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ON MODIFICATION OF THE q-L-SERIES

AND ITS APPLICATIONS

HIROFUMI TSUMURA

Abstract. We slightly modify the definitions of q-Hurwitz ζ-functions and q-L-
series constructed by J. Satoh. By using these modified functions, we give some
relations for the ordinary Dirichlet L-series. Especially we give an elementary
proof of Katsurada’s formula on the values of Dirichlet L-series at positive
integers.

Introduction

Satoh defined q-L-series Lq(s, χ) in [S-1], which interpolated Carlitz’s

q-Bernoulli numbers at non-positive integers. His result was a response to

Koblitz’s problem suggested in [Ko]. In fact, Lq(s, χ) could be regarded just

as what Koblitz required. Lq(s, χ) was essentially defined as a sum of two

q-series. This causes difficulty in studying Lq(s, χ).

In [T-3], we considered the modified q-Riemann ζ-function, which is an

example of Satoh’s recent result (see [S-2]). By elementary calculations of q-

series, we proved the formulas for ζ(2k+1) given by Cvijović and Klinowski

([C-K]).

In the present paper, corresponding to our previous work in [T-3], we

modify the definition of q-L-series. In Section 1, we consider the modified

q-Hurwitz ζ-function. In Section 2, we define the modified q-L-series. By

investigating their properties, we prove some relations for the values of

modified q-L-series (see Lemma 7). By letting q → 1 in these relations,

we prove some relations between the values of ordinary Dirichlet L-series

at positive integers (see Proposition 2). Furthermore we give another proof

of Katsurada’s recent result on the values of Dirichlet L-series at positive

integers (see Proposition 3). His result was proved by using the Mellin

transformation technique ([Ka]).

Received October 22, 1999.
Revised March 31, 2000.
2000 Mathematics Subject Classification: Primary 11M41, 11M06. Secondly 11B68

11M06, 11M35, 33B15.

185

https://doi.org/10.1017/S0027763000008096 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008096


186 H. TSUMURA

The author would like to thank the referee for his valuable suggestions

and comments.

§1. q-Hurwitz ζ-function

For q ∈ R with 0 < q < 1, let [z] = [z; q] = (1 − qz)/(1 − q) for

an indeterminate z. Note that limq→1[z] = z. The modified q-Bernoulli

numbers {β̃n(q)} can be defined by

Fq(t) =
∞∑

n=0

β̃n(q)
tn

n!
,

where Fq(t) is determined as a solution of the following q-difference equation

Fq(t) = etFq(qt) − t, Fq(0) =
q − 1

log q
,

(see [T-1]). Moreover we let F1(t) = t/(et − 1), and β̃n(1) = Bn which

is the ordinary Bernoulli number. If 0 < q < 1 then the following series

representation for Fq(t) holds:

(1.1) Fq(t) =
q − 1

log q
et/(1−q) − t

∞∑

n=0

qne[n]t,

(see [S-2],[T-3]). By above considerations, we can see that Fq(t) is continu-

ous as a function of (q, t) on (0, 1] × {t ∈ C | |t| < 2π}. As generalizations,

we defined the modified q-Bernoulli polynomials by

Fq(q
xt)e[x]t =

∞∑

n=0

β̃n(x, q)
tn

n!
.

Note that

Fq(q
xt)e[x]t =

q − 1

log q
et/(1−q) − t

∞∑

n=0

qn+xe[n+x]t.

We define the modified q-Hurwitz ζ-function by

(1.2) ζ̃q(s, x) =
(1 − q)s

(1 − s) log q
+

∞∑

n=0

qn+x

[n + x]s
,

for x > 0. The following lemma holds (see [T-3] §4).
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Lemma 1. For k ∈ N, ζ̃q(1 − k, x) = − β̃k(x, q)

k
.

It follows from (1.2) that ζ̃q(s, x) is meromorphic in the whole complex

plane and has a simple pole at s = 1 with residue (q − 1)/ log q, since

limn→∞[n] = 1/(1 − q) if 0 < q < 1. It is obvious that if Re(s) > 1 then

limq→1−0 ζ̃q(s, x) = ζ(s, x) which is the ordinary Hurwitz ζ-function. More

strongly we can prove the following.

Lemma 2. lim
q→1−0

ζ̃q(s, x) = ζ(s, x) and lim
q→1−0

(∂/∂s)ζ̃q(s, x) = (∂/∂s)·
ζ(s, x) for any s ∈ C except for s = 1.

Proof. According to the well-known method(e.g. [W, Theorem 4.2]),

we consider the function

H(s, q) = (e2π
√
−1s − 1)

∫ ∞

0
ts−2Fq(−qxt)e−[x]t dt,

for any s ∈ C and q ∈ (0, 1]. Then it follows from (1.1) that H(s, q)

= (e2π
√
−1s − 1)Γ(s)ζ̃q(s, x), and H(s, q) is holomorphic for any s ∈ C

if 0 < q ≤ 1. We can verify that limq→1−0 H(s, q) = H(s, 1) and

limq→1−0 (∂/∂s)H(s, q) = (∂/∂s)H(s, 1). Thus we have the assertion.

If 0 < q < 1 then, by (1.2), we have

(1.3)
∂

∂s
ζ̃q(s, x) =

(1 − q)s{log(1− q) + 1}
(1 − s)2 log q

−
∞∑

n=0

qn+x log[n + x]

[n + x]s
.

Let

(1.4) a(q) =
∂

∂s
ζ̃q(0, 1) =

log(1 − q) + 1

log q
−

∞∑

m=1

qm log[m].

By Lemma 2, we have

(1.5) lim
q→1−0

a(q) = lim
q→1−0

∂

∂s
ζ̃q(0, 1) =

∂

∂s
ζ(0, 1) = −1

2
log(2π).

Let b(q) = exp(−a(q)). Then limq→1−0 b(q) =
√

2π. By combining (1.4)

and (1.5), we get the following relation which can be regarded as a q-

representation for the divergent formula
∏

m≥1 m = ∞! =
√

2π given by

Riemann.
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Proposition 1. lim
q→1−0

e
− log(1−q)+1

log q

∞∏

m=1

[m]q
m

=
√

2π.

§2. q-L-series

For a primitive Dirichlet character χ with conductor f , we define the

modified q-L-series by

(2.1) L̃q(s, χ) =

f∑

a=1

χ(a)[f ]−sζ̃qf

(
s,

a

f

)
.

We can verify that

L̃q(s, χ) =

f∑

a=1

χ(a)[f ]−s

{
(1 − qf )s

(1 − s) log qf
+

∞∑

n=0

qf(n+a/f)

[n + a/f, qf ]s

}

=
(1 − q)s

f(1 − s) log q

f∑

a=1

χ(a) +

∞∑

n=1

χ(n)qn

[n]s
.

So we have

(2.2) L̃q(s, χ) =





∞∑

n=1

χ(n)qn

[n]s
(χ 6= 1)

(1 − q)s

(1 − s) log q
+

∞∑

n=1

qn

[n]s
(χ = 1)

In fact, L̃q(s, 1) coincides with the q-series Z̃q(s) defined in [T-3], which

can be regarded as a q-analogue of the Riemann ζ-function. Note that if

χ 6= 1 then L̃q(s, χ) is holomorphic in the whole complex plane.

Now we define the generalized q-Bernoulli numbers by

(2.3) β̃k,χ(q) = [f ]k−1
f∑

a=1

χ(a)β̃k

(
a

f
, qf

)
,

for k ≥ 0. Note that limq→1 β̃k,χ(q) = Bk,χ which is the generalized Bernoulli

number defined by

(2.4)

f∑

a=1

χ(a)teat

eft − 1
=

∞∑

n=0

Bn,χ
tn

n!
.

By (2.1),(2.3) and Lemma 1, we have the following.
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Lemma 3. For k ∈ N, L̃q(1 − k, χ) = − β̃k,χ(q)

k
.

From now on, we assume that χ 6= 1. Let

Hq(t, χ) = −t

∞∑

n=1

χ(n)qne[n]t,

for q ∈ R with 0 < q < 1. It follows from the definition of Fq(t) and (2.2)

that Hq(t, χ) is the generating function of {β̃k,χ(q)}, and is holomorphic in

the whole complex plane. For the sake of convenience, let H1(t, χ) be the

function in the left-hand side of (2.4).

We can see that poles of H1(t, χ) are {2π
√
−1l/f + 2nπ

√
−1 | n ∈

Z, l = 0, 1, · · · , f − 1}. So we let

h(t, f) =

f∏

l=1

(t − 2π
√
−1l/f)(t + 2π

√
−1l/f)(2.5)

=

f∏

l=1

(t2 + 4π2l2/f2) =

f∑

l=0

Cl(f)t2l,

and let Iq(t, χ) = Hq(t, χ)h(t, f) for any q with 0 < q ≤ 1. Then we see that

Iq(t, χ) is holomorphic on |t| ≤ 2π. Let

(2.6) Iq(t, χ) =
∞∑

n=0

An(q, χ)
tn

n!
.

Then we have the following.

Lemma 4. Let r and d be real numbers with 0 < r < 2π and 0 <

d < 1. Then there exists a constant R(r, d) > 0 such that |Ak(q, χ)/k!| ≤
R(r, d)/rk for k ≥ 0, if d ≤ q ≤ 1.

Proof. Let Cr be a circle around O of radius r in the complex plane. By

the consideration in §1, we can see that Iq(t, χ) is continuous as a function

of (q, t) on the compact set [d, 1] × Cr. So we let R(r, d) = Max|Iq(t, χ)| on

[d, 1] × Cr. By the fact that

Ak(q, χ)

k!
=

1

2π
√
−1

∫

Cr

Iq(t, χ)t−k−1 dt,

we get the proof of Lemma.
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Now we consider the following permutation and combination function:

P (X,k) =

k−1∏

j=0

(X − j),

(
X

k

)
=

P (X,k)

k!
,

for any k ∈ Z with k ≥ 0. Formally we let P (0, 0) = 1. If m ∈ Z with

0 ≤ m < k, then P (m,k) = 0. By considering the binomial expansions of

both sides of (1 + t)X+Y = (1 + t)X(1 + t)Y , we get the following.

Lemma 5.

(
X + Y

k

)
=

k∑

j=0

(
X

k − j

)(
Y

j

)
, namely P (X + Y, k) =

k∑

j=0

(
k

j

)
P (X,k − j)P (Y, j).

By Lemma 3 and using the above notations, we have

Iq(t, χ) =

f∑

l=0

Cl(f)

∞∑

n=0

β̃n,χ(q)
tn+2l

n!

=

f∑

l=0

Cl(f)
∑

N≥2l

P (N, 2l)β̃N−2l,χ(q)
tN

N !

= −
∞∑

N=0

(
f∑

l=0

Cl(f)P (N, 2l + 1)L̃q(1 − N + 2l, χ)

)
tN

N !
.

Thus we have the following.

Lemma 6. For N ∈ Z with N ≥ 0,

AN (q, χ) =

f∑

l=0

Cl(f)P (N, 2l)β̃N−2l,χ(q)

= −
f∑

l=0

Cl(f)P (N, 2l + 1)L̃q(1 − N + 2l, χ).

Remark. Since B2k+1,χ = 0 if χ(−1) = 1 and B2k,χ = 0 if χ(−1) =

−1 (e.g. [W] Chap.4), we have limq→1 A2k+1(q, χ) = 0 if χ(−1) = 1, and

limq→1 A2k(q, χ) = 0 if χ(−1) = −1, for k ≥ 0.
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Lemma 7. For m ∈ N and θ ∈ R with |θ| ≤ 2π,

(1)

f∑

d=0

P (2m + 2d − 1, 2d)

f∑

l=d

(
2l + 1

2d

)
Cl(f)(−1)l−dθ2(l−d)+1

×
∞∑

n=1

χ(n)qn

[n]2m+2d
cos([n]θ)

−
f∑

d=0

P (2m + 2d, 2d + 1)

f∑

l=d

(
2l + 1

2d + 1

)
Cl(f)(−1)l−dθ2(l−d)

×
∞∑

n=1

χ(n)qn

[n]2m+2d+1
sin([n]θ)

=

m−1∑

k=0

(−1)k+1θ2k+1

(2k + 1)!

×
f∑

l=0

Cl(f)P (2m − 2k + 2l − 1, 2l + 1)L̃q(2m − 2k + 2l, χ)

+ (−1)mθ2m
∞∑

n=0

1

P (2n + 2m + 1, 2m)

(−1)n+1θ2n+1

(2n + 1)!
A2n+1(q, χ).

(2)

f∑

d=0

P (2m + 2d − 1, 2d)

f∑

l=d

(
2l + 1

2d

)
Cl(f)(−1)l−d+1θ2(l−d)+1

×
∞∑

n=1

χ(n)qn

[n]2m+2d
sin([n]θ)

+

f∑

d=0

P (2m + 2d, 2d + 1)

f∑

l=d

(
2l + 1

2d + 1

)
Cl(f)(−1)l−d+1θ2(l−d)

×
∞∑

n=1

χ(n)qn

[n]2m+2d+1
cos([n]θ)

=
m−1∑

k=0

(−1)k+1θ2k

(2k)!

×
f∑

l=0

Cl(f)P (2m − 2k + 2l, 2l + 1)L̃q(2m − 2k + 2l + 1, χ)

+(−1)m−1θ2m
∞∑

n=0

1

P (2n + 2m, 2m + 1)

(−1)nθ2n

(2n)!
A2n(q, χ).

Proof. We only give the proof of (1). The proof of (2) is given in just
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the same manner as that of (1). For simplicity, we denote Cl instead of

Cl(f). Let

Jq(θ, χ,m) =

∞∑

k=0

(−1)kθ2k+1

(2k + 1)!

×
{

f∑

l=0

ClP (2k − 2m + 1, 2l + 1) L̃q(1 − (2k − 2m + 1) + 2l, χ)

}
.

By Lemma 5, we have

Jq(θ, χ,m)

=

∞∑

k=0

(−1)kθ2k+1

(2k + 1)!

f∑

l=0

Cl

×
2l+1∑

u=0

(
2l + 1

u

)
P (2k + 1, 2l + 1 − u)P (−2m,u) L̃q(−2k + 2m + 2l, χ)

=

f∑

l=0

Cl

2l+1∑

u=0

(
2l + 1

u

)
P (−2m,u)

×
∞∑

k=0

(−1)kθ2k+1

(2k + 1)!
P (2k + 1, 2l + 1 − u) L̃q(−2k + 2m + 2l, χ)

=

f∑

l=0

Cl

l∑

d=0

(
2l + 1

2d

)
P (−2m, 2d)

×
∞∑

k=l−d

(−1)kθ2k+1

(2k + 1)!
P (2k + 1, 2l + 1 − 2d) L̃q(−2k + 2m + 2l, χ)

+

f∑

l=0

Cl

l∑

d=0

(
2l + 1

2d + 1

)
P (−2m, 2d + 1)

×
∞∑

k=l−d

(−1)kθ2k+1

(2k + 1)!
P (2k + 1, 2l − 2d) L̃q(−2k + 2m + 2l, χ).

Since 0 < q < 1, we can easily verify that

(2.7)
∞∑

n=1

χ(n)qn

[n]s
cos([n]θ) =

∞∑

k=0

(−1)kθ2k

(2k)!
L̃q(s − 2k, χ),
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and

(2.8)

∞∑

n=1

χ(n)qn

[n]s
sin([n]θ) =

∞∑

k=0

(−1)kθ2k+1

(2k + 1)!
L̃q(s − 2k − 1, χ).

By noticing that P (−N, e) = (−1)eP (N +e−1, e), and letting n = k− l+d,

we have

Jq(θ, χ,m)

=

f∑

d=0

P (2m + 2d − 1, 2d)

f∑

l=0

(
2l + 1

2d

)
Cl(−1)l−dθ2(l−d)+1

×
∞∑

n=1

χ(n)qn

[n]2m+2d
cos([n]θ)

+

f∑

d=0

P (2m + 2d, 2d + 1)

f∑

l=0

(
2l + 1

2d + 1

)
Cl(−1)l−dθ2(l−d)

×
∞∑

n=1

χ(n)qn

[n]2m+2d+1
sin([n]θ).

On the other hand, by Lemma 6, we have

Jq(θ, χ,m) =

m−1∑

k=0

(−1)k+1θ2k+1

(2k + 1)!

f∑

l=0

ClP (2k − 2m + 1, 2l + 1) L̃q(2m − 2k + 2l, χ)

+

∞∑

k=m

(−1)k+1θ2k+1

(2k + 1)!
A2k−2m+1(q, χ).

Thus we have the proof of (1).

By letting q → 1 with respect to the equations in Lemma 7, we get some

relations for the values of ordinary Dirichlet L-series at positive integers.

Proposition 2. Let m ∈ N and Cl(f) ∈ R defined by (2.5).

(1) If χ(−1) = 1 and χ 6= 1, then

f∑

d=0

P (2m + 2d − 1, 2d)
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×
f∑

l=d

(
2l + 1

2d

)
Cl(f)(−1)l−d(2π)2(l−d)+1L(2m + 2d, χ)

=
m−1∑

k=0

(−1)k+1(2π)2k+1

(2k + 1)!

×
f∑

l=0

Cl(f)P (2m − 2k + 2l − 1, 2l + 1)L(2m − 2k + 2l, χ).

(2) If χ(−1) = −1, then

f∑

d=0

P (2m + 2d, 2d + 1)

×
f∑

l=d

(
2l + 1

2d + 1

)
Cl(f)(−1)l−d+1(2π)2(l−d)L(2m + 2d + 1, χ)

=

m−1∑

k=0

(−1)k+1(2π)2k

(2k)!

×
f∑

l=0

Cl(f)P (2m − 2k + 2l, 2l + 1)L(2m − 2k + 2l + 1, χ).

Proof. By Lemma 4, we can see that both sides of the equations in (1)

and (2) of Lemma 7 are uniformly convergent with respect to q ∈ (0, 1], if

θ = 2π. So we can let q → 1. By Remark after Lemma 6, we get the proof.

In [Ka], Katsurada recently proved the following series representations

for the values of L(s, χ) at positive integers by using the Mellin trans-

formation technique. In the rest of this section, we give another proof of

Katsurada’s result by using the same method as above.

Proposition 3. ([Ka, Theorem 3]) Let n be a positive integer, x be

a real number with |x| ≤ 1 and τ(χ) =
∑f

a=1 χ(a) exp(2π
√
−1a/f) be the

Gauss sum.

(1) If χ(−1) = 1 and χ 6= 1, then

nL(2n + 1, χ) − n
∞∑

l=1

χ(l) cos(2πlx/f)

l2n+1
− πx

f

∞∑

l=1

χ(l) sin(2πlx/f)

l2n
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= (−1)n
(

2πx

f

)2n{n−1∑

k=1

(−1)k−1kL(2k + 1, χ)

(2n − 2k)!(2πx/f)2k

+
τ(χ)

f

∞∑

k=1

(2k)!L(2k,χ)

(2n + 2k)!
x2k

}
;

(2) If χ(−1) = −1, then

L(2n, χ) −
∞∑

l=1

χ(l) cos(2πlx/f)

l2n

= (−1)n
(

2πx

f

)2n−1{n−1∑

k=1

(−1)k−1L(2k, χ)

(2n − 2k)!(2πx/f)2k−1

+
2
√
−1τ(χ)

f

∞∑

k=0

(2k)!L(2k + 1, χ)

(2n + 2k)!
x2k+1

}
.

Proof. Suppose that χ(−1) = 1 and χ 6= 1, q ∈ R with 0 < q < 1, and

θ ∈ R with |θ| < 2π/f . By (2.7), (2.8) and Lemma 3, we have

n

∞∑

l=1

χ(l)ql cos([l]θ)

[l]2n+1
− θ

2

∞∑

l=1

χ(l)ql sin([l]θ)

[l]2n
(3.1)

= nL̃q(2n + 1, χ) +

n−1∑

j=1

(−1)jθ2j

(2j)!
(n − j)L̃q(2n + 1 − 2j, χ)

+
1

2

∞∑

j=n+1

(−1)jθ2j

(2j)!
β̃2j−2n,χ(q).

By the definition of β̃n,χ(q) and the same reason as that in the proof of

Proposition 2, we can see that both sides of (3.1) are uniformly convergent

with respect to q ∈ (0, 1] if |θ| < 2π/f . Hence we can let q → 1 in both

sides of (3.1). By using the well-known relation

B2j,χ =
2(−1)j+1τ(χ)

f

(
f

2π

)2j

(2j)!L(2j, χ),

we have

n
∞∑

l=1

χ(l) cos(lθ)

l2n+1
− θ

2

∞∑

l=1

χ(l) sin(lθ)

l2n

https://doi.org/10.1017/S0027763000008096 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008096


196 H. TSUMURA

= nL(2n + 1, χ) + (−1)nθ2n

{n−1∑

k=1

(−1)kkL(2k + 1, χ)

(2n − 2k)!θ2k

− τ(χ)

f

∞∑

m=1

(−1)mθ2m(2m)!

(2m + 2n)!

(
f

2π

)2m

L(2m,χ)

}
.

By putting θ = (2πx/f), we get the proof of (1).

Suppose that χ(−1) = −1. By (2.7) and Lemma 3, we have

∞∑

l=1

χ(l)ql cos([l]θ)

[l]2n

= L̃q(2n, χ) +
n−1∑

j=1

(−1)jθ2j

(2j)!
L̃q(2n − 2j, χ)

+

∞∑

j=n

(−1)jθ2j

(2j)!

(
− β̃2j−2n+1,χ(q)

2j − 2n + 1

)
.

By letting q → 1, putting θ = 2πx/f and by using the relation

B2j+1,χ =
2(−1)j

√
−1τ(χ)

f

(
f

2π

)2j+1

(2j)!L(2j + 1, χ),

we get the proof of (2). Thus we have the assertion.
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