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ON PERMUTATION GROUPS WITH
REGULAR SUBGROUP

BY
R. D. BERCOV

I. Introduction. W. Burnside [3, p. 343] showed that a cyclic group of order
p™ (p prime, m>1) cannot occur as a regular subgroup of a simply transitive
primitive group. (For definitions and notation see [9].) Groups which are contained
regularly in a primitive group G only when G is doubly transitive are therefore
called B-groups [9, p. 64]. Burnside [3, p. 343] conjectured that every abelian group
is a B-group. A class of counterexamples which can be deduced from a 1906 paper
of W. A. Manning [6] was given in 1936 by D. Manning [5] and generalized by
H. Wielandt [9, p. 67]. The Burnside conjecture has been partially restored by I.
Schur [7], H. Wielandt [8], R. Kochendorffer [4], and R. Bercov [1] by means of a
method of Schur which associates with a group G with regular subgroup H a sub-
ring of the group ring of H, now called a Schur ring, which characterizes the action
of the stabilizer in G of a point and hence the action of G on pairs of points. In [2]
it is shown (apart from a minor exception associated with exponent 4) that if H is
an abelian group which is not the direct product of two subgroups of the same
exponent, then either H is a B-group or it is in the Wielandt class of counter-
examples. It is the purpose of this note to generalize the Wielandt class of simply
transitive group G (using the same regular subgroups H) and to compute the
associated Schur-rings. We conjecture that we obtain in this way every non-trivial
primitive Schur-ring (for definitions see [9]) over an abelian H which satisfies the
hypothesis of [2]. This would mean that any simply transitive primitive group with
such a regular subgroup H must move pairs of points in the same way as one of the
group given here.

II. The construction. For d>2, let H;, ..., H; be groups of the same order
a>3, and let T be a transitive group on {1, ..., d}.

Let @ be a set of size ad partitioned into subsets @;, j=1,...,d, with ®,=
{@;]i=1,...,a}

Denote by S; the symmetric group on ®; regarded as acting trivially on the ®@;
with i5#j, and let S} be the stabilizer in S; of @,;. Put S=(S; |j=1,...,d) and
S*=(S7 |j=1,...,4d).

We regard H; as a subgroup of S; by letting H; act regularly on ®; and trivially
on the ®,, i5%j, and let T act on @ by permuting the @;; (D§j=(I>ﬁ¢.

We see easily that 7'normalizes both S and S*, and we put G=ST and G*=S*T.

Setting A={®,; |j=1, ...,d} and Q={A® | x € G} we have that G* is the
stabilizer of A as a set and that the action of G on Q is therefore equivalent to the
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action of G on the cosets of G*. This action yields the desired permutation group.
The proof that we give below was given by Wielandt [9] with T the symmetric

group.
THEOREM G acts faithfully and primitively on Q but not two-transitively.

acts regularly on Q.

Proof. Since every element of G permutes the ®; and A contains one element
from each ®;, we have for any x € G that |A* N @,|=1 for j=1, ..., d. Since H;
acts regularly on @; and trivially on the other ®; we have that  consists of all
subsets of @ which meet each ®; in a singleton. Clearly there is a unique € H
taking A to each such set and H therefore acts regularly.

Since every singleton from ® is the intersection of two appropriately chosen sets
in Q, the kernel of the action of G on {2 must act trivially on @, and the action of
G on Q is therefore faithful.

Primitivity follows from the maximality of G*. For x=st€ G—G*, s€S,
teT, we have s € S—S* and therefore ®j;#®,; for some j. Then (G*, x)>
(S¥, (S¥)*)t=S] for all t € T and since T is transitive we have (G*, x)>ST=G.

Finally we see that G has order (a!)?|T|, G* has order ((a—1)!)?|T| and for
h € Hy, the stabilizer G** of A and A” has order (a—2)![(a—1)!]** |T}| where T}
is the stabilizer of @, in T. Thus G cannot act two-transitively, since the index of
G** in G* is (a—1)d which is not equal to [Q|—1=a—1.

ITI. The Schur-rings. To find the orbits of G* on Q we remark that since G*
contains S*, for any I';, I', € Q, I'; — A can be taken to I';—A by an element of s
of G* which fixes A pointwise. The points of I'; N A can be taken to the points of
I’y N A within G* only by an element of 7. Moreover if ¢ € T takes I'; N A to
I'; N At is easy to see that s € S* can be chosen so that st takes I'; to I';. Thus if
for h=1I{_, h;, we put o(h)={j| h;#1} we have

LEMMA For h, k € H, A* and A® are in the same G*-orbit if and only if o(h)'=
a(k) for some t € T.

Since A and k are in the same basis element of the Schur-ring if and only if A?
and A* are in the same G* orbit, this means that the Schur-ring of G has as its
basis the sets

U IT #

teT iel®

where H¥ =H;—1 and I'is a fixed subset of 1, . .., d.

ExaMPLE: For d=4 there are five choices for T, namely 7;=((12)(34), (13)(24)),
T,=((1234)), T3=(Ty, T,), Ty=A,, Ty=S;. If G, is the group on Q2 obtained by the
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above construction with T=T; we have for all i that the Schur-ring of G, has basis
sets

Hf UH{ VHY UH?, HYHIH? U HYHIH? U HFHZH? U HEHPHY,
and HYHFHFHY.

However the basis sets of length two are different.
For G, we have three more basis sets namely

H{HY U HfH}, HIHE U HEHE,
and
H?H? U HYHY.
For G, and G, we have HYHf U HYHY U HYHf U HYHF and HfHY U
HfHY. For G, and G; we have only HYH} U HfHf U HfH} U HfH} U
HfHY U HfHY.

IV. Conclusion. It can be shown in general under the hypotheses of [2] that all
elements of H of length 1, d—1, and d correspond to the same G*-orbit. It can also
be verified by direct computation that for d<7 and H as in [2], every non-
trivial primitive Schur-ring over H has a basis of the above type for some T. This
means that for <7 every simply transitive primitive group with suchan Hasregular
subgroup moves pairs of points in the same way as one of the groups constructed
here. We conjecture that this is the case for all d. A counterexample would be of
degree a® where a and d are at least eight and hence would permute more than sixteen
million points.
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