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The Conservation Theorems of a Damped
Dynamical System.

By E. T. COPSON.

(Read 7th March 1924. Received 1st May 1924..)

§ 1. The Partial Differential Equations of Physics may be
denned as those equations which can be derived from a "least
action principle," that is, as those which are obtained by making
a certain integral stationary by the methods of the Calculus of
Variations. But, generally speaking, such equations belong to
conservative physical systems, and not to those which involve
dissipation of energy. In this note it is shewn that a certain class
of dissipative equation, of which the best known example is the
equation of telegraphy, can be derived from such a calculus of
variations problem.

When once we know the integral which is stationary in the
physical problem considered, it is possible to find certain " diver-
gence relations" and thence "conservation theorems" by means of
Lie's theory of continuous groups of transformations.* This
method is here applied to find conservation theorems in such
dissipative problems as telegraphy, viscous fluid motion and the
damped vibrations of a string.

§ 2. Let u denote some function of the two independent

variables xx and av Further denote —— by ult ——-— by wl2, and

so on. Consider the integral /, where

/=

where a., /3, y are constants. If we make I stationary by the
methods of the calculus of variations, we obtain the partial
differential equation

un = out.,.2 + ya-Uz + /3u.

* See Emmy Noetker.- Gott. Naoh. (1918), p. 238.
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This equation is of the .type which occurs in the discussion of the
damped vibrations of a string and in the theory of telegraphy.
We have here found a "least-action principle" for this type of
damped vibration. The integral / has no obvious physical inter-
pretation, but we will now shew how certain "conservation
theorems" may be derived from it.

§ 3 We will now find the infinitesimal transformation of that
continuous group of transformations which leave unaltered the
expression

(u\ -

which occurs in /. The appropriate form for this is*

where £, 17, f are functions of xx and x2 to be determined and t is a
constant which is so small that its square is neglected.

We find that the following equations have to be satisfied :—

0

fi-0.

We hence deduce that the required infinitesimal transformation is

A*i = «i; A*a = «2; AM = - £yt2 M

where Aâ  denotes Xx - xt, and so on. Here ^ and e2 are two
arbitrary constants which are so small that we neglect their
squares.

§ 4. Suppose that an integral

/=JJ...J/(<Bi, *i, ... *„, u, ttj, ua, ... uu)dx1...dxn

*See Lie: Leipz ger Berichte (1894-95), p. 322.
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admits the continuous group of transformations whose infinitesimal
transformation is

( r - 1 , 2 , ... n)

u being a function of the n independent variables SB], X2, ... xn, and

-— being denoted by ur.
dxr

Let 8M = Au-2XAer,and f = ^ - 2 — ( —
,• du r oxr \our

Then ^Iu = Z ~ , if Br = - / ^ - — K wherer = l, 2, ... w.

But ^ = 0 is the partial differential equation which &rises from
annulling the variation of the integral / . Hence the result

2 — - = 0 if u is a solution of ^ = 0, will give us certain
r OXr

conservation theorems; whose number is the number of parameters
of the group.

This theorem is proved in the paper by Emmy Noether, already
quoted. We will now apply the method to the particular equation
we are considering.

§5.

Ax, = £l

8u = - ( , « !

and 41— ~ 2e1r*'2(Mii - «.M22 - ya.?^ - fin).

Consequently we have that

2 e - e2 (M* + aw + /3w2 + yaMtt) e1 2

Then if u is a solution of the equation it,, = OM^ + ya.u2 + j8w, we

have the relation •—- + —- =0. As €1 and e2 are independent,
005, oa^
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this is equivalent to the two relations

u)} - £-{«^2K + *«S + P"2 + yo-uu,)) = 0

Hence we have

— {2M1M2 + yMM1}- (y+g—S\{ul + a.ul + (3u2 + ya.uu2)} =0...5-l

{«J + a M S i 8 t | } ^ y + ^{2aH1«9}=0 52

Integrate the first of these with respect to x1 between the limits
I and V. We have then

2MJ M2 + yuux = f y + — J {uj

Both the identities, of course, reduce to the differential equation.
We take then instead of the second identity the equation

MJ; = a.Mj2 + ya.u2 + (iu

to which it reduces.
On integrating with respect to xx from I to I', we have

[ ~l!' d r1' C1' f -
M, = -—I a-u^dXi+X ya.u2dx1+ I pudxx 5'4

J; dx2j, J, J

We shall see that this method of using the second identity possesses
a real physical interpretation.

§ (k Let us consider the damped transyerse vibrations of a
stretched string of density p at a tension of /DO3. Let the damping
force be pyx (velocity) per unit length. Further suppose that the
string is attracted to its equilibrium position by a force plra'x
(displacement) per unit length of string. The transverse displace-
ment satisfies the partial differential equation

32M l o ' i i y du

We can identify this with the equation ^ = 0 of §5, by taking

a. = =- Xi = x, %2 = t, B = k'. The conservation theorems now
c
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become
cu 3M dul1' ( d\C1' f/du

*2 j l 4 t t
)C[X 6-2

dt >
and

r3«l r d f«'l 3M , f!'y 3M P
br =TT; —-5;da!+ ^irf

dx+\ Budx 6'3

L3a;J( dt}, c2 3« J , c2 dt J r

On multiplying through equation 6-3 by />c2, we see that it is
merely the expression of the fact that the rate of change of
momentum of the string is equal to the impressed forces acting
on it. Equation 6'2 is simply the energy equation of this damped
motion. To study the equation more easily, we will suppose that
the ends of the string are fixed at x = l and x = l'. "We have then,

dE
that —7— +yi? = 0 if we denote by E the expression

and .-. E=Eoe~yt.

This quantity E is not the total energy of the system. For a force

py — per unit length cannot be derived from a potential. The
vt

other terms occurring are however the energies, kinetic and
potential, of the system excluding the damping force. We can
find an interpretation of the equation by introducing Rayleigh's
Dissipation Function.*

Denote by H the true energy of the string, i.e.

dH „ d f v , 3M

' dt

= 1 Py \ T") dx, on integrating by parts.
J ; \Ot /

* Proc. Land. Math. Soc. (1) 4 (1873).
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Hence the energy of the system is being dissipated at the rate

Py{ IT ) ^x- The quantity I \py (—) dx was called by Bayleigh

the Dissipation Function, denoted usually by F. Then —— = - IF,
ctt

a well known property of the Dissipation Function.

§ 7. The propagation of signals in a telegraph cable will next be
considered. Suppose that the cable has capacity C, self-inductance
L, resistance R, and leakage A, per unit length, where C, L, R and
A are constants. Let V be the potential and j the current at
time t at a distance x from some fixed point in the cable. Then it
can be shewn* that V and _; are connected by the relations

VJ± 7-1
dx

> . -A6-C ™ 7-2
ct

where 6 is a solution of the partial differential equation

£ - « £ + < " + *>,£+*" "3
The equation 54 give3 us that

pxJi dtJi ot J, dt J,

or, using equations 7*1 and 7*2, that

[• - i f j rv ev

*\r-ALjdx-lBjdx 7i
This is merely the appropriate form of Neumann's Law of Electro-
magnetic Induction.

From the equation 5-3, we have that

* See Rayleigh's Sound I., p. 467.
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After some transformations by means of the equations 7-l and
7-2, this becomes

^•P i(Lf+CV2)dx+ [ AV-dx+ f'22/As-[17 J 7-5

The equation 7-5 completely accounts for the energy of the
system. The term on the right hand side is the rate at which
energy is put into the cable by the external source of current. On

d f''
the left hand side, the term — I J (Lf + C V) dx is the rate at

dtjl

which the total energy resident in the cable increases. Then

I Efdx is the rate at which electrical energy is turned into heat,

f''
1 Aydx

is the rate at which energy is being lost because of the leakage due
to f iulty insulation. The equation shows how the energy put into
the cable is used up; it is the energy equation.

because of the resistance of the wire. Lastly the term

§ 8. We have already shown that, if 0 is a solution of the
. d*6

ation ---- ~
ax

theorems, viz.,

equation ---- ~ a. —5- + / — + k- 0, there are two conservation
ax ot at

ot
rdey d cvd6 , f 30 , f' . .

and —- =OL—-I —dx+ f — dx+ I led dx.
1.3* J« dt], dt ) / dt } ,

Now put a = 0. Then if 0 is a solution of the equation

Although the equation 8-1 cannot be derived from a calculus of
variations problem, we have found two conservation theorems by
this somewhat indirect method.
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§ 9. The laminar motion of a viscous incompressible fluid under
no external forces satisfies an equation of the type considered in § 8.*
Suppose that the fluid moves parallel to the axis of y with a
velocity v which is a function of x and t only. All the stress

dv
components vanish except pxt = pv —, where p is the density of the

ox
fluid, and v is Maxwell's kinematic coefficient of viscosity. Then v

d2v I dv
satisfies the partial differential equation —r- = .

dar v dt

The conservation theorem 8-2 gives us then that

\dxJ + v dt

Consequently we have

J,

The left hand side is the rate at which energy is added to the fluid
between the planes x = l and x = V. The second term on the right
hand side is the rate at which the kinetic energy of the fluid
increases, whilst the first term on that side is the rate at which
the energy is dissipated in the form of heat. The first term on the
right hand side is merely the form of Rayleigh's Dissipation
Function appropriate to this problem.f The conservation theorem
is the energy equation.

* See Lamb's Hydrodynamics (4th Edn.), p. 609.
+ See Lamb, loc. cit., p. 575,
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