ATMOSPHERIC RADIOCARBON AT THE END OF THE LAST GLACIAL: AN ESTIMATE BASED ON AMS RADIOCARBON DATES ON TERRESTRIAL MACROFOSSILS FROM LAKE SEDIMENTS

HUGO ZBINDEN, MICHAEL ANDREE, HANS OESCHGER Physics Institute, University of Bern, Switzerland

BRIGITTA AMMANN, ANDRE LOTTER
Systematic Geobotanic Institute, University of Bern, Switzerland

GEORGES BONANI and WILLY WÖLFLI Eidgenössische Technische Hochschule, Zürich, Switzerland

ABSTRACT. The main purpose of this work is to reconstruct the atmospheric $\Delta^{14}C$ in the glacial-postglacial transition, 14,000-10,000 BP, a range not covered by the tree-ring calibration curve. We measured $^{14}C^{12}C$ ratios on series of terrestrial macrofossils from sediments of two Swiss lakes. We selected exclusively plant remains of recognizable terrestrial origin that are not affected by hard water and thus reflect atmospheric ^{14}C concentration. Due to the scarcity of such material, we used accelerator mass spectroscopy. Cores of two lakes were measured to eliminate local effects and to check the reproducibility of results. This required a reliable, ^{14}C -independent correlation of the cores, obtained through local pollen zone boundaries. ^{14}C ages were obtained as a function of the depth in the cores. If sedimentation rates are known, ages can be converted into $\Delta^{14}C$ values. We also attempted estimating sedimentation rates; calculations are based on the Swedish varve chronology. Results were combined to form an entire data set. The $\Delta^{14}C$ curve shows an increase with time during the Alleród and decreases during Preboreal and Bólling periods. Probabilities for these ^{14}C variations are discussed

INTRODUCTION

Results discussed here are based on several sediment cores taken in two Swiss lakes, Lobsigensee (47°02′N, 7°18′E) 514m asl and Rotsee (47°09′N, 8°20′E) 419m asl. Both lakes have small, closed or almost closed basins and thus show undisturbed sedimentation with little allochthonous input. Both sites were studied for pollen analysis and δ^{18} O measurements (Ammann *et al*, 1985; Lotter & Zbinden, 1989), so we can interpret our measurements with reference to other results.

MATERIAL AND METHODS

We measured ¹⁴C/¹²C ratios exclusively on terrestrial macrofossils, *ie*, plant remains of recognizable origin (mainly birch fruit). This type of material is not affected by hard water. Old carbon introduced into the water as dissolved rock carbonate may increase the ¹⁴C age of, eg, gyttja by up to 1000 yr (Andrée *et al*, 1986a). The scarcity of terrestrial macrofossils made the application of accelerator mass spectrometry (AMS) necessary. Sample treatment consisted in cutting samples, washing out plant debris, acid treatment and identification of terrestrial material by the Systematic Geobotanic Institute, oxidation, cleaning of gases and reduction to elemental carbon using zinc reduction method (Andrée, 1984) by Oeschger's group (low level counting, LLC), AMS measurements (Bonani *et al*, 1986) by the ETH group and LLC and data evaluation.

 $\label{table 1} Table~1$ List of all ^{14}C dates from Lobsigensee and Rotsee

No.	Depth in core [cm]	Dept	h Age	Error	No.	Depth [ir [cm]		e Dep	th Age m.1)	Error	No.	Depth	in [cm]	core	Depth norm.	Age I)	error
Lobsi	gensee Core LL1	60a			Rots	ee cor	e R	RL 3 05				Rots	ee Cor	e RL	300			
C495		700	9880	120	C846	904	-	908	642	9510	140	C724	622.	5 - 1	627.5	629	9450	140
C496		794	10900	140	C847	908	-	912	650	9450	140	C725			637.5	639	9380	
C497			10860	130	C848	912	-	916	658	9760	160	C726	642.	5 - 6	647.5	650	9770	
C760	,			160	C852	916	-	918	667	9630	150	C727	652.	5 - 6	657.5	661	9780	140
C754					C853		-	924	675	10010	160	c728	662.	5 - 6	667.5	671	9360	130
C755					C854		-	928	683	10010	150	C734	672.	5 - 6	677.5	682	10020	120
C717					C859		-	932	692	10060	130	C746	682.	5 - 6	587.5	692	9840	140
C756				140	C864		-	936	700	10010		C747	692.	5 - 6	597.5	703	9360	130
C719 C723					C869		-	940	714	9870		c731	702.	5 - 7	707.5	716	10120	140
C722				160	C874		-	944	729	10010		c730	732.			754	10000	130
C757			11510	150	C889		•	948	743	10130		C748	742.5			771	10920	170
C718			11220 11590	150	C909		-	952	757	10470	160	c732	752.5			788	9750	130
C758			11530	160 150	C904	952	-	956	767	10310		C968	752.5		757.5	788	10730	150
C499		897	11920	140	C905 C901	956 960	-	960	778	10440	160	C733	762.5			804	9680	130
C493	,,,,,	906	12420	150	C910	964	:	964	789	10450	160	C729	772.5			821	9490	130
C533		915	12410	150	C914	968	:	968 972	800 820	11070	170	C965	772.5			812	10160	130
C501		924	12360	140	C915	972		976	838	10640 11370	160 180	C784	805.0			860	11440	140
C759	1060.0 -1090.0		12630	170	C919	976		980	853	11670	170	C785 C781	812.5			874	11460	140
					C978			980	853	11230	180	C782	822.5 832.5			887	11970	150
Lobsi	gensee Core LQ17	70d			C920			984	869	11740	180	C783	842.5			900 911	11870	150
					C934		_	988	884	11810	200	C973	842.5			911	11800 11640	140 190
Ck77	738.0 - 740.0	621	8000	200	C939			992	900	12060	220	C979	852.5			922	11880	150
Ck76	740.0 - 742.0	630	8330	230	C935	992		996	914	12410	220	C791	862.5			933	12580	170
C1087	742.0 - 744.0	640	9270	170	C940	996		1000	927	11160	160		002.5		0,.,	,,,,	12300	170
C612	744.0 - 746.0	650	9910	120	C964	996	- 1	1000	927	10360	230	Rotse	е соге	RL3	00a			
C611	746.0 - 748.0	663	9770	120	C792	1002.5	- 1	1004	944	11560	160							
C610	748.0 - 750.0	675	10060	120	C793	1004	- 1	1008	950	12730	190	C778	772.5	- 7	77.5	812	9870	120
C609	750.0 - 752.0	688	9930	120	C794	1008	- 1	1012	960	12600	170	C779	782.5			828	11260	140
C608	752.0 - 754.0	700	9980	120	C795	1012	- 1	1016	970	12570	180	C780	792.5	- 7	97.5	844	11270	140
C607	754.0 - 756.0	713	9550	130	C796	1016	- 1	1020	980	12800	190							
C604	756.0 - 758.0	725	10150	130	C804	1020	- 1	1024	990	12280	190							
C603	758.0 - 760.0	738	10330	130	C809		- 1	028	1000	12800	190	1) n	ormali	zed	depth	, see t	ext	
Ck37 Ck38	760.0 - 762.0	750	9620	130	C805			032	1010	13350	210							
C597	762.0 - 764.0	763	11640	160	C810			036	1020	13540	210							
C598	764.0 - 766.0 766.0 - 768.0	775	10300	140	C814			040	1030	13290	200							
C599	768.0 - 770.0	788 800	10600	140	C815			044	1040	12970	200							
C613	775.0 - 775.0		10350	120	C818			048	1050	13600	220							
Ck75	799.0 - 801.5	828 946	10900 12360	130	C830			052	1060	13820	210							
C1088	830.0 - 850.0		13360	320 280	C831			056	1070	14000	210							
2.000	222.0 050.0	1043	13300	200	C823 C837			060	1080	14570	240							
Lobsigensee Core LL160b/LQ170c/LQ80							064	1090	14240	220								
				C838 Ck63			068 076	1100	13990	220								
C503	898.0 - 900.0	828	11060	140	Ck64			076 084	1115 1135	12390	350							
C614	901.0 - 905.0	940	12470	140	C836				1165	10480 14170	270 230							
C504		921	13060	150	0030			.50	, וכטו	14170	230							

RESULTS, ERRORS AND CORE CORRELATION

Table 1 shows all results including those previously published (Andrée et al, 1986b). The given error includes the measurement accuracy (1 σ) involving the statistical errors of sample and standard measurements and the long-term stability of the background as well as the error of the estimated δ^{13} C value of plant material according to Stuiver and Polach (1977).

Another error to be considered originates from the distribution of the single particles within the core section used as sample. The effective depth of the sample in the core cannot be determined precisely. This uncertainty in depth corresponds to an uncertainty in age in the range of 100 yr, depending on sample size and sedimentation rate.

To eliminate major errors due to disturbed sedimentation or other local effects, we measured several cores from two lakes. Thus, a reliable correlation of the cores was needed, for which, in principal, any recognizable feature in the core would be suitable. In our cores we found one excellent time marker, volcanic ash from Laach (LST). We also used the boundaries of local pollen assemblage zones (PAZ) to correlate within one lake and the boundaries of the regional PAZ to correlate between the two lakes. In our special case, $\delta^{18}O$ is not very suitable for a correlation, because the Lobsigen $\delta^{18}O$ curve shows rather atypical behavior and the resolution of the Rotsee curve is not satisfactory.

We constructed a normalized depth scale into which the depth scale of each core could be converted. The proportions of the PAZ lengths in the normalized scale correspond approximately to their average proportions in the single cores. Figure 1 shows the results of all cores plotted against the normalized depth. In general, the coincidence is satisfactory, except for the labeled values that are excluded in the final evaluation for the following reasons: 1) very small samples which required a special processing

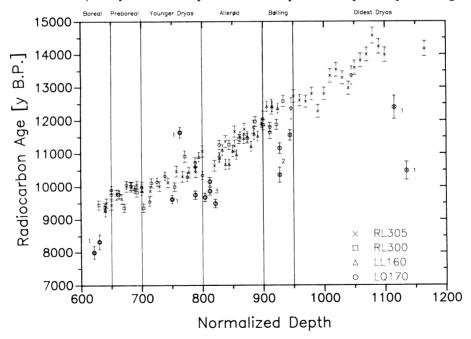


Fig 1.14C ages (BP) of the samples as a function of a normalized depth scale. Specified values (1-3), see text.

apparatus with an increased contamination problem. We lack experience to judge the reliability of these values; 2) those samples from the top of a core segment probably originate from younger material that fell into the borehole during the coring process; 3) those samples that are obviously too young for unknown reasons. It strikes us that the results of core RL300 generally show larger deviations from the average trend than those of the other cores. Thus, we have rejected all results from RL300.

HOW TO OBTAIN A RELIABLE TIME SCALE

From the shape of the curve in Figure 1, two periods of nearly constant ¹⁴C age can be discerned. This could be due to either a decrease in the ¹⁴C concentration or an increase in the sedimentation rate, or both. If we knew the sedimentation rate, we could determine the ¹⁴C variations and *vice versa*. We tried to estimate mean sedimentation rates with linear regressions of the ¹⁴C ages. As the sedimentation has probably been changing, the core can be divided into different segments with more likely constant sedimentation rates due to constant climatic conditions. On the other hand, the shorter these segments are, the more the result is affected by the ¹⁴C variations. Thus, the selection of the segments influences the outcome. We tried linear regressions, once over the whole period and then over two parts, Preboreal – Younger Dryas and Allerød – Bølling. This was done for each core and with the determined sedimentation rates the duration of every pollen zone was calculated. The results are compared in Table 2. It becomes

Table 2

Comparison of the durations of the PAZ (D) [yr] and the sedimentation rates (S) [cm/100yr] with different calculations

	Preb	oreal	Younge	r Dryas	All	er ø d	Bøl∣	B∲lling		
	(D)	(8)	(D)	(S)	(D)	(S)	(D)	(S)		
1. Regression										
RL 300	590	8.1	865	8.1	895	8.1	525	8.1		
RL 305	750	3.2	1000	3.2	750	3.2	500	3.2		
All values	470	x	940	x	940	x	470	x		
2. Regression										
RL 300	450	10.6	660	10.6	1210	6.0	710	6.0		
RL 305	470	5.1	630	5.1	1330	1.8	890	1.8		
LL 160			1850	2.3	540	2.3				
LQ 170	350	2.3	700	2.3						
Varves										
RL 300	500	9.5	800	8.8	800	9.1	500	8.5		
RL 305	500	4.8	800	4.0	800	3.0	500	3.2		
LL 160	500	2.9	800	4.5	800	5.3	500	2.5		
LQ 170	500	1.6	800	2.0	800	2.8	500	2.0		

evident that there are considerable differences between the two approaches. As it is almost impossible to judge which partition of the core is admissible for the linear regression, another independent time scale is unquestionably necessary.

Counting varyes, annual layers in the sediment, is one way to obtain a time scale. Since no varves are visible in our sediments, we refer to the Swedish varve chronology (Tauber, 1970) transferring it to our sites. Possible correlation marks that coincide are those PAZ boundaries corresponding to abrupt temperature changes that can clearly be observed in the records of both Swedish and Swiss lakes (Oldest Dryas/Bølling, Allerød/ Younger Dryas and Younger Dryas/Preboreal). The varve chronology supplies the duration of these periods (Younger Dryas: 800 ± 50 yr, Bølling + Allerød: 1300 ± 50 yr). The specified errors concern the varve measurements, connections between different profiles and duplication or suppression of annual deposits according to Fromm (1970). There is also an error because the late glacial periods are not directly marked in the varve sequences. The varve ages of these periods are obtained by a more or less subjective equating of geomorphological features and halts or readvances of the ice front with the climatic changes reflected in the pollen diagrams. It seems that the localization of the Oldest Dryas/Bølling boundary is not uncontroversial, in contrast to the Younger Dryas (Tauber, 1970). The climate possibly changed quite synchronously in Switzerland and in Scandinavia, but the response of the vegetation to climatic changes is recorded with an unknown time lag. Finally, we have to consider the time resolution of the biological record. All these errors are difficult to estimate; the total error of the correlation could be in the range of 100-200 yr.

We assume the sedimentation rate to be uniform within the designated periods. The period including Bølling and Allerød is divided into its two parts according to the mean ratio of the lengths of the corresponding core segments from every core with known biostratigraphy. So we obtain 800 \pm 70 yr for the length of the Allerød and 500 \pm 70 yr for the length of the Bølling. The specified 70-yr error only concerns the scattering of the ratio; the total error is estimated at 200 yr.

The duration of the Preboreal was established similarly by comparing the length of the core segment with those of the other pollen zones. But the ratios show a systematic difference between the two lakes, so that the obtained value of 500 ± 200 yr is probably less reliable than the others.

Based on these durations, the normalized depth scale that equalizes minor variations in the individual cores can be converted into a time scale, assuming again uniform sedimentation within the PAZ. In Table 2, the mean sedimentation rates of the cores are calculated according to the ages estimated with the varve data. The sedimentation rates do not change excessively over the whole period, so the results seem to be quite reasonable.

Since there are no time marks in the Oldest Dryas, the time scale has to be extrapolated from the Bølling. Because the sediments changed (marl and gyttja instead of clay) the obtained values are not reliable.

The determination of an absolute time scale, ie, the determination of the absolute age of the zero level of the chronology is one of the main problems of the varve chronology. Strömberg (1985) estimates the absolute age of the Younger Dryas/Preboreal transition at $10,700 \ (+50,-150)$ yr, in good agreement with the $10,720 \pm 150$ yr obtained by Hammer $et\ al\ (1986)$ dating an ice core from Dye 3, Greenland. We appoint 10,700 yr for the Younger Dryas/Preboreal boundary, the absolute ages of the other boundaries are determined according to the obtained durations of the PAZ (Table 3). A shift of the absolute time scale would cause a corresponding shift of Δ^{14} C curve but not alter the shape of the curve.

Table 3

The time scale according to the Swedish varve chronology, ¹⁴C ages of the pollen zone boundaries

Pollenzone	Duration with estimated error	Absolute	age of boundaries	¹⁴ C age		
		PB/Bo	10,200 y cal BP	9,700	ВР	
Preboreal	500 ± 200 yr	YD/PB	10.700 y cal BP	10.000	ВР	
Younger Dryas	800 ± 150 yr	,	,,	.0,000	٠.	
Allerød	800 ± 200 yr	Al/YD	11,500 y cal BP	10,800	BP	
Accept	000 I 200 yi	Bo/Al	12,300 y cal BP	12,000	ВР	
B∉lling	500 ± 200 yr					
		OD/Bo	12,800 y cal BP	12,600	ВР	

INTERPRETATION OF THE Δ14C CURVE

We can now calculate Δ^{14} C values using the absolute time scale obtained by the methods outlined above. Figure 2 shows Δ^{14} C values plotted against absolute age. The fitted curve is based on the calculation of running means over five values. Although the scattering of the values is considerable, the following striking features of the fitted curve can be perceived:

1) a dramatic increase of nearly 100% during the Allerød;

2) two drops of Δ^{14} C of ca 50% each time, once during the Bølling and again from the end of the Younger Dryas to the middle of the Preboreal.

Despite uncertainties in the time scale, we are convinced that the decreases are real. A horizontal segment in a $^{14}\mathrm{C}$ age νs depth curve always implies a decrease of $\Delta^{14}\mathrm{C}$ with time. The $\Delta^{14}\mathrm{C}$ shift decreases when this period is shorter, but from the observed changes in the vegetation these periods might even last longer. The values in the Oldest Dryas are not reliable for the reasons mentioned above. So it cannot be excluded that the $^{14}\mathrm{C}$ decrease of the Bølling begins earlier and thus is even larger.

The apparent ¹⁴C increase in the Allerød is quite surprising. It could be due to an underestimation of the duration of the Allerød caused by an error in the varve chronology itself or in its transfer to our sites. If the Allerød lasted 200 yr (estimated error) longer, the increase would be reduced by ca 1/3 (30‰). To remove the whole increase, the Allerød should last 600 yr longer. We cannot definitely exclude an error of that order. On the other

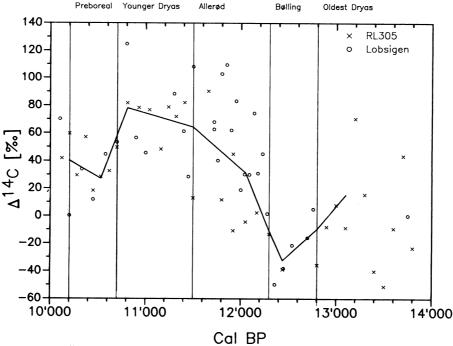


Fig 2. Δ^{14} C as a function of time. The fitted curve is based on running means over 5 values.

hand, we have additional evidence that confirms the 1300 yr obtained for the duration of Allerød and Bølling. In the Dye 3 ice core, the ratio between the accumulation in the Younger Dryas (≈ 10 m) and Bølling + Allerød (≈ 16 m) is 1:1.6. If we estimate 800 yr for the Younger Dryas, we obtain 1280 yr for Allerød and Bølling, assuming equal accumulation rates and compression of the annual layers. The accumulation rate is supposed to be lower by about a factor of 2 during the cold Younger Dryas, whereas the rheological thinning of the annual layers is lower only by a factor of 1.1 to 1.3 (a rough estimate, Schwander, pers commun), so the duration of Bølling and Allerød could be even shorter. However, the time scale is uncertain and we have to keep that in mind during further interpretations.

Stuiver *et al* (1986) established Δ^{14} C values reaching back to 13,500 cal BP using results from the varved Lake of Clouds and several 14 C ages from the Swedish varve series (Tauber, 1970). Between 13,000 and 10,000 cal BP he obtains five almost constant Δ^{14} C values of 100% by 14 C matching these dates to the known tree-ring record. Stuiver's generally higher values can be explained by the fact that with 14 C matching, the 14 C value representing the Younger Dryas/Preboreal transition is ca 11,200 cal BP. The 500-yr shift in the time scale causes ca 60% higher Δ^{14} C values.

PROBABLE CAUSES FOR THE STATED 14C VARIATIONS

¹⁴C variations are due to changes either in the isotope production rate or in the carbon cycle. Variations in atmospheric ¹⁴C concentration during

the abrupt climatic change at the end of the glacial period are likely due to changes in the global carbon cycle which is strongly coupled to the global climatic system. Principally, the observed changes in atmospheric ¹⁴C concentration could be established by production variations, but the measured ¹⁴C variations do not show the same characteristics as the ¹⁴C variations in the Holocene that are believed to reflect production variations (eg, Suess wiggles). Although an extraordinary production change cannot be excluded, we restrict the following considerations to changes in the global carbon cycle.

The temperature development at the glacial-Holocene transition is known from $\delta^{18}O$ measurements of ice cores and lake sediments as well as from biological studies (Siegenthaler, Eicher & Oeschger, 1984). It is interesting to note that $\Delta^{14}C$ drops at the times of temperature increases at the beginning of the Bølling and at the end of the Younger Dryas cold phase. Atmospheric CO_2 was lower during the glacial than during the Holocene; the increase starts with the first warming, but further measurements are necessary to reconstruct the exact phase relation between $\delta^{18}O$ and CO_2 . The Younger Dryas event cannot be identified in the CO_2 record (Neftel *et al.*, 1988).

CO₂ increase is probably due to changes in the ocean circulation and chemistry. The mechanisms are not yet known in detail. Several scenarios have been suggested (Broecker & Peng, 1985). Wenk & Siegenthaler (1985) proposed the following mechanism: an increased upwelling of CO₂-rich deep water in regions where bioproductivity is not limited by the lack of nutrients would lead to a higher total carbon content in the surface water. Thus, CO₂ with low ¹⁴C activity would be released to the atmosphere, raising CO₂ and reducing the ¹⁴C concentration. Calculations with a 4-box model yield a ¹⁴C increase of 35% for a 50% reduction of the exchange rate between the cold surface and the deep sea. Thus, an increased ventilation rate at the beginning of the Bølling could cause a ¹⁴C decrease of about the amount we have measured.

The increase of the atmospheric ¹⁴C concentration during the Allerød could be established by a reduction of the CO₂ exchange between atmosphere and the deep sea. The reason for such a reduction could be the influx of meltwater leading to a stable stratification of the surface water diminishing the vertical mixing of the ocean. A decrease of the ventilation rate of the deep sea by 50% leads to an atmospheric ¹⁴C increase of ca 10‰ (Keir, 1983), *ie*, about the value we have measured. Of course, Keir's assumptions are arbitrary, but his calculations indicate that mechanisms of this kind could produce the observed ¹⁴C increase.

To obtain the succession ¹⁴C decrease – increase – decrease, it seems that the ocean has to switch between states of low and high ventilation rates. The Younger Dryas cold phase is supposed to be due to an interim transition of the system from the warm to the cold mode, possibly induced by a diversion of the discharge of Lake Agassiz meltwater from the Mississippi to the St Lawrence (Broecker *et al*, 1987). But in contrast to the ¹⁴C decreases that are synchronous with warming, the ¹⁴C increase occurs clearly before the Allerød (warm) – Younger Dryas (cold) transition. To understand the processes occurring at the glacial/postglacial transition, more detailed

studies of the ocean circulation are needed. The first ¹⁴C measurements on benthic and planktonic forams by Andrée *et al* (1986a) indicate that the ventilation rate was in fact lower during the glacial.

¹⁰Be measurements on ice cores by Beer *et al* (1988) suggested that a 20% higher ¹⁴C production rate for the last 10–15 kyr of the glacial than for the Holocene could be the reason for the long-term Δ^{14} C trend of the Holocene. To confirm this proposition, much higher Δ^{14} C values at the end of the glacial would be required than allowed by our study.

CONCLUSIONS

Measurements of 14 C on terrestrial macrofossils from lake sediments provide a method to reconstruct atmospheric Δ^{14} C. The main problem is to obtain a reliable time scale, a problem that may only be solved satisfactorily if the sediments show annual layers. Despite all the difficulties with time control, we obtain a rough Δ^{14} C curve, which may be helpful for a correct interpretation of 14 C ages of this period. The determined 14 C variations are a hint to the behavior of the environmental system at the glacial/postglacial transition. Possible reasons for the observed 14 C changes have been mentioned, but we are far from fully understanding the mechanisms that occur.

ACKNOWLEDGMENTS

We thank U Siegenthaler and J Beer for valuable discussions. This work was financially supported by the Swiss National Science Foundation.

REFERENCES

- Ammann, B, Oeschger, H, Andrée, M, Möll, M, Riesen, T, Siegenthaler, U, Tobolski, K, Bonani, B, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M, Wölfli, W, Züllig, H, Chaix, L, Hofmann, W, Elias, S A, Wilkinson B and Eicher, U, 1985, Lobsigensee Late-Glacial and Holocene environments of a lake on the central Swiss Plateau: Diss Bot, v 87, p 127–170.
- Andrée, M, (ms) 1984, Aufbereitung von milligrammgrossen Kohlenstoffproben für AMS ¹⁴C-Messungen: PhD dissert, Univ Bern.
- Andrée, M, Oeschger, H, Broecker, W S, Beavan, N, Mix, A, Bonani, G, Hofmann, HJ, Morenzoni, E, Nessi, M, Suter, M and Wölfli, W, 1986a, AMS radiocarbon dates on foraminifera from deep sea sediments, *in* Stuiver, M, and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 424–428.
- Andrée, M, Oeschger, H, Siegenthaler, U, Riesen, T, Möll, M, Ammann, B and Tobolski, K, 1986b, ¹⁴C dating of plant macrofossils in lake sediment, *in* Stuiver, M, and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 411–416.
- Beer, J, Siegenthaler, U, Bonani, G, Finkel, R C, Oeschger, H, Suter, M and Wölfli, W, 1988, ¹⁰Be in the Camp Century ice core: Information on past solar activity and geomagnetism: Nature, v 331, no. 6158, p 675–679.
- Bonani, G, Hofmann, HJ, Morenzoni, E, Nessi, M, Suter, M and Wölfli, W, 1986, The ETH/SIN dating facility: A status report, *in* Stuiver, M, and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc. Radiocarbon, v 28, no. 2A, p 246–255.
- Broecker, W S, Andrée, M, Wölfli, W, Oeschger, H, Bonani, G, Kenett, J and Peteet, D, 1987, The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event: Paleoceanog, v 3, no. 1, p 1–19.
- Broecker, W S and Peng, T H, 1986, Carbon cycle 1985: Glacial to interglacial changes in the operation of the global carbon cycle, *in* Stuiver, M and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 309-327.

- Fromm, E, 1970, An estimation of errors in the Swedish varve chronology, in Olsson, I U, ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th: Stockholm, Almqvist & Wiksell, p 163-172.
- Hammer, C U, Clausen, H B and Tauber, H, 1986, Ice-core dating of the Pleistocene/ Holocene boundary applied to a calibration of the ¹⁴C time scale, in Stuiver, M, and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 284–291.
- Keir, R S, 1983, Reduction of thermohaline circulation during deglaciation: the effect on
- atmospheric radiocarbon and CO₂: Earth & Planetary Sci Letters, v 64, p 445–456. Lotter, A and Zbinden, H, 1989, Late-Glacial palyno-, ¹⁸O- and ¹⁴C-stratigraphy at Rotsee, central Swiss Plateau: Eclogae Geol Helv, v 82, no. 1, p 191–202.
- Neftel, A, Oeschger, H, Staffelbach, T and Stauffer, B, 1988, CO₂ record in the Byrd ice core 50,000-5,000 years BP. Nature, v 331, no. 6157, p 609-611.
- Siegenthaler, U, Eicher, U and Oeschger, H, 1984, Lake sediments as continental δ¹⁸O records from the Glacial/Postglacial transition: Ann Glaciol, v 5, p 149-152.
- Strömberg, B, 1985, Revision of the lateglacial Swedish varve chronology: Boreas, v 14, p 101–
- Stuiver, M, Kromer, B, Becker, B and Ferguson, C W, 1986, Radiocarbon age calibration back to 13,300 years BP and the ¹⁴C age matching of the German oak and US bristlecone pine chronologies, in Stuiver, M, and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, v 28, no. 2B, p 969-979.
- Stuiver, M and Polach, H, 1977, Discussion: Reporting of ¹⁴C data: Radiocarbon, v 19, no. 3,
- Tauber, H, 1970, The Scandinavian varve chronology and ¹⁴C-dating, in Olsson, I U, ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th: Stockholm, Almqvist & Wiksell, p 173-196.
- Wenk, Th and Siegenthaler, U, 1985, The high-latitude ocean as a control of atmospheric CO₂: Geophys Mono, v 32, p 185-194.