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MAHLER'S METHOD IN TRANSCENDENCE THEORY

DAVID ANGELL

In 1926 Kurt Mahler introduced functional equation methods into transcendence
theory. His work [3] went largely unnoticed until almost fifty years later, when it was
taken up by Loxton and van der Poorten and others. The method is particularly suited
to investigating the transcendence of numbers whose decimal expansions in some base
g > 2 can be produced by a finite automaton (a computer with a fixed, finite amount of
memory). This bears upon the question of whether or not the expansion of an algebraic
irrational need be random.

In this paper we give a sample transcendence proof in order to illustrate the scope
and limitations of a variant of this method. We also demonstrate an algebraic indepen-
dence theorem which relates the algebraic independence of a collection of power series
f(z) which satisfy a certain type of functional equation to the algebraic independence
of the numbers / (a) for a suitable algebraic number a. The theorem, while giving a
more general result than that of Loxton and van der Poorton [2], is proved by more
economical means than those of Kubota [1].
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