F{™ +2F7)

X102 + (—F, IE).

Hence, we obtain
D7ED D7ED ED,D
Foo = Xoo1F Xoo1 + 2+ Xog 1 F] 7 Xy 2.
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The (a?!)-relation
0= Xop2,1X1,2

implies X1 F] =0, so that X0271F1[D’D: 0, because Flm’EI < Fy. Therefore,
we obtain
(mn} (mn}
Foy = Xoa1 Fy" X102

That is, Fgém is a transported idempotent along the edge {02} = {1}.
Because of F| = F"" + FlB’EI ,we also obtain
FEQD = X02,1F1EI’DX1,027

which, together with Lemma 23, implies that there are no edges other than
the ones displayed in Figure 3 between vertices labeled with {1} and {02}.
This shows that (Z3) holds.

Step 4. Verifying (Z4).

There is not much to do for the characters of degree one. We define 1y , :
Z[1/2]"1 — FMRZ[1/2]QF M to be the only possible morphism, namely
Py pulern) = FMH The surjectivity of these maps is automatic because the
four components for the one-dimensional characters in the refined compat-
ibility graph have no edges, and therefore FMZ[1/2]QFM = Z[1/2] FM-,

Table 2 lists all of the morphisms ¢y, , : Z[5]Pw*Dn — FAMZLIQFM for
the characters of degree two and three, where we use the notation X;\j“ =
F/\““X[JF)"“.

We have used again that Z[1/2]%*? is the Z[1/2]-algebra given by the
presentation in Lemma 25. These relations are satisfied by construction of
the FM* | and therefore all of the maps in the table are well-defined algebra
morphisms.

The construction of v ,, ensures that all idempotents F [’\ Hoforall ICS
and all FMX 1, FMF for transversal edges I < J are contained in the image
of ¥5,. For (A, u) e {(0,8), (@, 0),(xm,0),(5,8)} , this is already enough
to guarantee surjectivity, because all edges in the component of FM* are
transversal edges.

For xom , on the other hand, there could be an inclusion edge {0} —
{0,2}, and for xgn ,there could be an inclusion edge {1} — {1,2}. To
complete the proof, we show that this is not the case by using the (320)-
relation:

D,ED D,I:D D,I:D
Xogo = F7 Xo2oFy

= FXp20(Xo1Fy" X10)
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Table 2.
Morphisms 1y, : Z[1/2] s X = FAHZ[1/2]QF M for 2 < dy,, < 3.
Character x» Map 1y,
g5,0 g,0
€11 €12 -~ Fl X1,2
X0 €21 €99 xFo B
2,1 2
0.F 0,F
X <€11 612) s Fo3 _X02,01
0F
’ €21 €922 O 0F
X01,02 Fop
FCD?D XED’D
e e 0 0.1
1 ED7D ED’D ED’D
Xmo €21 €22 €23 = X1 By X3
€32 €33 mo m,0
X271 F,
H oH
FD’ _X’
e11 e 12EI 1;,02 .
1 D’ D7 D’
Xof €21 €22 €23 = —5Xo212  Foz —X02.01
€32 €33 of o8
—Xoi,02 Foi
FD’ED XD’ED
e e 0 0.1
o,m 0,m o,m
Xo,m €21 €22 €23 = —X1,o F X1,02
€32 €33 o,m 0,m
X02,1 Fos
Ho Ho
Fr2 X7
€11 1o B12 1;,02 .
7D 7D ’D
XBp €21 €22 €23 = Xoz12  Fod — X021
€32 €33 Bo Bo
X302 F7
0,m 0,0
= F(Xo2,0X0,1)F, X1

620 o 0
D p (Xo2.2X21 + Xo212X121 — X201 Xo01.1) F " X1 0

D7ED D,ED D}ED D7ED D,ED D,ED D,ED
= (X02,2X2,1 + X02,12X12,1 - X02,01X01,1)F1 X1,0~

All summands within the brackets disappear because the o, m component in
the graph of Figure 3 has no vertices labeled {2}, {12} or {01}. Using the
symmetry given by d, the equation F' %DX 12,1 = 0 also holds. [
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5.5 Rank 4
THEOREM 31. The decomposition conjecture is true for type Ay.

Proof. We use an analogous strategy to that used before and use the
relations of type («). Again, we write (a*!) to denote that we have used the
relation of type («) belonging to the edge s — ¢ of the Dynkin diagram, and
similarly for (5)-type relations.

Our goal is to decompose the compatibility graph as in Figure 4(a)
(inclusion edges have been omitted for the sake of clarity).

Step 1. Verifying (Z1) and (Z2).

We define idempotents F < Ey for all I €S, \ € Irr(W), and set F* :=
> F I)‘ First, note that, by Lemma 25, the idempotents of a matrix algebra
are given by evaluating loops in the quiver. Looking at the quiver, we want
to arrive at Figure 4(a). We therefore define the idempotents F' I)‘ either
as one of the E; at the boundary of the compatibility graph or as loops
connecting inner vertices to those outer vertices. More precisely, we use the
definitions in Figure 4(b), where all F* not appearing there are understood
to be defined as zero.

Once these elements have been defined, we have to prove that they are
in fact idempotents and Ey =Y, F} is an orthogonal decomposition. (Z2)
will then be satisfied because FAE; = FIA = E;F?* holds by definition.

The (a!?)-relation implies

E1=X12X01,

from which it follows that FQEPjj is an idempotent <Fjs; namely, the
idempotent obtained by transport of Fj < E; along the edge {1} — {2}.
From the (a!?)-relation

Ey = X91X12+ X213X13,2,

we deduce that FQEEP is the leftover idempotent of this transport. By
applying the nontrivial graph automorphism, we obtain that FEE and F;‘f
are idempotents as well, and by applying the antiautomorphism §, we

find that Flg;, FE, FT,, and F;la 4 are idempotents too. Moreover, because
Lemma 23 also gives us orthogonality with the leftover idempotent, we are
done with all except the two-element subsets of S.
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(a) (b) I I
M {1,2,3,4} E1234
{1,2,3} Ei23
@ o) ) -~ {1,2,4} X124,123X123,124
N AN {1,3,4} X134,234X234,134
{2,3,4} E234
@ @ {1,2,4} X124,13X13,124
{1,3} X13,124X124,13
@ @3 {2,3} X23,13X13,124 X124,13X13,23
AN {2,4} X24,134X134,24
@ @ {1,3,4} X134,24X24,134
{1,2} E1z
/@\ {1,3} X13,12X12,13
@ @ @ @ {2,3} Xo23,13X13,12X12,13X13,23
N~ {1,4} X14,24X24,314X34,24X24,14
® {2,4} Xo4,34X34,24
{3,4} Esq
®\ /@ {2} X2,13X13,2
@ {1,3} X13,2X2,13
EEP {1,4} X14,13X13,2X2,13X13,14
{2,4} X24,3X3,24
@ @ {3} X3,24X24,3
{1} By
I m B:\:\j {2} X2,1X1,2
1 2 3 4 ) 3’
O N\ A O {3} X3,4X43
{4} Ey
11 0 Ey

Figure 4.
(a) The refined compatibility graph for A4 and (b) vertex idempotents of the
refined compatibility graph for A4.

By transporting FSEP = X513X132 along {2} — {13}, we obtain the
idempotent
X13,2F2EB]X2,13 = Xi32F9X913 — X13,2F28EX2,13
= Xi32X213 — X132X91X12X913
—_——
=0 by (al2)
= FHF

Facs FiF

By applying 0 and the graph automorphism, we find that FTj,

and FT3, are also idempotents.
The (a?3)-relation
Er2 = X12,13X13,12

implies that FIB;D is the idempotent obtained by transporting Fio along
{12} — {13}.
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Considering the (a3?)-relations

Ei3 = Xi32X0213 + X13,12X12,13 + X13,124 X124,13 = FE'? + FE,D + FE,
0 = X913X13,12 = X2,13X13,124,
0 = X12,13X13,2 = X12,13X13,124,

0 = X124,13X13,2 = X124,13X13,12,

we find that Ff.;] , FIB;D , Flgg constitute an orthogonal decomposition of Ej3.
By applying the graph automorphism, we find that F;r; , FS.EF and F;'i are
pairwise idempotents as well.
We are now almost done. We still need to look at the innermost vertices
{2,3} and {1,4} of the compatibility graph. The following (a>*)-relation
holds:

Er13 = X1314X14,13 + X13,124X124,13-

This means that X1314X14,13 = FlEg}j + FE}D Transporting these two idem-
potents along {13} — {14}, we obtain FIEEP and FIBT. By symmetry, FE;D

and F;lg are idempotents as well.
From the (a*3)- and (a?!)-relations

FEiy= X14’13X13714 and Fos = X23,13X13,237

we can infer that the two leftover idempotents for these transports vanish.

Therefore, we get orthogonal decompositions F14 = Flaf + Fﬁr; and Fo3 =
£ 8

5, + F55 .

Step 2. Verifying (Z3).

We prove that the only edges between the components not displayed in
Figure 4(a) are inclusion edges, from which it follows that the dominance
ordering on {\F 5} is the sought-after partial ordering. Because we have
constructed all idempotents by transport of idempotents, most transversal
edges split into parallel edges. This eliminates almost all possible transversal

edges between different components.
The (a3?)-relation

X132X23=0
implies that gg‘jﬂ X23=0, so that there is no transversal edge emanating
from E3=Fj —i—F;EP and going to FSEP . By symmetry, there are no
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transversal edges going from Fs to FEB] , which shows that there are only
inclusion edges between the B2 and the B component. Applying &, we find
the same between the [ and the Ej component.

The only other possibility is transversal edges of the form {14} = {24}
and {23} < {24}, because we have not used idempotent transport along
these edges. Instead, we worked with {13} = {14} and {13} = {23}.

Consider the (32*)-relation

X24,23X2313 + Xo42X2 13 = Xo414X14,13 + X24,134X134,13,

which implies

F;'EH'X%,M ' Flgf
= 5.23 - Xog.14 - X14,13 FE';,DXB,M
e ——

(B>
= FS‘ZJ (—X024,134X134,13 + X2423X2313 + X24,2X2,13)F1§;X24,14
= —Xo4,3 X324X24,134 X134,13F%DX24,14

—_—————

=0 by (a32)

+ Xo4.3 X324X24 23 X23,13F%DX24,14
—_————

=0 by (a%3)

+ Xo4,3X324 X242 X2,13Fl§;j Xo4,14
——
-0
=0.

Similarly, combining the (3)- and («)-relations, one shows that the transver-
sal edge {14} — {24} splits into a pair of parallel edges, as displayed in
Figure 4(a), and all four of the possible cross-component edges are indeed
zero. Applying §, we find that the same holds between the F° and the [
component.

This shows that, even for the edges {14} <= {24} and {23} = {24}, the
idempotents on both sides are given by transporting idempotents, and hence
there can only be parallel edges, as depicted in Figure 4(a). The only other
possible edges are those not depicted in this picture; in other words, the
inclusion edges.
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Step 3. Verifying (Z4).

We construct surjective homomorphisms )y : Z&*9 — FAQF*. We use
the presentation of Z% >4 from Lemma 25.

We use the abbreviation X j\J := FAX;F*. By construction, the equation
X }‘JX 3\1 =F f\ holds for all transversal edges I = J if F f\ and F j-‘ are both
nonzero, as well as X }J =X ?f} =0 otherwise.

If we denote the vertices of a component in Figure 4(a) with its index
set (which is possible without conflicts since no index set occurs more than
once), then

Yy 2D FAQF e F ey — X9y

defines a morphism ¢ : Z»*% — FAQF? for those components that are
straight lines without their inclusion edges; that is, all components except
the one labeled with A =F".We prove surjectivity of 1y, which is equivalent
to showing that all X }J are contained in the image ). For the transversal
edges, this is clear from the construction. Therefore, we are done for A = omm,
g, Ej and E.For A =8 , we must consider the inclusion edges X133 and
Xo42. We use the relations of type (53):

x5, = FF X FF
= Xou3X3924 - (Xoa2 - X213) X132

(8*3)
=" X243X324(X24,14X1413 + X24,134 X 134,13 — X24.23 X23.13) X132
—_—

=0
= X943X324X9414X14,13X13,2 + X24,3 X324X94 134 X134,13X13,2
—_———
=0
_ H vHP vHF g B B H HF
= X24,3X3,24X24,14X14,13X13,2 because X24,2 € FFQF

€ im(¢Ygp).

By applying the graph automorphism, we obtain X%j?, € im(¢gp) ,and by
applying the antiautomorphism &, we obtain X%xx,zzxv X%MS Eim(wga).
Therefore, all X j\J are contained in the image of ¢y for A= , [l , and
surjectivity holds in both cases.

It remains to handle the case A =F". We sort the two-element sets in the
order {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, and claim that the following
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homomorphism wg:m . 76%6 _y FHTQFE " is well defined:

€11 €12
€21 €22 €23
€32 €33 €34
€43 €44 €45
€54 €55 €56

€65 €66
A A
Fiy  Xioa3
A A A
X13,12 F13 X13714
A A A A
— X14,13 F14 X14,13X13,23
A A A A
X353 13X13.14 Fgy X353 94
X)\ F)\ X)\
24,23 24 24,34

A A
Xguon  Fiy

Most relations from Lemma 25 are satisfied by construction of the idempo-
tents. We still need to verify

A A A A A
X14,13X13,23 ) X23,13X13,14 =I and
A A A A A
X535 13X 13,14 - X{a,13X13,23 = F3-

These equations follow from the (a)-relations Ei3 = X1323X23,13 and Eay =
Xo4,14X14,24.

We verify the surjectivity of . By construction, most X j\J are already
contained in the image. We only have to consider the edges between Ff\4 =
F3, and Fy = Fgy:

X§\3,13 = X§\3,13Ff\3
= X2)‘3,13(X1)\3,14X1)\4,13)
= (X2)\3,13X1)\3,14)X1)\4,13 € im(ty)
and
X2/\4,14 = X2/\4,14F1)‘4
= X§\4714(Xi\4,13Xi\3,14)

_ A A A
= (X24,14X14,13)X13,14
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—~
=

© A A A
= (X24,23X23,13)X13,14

= X2/\4,23(X2/\3,13Xf\3,14) € im(¢y).

Applying §, we find Xf‘3723, Xl)‘4’24 € im(ey) as well. Therefore, vy is surjec-
tive. [
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