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ON MODIFICATION OF THE ¢-L-SERIES
AND ITS APPLICATIONS

HIROFUMI TSUMURA

Abstract. We slightly modify the definitions of g-Hurwitz {-functions and g¢-L-
series constructed by J. Satoh. By using these modified functions, we give some
relations for the ordinary Dirichlet L-series. Especially we give an elementary
proof of Katsurada’s formula on the values of Dirichlet L-series at positive
integers.

Introduction

Satoh defined g-L-series Lg(s, x) in [S-1], which interpolated Carlitz’s
g-Bernoulli numbers at non-positive integers. His result was a response to
Koblitz’s problem suggested in [Ko]. In fact, Ly(s, x) could be regarded just
as what Koblitz required. L,(s, x) was essentially defined as a sum of two
g-series. This causes difficulty in studying L,(s, x).

In [T-3], we considered the modified ¢-Riemann (-function, which is an
example of Satoh’s recent result (see [S-2]). By elementary calculations of ¢-
series, we proved the formulas for ((2k+1) given by Cvijovié¢ and Klinowski
(ICK)).

In the present paper, corresponding to our previous work in [T-3], we
modify the definition of ¢-L-series. In Section 1, we consider the modified
g-Hurwitz (-function. In Section 2, we define the modified ¢-L-series. By
investigating their properties, we prove some relations for the values of
modified ¢-L-series (see Lemma 7). By letting ¢ — 1 in these relations,
we prove some relations between the values of ordinary Dirichlet L-series
at positive integers (see Proposition 2). Furthermore we give another proof
of Katsurada’s recent result on the values of Dirichlet L-series at positive
integers (see Proposition 3). His result was proved by using the Mellin
transformation technique ([Kal).
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§1. ¢g-Hurwitz (-function

For ¢ € R with 0 < ¢ < 1, let [z] = [z;9] = (1 — ¢%)/(1 — q) for
an indeterminate 2. Note that lim;—;[2] = z. The modified g-Bernoulli
numbers {f3,(q)} can be defined by

o m

where Fy(t) is determined as a solution of the following ¢-difference equation

q—1
logq’

Fy(t) = e'Fy(qt) —t,  Fy(0) =

(see [T-1]). Moreover we let Fy(t) = t/(e' — 1), and $3,(1) = B, which
is the ordinary Bernoulli number. If 0 < ¢ < 1 then the following series
representation for Fy(t) holds:

t/lq—the

(see [S-2],[T-3]). By above considerations, we can see that Fy(t) is continu-
ous as a function of (q,t) on (0,1] x {t € C | |t| < 27}. As generalizations,
we defined the modified g-Bernoulli polynomials by

0o 4
zlt _ Z ﬂn(ﬂjaf.Z)E
n=0

(1) R =

Note that

Fq(q:tt)e[:p} _ ? 5a t/ (1—9) tz anr:Jc [n+a:

We define the modified ¢-Hurwitz (-function by

(1.2) Co(sa) = 1= S A

(1-s)logg = [n+a]’

n—+x

for x > 0. The following lemma holds (see [T-3] §4).
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Bk(xv(J) )

LEMMA 1. Fork e N, ¢(1—k,z) = — -

It follows from (1.2) that Zq(s, x) is meromorphic in the whole complex
plane and has a simple pole at s = 1 with residue (¢ — 1)/loggq, since
limpo[n] = 1/(1 —¢q) if 0 < ¢ < 1. It is obvious that if Re(s) > 1 then
lim, 10 Cq(s, x) = ((s,z) which is the ordinary Hurwitz (-function. More
strongly we can prove the following.

LEMMA 2. 1i{n 0&;1(8,56) =((s,z) and 1i{n 0(8/85)@(8,:0) = (0/0s)-
q—1— q—1-
((s,x) for any s € C except for s = 1.

Proof. According to the well-known method(e.g. [W, Theorem 4.2]),
we consider the function

H(s,q) = (X715 - 1)/ t°72F,(—¢"t)e I at,
0

for any s € C and ¢ € (0,1]. Then it follows from (1.1) that H(s,q)
= (e2™V~1s _ 1)1“(5)5(1(5,&0), and H(s,q) is holomorphic for any s € C
if 0 < g < 1. We can verify that lim, .10 H(s,q) = H(s,1) and
lim, .10 (0/0s)H (s,q) = (0/0s)H (s,1). Thus we have the assertion.

If 0 < ¢ <1 then, by (1.2), we have

9 (1—g)*{log(1—q)+1} X ¢" " logln + ]
(13) Cq( ) (1—8)210gq ~ [n—l—x]s
Let
0~ log(1 — q) m

(1.4) a(g) = 5-(0.1) = logq Zq log[m
By Lemma 2, we have
(1.5) lm a(g) = lim 2L C(0,1) = 2 ¢(0,1) = — log(2r)

: Jm jalg) = lm 5o Ge0,1) = 5260, 1) = =5 log(2m).

Let b(q) = exp(—a(g)). Then lim,,1_o b(g) = v27. By combining (1.4)
and (1.5), we get the following relation which can be regarded as a g¢-
representation for the divergent formula [[, -, m = ool = V271 given by
Riemann. -

https://doi.org/10.1017/50027763000008096 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008096

188 H. TSUMURA

log(1—g)+1

o0
PROPOSITION 1. li{n0 e~ lozq H [m]?" = /2.
q—1—

§2. ¢-L-series

For a primitive Dirichlet character y with conductor f, we define the
modified g-L-series by

(2.1) (s = 3 x@)f ( ;) .

a=1

We can verify that

f o0
. a —S M M
X)—ZX( )] { 1—5)10gqf+nzz;) [n+a/f,qf]s}
f

(1—
(=9 Z X;lsq

fl—slogq — —

So we have

3

N (x#1)
(2:2) Ly(s,x) =

>
(l—q) — "
(1—8)10gq+z[n]5 b=1)

n=1

In fact, Zq(s, 1) coincides with the g-series Zq(s) defined in [T-3], which
can be regarded as a g-analogue of the Riemann (-function. Note that if
X # 1 then Eq(s, X) is holomorphic in the whole complex plane.

Now we define the generalized g-Bernoulli numbers by

(2.3) Bra) = [~ 12 3 ( f),

for k > 0. Note that lim,_.q Ek,x(Q) = B, which is the generalized Bernoulli
number defined by

f t et n
x(a)te® t
(24) -1 = 2 Py
a=1 n=0

By (2.1),(2.3) and Lemma 1, we have the following.
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Bk:,x(Q) )

LEMMA 3. Fork € N, Eq(l —k,x) = — k

From now on, we assume that y # 1. Let

t,x) = —ty_ x(n)gel!
n=1

for ¢ € R with 0 < ¢ < 1. It follows from the definition of F,(t) and (2.2)
that H,(t, x) is the generating function of {ka (¢)}, and is holomorphic in
the whole complex plane. For the sake of convenience, let Hi(¢,x) be the
function in the left-hand side of (2.4).

We can see that poles of Hi(t,x) are {27/—1l/f + 2nmy/—1 | n €
Z,1=0,1,---,f —1}. So we let

~

(2.5) h(t, f) = [J(t = 2nv/=11/ f)(t + 2nv/=11/ f)

o~
—_

':]x

f
(£ +47°12 /) = > Cil(F),
=0

o~
[y

and let I,(t, x) = Hy(t, x)h(t, f) for any ¢ with 0 < ¢ < 1. Then we see that
I,(t, x) is holomorphic on |t| < 27. Let

(2.6) L) =Y Au(g, )
n=0

Then we have the following.

LEMMA 4. Let r and d be real numbers with 0 < r < 27 and 0 <
d < 1. Then there exists a constant R(r,d) > 0 such that |Ak(q,x)/k!| <
R(r,d)/r* for k>0, ifd <q<1.

Proof. Let C, be a circle around O of radius r in the complex plane. By
the consideration in §1, we can see that I,(¢,x) is continuous as a function
of (¢,t) on the compact set [d, 1] x C,. So we let R(r,d) = Max|I,(t, x)| on
[d,1] x C,. By the fact that

k! 27r\/_/

we get the proof of Lemma.

St at,
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Now we consider the following permutation and combination function:

k—1
reck =l -a. () =252

=0

for any k € Z with £ > 0. Formally we let P(0,0) = 1. If m € Z with
0 < m < k, then P(m, k) = 0. By considering the binomial expansions of
both sides of (1 + )XY = (1 4+ )X (1 +¢)¥, we get the following.

LEMMA 5. (X+Y) i( ) <Y>, namely P(X +Y,k) =

J=0
k

3 (’;) P(X,k — j)P(Y, ).

j=0

By Lemma 3 and using the above notations, we have

f tn+2l
Ltx) =) C Z B (q)
=0
f N
=>_ Gi(f) D P(N.2D)Bn-ax(0) 5
=0 N>21
oS f _ tN
==Y (Z Ci(f)P(N,20 +1)L,(1 — N + 2z,x)> ¥
N=0 \I=0

Thus we have the following.

LEMMA 6. For N € Z with N > 0,

f
An(g,x) =Y C(f)P(N,21)Bx—-21x(q)
=0

!

== Ci(f)P(N,2l +1)Ly(1 — N + 21, ).
=0

Remark. Since Bopyq, = 0 if x(—1) = 1 and By, = 0if x(-1) =
—1 (e.g. [W] Chap.4), we have lim, 1 Aoxy1(¢,x) = 0 if x(—1) = 1, and
lim, 1 Aok (g, x) = 0if x(—1) = —1, for £ > 0.
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LEMMA 7. Form € N and § € R with |0| < 2,

f f
(1) P(2m +2d — 1,2d) Z (21 U 1>Cl(f)(_1)l—d92(l—d)+1

2d
d=0 I=d . :
XZ % cos([n]0)

n=1

f f
-y Pm+2d.2d+1)3 (;flill)cl(f)(_l)ldeﬂld)
d=0 I=d
x(n)g" .
<Y M]Q(mﬁsm([n]e)
n=1
m— 1 1)k+1g2k+1
2k +1)!

k=0

xZCl(f)P(Qm — 2k + 20 — 1,20 + 1)Ly (2m — 2k + 21, )

2 1 (—1)ntlg2n+l
+ ( 0 T;) P@2n+2m+1,2m) (2n+1)! an+1(4, X)

!
2) > P(2m+2d—1,2d)
d=0 1=

M-

<2l221>01(f)( )l-d+1g2(-d)+1

Z 2 +2d sin([n]0)

; nel
2041 )l g2(—d)
+§ P(2m+2d,2d+1)§<2d+1> 9

e n
XZ 2m+2d+1 cos([n]0)
n=1
m— 1 k+192k
k=0
f

x> Ci(f)P(2m — 2k + 21,20 + 1)Ly(2m — 2k + 21 + 1, %)
=0

ym=1g2m (—1)"p*n
’ Z 2n+2m 2m +1) (2n)! Azn (g, x)-

Proof. 'We only give the proof of (1). The proof of (2) is given in just

https://doi.org/10.1017/50027763000008096 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008096

192 H. TSUMURA

the same manner as that of (1). For simplicity, we denote Cj instead of

Ci(f). Let

oo k02k+1
4 (6
' X T Z;) 2k + 1)!

f
x {ZCZP(%—Qm—i—l,Ql—i—l) Lq(l—(2k—2m—|—1)—|—2l,x)}.
=0

By Lemma 5, we have

Jq(0,x,m)
k92k+1 I

_Z (2k + 1)! ;Cl

2l+1
> (21 + 1) P(2k + 1,20 + 1 — u)P(—2m, u) Ly(—2k + 2m + 21, x)

u=0 u
f 21+1
:Z <2l+1>P(_2 )
=0 u=0
& (_ )k92k+1 .
Xy ~———— P(2k+ 1,21+ 1 —u) Ly(—2k +2m + 21, %)
2k + 1)
NN T
:Z(le< 0 )P( 2m, 2d)
=0 d=0
& (_1)k92k+1 -
~ L P2k + 1,20+ 1 —2d) Ly(—2k +2m + 21
xkgd kT D)1 (2k + 1,20 + ) Lg( +2m + 21, )
20+ 1
+Z Z(2d+1> —2m,2d + 1)
oo k02k+1 "
X Z BRI P(2k + 1,21 — 2d) Ly(—2k + 2m + 21, ).
k=Il—d

Since 0 < ¢ < 1, we can easily verify that

> k:92k:

(2.7) Z XZ cos( Z — 2k, x),

=0
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and

o~ X(n)g N
(2.8) nZ:l B sin( ]9)—;:0W

_1)kg2k+1 _
) Ly(s—2k—1,x).

By noticing that P(—N,e) = (=1)*P(N+e—1,e), and letting n = k—[+d,
we have

Jq(ea X’ m)

f f
= ZP(2m +2d —1,2d) Z <2l + 1) 1)l7d92(l—d)+1
d=0 1=0

— x(n
XZ n]2m +2d cos([n]0)
n=1

f

!
20+1  \l=dp2(i—d)
+§P(2m+2d2d+1 Z(2d+1)cl( 1)!=49

XZ [n]XQE:% sin([n]0).

On the other hand, by Lemma 6, we have

Jo(8,x,m) =
m- 1( Jet1g2k+1 f )
] 2k +1)! ZOClP(2k:—2m+1,2l+1) Ly(2m — 2k + 21, x)

0 (_1)k+102k+1

T @R

k=m

Agk—2m+1(4, X)-

Thus we have the proof of (1).

By letting ¢ — 1 with respect to the equations in Lemma 7, we get some
relations for the values of ordinary Dirichlet L-series at positive integers.

PROPOSITION 2. Let m € N and Ci(f) € R defined by (2.5).
(1) If x(—=1)=1 and x # 1, then

!
> P@2m+2d—1,2d)
d=0
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f
Y (2122 1) CUf) (1)~ (2m) =D+ L (2 + 2d, x)

I=d
m— 1 k:+1 27T)2k+1
-y e

k=0

X Z Ci(f)P(2m — 2k + 21 — 1,20 + 1) L(2m — 2k + 21, x).

(2) If x(—1) =—1, then

!
Y P@2m+2d,2d+1)
d=0

Lo (-

_q\l—d+1 2(1—d
Z(2d+1> (=D )2 D L2m 4 2d + 1, X)
k+1

(2m)*
(2Kk)!

x Y Ci(f)P(2m — 2k + 21,21 + 1)L(2m — 2k + 21 + 1, ).

Proof. By Lemma 4, we can see that both sides of the equations in (1)
and (2) of Lemma 7 are uniformly convergent with respect to ¢ € (0, 1], if
0 = 27m. So we can let ¢ — 1. By Remark after Lemma 6, we get the proof.

In [Kal, Katsurada recently proved the following series representations
for the values of L(s,x) at positive integers by using the Mellin trans-
formation technique. In the rest of this section, we give another proof of
Katsurada’s result by using the same method as above.

ProprosITION 3. ([Ka, Theorem 3]) Let n be a positive integer, x be
a real number with |x| < 1 and 7(x) = Z£=1 x(a) exp(2my/—1a/f) be the

Gauss sum.

(1) If x(=1)=1 and x # 1, then

2 x(D)cos(2rlz/f) 7wz = x(1)sin(27lz/f)
nL(2n+1,x) — nz o -7 Z o
=1 1=1

https://doi.org/10.1017/50027763000008096 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008096

MODIFICATION OF THE ¢-L-SERIES 195

e (2 [SR D Lk 1
= (—1) <—> { < (2n — 2k)!(2m/ f)?*

7(x)
M

M8

(Zk)!L(Qk,y)x%}.
(2n + 2k)! ’

b
Il

1
(2) If x(—1)=—1, then

i x(1) cos(2mlz/ f)

l2n

(2T )k
=(-1) <T> {i;(%_%)!(%x/f)%l
2V/—T7(x) = (2k)!L(2k + 1,)
+ 7 kzzo (2n + 2k)! x%H}.

Proof. Suppose that x(—1) =1 and x # 1, ¢ € R with 0 < ¢ < 1, and
0 € R with |0| < 27/ f. By (2.7), (2.8) and Lemma 3, we have

7(71—])2/ (2n+1—24,x)

J@ J
+ Z 2] ZnX(Q)

By the definition of gn,x(q) and the same reason as that in the proof of
Proposition 2, we can see that both sides of (3.1) are uniformly convergent
with respect to ¢ € (0,1] if |#] < 2mw/f. Hence we can let ¢ — 1 in both
sides of (3.1). By using the well-known relation

2(-1)*7(x) ( f

Bajx =

2
(L) iz,

2 x(D)cos(18) 6 = x(1)sin(16)
ny. 2l 9 Z
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n—1

—1)FEL(2k + 1,
=nL(2n+1,x) + (—1)"‘9%{;( ()zn _(2/&:)!;2’c .
() = (D" Em) (N
Ty mzjl (2m + 2n)! (%) L(Qm’X)}'

By putting 6 = (27x/f), we get the proof of (1).
Suppose that x(—1) = —1. By (2.7) and Lemma 3, we have

[l]Qn
=1
N nl_1)ig2i -
= L,(2n,x) + Z%Lq(% —24,x)
j=1 '
S (=190% ([ Byjonsin(q)
i (_ 2~ 20t 1 >

By letting ¢ — 1, putting 6 = 272/ f and by using the relation

Y Wy 2j+1
Bajen = 2 (L) o074 1.3),

we get the proof of (2). Thus we have the assertion.
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