A PROPERTY OF PLANE SETS OF CONSTANT WIDTH
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1. It is well known that sets of constant width share
several properties with spheres. In this note we consider
a simple property of the circle and we show that it is shared
by every plane set of constant width. As an application we
derive a stronger form of the following theorem of D. Gale, [1]:
every plane set of diameter 1 is a union of three sets of diameters

not exceeding ~N3/2, and this constant is best possible. We
shall make free use of the more elementary properties of
convex sets and of sets of constant width; for these properties
and for the terminology see the standard reference [2], or [3].

2. The class of all plane closed convex sets of constant
width will be denoted by X. Greek letters will denote scalars
and small Latin letters o, u,v,... will denote points in the plane.
If K is a set then &(K) and LK) are its boundary and its
diameter, respectively. The closed circular disk of radius p
about the centre u will be denoted by Dp(u) and its boundary

by Cp(u). If x and y are two points then xy 1is the straight

segment from x to y and |xy| is its length. Let C be a
closed convex curve, and let x and y be two points on C
dividing C into two arcs of unequal length; then C(ﬂ) will
denote the shorter arc.

3. let D= D1/2(o), let x,y,z¢ # (D), and suppose
that |xy| = |xz| =a. Let C =C( 'x); then clearly C(y,z)C D.

We show that this property is shared by every set K ¢ A.
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THEOREM 1. Let Ke A, B = &(K), and x,y,z, € B.
Suppose that |[xy| = |xz| =a and let C :Ca(x); then C(y,z) C K.

Without loss of generality we may assume that o < 1, as
otherwise C(y,z)C B. Let u be the point antipodal to x; if
there are several such points let u be any one of them. We
show first that ue Bl’ where B1 is that one of the two sub-

arcs of B with the end-points y and 2z which does not contain
x. Suppose that ut B1 and that the points x,y,z,u are in

cyclic order on B. Since xu is a diameter of K, it follows
that the angle at x subtended by ux and yx 1is less than
m/2. Let C1 = Ci(w) be the circle containing x in its

interior and passing through y and u; since K eA itis knov .
that E = Ci(m) C K. We observe that as the point t trave: es

E from y to u the length }tx{ increases steadily from «
to 1. Hence |xz|> o which is a contradiction.

We have now uéBi. Let E,1 and E2 be the arcs

defined in the same way as E, with the end-points y and u
and u and 2z, respectively. Then EiC K and EZ C K, s

that K contains the closed convex set U bounded by Ei’EZ’

xy and xz. It is now a simple matter to verify that
C(y,z) CU. Hence C{y,z) CK.

4. Let V be a subset of the Euclidean space E” and
let £(V)=1. Define

n+1
Gn(V) =inf{a:V=U v, H(V)<a, j=1,...,nt1} .
. j i
. j=1

It has been conjectured by K. Borsuk [4] that G (V)< 1 for
n

every V. Since every set V, (V) =1, is a subset of a set
of constant width 1, it suffices to consider the latter sets onl
Borsuk's conjecture has been proved so far only for n=2 an
n=3, [1], [5]. For n=2 Gale[1] has proved a stronger
theorem which may be stated as follows: let Ke /A, then

GZ(K)S N3/2; since D (o) cannot be represented as a

1/2
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union of three sets of diameters less than \f3/2, the constant
is best possible.

Let K¢ K. By a simple continuity argument it is easy to
show that there exist equilateral triangles with all vertices on
G (K). Let X(K) denote the side-length of the largest one of
all such triangles. Then

THEOREM 2. Let Ke X7, then GZ(K) < min{ X(K), V3 -X(K)}.

5. Gale [1] and Gruenbaum [5] use in their proofs of
Borsuk's conjecture for n=2 and n =3 the method of universal

sets. A set U is called universal in E” if every set in E"”
of constant width 1 is a subsetof U. In[1]n=2 and U is

an equilateral triangle of side-length N3; in[5]n=3 and U
is a regular octahedron in which the distance between every
pair of opposite walls is 1. In proving Theorem 2 we shall also
use the method of universal sets, but instead of considering a
single such set for the whole of A we shall introduce a one-
parameter family of such sets. More precisely, every plane
set of constant width one will be a subset of at least one set of

the family.

Let Ke A&7, let X{K)=a and let Xi'XZ’X3 be the
vertices of the equilateral triangle T(a) of side-length a,
inscribed into K. The set

3
Cl@) = N

Di(xj)

will be called a caltrop. It follows from the standard properties
of sets of constant width that the class of all caltrops C(a),

0 <a<1, isuniversal for the class A’ in the previously
described sense. ¥ (C(a)) consists of three circular arcs;

let their mid- points be wi,wz,w3. Let o be the centre of

the triangle T(a); the segments OW1’0W2’0W3 divide the
caltrop into three congruent sets Qi’ QZ' Q3. By an elementary

calculation
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L(Q,) = £(Q,) = £(Q,) = |w,w,| = N3 - a.

Since K =

Cow

(K ~"Q.), we have
J

j=1

LEMMA 1. Let Ke A, then GZ(K)E N3 - X(K).
We next prove

LEMMA 2. If Ke A and T{b)C K with at least one
vertex of T(b) in the interior of K, then X(K) > b.

This is proved by a simple continuity argument. We fire
move T(b) so that, remaining in K, it has two vertices, say

x, and X, on £ (K). Then %, is moved in & (K) away fror

X, while x1 itself is fixed; eventually the third vertex x

will cross 7 (K).

LEMMA 3. Let K¢ A and X(K)=a, let T(a) be an
equilateral triangle of side-length a inscribed into K, and
let o be its centre. Then max ,ox! < a.

x € F(K)

For the radius r(K) of the inscribed circile C of K w
have the estimates

(1) 1 - 3'“25 r(K)<1/2 .

Let the vertices of T(a) be x , x_, x_, andlet y,  =C mox
3. 1

1 2° 3
i=1, 2, 3. Then
|ox > max loy,]ir(K) )
i=1,2,3

N
and since a = N3 lox,l, we get from (1)
i

(2) a> N3 - 1.

Let C1:C1(w) pass through X, and X0 and let x, be
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inside Ci. Put E :Ci(}g?z'), so that EC K. A simple
calculation yields

2.1/2 -1/2
a -

min |ov|=1-[(4-2a") 3 al/2 .
veE
Hence
(3) min [ox|>1 - [(4 - az)i/z- 3_1/2 al/2 =1f(a)
x ¢ /7 (K)

say. Since 1 - f(a) is monotone decreasing, it follows from
(2) and (3) that

min !oxlzf( N3 -1
x € G (K)
and so
max loxlfi-f(\/ﬂ3-1)<'\/_3-1.
x € & (K)
This together with (2) proves the lemma.
Let B =4(K), X(K)=a, andlet x , x , x_ be, as

1" 2 3
before, the vertices of the triangle T(a) inscribed into K.

LEMMA 4. Max [xy| =a .
TN
X,y € B(xi,xz)

Let this maximum occur for x=u and y =v. Suppose

first that u # x1 and v # X, Then through u and v there

pass two parallel supporting lines to B(Xi’ iz), orthogonal to

uv, and containing the arc B(QZ) between them. Since

1

neither X, nor X, lie on these supporting lines, it is clear

that a suitable translation will carry the triangle T(a) into
the interior of K. By Lemma 2 this contradicts the maximality
of T(a).

Suppose next that u =%, but v # x,. Iet C=C (Xi);
o

then by Theorem 1 C(xz,x3) C K. Since, by the hypothesis,

|x1v| > a, it follows that by rotating T(a) about x until
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x, lies on x,v we get an equilateral triangle of side-length a,

2

with a vertex inside K and the other two vertices in K. This
again contradicts the maximality assumption X(K) =a.

Hence u = x1 and v = x2 and the lemma follows.

LEMMA 5. G,(K) < X(K).

Let X{K) =a, let o be the centre of T{(a) and Xi’ XZ’

X3 its vertices. The segments ox , ox_, ox_ divide K into

1 2

three closed convex sets Ri’ RZ, R3, with Ri being disjoint
from x. Letalso B=#&(K) and B, =B(x_,x_ ), B

i 1 23 2
B_ = B(}?;;(Z). Then oﬁ(R.1) =max { max loxl, max ]xy]} .

3
e B ,vEB
55y Y By

=B(x ,x ),
(15,))

Therefore by Lemmas 3 and 4 we have
cﬁ(Ri) = J(RZ) = cO‘(R3) = a
and the lemma 1is proved.

Theorem 2 is now an immediate consequence of Lemmas
1 and 5.
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