
Can. J. Math., Vol. XXI I , No. 5, 1970, pp. 1055-1070 

GENTLE PERTURBATIONS OF * -f WITH APPLICATION 
ax 

d2 

N. A. DERZKO 

Introduction. The theory of gentle perturbations was introduced by 
Friedrichs [3] as a tool to study the perturbation theory of the absolutely 
continuous spectrum of a self-adjoint operator H0 and developed in an abstract 
form by Rejto [7; 8]. Two examples of gentle structures are well knowTn. In 
the first of these, the gentle operators have Holder continuous complex or 
operator-valued kernels, and in the second, the kernels are Fourier transforms 
of L1 functions [4]. 

The gentle structure has traditionally been verified in the case when H0 is 
in its spectral representation, that is, when H0 is the simple differentiation 
operator. This is not the natural setting for the second example mentioned 
above where one should consider the simple differentiation operator in a 
suitable L2-space and perturbations with Li kernels. This point of view also 
has the advantage of yielding the necessary estimates easily. 

We present a development of the theory in this setting in our paper, studying 
unitary equivalence of the perturbed and unperturbed operators as well as 
the existence of the scattering operator. We then derive an explicit representa­
tion of —d2/dx2 on 1/2(0, oo ) as a simple differentiation operator on a suitable 
i72-space and apply the gentle perturbation theory to potentials satisfying 
suitable smoothness and growth conditions. 

Notation. In this paper £% will denote the real numbers, 3%+ the non-
negative real numbers, and C the complex numbers. Let N be a complex 
Hilbert space with inner product (•,•) and norm |- | . We define the space 
LP(&,N) to consist of all measurable functions from the real line into N 
for which 

I\f(pc)\*dx<co. 

Whenever the space N is evident from the context we shall write simply Lp. 
It can be easily seen that Lp(&, N) is a Banach space whose dual space is 
LQ(0l, N) where 1/p + 1/q = 1. 

In particular, it is well known that L2(S$, N) is a Hilbert space. We shall 
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denote this space by ffl and its inner product and norm by ( •, • ) and || • ||, 
respectively. 

In writing integrals we shall use a single integral sign except in the case of 
iterated integrals and leave the dimension of the integral to be deduced from 
the domain of integration or the differential element. The range of integration 
will be omitted if it extends over the whole space under consideration. 

If X is any Hilbert space, we shall let & ÇK) denote the space of bounded 
operators from X into itself with the operator norm topology. The operator 
norm in & (N) will be denoted by | • |. 

The gentle perturbation theory. We begin by stating the main theorem. 

THEOREM 1. Let A be the unique self-adjoint extension of i d/dx in 
^ = L2(^?,N) and suppose that K G Li(^?2, J*(N)) has the property that 
Kf, defined by 

Kf(x) = JK(x,y)f(y)dy, 

maps Lœ(0H,N) P i L i ( ^ , N ) into Jtf. Then if \K\i < 1, there exists a pro­
jection P which commutes with A + K such that (A + K)P is unitarily equiv­
alent to A. If \K\i < | , then we can conclude that P = I. 

The proof of this theorem is algebraic after a certain structure has been 
established and appears at the end. The structure, devised by Friedrichs [3] 
and Rejto [7] is known as a Gentle System, and is developed in the definitions 
and lemmas which follow. 

Let B be the set of measurable =^(N)-valued functions on =̂ ?2 for which 

\R\x = j \R(x,y)\dxdy < oo. 

It is well known that (B, | • |i) is a Banach space. 
It is evident that for R G B, \R(x, y)\ will be integrable along lines of the 

form x — y = c for almost every c. This implies that the integral 
Jo R(x -\- u,y -\- u) du will exist for almost every pair (x, y) and yield a 
measurable ^(N)-valued function of (x, y). Hence, we can define a mapping 
T from (B, |- | i) into the set of measurable ^(N)-valued functions on 3%2 

as follows: 

(1) TR(x, y) = — i I R(x + u,y + u) du. 
•Jo 

Since, for a n y / G Lœ(0H, N), we have 

(2) | j R{x, y)f(y) dy\ ^ J \R(x, y)f(y)\ dy 

è j \R(x, y)\ | / (y) | dy S \\f\\J \R(x, y)\ dy, 

it is clear that R can be treated as the kernel of an integral operator mapping 
Lœ(&, N) into L i ( ^ , N). Now suppose that / G L œ ( ^ \ N) and g = (TR)f. 
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Then 

(3) \g(x)| g Jdy£du\R(x + u,y + u)\ \f (y)| 

- J dy X du\R(* + «. y + «)111/11» 

è \R\i\\f\L-
It follows that TR is the kernel of a bounded operator mapping Lœ(&, N) 
into itself. By a similar inequality we can show that TR is also the kernel of a 
bounded operator mapping L\{S%, N) into itself. 

I t follows from a generalization of the Riesz convexity theorem [1, Part I, 
p. 536, problem 39] that TR is the kernel of a bounded operator mapping 
L2(&, N) into itself with norm not exceeding \R\\. That is, 

(4) \\TR\U,2£ \R\i. 

If we have two ^(N)-valued functions F(x,y) and G{y,z) we shall use 
(FG) (x, z) to denote the product of F and G considered as kernels of operators 
and defined by: 

(FG)(x,z) =JF(x,y)G(yiz)dy 

whenever this integral exists. 
In particular, if C,D £ B, we prove below in Lemma 1 that C(TD) and 

(TC)D exist almost everywhere and belong to B. Furthermore, (TC)(TD) 
exists almost everywhere as shown by the following argument. 

Suppose — co < a < 13 < co. Since 

J dxidzjdy\TC(x,y)\\TD(y,z)\ 

^ I dx I dz I dy I du I dv\C(x + u, y + u)\ \D(y + v, z + y) 

= | 0 - a | |C | i |Z? | i<oo , 

it follows that [(TC)(TD)](x, z) exists for almost every pair (x, 2). 

LEMMA 1. Whenever C and D belong to B we have 

(5) |C(rZ>)|! ^ |C|i|Z>|i and \{TC)D\X S \C\X\D\L 

Proof. Certainly 

\C(TD)(x, z)\ ^ j dyj du\C(x, y)\ \D{y + u, z + u)\. 

If we now integrate this inequality over x and z, and make the change of 
variables 

z' = z + uf u' = y + u, 
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a suitable change in the order of integration yields 

\C(rD)\i£fdxfdy\C(x,y)\ |P|X = |C|i |P|i 

which is the first inequality. The second is proved similarly. 

The identity proved in the following lemma is basic for the theory. 

LEMMA 2. Whenever C, D G B we have 

[ ( rO( r i> ) ] (* f s) = [T{C(TD) + (TC)D}](x,z) 

for almost every pair (x, z). 

Proof. From the definitions we have 

J«oo /» nco 

du\dy dvC(x + u,y)D(y + v,z + u + v). 
o «/ «/o 

We make the following variable changes: 
X + U\ = X + U, 

yi + ui = y, 

yi + vi = y + v, 

Z-\-Vi = Z + U + V, 

that is 

U\ — u, Vi = u + v, yi = y — u. 

The old region {u *z 0, v ^ 0} maps into ( « î è O ^ i - M i ^ O ) , which we 
denote by T\. The right side of (6) then becomes 

(6') — J duidvidyx C(x + uu yx + Ui)D(yi + vhz + vi). 

In a similar fashion we can show that 

(7) [r{(rC)D}](*,*) = - I duxdvxdyiCix + uuyx + u^Diyt + vuz + V!), 

where T2 = { (wi, Ï>I): Wi ^ 0, ^i — V\ ^ 0}. I t is clear that T± and T2 intersect 
in the line U\ — Vi and have the first quadrant as their union. 

Combining (6') and (7) we obtain 

du dv \dyC(x + u,y + u)D(y + v,z + v) 

= [(TC)(TD)(x,z)} 

which completes the proof of the lemma. 

We complete our discussion of (B, | -|i) and T with the following straight­
forward result. 
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LEMMA 3. Given K £ B with \K\i < 1, there exists a unique R 6 B such that 
R = K + K(TR). 

Proof. We solve the equation by iteration, defining 

R0 = Ky Rn+1 = K + K(TRn), n ^ 0. 

Clearly Rn £ B for all n ^ 0 and Rn+1 - Rn = KT(Rn- i?n_i). 
By Lemma 1, 

\Rn+l — Rn\i ^ | ^ | l | ^ r c — Rn-l\i 

^ I2JVI2Î! - Je0|i. 

I t follows then that i?0 + C^i — i^o) + (i?2 — Ri) + . . . is dominated in 
norm by the convergent series 

l*o | l+ E IXllI*! - #0|l 
n 

and therefore l im^^ Rn = R exists. By taking the limit as w-^oo in 
Rn+1 = K + K(TRn) we deduce R = K + K(TR). R is unique since if there 
were two solutions Ri and R2 we would have Ri — R2 = K[T(Ri — R2)], 
from which \Ri — R2\i < \Ri — R2\u implying Rx — R2 = 0. 

We now proceed to a study of the behaviour of elements of B and TB as 
kernels of operators in Jtif. Let Lœ°(&,N) denote the linear manifold of 
bounded N-valued functions with compact support on the real line. Given 
R 6 B, a n d / G Lœ°, we shall consider an operator U in J4? given by 

(8) Ufix) = fix) + J TR(x, t)f(t) dt. 

Although U as defined by (8) has domain Lœ°(&, N), it can be extended as a 
bounded operator to all of <#? because of (4). When we refer to U we shall 
mean this extension. 

Let R*(x, y) = R(y, x) denote the adjoint kernel of R. 

LEMMA 4. If we assume that R £ B satisfies 

TR(x,y) — TR*(x,y) = [(TR*)(TR)](x,y) for almost every pair (x,y), 

then U is isometric as an operator in L2. 

Proof. Let / and g be bounded and of compact support. Then Uf, Ug € L2 

and, using (8), 

(9) (Uf, Ug) = / dx{f(x) J{x) + (f TR(x, y)f(y) dy) J&j 

+ f(x) / TR(pc,z) J&dz+if TRix, y)f(y) dy) if TRix,z) gjz) dz)}. 

It is a simple matter to check that all the terms in (9) are absolutely 
integrable so that orders of integration can be interchanged at will. Making 
use of this fact, we find that after a suitable change of variables the last three 
terms in (9) add up to zero by virtue of our hypothesis. That is 

(10) (Uf,Ug) = ( / ,*)• 
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Since U is bounded and i œ ° is dense in Jtf, this relation holds on all of J4f. 
The proof is complete. 

Remark. It is evident that if |J?|i < 1, then TR is a contraction and there­
fore U = I + TR must have full range. This implies, of course, that U is 
unitary. 

In case R = K + K(TR) and |i£|i < \, we have 

|2?|i^ \KU+ \KU\RU 

< \ + i\R\i 

so that \R\i < 1 and U is unitary. 

We complete our study of U with the following lemma. 

LEMMA 5. The hypotheses of Lemma 4 are satisfied if R is a solution of 
R = K + K(TR) and K is formally self-adjoint, i.e. K = K*. 

Proof. By Lemma 2, 

TR - TR* - (TR*)(TR) = TR - TR* - T{R*(TR) + (TR*)R} 

= T{(I - TR*)R - R*(I + TR)}. 

Now R = K + K(TR) implies 

R* = K* - (TR*)K* = (I - TR*)K, 

from which (I - TR*)R = R*(I + TR), completing the proof. 

The next lemma establishes the link between the gentle structure and the 
operator A. As is customary, CV(^>N) denotes the set of continuously 
difïerentiable functions of compact support on the real line. 

LEMMA 6. 7/ / 6 C<}{0%, N) and Rf e Jtf, then (TR)f £ @(A), and 
(TR)Af-A(TR)f = Rf. 

Proof. Since / ' is both bounded and integrable, it follows that 
(TR)Af G i i H Lœ also and therefore (TR)Af £ i 2 . 

We now consider the second term. Again we have 

/ G ii n iœ =» (I\R)/ e ii n Lœ c L2. 

In order to justify integration by parts in the formula 

(11) (TRf)(x) = jdyy Jo°° ( - * # ( * + u, y + u)) du)f(y), 

we fix a value of x and let 

drj I {-iR{x + u, r] + #)) 
-oo «^0 

d«. 
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Clearly, \G(y)\ ^ |i?|i and if [c, d] is any interval, then 

\G(d) - G(c)\ S I drj | \R(pc + u,ri + u)\ du. 

Consequently we have the estimate 

\G(d)f(d) -G(c)f(c)\ ^ \G{d) -G(c)\ \f(d)\ + \G(c)\ \f(d) -f(c)\ 

^ \Kd)\Jc dyj^\R(x + u,y + u)\du+1^1^) -f(c)\. 

Since / is assumed strongly continuously differentiable, it follows easily from 
this estimate that G(y)f(y) is of strongly bounded variation and weakly 
absolutely continuous [5, Definitions 3.2.4 and 3.6.2]. 

From [5, p. 88, Corollary 2] we conclude that 

J»oo 

(—iR(x + u,y + u)) du for almost every x 
o 

with convergence in the |-|-norm (^(N)-norm). Consequently, G(y)f(y) is 
strongly differentiate in the N-norm with derivative 

G'(y)f(y) + G(y)f'(y). 

It is easy to see that each term above is Bochner integrable. Consequently, 
using [5, Theorem 3.86], and choosing (c, d) to contain the support of/, we 
conclude that 

0 = fc Ty
 [G<y)f(y)l dy = Jc &(y)f(y) dy + J* G(y)f(y) *y. 

This is the required integration by parts formula. Using it, we deduce from 
(11) that 

(TRf)(x) = jdyij drjj iR(x + u,rj + u) du)f'(y). 

This has been preparatory to showing that (TRf)(x) is differentiate (abso­
lutely continuous) and that its derivative is square integrable. 

It follows from [5, Theorem 3.7.12] that if the ^(N)-valued function 
F(x, y) is strongly absolutely continuous and differentiate for almost every 
pair (x, y) and (dF/dx) (x, y) is locally Bochner integrable with respect to 
dx dy, then J F{x, y) dy is strongly absolutely continuous with respect to x and 

d_ 
dx 

J F{x, y) dy = J — (x, y) dy. 

Our problem then boils down to showing that 

I drjl I iR(x + u,r) + u) du)f(y) 
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is an absolutely continuous function of x and that its derivative with respect 
to x is integrable over every bounded square. 

Clearly it suffices to show these properties for 

dr] I iR(x + u, r) + u) du 
-oo ^ 0 

"sx,y 

where SXiV is the union of the regions 

Si = {(£, v): v ^ y,t ^ x - y + 7j} 
and 

S2= {&ri):ri£y,l;^x}. 

Since j S x t V = Jsi + fs*, 

d% iR(£ + u,y + u)du+ d$ \ iLR(f, 17) drj. 
x J 0 J z «J-co 

It is obvious that the above function is absolutely continuous with respect to 
x and that the derivative is 

J»oo nv 

iR(x + u, y + u) du — I iR(x, rj) drj for almost every pair (x, y). 
0 *J— 00 

We conclude that 
r /»v r»œ ~| 
I l drj I {—iR(x + UjTj + u)) du \f(y) 

is absolutely continuous and has derivative 

r r°° cv ~\ 
J iR(x-\~ u, y + u) du + I ii?(x, 77) drç lf'(;y). 

I t is easy to see that this expression is locally integrable with respect to dx dy 
because f'(t) is bounded and R has integrable norm. 

It follows therefore that 

(TR)f(x) = Jdyy Jo°° ( -*R(* + u,y + u)) dujf(y) 

is square integrable and absolutely continuous with derivative 

fdyyf (-iR(x + u,y + u))du + JV (-iR(x,v)) drjjfiy). 

We have already shown that 

Sdy\ Jo t-iR{?° + u>y + u)) du)f(y) 
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is square integrable and by assumption J R(x, y)f(y) dy is square integrable. 
We note that 

jdy{J\-iR(x,v))dvy(y) 
is norm bounded for almost every x and integrable. Hence we can integrate 
this expression by parts to obtain 

/ iR(x, y)f(y) dy for almost every x. 

Finally we combine these facts to deduce that (YRf)(x) is square integrable 
and that 

(TR)Af(s) - A(TR)f(s) = * / (-iR(x,y)f(y)) dy = / R(x,y)f(y) dy, 

completing the proof of the lemma. 

In view of the fact that we have only proved Lemma 6 under the hypothesis 
/ G C<}(S%, N), we shall need Lemmas 7 and 8 to make an extension. 

LEMMA 7. Let A and B be closed {this is certainly true if they are self-adjoint) 
operators in ffl and let U be an isometry. Suppose that the manifold tJt is dense 
in 9(A) with respect to the graph norm corresponding to A and that BU = UA 
on J?. Then, iff 6 9(A), we have Vf G 9(B) and BUf = UAf. 

Proof. Let f £ 9(A) and {fn} C ^ s u c h that 

\\f-fn\\ + \\A(f-fn)\\->0. 

Then UAfn —> UAf implying B Ufn —» UAf. Since we also have that Ufn —> Uf, 
we appeal to the assumption that B is closed to conclude 

Uf € 9(B) and BUf = UBf. 

The next lemma shows that <Jt = Co1 is dense in 9(A). 

LEMMA 8. Coœ is dense in 9(A) under the graph norm. 

Proof. L e t / G 9(A) and le t /denote the L2 Fourier transform of/. That is, 

J(\) = l.i.m. — ! p J~ «"**/(*) dx, 

where l.i.m. denotes limit in the L2-sense. The graph norm of / is given by 

l/l* = i (|/|2 + | / ' |2) = J (1 + X2)|/(X)|2 d\ = | / \0. 

We can choose an interval J" = (a, p) large enough that g = Xif satisfies 
1/ — U\G < | e . xi here denotes the characteristic function of / . Then g, the 
inverse transform of g, belongs to C°°. 

Let a be an infinitely differentiate real-valued function with support in 
(a — n — 1, /? + « + 1) which assumes the value 1 on / and satisfies 
0 ^ <J' ^ l/n. Then h = ag C C o 0 0 ^ , N). Furthermore, 

g - h = (1 - a)g and gf - V = (1 - *)«' - *'g. 
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It follows that \h — g|2
2 ^ jjc \g\2 (Jc is the complement of J) and 

\h'-g'\t^2jy\2\g\2 + 2Jjc\g'\
2 

. 0 2(w + 1 ) I is I o r i f^ 
71 «/ jC 

from which 

\h-g\GS ~2 max g + 2 g' + g 
n Jjc jjc 

so that the right-hand side is less than \t if / and n are large enough. Finally, 

| / - h\G ^ \f - g\G +\g~ h\Q < h + f € = €, 

completing the proof of the lemma. 

Pr00/ 0/ Theorem 1. If if satisfies the hypothesis of the theorem, let R be 
the unique solution of R = K + K(TR) (Lemma 3). Let U denote the 
isometry I + TR (Lemmas 4 and 5) and l e t / € C0°°(^, N) . 

We now show that 

(12) (A+K)Uf= UAf. 

Since (TR)f G l i H Lœ, it follows that (I\R)/ G ^ ( i f ) , and from Lemma 6 
we conclude that (TR)f € @(A). Hence Uf € @(A + K), and 

(A+K)Uf = Af + A (TR)f +Kf+ K(TR)f. 

Likewise, since Af G Co, it follows that Af 6 @(TR) = @(U) and 

UAf = Af+ (TR)Af. 
Then 

K 4 / - (4 + K) Uf = (TR)Af - A (TR)f - Kf - K(TR)f 

= Rf - Kf - K(TR)f (by Lemma 6) 

= {R-K- K{YR)}f 

= 0. 

By Lemmas 7 and 8 we extend (12) to a l l / Ç 2{A). 
This completes the proof of the theorem if we remark that the projection P 

is simply P = UU*, in the case when \ ^ \K\i < 1. We have already noted 
following Lemma 4 that U is unitary when \K\i < ^, implying that in this 
case P = I. 

It turns out that in applications the following corollary is useful. 

COROLLARY 1. Suppose that the hypotheses of Theorem 1 are satisfied and in 
addition that K maps a reducing subspace <#?' of A into itself. Let P' be the 
projection of 3tif onto MP/ C Jti?. Then the isometry U and the projection P in 
the proof of Theorem 1 commute with P'. In particular, if \K\X < \ and A', Kf 
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are the restrictions of A,K, respectively, to J4?', then A' and A' + K' are 
unitarily equivalent. 

Proof. We begin by observing that for a dense set of / , 

TRf(s) = -ij dtj dxR(s + x, t + x)f(t) 

= — i$dx§dtR(s + x,t)f(t — x) 

= -iT„xRTxf(s), 

where Tx is the operator of translation through a distance x. 
Now it is well known that the translation operator is a function of the 

simple differentiation operator and therefore must commute with P'. Thus, 
if R commutes with P\ so does TR. If we check the proof of Lemma 3 we 
find that if K commutes with P' then so do all the Rni and therefore so does 
the limit R. From equation (8) it is clear that U commutes with P ' , and 
from the definition of P in the proof of Theorem 1 we conclude that P com­
mutes with P'. The conclusion for \K\\ < \ follows immediately from these 
facts. 

Scattering for the pair A, A + K. We have shown in the proof of 
Theorem 1 that when \K\\ < 1/2, A + K = UAU*. To compute the wave 
operators we consider 

(13) W{t) = eu^A+Kh-itA = UeitAU*e~itA, 

and observe that any questions concerning the existence of s-limt^±00 W{i) 
can be settled by investigating s-\imt_>±m eitAU*e~itA. If we now use the 
well-known fact that 

(eitAf)(x) =f(x-t), 

it follows that 

[(TR*)e~itAf](y) = i \dx\ J™ R(x + u, y + u) du\f(x + t) 

= i I dx\ I R(x — t + u, y + u) du \f(x) 

and that 

(14) eitA(TR*)e-itAf(y) = - jdx\ P° R(x - t + u,y - t + u~)du\f{x) 

= — i I dx\ J R(x + u, y + u) du \f(x). 

We define Ta (— o o ^ o - < o o ) b y the equation 

TaX(x, y) = — I X(x + u, y + u) du 
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and note that T0 = T. Using equations (8) and (14), we obtain 

(15) (eUAU*e-UAf) (y) = f(y) + JT_M^y)f(x) dx. 

The next lemma enables us to calculate the limit as t —» =fc GO in (15). 

LEMMA 9. Let R G Li and consider TtR as an operator in L2. Then 

s-lim TtR = 0 and s-lim I\i? = T_œR. 
t-ïœ t-^—oo 

Proof. Let / be a function on the real line. We have 

(16) | ( I W ) (x) | g Jdy §* du \R(x + u, y + u) \ \f(y) \ 

which yields immediately that 

l l r^Hi . i ^ \R\i and \\TtR\Um g |JR|i. 

The Riesz convexity theorem then enables us to conclude that || r^R||2,2 ^ \R\i 
also. 

We shall see presently that when / G L1 then (16) yields the conclusion 

(17) L1-limTtRf= 0. 
t-$oo 

To prove this, write g (y) = j \R(x, y)\ dx and notice that from (16), 

j \ (TtRf) (x) | dx ^ J ° ° du jg(y + u) \f(y) \ dy. 

Since b o t h / and g are integrable, so is their convolution and (17) follows. 
Now let / G L2. We decompose / = / i + f2 such that / i Ç Li H Lœ and 

H/2II2 is small. Then 

(18) J|(r^/!)(x)|2^ g \R\X |/iU J|r^/x(x)| £&. 

Finally we combine (16), (17), and (18) to conclude that l im^œ || TtRf\\2 = 0. 
If we write T^^R = T-œR + Sa, then a similar argument shows that Sff —> 0 
as (7 -^00. This completes the proof of the lemma. 

Finally we use Lemma 9 in conjunction with equation (8) to deduce 
Theorem 2. 

THEOREM 2. The wave limits W± = lim^±0O W(t) exist in the strong operator 
topology and equal U(I — T-œR*) and U, respectively. Furthermore, the 
scattering operator is 

S = W+*W- = I + T-JR. 
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Example. Let H0 be the self-adjoint operator on L 2 ( ^ + ) obtained from 
—d2/ds2 by imposing the boundary condition /(0) = 0. It is known that the 
operator U defined by 

i r°° 
(19) (Uh)(\) = l.i.m.^-h/2 \~1/A sin \1/2sh(s)ds, 

maps L2(^?+) isometrically onto L2(^?+), and that UH0U* = L, the simple 
multiplication operator on L2(â$+). 

Let J ^ be the subspace of L2(3$) consisting of boundary values of functions 
analytic in the lower half plane. Let A be the self-ad joint operator defined in 
Theorem 1. It is clear that J^f reduces A. Let A0 be the restriction of A to Jjf. 
The one-dimensional Fourier transform defined by 

(20) Vgit) = jay7* J„ e~At^)d\ 
maps L 2 ( ^ + ) isometrically onto J^f and we have again 

V*A0V = L. 

We conclude that U3f0U* = V*A0V, or Jff0 = U*V*A0VU. 
We proceed to show that VU is an integral operator, and to obtain an 

explicit formula for its kernel. In order to accomplish this task, we observe 
that the multiplication operator 5e, mapping L2(5?+) into itself, defined by 

(21) (5e/)(X) = 6-*/(X), 

satisfies 
s-lim 8e = I. 

«io 
Consequently, s-lim VôeU = VU. 

Using (19), (20), and (21) together with Fubini's theorem, we find that 
V8€U has the kernel 

(22) -jLn r e-
(e+it)X\-1/A sin \1/2s d\. 

If we make the change of variables n = sA1/2, (22) becomes 

(2)1/2 
5 - 3 / 2 J»co 

1/2 - ( c - f z*)M2/S2 

ix e sin jtt a/i 
o 

7T 

which is evaluated in [2, p. 74, No. 24] to yield 

(23) «T+âj/?)^ rVï>FlV4 ' 2 J W+^)J ' 
Since the hypergeometric function 1F1 is an entire function of its argument 
we can take the limit as e J, 0 in (23) to obtain 

(24) ^> = ̂ #Ki l : ^) 
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with uniform convergence for (/, s) in each compact subset of (0$ X ^? + ) \{0} . 
It follows that VU is an integral operator with kernel W(s, t). 

Estimates for W. It is known [6, p. 88] that the Kummer hypergeometric 
function \F\ has the integral representation 

i*i{a,c,z) v{a)v{c_a)e J^e U r)c-a-\l + r)a-L dr 

when 0 < Re a < Re c. In our case this formula yields the estimate 

r)-3 / 4(l + r ) 1 / 4 ^ p(* 3.JL-\\< I T(3/2)2-1/2 I f1 
1 \i'2' -4t/\ = |r(5/4)r(l/4)| J _ / r(5/4)r(i/4)| 

= 1, 
after observing that the integral on the right is almost a beta function. Thus 
we obtain 

(25) \W(s,t)\ g r(5/4)s|*|-6 / 4 . 

Furthermore, using the asymptotic formulas in [6, p. 87], we deduce the 
following formula, valid for large values of s2/t: 

(26) W(s, t) = î<r i T O r (3/2)(-4) 1 / 4 eis2,u~ ( l + (\Çj) 

CeU*,4t 

£(>+<<*))• 
where C = ^ ~ î V a r ( 3 / 2 ) ( - 4 ) 1 / 4 . 

Conditions on the potential. Suppose that q(s) is a real-valued function 
on 3%+ satisfying the following three conditions: 

J»oo 

s2q(s)ds < oo ; 
o 

(2) q vanishes in a neighbourhood of the origin; 
(3) The Fourier transform qi of qi(s) = q(\/s)/y/s satisfies qi(t) ^ C/tv 

for some rj > \ and t large. 
We let Q denote the operator in L2(^?+) defined by 

Qf(s) = q(s)f(s). 

The integrability of the kernel. If f(r) is a continuous function of 
compact support which vanishes in a neighbourhood of the origin, then 

(W*QWf)(t) =fds W(s, t) q(s)f W(s, T) / (T) dr. 

Using (25) we find that 

(27) \W(s, t)q(s)W(s, r ) / ( r ) | g jffîi sup | / ( r ) | . 
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Since we have assumed that 

J s \q(s)\ ds < co, 
o 

it follows that the product of functions on the left is integrable with respect to 
ds dr. Thus the integrals can be reordered to deduce that W*QW is an integral 
operator with kernel 

J»oo 

W(s,t)q(s)W(s,T)ds. 
0 

We proceed to show that K £ Lx. From (27) it is evident that \K\ is integrable 
on the set {(s, t): \s\ ^ rj, \t\ ^ 7]} = av for all -q > 0. We need only show 
that K is integrable on the complement of av for some rj > 0. For this we use 
(25) to obtain the formula 

K(t, r) = |C2| f ( l + o ( 4 ) ) ( l + o ( j ) ) ^ ^ sqis) ds. 

From assumptions (1) and (3) it follows that there exists rj > 0 such that 
whenever both |r| < rj and |/| < y\ we have 

\jC(i \\ < const const  
| A ^ ' T)l = \tr\ | l / r - 1 / / | ' " \t\l~"\r\l-"\t - r\" 

which is integrable. 
Similar techniques can be used to obtain estimates of the form 

\K&T)\ ^ 

const ( , , . , 
TTTT=̂ T-T574 lor \T\ > rj, \t\ < rj, 

]7p i ï |p ï for \T\ < y, \t\ > 7). 

This completes the proof of the integrability of K. 

Conclusion. Once we know that K G £i we can apply Corollary 1 to 
conclude that the operators i d/dt and i d/dt + K on 3f are unitarily 
equivalent whenever \K\i is small enough and that they form a scattering 
pair. Consequently, —d2/ds2 and —d2/ds + cq(s) are unitarily equivalent 
whenever c is small enough and they also form a scattering pair. 

Acknowledgement. I wish to thank P. G. Rooney for bringing to my attention 
various techniques used in the study of the example. 
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