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Abstract

Euclid is a well-known two-player impartial combinatorial game. A position in Euclid is a pair of positive
integers and the players move alternately by subtracting a positive integer multiple of one of the integers
from the other integer without making the result negative. The player who makes the last move wins.
There is a variation of Euclid due to Grossman in which the game stops when the two entries are equal.
We examine a further variation which we called M-Euclid where the game stops when one of the entries is
a positive integer multiple of the other. We solve the Sprague–Grundy function for M-Euclid and compare
the Sprague–Grundy functions of the three games.
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1. Introduction

Euclid is a two-player impartial combinatorial game, introduced by Cole and
Davie [5]. In Euclid, a position is a pair of positive integers. The players move
alternately, and each move is to subtract a positive integer multiple of one of the entries
from the other without making the result negative. The player who reduces one of the
entries to zero wins. In the variation of Euclid due to Grossman [6], the game stops
when the two entries are equal. Various aspects of Euclid and Grossman’s game have
been examined in the literature; see the references in [4].

In this note, we examine a variation, which we call M-Euclid, where the game stops
when one of the entries is a positive integer multiple of the other. Recall that the
Sprague–Grundy function of a game is defined recursively as follows: the terminal
positions have value 0, and the value of a position p is the smallest nonnegative
integer m such that there is no move from p to a position with value m, but for all
0 ≤ i < m there is a move from p to a position with value i. We denote the Sprague–
Grundy functions of Euclid, Grossman’s game and M-Euclid by GE , GG and GM ,
respectively. We first recall the results for GE and GG. The convention here is that we
write continued fractions [a0, a1, . . . , an] so that an > 1 if n > 0.
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T 1.1 [4, 7]. Let 0 < a < b. Consider the continued fraction expansion
[a0, a1, . . . , an] of b/a, and let I(a, b) be the largest nonnegative integer i such that
a0 = · · · = ai−1 ≤ ai. Then

GE(a, b) =

⌊b
a

⌋
−

0 if I(a, b) is even,

1 otherwise.

Furthermore, for Grossman’s game, GG(a, b) = GE(a, b) except when a0 = a1 = · · · =

an, in which case
GG(a, b) = GE(a, b) − (−1)I(a,b).

Typically, small variations in the terminal condition of a combinatorial game can
produce wildly different Sprague–Grundy functions. Interestingly, the Sprague–
Grundy functions of Euclid, Grossman’s game and M-Euclid are closely related. We
have the following theorem.

T 1.2. Let 0 < a < b where b is not a multiple of a. Consider the continued
fraction expansion [a0, a1, . . . , an] of b/a, and let J(a, b) be the largest nonnegative
integer j < n such that a0 = · · · = a j−1 ≤ a j. Then

GM(a, b) =

⌊b
a

⌋
−

0 if J(a, b) is even,

1 otherwise.

R 1.3. We draw the reader’s attention to the subtle difference in the definitions
of I(a, b) and J(a, b). For J(a, b) we have imposed J(a, b) < n. So J(a, b) =

min{I(a, b), n − 1}.

C 1.4. With the notation of Theorems 1.1 and 1.2, GM(a, b) = GE(a, b) except
when a0 = a1 = · · · = an−1 ≤ an, in which case

GM(a, b) = GE(a, b) − (−1)I(a,b).

Furthermore, GM(a, b) = GG(a, b) except when a0 = a1 = · · · = an−1 < an, in which
case

GM(a, b) = GG(a, b) − (−1)I(a,b).

Having found the right formulation of Theorem 1.2, its proof is straightforward. We
follow closely the proof of [4, Theorem 1].

This paper continues our investigations of variations of Euclid and related
questions; see [1–4].

2. Proof of Theorem 1.2

For convenience we write G instead of GM and, in an abuse of language, we write
J(p) and G(p) for their values at a position p = [a0, a1, . . . , an]. It suffices to establish
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the following two properties.

(1) For every move p 7→ q, we have G(q) , G(p).
(2) If G(p) > 0, then for all integers k with 0 ≤ k < G(p), there exists a move p 7→ q

such that G(q) = k.

We will make repeated use of the following fact: if p = [a0, a1, . . . , an] andJ(p) is
odd, then a0 ≤ a1 and n > 1; indeed, if n = 1 or a0 > a1, then we would have J(p) = 0.
Similarly, if J(p) is even then either a0 ≥ a1 or n = 1.

First observe that Theorem 1.2 holds for n = 1. Indeed, clearly G(1, a1) = 1 for all
a1 and hence, by induction,G([a0, a1]) = a0 for all n. Since a0 = bb/ac andJ(a, b) = 0,
the result follows. So we need only deal with positions p having n > 1.

To establish (1), suppose that we have a move p 7→ q with G(q) = G(p). First
suppose that q = [a0 − i, a1, . . . , an] for some 1 ≤ i < a0. From the definition of G, it is
clear that i = 1, J(p) is odd and J(q) is even. As J(p) is odd, a0 ≤ a1, and so as J(q)
is even, a0 − 1 ≥ a1. Hence a0 ≤ a1 ≤ a0 − 1, which is impossible. So we may assume
that q = [a1, . . . , an]. At first sight, as G(q) = G(p), there are three possibilities:

(i) a0 = a1 − 1 and J(p) is even and J(q) is odd;
(ii) a0 = a1 + 1 and J(p) is odd and J(q) is even;
(iii) a0 = a1 and J(p) and J(q) have the same parity.

But case (i) is impossible, since a0 ≥ a1 when J(p) is even, case (ii) is impossible
since a0 ≤ a1 when J(p) is odd, and case (iii) contradicts the definition of J .

To establish (2), suppose that 0 ≤ k < G(p). First suppose that J(p) is odd, so
G(p) = a0 − 1. Consider the position q = [k + 1, a1, . . . , an]. Since J(p) is odd,
a0 ≤ a1. In particular, k + 1 < a1 and thus J(q) = 1. It follows that G(q) = k, as
required. So it remains to treat the case where J(p) is even. In this case, G(p) = a0

and a0 ≥ a1.
We first treat the situation where k = 0. Assume for the moment that a0 > 1.

Consider q = [1, a1, . . . , an]. Notice that we may assume that J(q) is even, since
otherwise G(q) = 0, as required. In particular, we have a1 = 1. Let q′ = [a1, . . . , an].
But if J(q) is even, then J(q′) is odd and hence G(q′) = a1 − 1 = 0, as required.
Similarly, if a0 = 1, then as J(p) is even, we have a1 = 1, and since J(p) is even,
J(q′) is odd and G(q′) = 0. This completes the case k = 0.

Now suppose that 0 < k < G(p) and let q = [k, a1, . . . , an]. If J(q) is even, then
G(q) = k, as required. So we may assume thatJ(q) is odd and thus k ≤ a1. In this case,
we have G(q) = k − 1. Let q′ = [k + 1, a1, . . . , an]. If J(q′) is odd, then G(q′) = k,
as required, so we may assume that J(q′) is even, and therefore k + 1 ≥ a1. Thus
k + 1 ≥ a1 ≥ k. Hence, either k + 1 = a1 or k = a1. Consider q′′ = [a1, . . . , an]. If k =

a1, then as J(q) is odd, J(q′′) is even, and hence G(q′′) = a1 = k, as required. Finally,
if k + 1 = a1, then as J(q′) is even, J(q′′) is odd, and hence G(q′′) = a1 − 1 = k, as
required.
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