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Abstract

Let G be a locally compact abelian group, (/ip) a net of bounded Radon measures on G. In this paper
we consider conditions under which (/ip) is saturated in LP(G) and apply these results to the Fejer
and Heard approximation processes.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 41 A 40; secondary 43 A 15, 43 A
25.

Throughout G will denote a locally compact abelian group, T its character group.
Haar measures X, 0 on G, T respectively will be chosen so that PlanchereFs
theorem holds. For each p e [1, oo] we denote by LP(G) the usual Lebesgue
space of />th-integrable functions with respect to the Haar measure X. The
characteristic function of the set E will be denoted by ££. The symbols T, N, Z, R
will be reserved for the circle group, the set of natural numbers, the group of
integers and the real line respectively. We take Hewitt and Ross [7] as our
standard reference for harmonic analysis on G; any unexplained notation will be
found there.

Take (/ip) to be a bounded net in Mb(G), the space of bounded Radon
measures on G. The family (/xp) is said to be a bounded approximate unit on G if
liTOpllMp * / ~ / l l i = 0 f°r e a c h / e L\G). It is of fundamental interest in ap-
proximation theory to examine the rate of convergence of bounded approximate
units. In many cases it happens that there is essentially a limit to the rate of
convergence; for example if (/xn) is a sequence of even probability measures on
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256 Walter R. Bloom and Joseph F. Sussich [2 ]

the circle group T then the optimal rate of convergence is given by

Ik,«/-/L<c&2,
where fin = (1 - An(Yi))1/2» Yi is the character of T given by Yi(*) = x, and/has
a derivative belonging to the Lipschitz class of order 1. This rate of convergence
cannot in general be improved, as is indicated by the fact that even the infinitely
differentiable function t -» cos t has rate of convergence given by (/?n

2).
Saturation theory is concerned with determining this optimal rate of conver-

gence, called the saturation order, and the space V of functions for which this rate
is attained. In this case Fis called the saturation class (or Favard space) for (jup).

We are concerned with determining the saturation class for certain bounded
approximate units in L2(G). We begin in Section 1 with some preliminary results
in the theory of saturation. Section 2 will be concerned with results specific to
saturation in L2(G), and in the third section we present some examples to support
the theory.

1. General results in saturation theory

Let (np) be a bounded approximate unit on G. The trivial class of (/ip) is
defined to be Tp(np) = {/ e LP(G): there exists p0 such that np * / = / for all
p > p0}. Let (</>p) be a net of positive real numbers (with the same index set as
(ftp)) that converges to zero. We say that (fip) is saturated in LP(G) with order
(<f>p) if the following are satisfied:

(i) for/ e LP(G), ||pp * / - f\\p = o(<J>p) if and only if/ e r / M p ) ;
(ii) there exists g e LP(G)\ Tp(pp) for which ||/»p • g - g\\p = 0(</>p).

(By ^p = o(4>p) we mean lim infp4>-\pp = 0, and by ^p = 0(</>p), limsupp<^tyP <
oo.) If (/ip) is saturated in LP(G) with order (<J>p) then its saturation class is
defined to be the non-empty set

Also if E c LP(G) we write SE(np) for the space Sp(pp) O E.
It is usual to take the trivial class to consist of only the constant functions in

LP(G); see DeVore [4], 3.1.5, for example. Nishishiraho [8] allowed for a possibly
larger trivial class by requiring jup * / = / for all p. We feel that our slightly more
general definition is better suited to approximation processes.

If (jup) is saturated in LP(G) with two saturation orders, (<#>p) and (<f>p),
then i>p = O(*;). For if <f>p # 0«>p) then <f>p = o(<J>p) and so for g e Sp(fip),
||/*p • g - g\\p = O(4>'p) = o(<f>p) implies g e ^(/tp), which contradicts the defini-
tion of saturation class. Thus we speak of "the" saturation order of (np) and
observe that it defines a unique saturation class in LP(G).
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Write r r ( / i p) = {y e T: there exists p0 such that £ P (Y) = 1 for all p > p0}
and, if (/ip) is saturated in LP(G) with order (4>p), write

In general we can say little about the structure of these sets, except that in
practice Ts(pp) = T and TT(np) = {1}. (Here 1 denotes the identity character.)
However we do have the following result:

THEOREM 1. Suppose that each /ip is a probability measure. Then TT(jxp) and
Ts([ip) are subgroups ofT.

P R O O F . Wr i t e CU(G) for the space of b o u n d e d uniformly cont inuous functions
on G and , for each p , write

so that /ip can be regarded as a positive linear functional on CU(G).
If y1; Y2

 e T then

1 - Y1Y2 = 1 - ReYxReY2 + ImYiImY2 - j(ReYiImY2

Since

0 < 1 - Re Yi Re Y2

= (1 - ReYl)ReY2 +(1 - ReY2) < (1 - ReYl) +(1 - ReY2)
we deduce

0 < 1 - /xp(ReYiReY2) < (l - MP(ReYl)) + ( l - np{Rey2)).
To estimate /ip(ImY!lmY2) we use the Cauchy-Schwarz inequahty for positive
linear functionals to obtain

Also we note that

-(1 - ReYi) < (1 - ReYi)ImY2 < 1 - ReYl

implies

|/jtp(lmY2) - MP(Re Yi Im Y2)| < |l - MP(Re Yi)|,
which implies

|Mp(Re Yi Im Y2)| < |1 - l*p(Re Yi)| + |Mp(Im Y2)|
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Vi) and Mp(Im Y2) = Im MP(Y2)- Similarly

[41

|iup(Re Y2ImYl)| < |l - M p ( y i ) | + |l

Then putting all these inequalities together we obtain

|l - MP(YIY2)| <

We also have

From this and the preceding inequality the result follows.

The space TT(iip) plays an important role in the saturation theory, as the
following result shows.

THEOREM 2. Suppose that G is a compact abelian group. If(np)is totally ordered
and saturated then

Tp(np) = {feL'(G): supp(f) c rr(/*p)).

PROOF. Suppose np * f = / . Then p.J = / (Hewitt and Ross [7], (31.5)) and so
/(Y) # 0 implies AP(Y) = 1; and hence if fe Tp(ixp), { y e T : f(y) * 0} c
TT(np). Since T is discrete, this just says that supp/ c rr(jup).

Conversely, suppose supp/c r r(/ tp) . Since/G LP(G) C L^C?) and T is dis-
crete, the Riemann-Lebesgue lemma (Hewitt and Ross [7], (28.40)) gives that
supp/is countable; write supp/= {Yn}?-i (we suppose that supp/is infinite,
otherwise it is obvious that/ e Tp(np)). For each n e N choose pn increasing such
that p> pn implies AP(Yn) = !• W e m a y assume that (pp) is a subnet of (/xp),
since if there exists p0 such that pn < p0 for all « e N then we immediately deduce
that / e 71(jup). Then choose a sequence (an) of positive real numbers such that
££_!«„ is convergent and I%-k+1an < <j£ for each A: G N. Let g = E"=1anYn;
clearly g <= L''(G). Then

Ik9k *8- g\\p =

Hence

*8~ *L < liming fc1!!**.* • « ~ ?ll
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Since (/tp) is saturated, we deduce that g G Tp{np). That is, there exists p0 such
that iip * g = g for all p > p0. Then Apg = g for all p > p0 and so Ap/ = /for all
p > p0 (since supp/= suppg = { r j " - ! ) ; thus/G 7^(/ip).

If (/tp) is saturated in L\G) with saturation order (<j>p), then / e S^n^ im-
plies supp /c r5(Mp)-. For if / e S^/i,,) and y G T then |AP(Y)/(Y) - / ( Y ) I <
llMP*/-/ l l i = O(4>P) and so /(y) ¥= 0 implies |Ap(y) - 1| = 6>(<#>P); that is,
y e r5(Mp).

If g G 7\(MP) then there exists p0 such that /xp * g = g for all p > p0 and so

{ y e r : g ( y ) # 0 } c r \ U (y e T: Ap(y) ^ l } ,
P»Po

which is a closed set contained in r r(/ ip) . Hence suppg c r r( / ip) (regardless of
whether (np) is saturated or not).

Finally note that even when G is a compact abelian group we do not in general
have Sp((ip) = { / e LP(G): supp/c 1^(1^)}, as is illustrated by Example A
below.

THEOREM 3. Let G be a compact abelian group and suppose that (/ip) is totally
ordered and saturated in LP{G) with saturation order (<f>p). Then rs(/ap)\rr(jiip)
# 0 and for each y e Ts(np)\TT(fip) there exists p0 and positive constants cx and
c2 such that cx < ^ ' ^ ( Y ) - 1| < c2for all p > p0. Conversely suppose Tp(\ip) =
{ / e LP(G): supp /c Fr(/ip)} , (<f>p) /J a ne/ of positive numbers converging to
zero and the following conditions are satisfied:

(i)for each y e T , |£p(y) - 1| = o(0p) /w/>Aej y e r r( / ip);
(ii) r/iere exists y e T \ Tr(/ip) wirt |AP(Y) - 1| = O(<j>p).

Then (fip) is saturated in LP(G) with order (<j>p).

PROOF. Suppose (/ip) is saturated in LP(G) with saturation order (<J>p). Choose
. For y e l \

llMp *« - sllx < IK • g - 4 , = o(+p),
so that supp g c rs(/ip) (F is discrete). In view of Theorem 2, supp g <t r r( / ip) ,
so there exists y G r s ( / i p ) \ r r ( / i p ) . Now T c LP(G) and, by Theorem 2, y €
r r( / ip) implies y «£ Tp(np); which says that nminfp^p

1|jup(y) — 1| > 0. Hence
there exist px and c1 > 0 such that 4>P

1|AP(Y) — 1| > cx for all p > px. Similarly,
y G ry(jup) implies that |AP(Y) ~ 1| = O(4>p); that is, there exist p2 and c2 > 0
such that ^x|Ap(Y) - 1| < c2 for all p > p2.

To prove the converse part of the theorem we note that if (<f>p) is a net of
positive numbers converging to zero such that, for each y G T, |AP(Y) ~ 1| = o(<frP)
implies y G TT(fip) then, for any g e LP(G) such that |||up * g - g\\p = o(<J>p), it
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is the case that suppg c TT(pp) (since |Ap(Y)g(v) - g(v)| < HMP * g - g\\p for
all y G D and so g e r,(/ip). Also if y e T \ IY(/ip) with |AP(Y) - 1| = O(*,)
then y e Sp(np)\ Tp(pp), and this finishes the proof.

Under the conditions of Theorem 3 we have the saturation order of (/ip) given
by |£ P (Y) — 1|. This result should be compared with DeVore [4], Theorem 3.1.

2. Description of some saturation classes

Let (/i() be a bounded approximate unit on G, where the index set is (0, oo)
with ordering t < t' if and only if t > *'. We say that (/i,) is of saturation type
(<f>, ip) on LP(G) if the following are satisfied:

(i) The mapping (t,y) -* £,(Y)> from (0, t0] X T into C, is continuous for
some t0 G (0, oo).

(ii) There exists a continuous mapping <j>: (0, oo) -> (0, oo) such that
hm,_>0

+ </>(') = 0' a n ^ a continuous mapping \f/: T -» C that does not vanish in
T \ {1} satisfying lim,^0+ • ( O ' H A ^ Y ) ~ 1) - * (Y) for all y e r .

(iii) There is a bounded family (w,)/>0 c Mb(G) such that <>(/)"1(/x, - 1) = $&,
for all f G (0, oo).

(iv)/ e L"(G) and ||M, * / - f\\p = o(*p) imply

| constant if G is compact,
\ 0 if G is non-compact.

If (M()»>O *S °f saturation type (<J>, >//) on LP(G) then its saturation class (or
Favard space) is the set

Dreseler and Schempp [5] (see also Buchwalter [2]) have shown that

5 1 ( / x , ) = { / e

and, for /> e (1,2],

in the above if £ is a set of functions or measures then E denotes the set of
Fourier transforms of members of E.

In practice it is difficult to verify condition (iii) above, since it involves deciding
whether a given net of functions on T is a net of Fourier transforms. It has been
pointed out by the referee that the results of Dreseler and Schempp continue to
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hold with this condition replaced by
(iii)' There is a bounded family (w,),>0 of multipliers on LP(G) such that

</>(*rx(£, - 1) = M for all t e (0, oo);
(see Dreseler and Schempp [6], Section 3). In the case p — 2, condition (iii)' just
says that the family (ur) is a bounded set of functions in LCO(G). Also Dreseler
and Schempp implicitly assume that Ts(/i,) = V and TT(\it) = {1} or 0 .

In this section we consider the saturation problem for p = 2 without the
restriction that the net (jup) be defined on (0, oo). We require two preliminary
results.

THEOREM 4. Let (jwp) be saturated in L2(G) with order (</>p). Suppose that the net
("^(Ap ~ 1)) & equicontinuous and that ^ ( A p — V) -* i> pointwise on Ts(fip).
Then yp is continuous on Ts(pp), the convergence is uniform on compact subsets of
r s ( / i p ) , and r s ( / i p ) is both open and closed in T.

PROOF. Let y e rs(/ip) and choose p0 such that tf^lApCy) - 1| < K for all
p > p0, where K is a constant. Using the equicontinuity of (^(Ap ~ 1))> choose
an open neighbourhood S2 of y such that <f>p

1|Ap(Y) ~ AP(x)l < 1 f°r Û P and f°r

all x G Q- Then ^VpCx) - 1| < A' + 1 for all p > p0 and x G Q, so that
fi c rs(jup). This shows that rs(/ip) is open.

Similarly let y e T \ rs(/ip), so that given n e N and p there exists pn > p with
^^lAp (Y) — l\> n. With S2 chosen as above we have ^lAp^x) - 1| > « - 1 for
all n e N and x G B- This shows that fl c T \ rs(/ip), so that Ts(/ip) is closed.

The other assertions of the theorem are standard consequences of the assump-
tion of equicontinuity.

THEOREM 5. Let (jup) satisfy the conditions of Theorem 4 and let / e 52(/tp).
Thenf= 0 almost everywhere onT\ Ts(pp).

PROOF. Suppose that there exists compact A c r \ r s ( / i p ) with ||£A/||2 * 0.
For each y e A choose an open neighbourhood Qy c r \ r s ( j u p ) such that
p̂̂ ApCY) ~ AP(x)l < 1 for all p and for all x e ®r, and then an open cover

Qyi, Q?2,... ,QYm of A. We see immediately that ||£c / | | 2 ^ 0 for some /. Arguing
as in Theorem 4 we have that for any n e N and p there exists pn> p such that
*P!IAP/V) - 1| > n - 1 for all Y e QY., so that

and hence/ £ 52(mp).

We can now state our main result for this section.
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T H E O R E M 6 . Let (pp) satisfy the conditions of Theorem 4 and write 8 = { y e
rs(Mp): |«KY)| < !}• Suppose that the net

is eventually bounded, where w is a bounded function satisfying

u = ( r l onTs(fip)\Q,

\o
and \u\is bounded away from zero on Q. Then

If furthermore a = ju. for some ft e Mb(G) then

PROOF. Suppose/ e 52(/ip) so that, by Theorem 3, / = 0 almost everywhere on
T \ Ts(np). Let/j e L2(G) be such that/j = | r x a / , and write

Then (/p) is eventually bounded in L2(G), since

and so has a weak*-convergent subnet, / -> g e L2(G) say. Using Parseval's
identity (Hewitt and Ross [7], (31.19)) this gives that for each h e L2(G),

(i)

Now

(2) jf (A - <*g)h = / r (/„. - g)Ji +

and, if h vanishes off a compact subset of F,

since A = 0 almost everywhere on ( T \ Fs(/tp)) U B, (rs(/xp)\fl) n supp(A) is a
compact subset of Ts(fip)\Q, and ^ (Ap ~ 1)" ~* 1 uniformly on compact
subsets of ry(jup)\Q. Also, for the same h, the first integral on the right-hand
side of (2) converges to zero using (1) since « is bounded. Hence, for such h,

f (A - «
•T

= o.
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This implies that fx = ug locally almost everywhere, which entails that they agree
as elements of L2(T) (Hewitt and Ross [7], (12.2)). Then, using the assumption
that | co | is bounded away from zero on £2,

To prove the reverse inclusion, consider/ = (wg)" for some g G L2(T). Then

which, by assumption, gives/ e S2(np)-
In the case that w = /i for some /* G Mb(G\

and this gives the final statement of the theorem.

3. Examples

We apply the results in the previous section to describe the saturation classes in
L2(G) for some of the standard approximate units on the circle and real line.

A. Saturation of the Fejer approximate unit on the circle group

The Fejer kernel (Fn) on the circle group (see Hewitt and Ross [7], (31.7)(j)) is
defined by

A:—n

where yk is the character that takes x to xk for all x e T. Our sequence (/*„) is
then given by d\in = Fndx. Clearly TT(fin) = {y0}. The trivial class of (nn) in
each of the spaces LP(T), p G [1, OO], and in C(T) is the space of constant
functions: jun * / = / implies p.nf = f, which implies f(yk) = 0foTk¥=0 and so /
is a constant. Thus Theorem 3 gives that (/*„) is saturated in each of these spaces
with order (n'1). Ts(pn) = {yk: k G Z}, the entire dual of T.

The conditions of Theorem 6 are satisfied with Q = {y0} and w defined by
u(yk) = -I&I"1 for k =£ 0 and w(y0) = 1; for we have

(0 for& = 0,
/(« + 1) forO<|A:|<«,

l̂ l"1 for|fc|>«.
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Note also that w eL2(Z) so that w = fi for some /* G L2(T) c A/fc(G) and
52(/in) = ju * L2(T). As fi e L2(T) it follows that S2(fin) c C(T) (Hewitt and
Ross [7], (20.19) (iii)).

With a little more effort we can show that

/»e(l ,oo] , and ^ ( / x j = M* ^ ( T ) .

We observe that LP(T) is the dual of LP'(T), where/? G (1, oo] and/r1 + p"1 = 1,
and Mb(J) is the dual of C(T) (Hewitt and Ross [7], (12.18) and (14.4)). If
feSp(nn) then (n\\nn*f-f\\p) is bounded and so (n(nn*f-f)) has a
weak*-convergent subnet, «a(^n • / — / ) -* h (where h G LP(T) for p e (1, oo]
and h G Mfc(T) for /> = 1). In particular na(Ano - ! ) / -» * pointwise, so that
AY*) = Myk)h(yk) for A: # 0; that is, f- n*h is constant. Hence S/,(jun) c
H * L^(T) for^ G (1, oo] and S^/iJ c /i • A/6(T).

The reverse inclusion is obvious once we show that (n\\pn* p — ii\\i)is bounded.
DeVore [4], pages 9-11, shows that for an even measure v e Mb(T),

where A2v(yk)

E (k + I)|A2KY*)|) + sup

- 2*(Y*+i) + )- For n > 2,

-n

0,
-n

(n + l)(w + 2) '

k(k + l)(k + 2) '

0 < )t< n - 1,

k = n,

k> n.

Hence

Thus Sp(fin) = n* Lp(J), p e ( l , oo], and S^/^J = ft * M6(T). Furthermore,
since p G LX(T), ^^(/tn) = fi * L°°(T) c C(T) (the space of continuous functions
on T) and so SC(:r)(nn) = /t * L°°(T). One can compare this to the description of
the Fejer saturation class given by DeVore [4], Theorem 3.4, which states that

where / denotes the function conjugate to / and Lip 1 the Lipschitz class with
exponent 1. It follows from DeVore [4], Theorem 1.9 that these two descriptions
of Sc(T)(/O agree.

Finally we note that
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k a proper subspace of Ll(X) (refer to the comment immediately preceding
Theorem 3 above).

B. Saturation on the Cantor group

Let D2 be the Cantor group, that is, the complete countable direct product
I1NZ(2), where Z(2) is the cyclic group of order two (with its discrete topology).
The dual D2 is topologically isomorphic to D£ = YY^I^l). For n e N let

Gn = {(*,) e D2: x, = 0 for/ = 1,2,...,»}
and put

(A(D%, Gn) denotes the annihilator of Gn in DJ; see Hewitt and Ross [7], (23.23).).
Let (juB) be the bounded sequence of measures on D2 defined by dpn = kn dx.
Since An(v) = 1 for each y e A(D%, Gn), it is obvious that TT(pn) = D£.

For each i e N let yt be the continuous character of D2 given by yt(x) = (-1)*'
(x = (*,) G D2) and put/ = E£_! 2"nYn. Clearly/ e C(D2) and, for each n e N,
/*„ * / - / = -Ef_n+12-'Y, # 0, so that/ £ rp(^n) for any /? e [1, oo]. In particu-
lar note that Tp(pn) is not closed (since km * f e ^,(jitn) for each m e N and
||A:m * / - /Up -» 0) and that (/in) is not saturated in L?(G) for any /> e [1, oo]
(by Theorem 3).

C. Saturation of the Picard approximate unit in L2(R)

We take the Haar measure on R (and on its dual, which is topologically
isomorphic to R) to be (2w)"1/2 times the Lebesgue measure. The Picard kernel
(Kn) on R, which arises from the Laplace distribution, is defined by

Thus Kn(x) = n2/(n2 + x2) for all x e R; see Berg and Forst [1], 5.2. Our
sequence of measures (p.n) is given by dnn = Kn dx so that

-x2

n2(An(*) - 1) = j — T -» -x 2 for each x e R.
1 + x /n

Clearly T2(M B) = {0}.
Also (/in) is saturated in L2(R) with order (n~2). Indeed let $ be the function

on R given by ^(x) = -x2. If / e L2(R) and («2||Mn * / - / | | 2 ) is bounded then
we can argue as in the first part of the proof of Theorem 6 to deduce that
i///e L2(R). Since \n2(p.n - 1)| < \ty\ for all n e N, Lebesgue's dominated con-
vergence theorem (Hewitt and Ross [7], (14.23)) and PlanchereFs theorem give

https://doi.org/10.1017/S1446788700023119 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023119


266 Walter R. Bloom and Joseph F. Sussich [12]

Thus liminfn n2||jun • / — f\\2 = 0 implies | |^ / | | 2
 = 0; which implies/ = 0, and Sb

/ = 0. That is, / G T2(fin). Also if g G L2(R) is such that g vanishes outside some
compact set then *g e L2(R) and «2||/tn *g- g\\2 = \\n\p.n - 1)£||2 < IIMI2.
so that there are non-trivial functions in 52(/in). Hence (/in) is saturated in L2(R).

Now Fr(jun) = {0} and Ts(pn) = R. The conditions of Theorem 6 are satisfied
with Q = (-1,1) and

for* G ( -1 ,1) ,

elsewhere on R.
Referring to Butzer and Nessel [3], Proposition 6.3.10, we see that there exists
p G L\K) such that ju = w. Thus Theorem 6 gives S2(/xn) = M * ̂ 2 ( R ) -1° particu-
lar S2(pn) c C0(R) (the space of continuous functions on R vanishing at 00),
since p is also an element of L2(R) (Hewitt and Ross [7], (20.19) (iii)).

Alternative characterizations of the saturation class of the Picard approximate
identity are given in Butzer and Nessel [3], Proposition 12.4.2, for the space

"00-f"1.

D. Saturation of the Fejer approximate unit in L2(R)

The Fejer kernel (Fp) on R is defined for p > 0 by

1 Isini-px]2

with Fourier transform

(Hewitt and Ross [7], (31.7) (h)). Our net of measures (jup) is given by dfip = Fp dx.
Clearly T2(fip) = {0}. Also it is easily seen that (/xp) is saturated in Z,2(R) with
saturation order (p"1). For if/ G L2(R) then

Hence Um infp p||jup • / — f\\ 2 implies / = 0; and if / vanishes outside a compact
set, / G S2(/xp). Also r r ( / i p ) = {0} and Ts(np) = R. The conditions of Theorem
6 are satisfied with i//(x) = —|JC|, S = (-1,1) and

-1 for* e (-1,1),
1 -\x\ 1 elsewhere on R.
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Referring to Butzer and Nessel [3], Proposition 6.3.10, we see that there exists
/i e L\R) such that ji. = w. Thus, by Theorem 6, we deduce that

(and hence S2(np) c C0(R)). Butzer and Nessel [3], 12.4.1, give alternative
characterizations for the saturation class in LP(R), p e [1,2].
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