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Abstract

A churning transformation can be defined on probability measures by an infinite sequence of finite
permutations of mass. Continuity and absolute continuity of measures are invariants for such
transformations but it is shown that certain probability measures whose Fourier-Stieltjes transforms
fail to vanish at infinity may be churned into measures whose transforms do vanish in this sense.

1980 Mathematics subject classification (Amer. Math. Soc.): 28 A 65, 42 A 72, 60 E 05.

1. Introduction

Suppose that p is a probability measure on the unit interval [0, 1[. Consider the
partition of [0, 1] into n equal intervals, I, = [0,1/n[, I, =[1/n,2/n(,..., I, =
[(n — 1)/n, 1[. In a great number of practical situations one is concerned with the
set of numbers {u(1, )} rather than with the sequence (u(1,));-,. It follows that
the object of interest is often not so much p itself but rather those measures which
can be derived from p by certain rearrangements of mass. Here we shall make
that statement precise and obtain some basic properties of the allowable re-
arrangements. It turns out that continuity and absolute continuity are invariants
but that the property of having a Fourier transform which vanishes at infinity
fails to be invariant even for the simplest subclass of rearrangements.
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© Copyright Australian Mathematical Society 1983

16

https://doi.org/10.1017/51446788700019716 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019716
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2. Background and definitions

Let us start with the simplest possible case which we shall call churning. Taking
the measure p on [0, 1], we divide the support into two equal intervals ([0, 1[ and
[4,1D and write p as the sum, p, + p,, of the corresponding restrictions. Now we
have a choice. Either we leave things as they are or we interchange u, and p,
(more precisely we replace p by the measure 8, ,, *p, + 8, , * p,). Having
chosen, we proceed to the next stage where the two intervals are both bisected
and in each case we may either leave the mass distribution unaltered or inter-
change the left hand restriction measure with the right hand restriction measure.
The process is continued for an infinite number of steps and a limit measure
obtained.

For modelling purposes we should use a wider class of rearrangements. At the
nth stage of an inductive process we will have described a partition of [0, 1] into
k, intervals labelled from the left as I,(k), k = 0,...,k, — 1, and a permutation
II(n)on {0,...,k, — 1}. The rearranged measure » will be characterized by

Q1) (LK) =p(L,(TI(n) '(k))), k=0,.. .k, —Lin=1,..

In fact at the first stage we choose a positive integer k, and divide [0, 1 into &,
congruent intervals. We also choose a permutation II(1) of {0,...,k, — 1}. At
stage n + 1 we take each interval I,(k), choose a positive integer j(n, k) and
divide I, (k) into j(n, k) congruent intervals J(n, k; j), j=0,...,j(n, k) — 1,
which we permute according to some permutation II(n, k) of {0,...,j(n, k) — 1}.
Now let

kn
(2.2) Kpor = 2 j(n, k).
k=1

We have obtained k,  , intervals forming a partition of [0, 1[ and a permutation
of these sending J(n, k; j) to J(n, II(n)(k); I1(n, (n)( k)X j)). Now we relabel
the intervals J(n, k; j) (for varying k and ;) from the left as I, , (k) (for
k=0,...,k,,, — 1) and we label the induced permutation of {0,...,k,,, — 1}
by I1(n + 1). This completes the inductive step.

Before discussing some simple properties of rearrangements we consider two
typical examples which motivate the definition. (Related notions are discussed in
[4]) In the first case let us take the distribution of ore in a mineral deposit.
Although the geographical disposition of the ore is important and much studied,
the most commonly available tabulated information is the frequency distribution
of ore grades. It is this passage from a “spatial” probability distribution to a
frequency distribution which corresponds to the rearrangement process.
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To see this let us suppose we have a squared grid covering the area of the
deposit and a function which assigns to each square the total quantity of ore
below that square. [In practice we may regard this quantity as being estimated by
a sample drilling whose cross-section is a small disc centred at the centre of the
square.] By normalizing we obtain a probability measure on a finite o-algebra (the
grid) and by passing to the limit over successive refinements we obtain a measure
., say, on a measurable space which can be identified with the Borel space [0, 1].
[In practice the drill cross-section sets a bound to attainable refinements.] For any
particular set of values uvcr a grid we suppose that the ore densities are divided
into bands and the frequency distribution of these bands is tabulated. In principle
this frequency distribution is derived from (the Radon-Nikodym derivative with
respect to area measure of) the restriction of u to the grid. Let us now envisage a
sequence of investigations where we have full knowledge of spatial results but
where an outside observer tries to guess p from the frequency distribution tables.
He is obliged to choose some permutation of the values of u to the first grid. With
our knowledge of the spatial configuration of the higher densities we will driil
with greater frequency in these areas, so in the second drilling some are refined
further than others. When presented with the results our outside observer makes a
new guess consistent with his first and this is what corresponds to permutations
within the squares of the previous stage. [In general the numerical data would
disclose how the values at stage two should be clumped to correspond to stage
one but this could be disguised by accidental Diophantine equations. We take no
account of such serendipity.] The process continues to the next stage and so on. It
should now be clear how this matches our definition of rearrangement.

The second example concerns income. Here we use a finite generalized decimal
.XX,...X, to encode characteristics of income earners. The first digit let us say
takes the value 0 for male and 1 for female, the second digit takes a value in say
{0,1,2,...,8} to represent a particular age band and so on. Again we pass to an
idealized limit and envisage normalized income as a probability measure p on
[0, 1] whose points are given infinite expansions .x;x,...x,.... In principle we
consider the partition of [0, 1] correspond to “decimals” of length N and use the
associated restriction of p to determine a frequency distribution for income. This
distribution would also arise from a rearrangement of p.

It was shown in [4] that relatively mild constraints on u in the above examples
ensure that the resulting frequency distributions are asymptotically lognormal as
refinements increase. The present discussion indicates that these constraints need
only apply to some rearrangement of p.

We close this section by showing that generalized decimal expansions of a sort
can be used in any rearrangement and that the rearrangement is implemented by
a map of the underlying interval. In particular this shows that each rearrangement
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does lead to a measure! As a preliminary convenience we restrict the definition of
rearrangement by demanding that all the integers &, j(k, n) are strictly greater
than one. This simply means that we really do refine at each stage and each
substage. From a modelling point of view this may seem not entirely desirable;
for example we might choose to take no more sample drillings in a particularly
unpromising region. However the only cases where this matters correspond to
intervals which remain undisturbed from some stage onwards, and we achieve the
same end result by continuing to divide but insisting on using the trivial (identity)
permutation at each stage. In other words we have not restricted the class of
rearrangements after all.

PROPOSITION 1. Let p be a (regular Borel) probability measure on [0, 1{. Every
rearrangement of . is of the form 0*(p), where 6: [0, [ — [0, 1[ is measurable and

8*(n)(E) = p(67'(E))  (E Borel).

PrOOF. The generalized decimal expansions which we consider will correspond
to the types of nested partition discussed in our definition of rearrangement. To
see what is required let us set the question of permutations on one side and
consider an arbitrary point x of [0, I[. At stage 1, x belongs to some interval, say,
I(x,) where x; € {0,...,k, — 1}. At stage 2, x belongs to, say, J(1, x;; x,) which
has another label of the form I,(k). Let us write s(x,, x,) for that particular k. At
stage n + 1, x belongs to J(n, s(x,, x,,...,X,); X,+,) which is also labelled
I (s(x, X5,...,X,5,)). Since x belongs to a unique interval at each stage this
process defines the sequences (x,), (s(x,,...,x,)). We may say that x has the
expansion .x;x,...x,.... In the special case where x, = 0 for all n = N + 1, say,
we may as well say that x has the finite expansion .x,x,...x,. Note that, in this
case, x is the left hand end-point of the interval I (s(x,,...,xy)). Thus
s(x,,...,x,) counts the number of end-points of intervals in the first n stages
which lie to the left of the end-point which has the finite expansion .x,x,...x,.

Notation so far has anticipated a reasonable interpretation as generalized
decimals. To achieve this we require a numerical description of the branching
process which determines a typical nest of partitions. In fact we should prescribe
a sequence (¢,) of maps taking values in the positive integers greater than or equal
to two. ¢, is constant and the domain of ¢, is {0,1,...,¢;, —1}. For n =1,
(xy,...,x,4,) belongs to the domain of 1, ,, if and only if (x,,...,x,) belongs to
the domainof ¢, , and x, ., € {0,...,¢,,(x,,...,x,) — 1}. Given such a family
(t,) we admit as a generalized decimal any expression .xX,...x,... in which
Xoo1 €E{0,. .t ((x),..0,x,) — 1} and x| # ¢, (x,...,x,) — | infinitely
often. There is a one-to-one correspondence between such generalized decimals
and the points of [0, 1[.
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Let us check the last assertion. Given (z,), we first define s(x,,...,x,) which
assigns to (x,,...,x,) its lexicographical order position in the domain of 7, ,.
Then we obtain all the partitions in our earlier construction by setting k, = ¢, and
Jj(n, s(xy,...,x,)) = £, (x,...,x,). It is clear from our earlier discussion that
each x in [0, 1] gives rise to an allowable expansion. (x,,; =7, (x,...,x,) — 1
eventually, is impossible since the corresponding intervals have empty intersec-
tion.) Conversely, given an allowable expansion .x;x,...x,..., we take the
intervals I,(s(x,,...,x,)), observe that we may add the right hand end-points
without affecting the intersection, and apply Cantor’s lemma to see that there is a
unique point x which belongs to them all.

Now we turn to the problem of describing the map which implements a
rearrangement. Since the rearrangement changes the branch process under con-
sideration we will describe how to map a point x with expansion .xx,...x,...
relative to a partition described by (z,), s, etcetera to a point y = §(x), whose
eXpansion is .y, y,...y,. .. relative to (z.,), s’ etcetera. The prime refers to the new
partition produced by the rearrangment. Since the interval I (k) is replaced by
the interval I, (II(n)(k)), we find that

(2.3) t o (yraeeoy) =i, I(n) s (s 0,).

((2.3) refers to an arbitrary point y with expansion .y, y,...y,...) To define 8, we
specify that

(2.4) »=1()(x), sy, = TH(n)(s(xy,....x,)).

Since s’ has been defined inductively by (2.3), it follows that, given (x,), (2.4)
defines ( y,) uniquely. It is easy to see that # maps the finite expansion .x,...x, to

the finite expansion .y,...y,, and the interval I,(s(x,,...,x,)) onto the interval
L(s'(py,...,¥,)). In view of (2.4) this last statement translates as
(2.5) 0(1,(k)) = L(II(n)(k)), k=0,...,k,— 1.

Now that € is seen to be a measurable bijection of [0, [, it is clear that
induces a map 6* of measures. Comparing (2.1) and (2.5) we see that *(p) is the
required rearrangement of pu.

3. Invariants
Now that we have seen that each rearrangement of p leads to another measure,

it is appropriate to ask which properties of a measure remain invariant under
rearrangement.
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PROPOSITION 2. Let pu be a probability measure on [0, 1{ and let v = 6*(p) be a
rearrangement of u. Then

(1) p is continuous if and only if v is continuous

(i1) p is discrete if and only if v is discrete

(iii) p is absolutely continuous with respect to Lebesgue measure
if and only if v is absolutely continuous with respect to Lebesgue measure. In fact if p
has Radon-Nikodym derivative [ with respect to Lebesgue measure, then v has
derivative f o 0.

REMARK. By way of counterpoint, it should be noted that there exist (singular)
measures i whose support is all of [0, 1], and a rearrangement #*(p) such that
8*u L . (This can occur even in the case of churning and will be justified in the
next section.)

PROOF. Let us write,

B=pg o,
where u, is the discrete component, u, the continuous component of u. It is
straightforward to see that 8* is additive. In particular

0*p = 6*u, + 0*u_.

Moreover, for the probability atom 8, concentrated at x, we have

0*8, = 8-
These remarks show that 8*u, is a discrete measure, which maps to p, under

(6~ ")*. Since 8*u, maps to p_ under (8~ ')*, we also see that #*u, can have no
discrete component. In other words

O*p, = (0*n)y, .= (6%)..
We have proved (1) and (i1).

The truth of (iii) follows from the fact that Lebesgue measure A on [0, 1] is
invariant under rearrangement. Suppose in fact that p is absolutely continuous
with respect to A and that f is the derivative. Then

dgx _ dox ~fod,
d\  doy

REMARK. It is possible to formulate the previous result in terms of L-homomor-
phism. An L-homomorphism ®: M(R) — M(R) (where M(R) denotes the regular
bounded Borel measures on R) is a positive linear map which is norm-preserving
on positive measures and has the property that, given 0 < w < @y, there exists
v = 0 such that §» = w. 8* is an L-homomorphism under which A is invariant and
which preserves the L-spaces m (R), M,(R), L'(R). We shall see that §* does not
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preserve the L-space My(R) of measures whose transforms vanish at infinity. (A
closed linear subspace N of M(R) is an L-space if p € N, » < p implies » € N.)

4. Churning and coin tossing

With the main object of discussing the effect of rearrangment of the Fourier
transform we now focus attention on a special class of rearrangements, those
coming from churning; and a special class of measures, those coming from
coin-tossing. [Since the object is to exhibit properties which are not preserved we
should specialize as much as possible.]

The infinite convolution

e o7
(4.1) p=* [pd o+ g8 ]
n=1

where p, +4,=1, p,, q,>0, can be thought of as distributing mass over
[ — 1, 1] in the following way. At the first stage total mass p, is assigned to the left
hand interval [ — 1,0[ and mass q, is assigned to the right hand interval [0, 1[. At
the next stage the mass p, is distributed between the sub-intervals [ — 1, — 3|,

— 3,0[ in the proportion p, to g, and the mass g, is redistributed left to right
between [0, 3[ and {3, 1[ in the same proportion p, to ¢,. Thus the four intervals at
stage two have been assigned masses p, p,, P42, 4, P2- 4,9, reading from the left.
By continuing in this way we eventually obtain the measure p. [We may make the
link with coin-tossing by thinking of p as the distribution of a numerical random
variable whose binary digits have been determined by independent tosses of a
sequence of biassed coins.] It is clear that churning will take us outside the class
of measures described by (4.1). For example at stage two we might have p,q,,
P1 P 4, P3» 414, and this cannot arise from a convolution. Churning itself is more
special than binary rearrangements, for example, p, p,, 4, P2, P1492> 4,9, cannot be
achieved by churning. (It is assumed that we start from the first two terms in the
product defined in (4.1).)

The measure corresponding to that given by (4.1) but with p,, g, interchanged
for all n is obtained by churning. In fact the new measure is of the form §*p for
8(x) = —x. In the case that

S (4=p) = o,
it is easy to see, using standard results for sums of independent random variables,
that p 1s singular to Lebesgue measure and that 8*p is singular to p.
The main result of [1] is that &~ vanishes at infinity if and only if 3 — p, tends
to zero. A simpler argument appears as a remark in [2] and the result is
generalized by the first part of Theorem 2 of [3].
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It is necessary to establish some notation for further work. We shall be
concerned with the class of all measures obtained by churning from a given
measure of coin-tossing type. To this end we fix a sequence (a,);., of real
numbers such that 0 < a, < 1. For each positive integer n, we let

W, = { > ej27f:£j= il}.
j=1

oC

Each measure in the class will correspond to a sequence (¢,).-, of maps
¢,: W, — {—1,1}. [Take W, = {0}.] In fact let us write, for w € W,

o,(w) = %(1 + ¢n(°’)°‘n+1)8—2‘"*‘ + %(1 - ¢n(w)an+1)32*""‘
Define
= 0p(0) = (1 + 4’0(0)0‘1)8—1/2 +3(1 - ¢0(0)a1)81/2,
andifp, = 2 oy m,(w)§, define

Bpy1 = 2 mn(w)(aw*on(w)): E m, ., (w)8,,

wEW, WwEW,
and
p= lim p,.
n—oc

[By taking p, = 3(1 + a,,), ¢,(w) = 1, we obtain the measure p of (4.1).]

LEMMA 1.

n—1

mn(‘*’) = H %(1 - ¢k(w(k))€k+lak+l)’
k=0

where
k
W = 2 SJ.Z*/, @ =0.
j=1

In the special case when ¢, = 1, we find that

{p'(a)fs{p;(e)fs}j} {cosz(_"f_j) + a,zlﬂfjsinz( 70 )}

2 PA

for all k < n. (Here p (6) = [exp(2wifx)dp(x).)
Let us restrict attention to measures for which it is possible to derive an
inequality

k
W (x27)|< C ] F(21x, an_j), all k < n, when |x|< 2.
Jj=1
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Such a measure will be called admissible if the following technical condition is
satisfied: if (g(n)) is an increasing sequence of positive integers, ¢ is strictly
positive, and, for all positive integers N,

N
limsup [] F(2’x, aq(n),j) =g,
n j=1
then 2/x tends to 0 modulo one asj - .

LEMMA 2. Let F(6, a)*> = max{cos’(2m8) + o sin’(278), sin*(276) +
a’ cos*(2m8)}, and suppose that lim sup «, << 1. Then p is admissible.

LEMMA 3. Let F(0, a)=max{|cos2nf| +a|sin278|,|sin270| +a|cos2nl|}
and suppose that a, — 0 for n lying outside a fixed set X = {x,} such that
Xpiy — X, — 00 as k — oo. Then p is admissible.

LEMMA 4. Suppose that p is admissible and that p” does not vanish at infinity.
Then there exist an odd integer K, a sequence of real numbers (k,), and a sequence
of positive integers ( p(n)) such that | yA(k,,Z”(")) | is bounded away from zero and
k,— K.

PROOF. Suppose that 1~ does not tend to zero at infinity. Then there is some
e > 0 and a sequence ( y,,) of real numbers, such that | y,}— oc and

W O)|=e, n=12,....

Since we might replace K by —K, there is no essential loss of generality in
supposing that y, > 2, y, — + co. With this done, let us write

yn = xnzq(n)’

where 1 <x, <2, and ¢, is a positive integer. Some subsequence of (x,)
converges to a number x in {1, 2]. Let us pass to this subsequence.
For (large) N and ¢g(n) > N, we see that

N
[ H F(xnzr, aq(n)*r)'

r=1

Letting n — oo in the last inequality we find

N
e <limsup [] F(x2", aq(,,),,).

r=1
At this stage we free N to see that

cos(2mx2") -1 asr — o0
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and hence that x is a dyadic rational of the form x = K2/, where K is an odd
integer, / is a nonnegative integer. Let us now define k, = 2'x, p(n) = g(n) — |
(restarting the sequence at some suitable n, > 1 if necessary) to obtain the stated
result.

PROPOSITION 3. If a,, — O then p € M,,.

PROOF. Let ( p(n)), (k,), and K be as in Lemma 4. In view of that lemma there
exists some positive & such that

W (k,2r) =282, n=1,2,...

and, for each n, an integer m(n) which may be chosen greater than p(n), such
that

(":n(m(knzp("))lz > ¢, n=12,...,
while
Klaj|<£, j>p(n).

Now use the fact that

|I‘:x+k()’)| Sl:u‘:z+k—l(y)l + "n+k|J’|2vnik

to estimate u:,,(,,)(KZP"')) in terms of “;(")H(sz(n))'

5. Fourier transforms

In this section we consider a specific way of assigning a measure p to a
sequence (e, ). It will turn out that the Fourier-Stieltjes transform of p vanishes at
infinity provided «a, tends to zero on the complement of a set which satisfies a
weak condition of lacunarity. Since the canonical coin-tossing distribution associ-
ated with (a,) belongs to M, only if («,) is a null sequence this will show that
membership of M, 15 not stable under churning.

Let us fix the choice of p from now on. The most direct prescription of u is as
the vague limit of the measures p, given by
(5.1) po= 2 my(w)d,,

wE W,

n—1

(5.2) m(w) = 3(1 = a8 18- -8),
k=0
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where the typical element of W, is of the form w = Z7_, ¢,27%, withe, = = 1. It
is a simple exercise to check that (5.1) and (5.2) are equivalent to the following
condition

(5.3) do(1) =1, by 1(@) = ¢ ()e,

in which we have used the notation of the last section. Noting that (5.2) implies
(5.3) corresponds to verifying that u belongs to the class of measures obtained by
churning from the canonical coin-tossing measure for which m,(w) equals
M7iZo3(1 — @y &ery):

It is also possible to describe the progressive construction of p and the manner
in which it differs from classical “Cantor-like” constructions. In fact each
sub-interval at the kth stage may be “lucky” (being apportioned the fraction
3(1 + a,) of the available mass) or “unlucky”(receiving the residual 3(1 — a,)).
Lucky intervals are subdivided in two so that the left hand sub-interval of the
next stage is unlucky and the right hand sub-interval at that stage is lucky. The
corresponding statement with “lucky” and “unlucky” interchanged is also true.
In a coin-tossing measure, throughout any one stage one hand is always unlucky
(whether this is the right hand or the left hand may vary from stage to stage).

We require some calculations concerning the transform of u and will make free
use of the notation of the previous section.

LEMMA 5. Suppose that (5.3) holds and let v, be the measure ¢, - n, (whose
Radon-Nikodym derivative with respect to u,, is ¢,). Then

(i) oy (8) = cos(2 "mO), (0) — ia, ., sin(2 "w6)p, (8),

(i) v,, (8) = sinQ " "78)iv, (8) — «,, , cos(2 ™ "mO)p,(0).

PRrROOF.

ai(8) = 3 m(«)(8,*0,(w)) (6)

wEeEW,

> m, (w)exp(2mifw)cos(2"n8)

wEW,

—i 2 m,(w)9,(w)exp(27ifw)a, sin(2""70)

wE W,
= cos(m82 ") (8) — ia,, sin(2 "70)y, (6).
Vn.+l = 2 mn+|(w)¢n+l(w)6w

wEW, .

2 mn(w(n),)%(l _¢n(w(n))en:|arl+l)¢n+l(w)6w'

weEW, .

I
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Therefore we can apply (5.3) to find

Vat = 2 %mn(w(n))(~an+l)8w
wEW,
+ 2 %mn(w(n))¢n(w("))en+l(w)sw'
wE W,y

The first term in the previous sum equals

(b o T ome)o s e 3 me)d]

wEW, dwe W,
= _1
= =2(8ynr 8y 0) % ity

The other term in the sum for v, | can be simplified as
T8yt — 8 _5-n-1) % v,
It follows that
e (8) = —cos(27" 7). iy (8) + isin(2 "m0y (0).

LEMMA 6. Suppose that (5.3) holds and that 8, = 2"u,,, where u, € [—u. u] for
some u >0 and u, tends to an odd integer K as n tends to infinity. Suppose that
1 > 0. Then there is a positive integer N(n) such that, for all n = N(n),

() max(| g (8| |7, (8) ) < (0 + @,y )C, j =2,

(ii) | 3 ,(6,) |< 1 + 2mumax{le,, | 1 u = 2.. --,J} j=

(111)|u,,+j+s(0)| <27ru2_f+|p.n+j(0)| 21,2,....

PrROOF. Applying Lemma 5, we see that
“‘::+2(0n) = COS(W/zun)""‘:l+l(0n) - ian+l Sin(w/zun)vr:le(an)

and hence that

|H:.+2 m/2u,)| + an+2|V:1+2(0n)|‘
However
vyi1(6,) = —cos(mu, e, 1p,(6,) + isin(mu,),(6,)
so
(5.4) [v, ()| <|sin7u,| + a,,,

Let us choose N(7) such that |cos(w/2u,)| and |sin(7u,)| are less than 17,
then, for n = N(7),

(5.5)

IJ‘:H'Z(gn)‘ < %n + an+2(an+l + %n) = &, 18,40 + n.
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Also

b2(8,) = —cos(m/2u, e, o i(8,) + isin(m/2u,)v,,, (6,)
so that

|Vn+2(0 )l <|cos('n'/2u )l +| +1(0 )|

<|cos7/2u,| +|sinmu,| + a,,,

where the last step used (5.4).
This gives, for n = N(7),

(5.6) lVr:+2(0n)| snta,.

Observe that (5.5) and (5.6) establish the special case of (i) corresponding to
J = 2. The triangle inequality applied to the formulae of Lemma 5 gives
,;(0n)|)(|cos 8,2 "a| +|sin 6,27 "n|),
v(8,)])(|cos 8,2~ "n| +sin 6,27 "n]),

max(

([um

and the general case of (i) now yields to a simple inductive argument.
We turn to (ii) and use the previous lemma once more to see that, for j = 3,

|s1n 27u,2 f|

,““nJrj n+j

—=J
na2mU2™,

= ”‘n-#—j*l

If j = 4 this does not exceed

+ a,, 27u2 7 + a, . 2mu2!

and, in any case, forj = 2

weus 4 =3,...}

Tu=3,...},

ntu*

:u‘n+j
<9 + 27umax{a

provided #n = N(7). The last step is valid because we used (5.5).
To prove (ii1) we note that

Bpyjvs

and iteration gives

277+ +2771]

}nu'n+j+: lu‘n+1

+ 2qu2 .

=
= ,’I‘n+j
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THEOREM. Let X = {x,: n = 1,2,...} be a subset of N such that x,,, , — x,, = o0
as n — oo. Suppose that «, » 0 as n — oo on N\ X and that im sup «,, < 1. If p is
associated with (a,,) according to (5.1), (5.2) then p vanishes at infinity.

PrOOF. We argue by contradiction, so assume ,uA does not vanish at infinity. In
view of Lemma 4 there exists some ¢ > 0, an odd integer K, a sequence (k)
converging to K and a sequence ( p(n)) of positive integers such that

(5.7) p (k,270)| = 4eC.

We shall apply Lemma 6 with p(n) in place of n and u,,, = k,. In particular we
fix a positive number u such that | k, | is bounded by u, and we take n = &. Now
we choose N such that the conclusions of Lemma 6 hold for 6, ., (= k& 2P,
and such that

(5.8) x,x' = p(N); x,x' € X =|x — x| > 1+ log,(7mu/e)
and
o, <e/2mu, forallj=p(N),j € N\X.
If p(N) + 1 does not belong to X, then, forj =2, ...,
(5.10) € e 27} <1+ s, < 2.

by (i) of Lemma 6. Of course (5.10) contradicts (5.7). It remains to consider the
case where p(N) + 1 does belong to X. By our choice of N (as specified in (5.8))
we have that P(N) + 2, p(N) + 3,...,p(N) + j belong to the complement of X
for some j with 27127/ less than &. According to (ii) of Lemma 6, and (5.9)

p.;,(NHj(kNﬂ’(N))‘ <e+ Qmu)[e/2nu] = 2e,

and by (iii) of Lemma 6
l“"';(N)+j+s(kN2p(N))‘<357 s=1,2,....

For large s, we obtain a contradiction to (5.7), and this completes the proof.

The previous result shows that membership of M, is not stable under churning.
Choose, for example, a, =3 on X. Then the canonical coin-tossing measure
associated with (a,,) does not belong toM,. (Simply estimate the transform on the
sequence (2").) Nevertheless we are able to churn that measure to obtain a
member of M,, provided a, — 0 on N\ X,
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