A PROPERTY OF PLANE SETS OF CONSTANT WIDTH

Z.A. Melzak

(received January 16, 1963)

- 1. It is well known that sets of constant width share several properties with spheres. In this note we consider a simple property of the circle and we show that it is shared by every plane set of constant width. As an application we derive a stronger form of the following theorem of D. Gale, [1]: every plane set of diameter 1 is a union of three sets of diameters not exceeding $\sqrt{3}/2$, and this constant is best possible. We shall make free use of the more elementary properties of convex sets and of sets of constant width; for these properties and for the terminology see the standard reference [2], or [3].
- 2. The class of all plane closed convex sets of constant width will be denoted by \mathcal{X} . Greek letters will denote scalars and small Latin letters o, u, v, ... will denote points in the plane. If K is a set then $\mathcal{S}(K)$ and $\mathcal{S}(K)$ are its boundary and its diameter, respectively. The closed circular disk of radius ρ about the centre u will be denoted by $D_{\rho}(u)$ and its boundary by $C_{\rho}(u)$. If x and y are two points then xy is the straight segment from x to y and |xy| is its length. Let C be a closed convex curve, and let x and y be two points on C dividing C into two arcs of unequal length; then C(x,y) will denote the shorter arc.
- 3. Let $D = D_{1/2}(o)$, let $x, y, z \in \mathcal{B}(D)$, and suppose that $|xy| = |xz| = \alpha$. Let C = C(x); then clearly $C(y, z) \subset D$. We show that this property is shared by every set $K \in \mathcal{K}$.

Canad. Math. Bull. vol.6. no.3. September 1963

THEOREM 1. Let $K \in \mathcal{K}$, $B = \mathcal{B}(K)$, and $x, y, z, \in B$. Suppose that $|xy| = |xz| = \alpha$ and let $C = C_{\alpha}(x)$; then $C(\widehat{y}, z) \subset K$.

Without loss of generality we may assume that $\alpha < 1$, as otherwise $C(\widehat{y,z}) \subset B$. Let u be the point antipodal to x; if there are several such points let u be any one of them. We show first that $u \in B_1$, where B_1 is that one of the two subarcs of B with the end-points y and z which does not contain x. Suppose that $u \notin B_1$ and that the points x,y,z,u are in cyclic order on B. Since xu is a diameter of K, it follows that the angle at x subtended by ux and yx is less than $\pi/2$. Let $C_1 = C_1(w)$ be the circle containing x in its interior and passing through y and u; since $K \in \mathcal{K}$ it is known that $E = C_1(\widehat{y,u}) \subset K$. We observe that as the point t travel es E from y to u the length |tx| increases steadily from α to 1. Hence $|xz| > \alpha$ which is a contradiction.

We have now $u \in B_1$. Let E_1 and E_2 be the arcs defined in the same way as E, with the end-points y and u and u and z, respectively. Then $E_1 \subset K$ and $E_2 \subset K$, s that K contains the closed convex set U bounded by E_1, E_2 , E_2 , E_3 and E_4 . It is now a simple matter to verify that $E_4 \subset E_3$. Hence $E_4 \subset E_3$ and $E_4 \subset E_4$.

4. Let V be a subset of the Euclidean space E^n and let $\mathcal{L}(V) = 1$. Define

$$G_{n}(V) = \inf \{ \alpha : V = \bigcup_{j=1}^{n+1} V_{j}, \mathcal{D}(V_{j}) \leq \alpha, j = 1, \dots, n+1 \}$$

It has been conjectured by K. Borsuk [4] that $G_n(V) < 1$ for every V. Since every set V, $\mathcal{L}(V) = 1$, is a subset of a set of constant width 1, it suffices to consider the latter sets on! Borsuk's conjecture has been proved so far only for n = 2 an n = 3, [1], [5]. For n = 2 Gale [1] has proved a stronger theorem which may be stated as follows: let $K \in \mathcal{K}$, then $G_2(K) \leq \sqrt{3}/2$; since $D_{1/2}(0)$ cannot be represented as a

union of three sets of diameters less than $\sqrt{3/2}$, the constant is best possible.

Let $K \in \mathcal{K}$. By a simple continuity argument it is easy to show that there exist equilateral triangles with all vertices on $\mathcal{S}(K)$. Let X(K) denote the side-length of the largest one of all such triangles. Then

THEOREM 2. Let
$$K \in \mathcal{K}$$
, then $G_2(K) \leq \min\{ X(K), \sqrt{3} - X(K) \}$.

5. Gale [1] and Gruenbaum [5] use in their proofs of Borsuk's conjecture for n=2 and n=3 the method of universal sets. A set U is called universal in E^n if every set in E^n of constant width 1 is a subset of U. In [1] n=2 and U is an equilateral triangle of side-length $\sqrt{3}$; in [5] n=3 and U is a regular octahedron in which the distance between every pair of opposite walls is 1. In proving Theorem 2 we shall also use the method of universal sets, but instead of considering a single such set for the whole of K we shall introduce a one-parameter family of such sets. More precisely, every plane set of constant width one will be a subset of at least one set of the family.

Let $K \in \mathcal{K}$, let X(K) = a and let x_1, x_2, x_3 be the vertices of the equilateral triangle T(a) of side-length a, inscribed into K. The set

$$C(a) = \bigcap_{j=1}^{3} D_{1}(x_{j})$$

will be called a caltrop. It follows from the standard properties of sets of constant width that the class of all caltrops C(a), $0 < a \le 1$, is universal for the class $\mathcal K$ in the previously described sense. $\mathcal B(C(a))$ consists of three circular arcs; let their mid-points be w_1, w_2, w_3 . Let o be the centre of the triangle T(a); the segments ow_1, ow_2, ow_3 divide the caltrop into three congruent sets Q_1, Q_2, Q_3 . By an elementary calculation

$$\mathcal{Q}(Q_1) = \mathcal{Q}(Q_2) = \mathcal{Q}(Q_3) = |w_1 w_2| = \sqrt{3} - a.$$

Since
$$K = \bigcup_{j=1}^{3} (K \cap Q_{j})$$
, we have

LEMMA 1. Let $K \in K$, then $G_2(K) \leq \sqrt{3} - X(K)$.

We next prove

LEMMA 2. If $K \in \mathcal{H}$ and $T(b) \subset K$ with at least one vertex of T(b) in the interior of K, then X(K) > b.

This is proved by a simple continuity argument. We firs move T(b) so that, remaining in K, it has two vertices, say x_1 and x_2 , on $\mathcal{E}(K)$. Then x_2 is moved in $\mathcal{E}(K)$ away from x_1 , while x_1 itself is fixed; eventually the third vertex x_3 will cross $\mathcal{E}(K)$.

LEMMA 3. Let $K \in \mathcal{K}$ and X(K) = a, let T(a) be an equilateral triangle of side-length a inscribed into K, and let o be its centre. Then $\max_{x \in \mathcal{B}(K)} |\cos| < a$.

For the radius r(K) of the inscribed circle $\,C\,$ of $\,K\,$ w have the estimates

(1)
$$1 - 3^{-1/2} \le r(K) \le 1/2.$$

Let the vertices of T(a) be x_1 , x_2 , x_3 , and let $y_i = C \cap ox_i$ i = 1, 2, 3. Then

$$\left|\operatorname{ox}_{1}\right| \geq \max_{i=1,2,3} \left|\operatorname{oy}_{i}\right| \geq r(K)$$
,

and since $a = \sqrt{3} |ox_i|$, we get from (1)

(2)
$$a \ge \sqrt{3} - 1$$
.

Let $C_1 = C_1(w)$ pass through x_2 and x_3 , and let x_4 be

inside C_1 . Put $E = C_1(\widehat{x_2, x_3})$, so that $E \subset K$. A simple calculation yields

min
$$|ov| = 1 - [(4 - a^2)^{1/2} - 3^{-1/2} a]/2$$
.

Hence

(3)
$$\min_{\mathbf{x} \in \mathcal{B}(K)} |o\mathbf{x}| \ge 1 - [(4 - a^2)^{1/2} - 3^{-1/2} a]/2 = f(a)$$

say. Since 1 - f(a) is monotone decreasing, it follows from (2) and (3) that

$$\min_{\mathbf{x} \in \mathcal{S}(\mathbf{K})} |\mathbf{ox}| \ge f(\sqrt{3} - 1)$$

and so

$$\max_{\mathbf{x} \in \mathscr{O}(\mathbf{K})} |\operatorname{ox}| \leq 1 - \operatorname{f}(\sqrt{3} - 1) < \sqrt{3} - 1.$$

This together with (2) proves the lemma.

Let $B = \mathcal{B}(K)$, X(K) = a, and let x_1 , x_2 , x_3 be, as before, the vertices of the triangle T(a) inscribed into K.

LEMMA 4.
$$\max_{x, y \in B(\widehat{x_1}, x_2)} |xy| = a$$
.

Let this maximum occur for x = u and y = v. Suppose first that $u \neq x_1$ and $v \neq x_2$. Then through u and v there pass two parallel supporting lines to $B(\widehat{x_1},\widehat{x_2})$, orthogonal to uv, and containing the arc $B(\widehat{x_1},\widehat{x_2})$ between them. Since neither x_1 nor x_2 lie on these supporting lines, it is clear that a suitable translation will carry the triangle T(a) into the interior of K. By Lemma 2 this contradicts the maximality of T(a).

Suppose next that $u = x_1$ but $v \neq x_2$. Let $C = C_{\alpha}(x_1)$; then by Theorem 1 $C(x_2, x_3) \subset K$. Since, by the hypothesis, $|x_4v| > a$, it follows that by rotating T(a) about x_1 until

 x_2 lies on x_1v we get an equilateral triangle of side-length a, with a vertex inside K and the other two vertices in K. This again contradicts the maximality assumption X(K) = a.

Hence $u = x_1$ and $v = x_2$ and the lemma follows.

LEMMA 5.
$$G_2(K) \leq X(K)$$
.

Let X(K) = a, let o be the centre of T(a) and x_1 , x_2 , x_3 its vertices. The segments ox_1 , ox_2 , ox_3 divide K into three closed convex sets R_1 , R_2 , R_3 , with R_i being disjoint from x_i . Let also $B = \mathcal{B}(K)$ and $B_1 = B(\widehat{x_2}, x_3)$, $B_2 = B(\widehat{x_1}, x_3)$, $B_3 = B(\widehat{x_1}, x_2)$. Then $\mathcal{B}(R_1) = \max\{\max |ox|, \max |xy|\}$. $x \in B_1$ $x, y \in B_1$

Therefore by Lemmas 3 and 4 we have

$$\mathcal{D}(R_1) = \mathcal{D}(R_2) = \mathcal{D}(R_3) = a$$

and the lemma is proved.

Theorem 2 is now an immediate consequence of Lemmas 1 and 5.

6. The author acknowledges gratefully the help of the Canadian Mathematical Congress in the form of a fellowship at the 1961 Summer Research Institute.

REFERENCES

- 1. D. Gale, Proc. A. M.S., 4(1953), 222-225.
- 2. T. Bonnesen and W. Fenchel, Theorie der konvexen Koerper, Leipzig, (1934).
- 3. H. Eggleston, Convexity, No. 47, Cambridge Tracts, (1958).

- 4. K. Borsuk, Fund. Math., 20(1933), 177-190.
- 5. B. Gruenbaum, Proc. Cambr. Phil. Soc., 53(1957), 776-778.

McGill University