THE k-EXTREMALLY DISCONNECTED SPACES
AS PROJECTIVES

HENRY B. COHEN

1. Introduction. The letter k denotes an infinite cardinal. A space is a
compact Hausdorff space unless otherwise indicated. A space is called extremally
disconnected (k-extremally disconnected) if it is the Stone space for a complete
(k-complete) Boolean algebra. A map is a continuous function from one space
into another. A map f: X — Yis called minimal if f is onto, but f(M) is properly
contained in Y for each closed proper subset M of X. A space F is called free
if F has a dense subset X such that every space-valued function on X extends
to a map on all of F or, equivalently, if F is the Stone-Cech compactification of
some discrete topological space X. If € denotes a category of spaces and maps
and X is a space in €, we say X is projective in € if given spaces and maps
f:4 — B, g:X — B in € with f onto, there is a map #:X — 4 in € such that
fh = g.

Gleason (2) proved that every space X is the image under a minimal map
of a unique extremally disconnected space m(X). An immediate consequence is
that the projectives and extremally disconnected spaces coincide in the category
of spaces and minimal maps (Gleason proves this fact in the category of spaces
and all maps). For each space X, m (X) is called the minimal projective extension
of X. In this paper, we define the category (k) of k-spaces and k-maps, and
we show that every k-space is the image under a minimal k-map of a unique
k-extremally disconnected space. It then follows that in the category I (k) of
k-spaces and minimal k-maps, the projectives and k-extremally disconnected
spaces coincide (we have not been able to prove this in §(k)).

2. k-open sets. Let R denote the real numbers and C(X) the set of all
R-valued continuous functions on a space X. A subset N of X is called a zero
setof X if N = f~1(0) for some fin C(X); thisisequivalentto N = {x:f(x) > r}
for some fin C(X) and 7 in R, or even N = f~1(D) for some f in C(X) and
closed subset D of R. The complement of a zero set is called a cozero set of X.
A k-set (k-family) is a set (family) whose cardinal does not exceed k. A k-open
subset of X is the union of a k-family of cozero sets of X'; a k-closed subset of X
is the intersection of a k-family of zero sets of X. The complement of a k-open
(k-closed) subset of X is k-closed (k-open). The cozero sets of X form a base
for the open sets. A simultaneously open and closed set will be called cl-open;
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a cl-open subset of X is easily seen to be a cozero set. We note, finally, that a
cozero set is k-open.

TuroreM 1. (5, Theorem 11). If X is a space, and if C(X) is a k-complete
lattice in 1ts natural ordering, then every cozero set of X is the union of a countable
Sfamily of cl-open subsets of X.

THEOREM 2 (Stone). The following statements are equivalent for a space X :

(a) The closure of every k-open subset of X is open.

(b) C(X) s a k-complete lattice in its natural ordering.

(c) The cl-open subsets of X form a base for the open sets, and the closure of the
union of a k-family of cl-open sets is open.

(d) X 1s k-extremally disconnected, i.e., the Stone space of a k-complete Boolean
algebra.

Proof. The equivalence of (b), (¢), and (d) is proved in (5, Theorems 17 and
18). Assuming (a), the first part of (¢) follows from the regularity of X and the
fact that the k-open subsets form a base; the fact that a cl-open set is k-open
gives the second part of (c). Conversely, assume (b), (c), and (d). By (d) and
Theorem 1, a k-open set is expressible as the union of a k-family of cl-open
sets; and such a union, by (c), has an open closure.

Remark. Let ko denote the first infinite cardinal. The kg-extremally dis-
connected spaces are usually called basically disconnected. Of course, each k-
extremally disconnected space is basically disconnected.

Remark. It is shown in (1, Section 1.14) that the zero sets and the ko-closed
sets coincide or, what is the same thing, that the cozero sets of a space and the
ko-open sets coincide.

LemMaA 1. Let X be a space. Then: (1) The intersection of two k-open sets of X
1s k-open. (2) Let 1" be a closed subset of X. 1 subset of T is k-open in T if and only
if it is of the form V N\ T for some k-open subset V of X. (3) Let T be a cl-open
subset of X. A subset S of T is k-open in T 1f and only if it is k-open in X.

Proof. The validity of these three statements about k-open sets follows
immediately from their validity for cozero sets. (1) The intersection of two
cozero sets is a cozero set because the union of two zero sets is a zero set
(1, Section 1.10). (2) The intersection of a zero set of X with 7" is obviously a
zero set of T'; and since each R-valued continuous function on 7" extends con-
tinuously to all of X, each zero set of 7" is the intersection with 7" of a zero
set of X. The statement for cozero sets follows by taking complements. (3)
It sufthces to prove that a non-null zeroset of 7, Z = {¢t € T: f(¢) = 0}, isa
zero subset of X. Let 7 be a real number different from each value of f € C(T).
Define F(x) = f(x) if xisin T'and F(x) = rif xisnot in 7. Then Fisin C(X)
and Z = {x € X: F(x) = 0}, a zero set of X.
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3. Minimal maps. Professor M. Henriksen kindly brought the following
lemma to my attention.

Lemma 2 (E. Weinberg). 4 map f:X — YV is minimal if and only if every
non-empty open subset of X contains the pre-image of some non-empty open subset

of Y.

Proof. Immediate.

THEOREM 3. The minimal projective extension of a space X 1is free if and only
if X has a dense discrete subset (a dense subset whose points are open in X).

Proof. Suppose the minimal projective extension of X is free. Then there is a
minimal map f:8D — X, where 8D is the Stone-Cech compactification of a
discrete space D. For each d in D, {d} is open in 8D, and the only subset of X
whose pre-image could be {d} is {f(d)}; hence {f(d)} is open in X by Lemma 2.
Thus, f(D) is a dense discrete subset of X.

Conversely, suppose C is a dense discrete subset of X. Let j be a function
carrying a set D 1-1 onto C. Then j extends to a map f:8D — X. Given d in
D, {j(d)} is open; hence, V = f~1(j(d)) M (BD\.{d}) is open in BD. But, being
contained in the nowhere dense subset BD\D, V is void. Consequently,
S7U(j(d)) = {d} and {d} is the pre-image of an open set. Since every open sub-
set of BD meets D, Lemma 2 implies f is minimal.

Lemma 3 (2). If : X — YV is @ minimal map and U is open in X, then f(U) C
cl(YN\S(XN\U)).

CorROLLARY 1. If f: X — Y is minimal and U is open in X, then
c(f(U)) = f(cl(U)) = Y\ F(XN\D)).

Proof. The first equality is true for any map; the second equality follows from
Lemma 3 and the inclusion Y\ f[X \U] C f[U].

4. k-Spaces. We omit the straightforward proof of the following lemma.

LEMMA 4. Let V and W be open subsets of a space X. The following statements
are equivalent:

(@) VN Wisvoid and V'\J W s dense in X.

(8) cl(X\cl(V)) = cl(W).

(¢) (X \cl(WW)) = cl(V).

Definition. Two open subsets V and W of a space X which satisfy (a),
(b), and (c) will be called complementary open subsets of X, and one is called an
open complement of the other; e.g., for each open subset V of X, X cl(V) is
an open complement of . A space in which every k-open subset has a k-open
complement will be called a k-space.

Example A. Every k-extremally disconnected space X is a k-space; for if V
is k-open in X, X\cl(V) is cl-open and therefore a cozero set.
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Example B. Any space in which every open set is a cozero set (for instance,
any compact metric space) is a k-space.

LemMa 5. The disjoint union of two k-spaces is a k-space; a subspace M of a
k-space 1s a k-space provided cl(int M) = M.

Proof. The following easily proved fact will be useful, both in this and later
proofs:

(1) If V, E, and F are subsets of a space X with V open and if cl(E) = cl(F),
then cl(VNE) = cl(VNF).

Let M be a subspace of the k-space X such that cl(int M) = M. Let V be
k-openin M. By Lemma 1, there is a k-open subset 7’ of X such that V" \ M =
V. Let W’ be a k-open complement in X of V' so that W = W’ M M is k-open
in M. Clearly, V M\ W is void. Furthermore, using (1),

cd(VUW) =c(M N (VU W) = cl(cd(int M) N\ (VU W'))
cint M N (VU W) = cl(int M N cl(V'U W) = cl(int M N X)
= cl(int M) = M.

It

Thus W is a k-open complement in M of V.

Now suppose X is the disjoint union of the k-spaces X; (¢ = 1, 2), and for
any subset NV of X, set N; = N M X, so that N is open in X if and only if NV,
is open in X ; for each 7. Let V be a k-open subset of X. By Lemma 1, V; is
k-open in X ; for each 7. Let W be a k-open complement in X ; of V;; by Lemma
1, W;is k-open in X for each . Therefore, W = W;\U W, is k-open in X. And

WAV =W,UW)N (ViU Ty =U,,(W.NV,) =8.

Every non-void open subset U of X must meet X ; for some 7; hence, W, U V,
for some 7. This implies that U M (W U V) is not empty. Therefore, W'\U V
is dense in X, and W is a k-open complement in X of V.

Remark. Lemma 5 shows how new k-spaces can be constructed from those of
the preceding examples. Thus, there are plenty of k-spaces.

5. The main results.

Definition. A map f : X — Y will be called a k-map if given U k-open in X,
there is a subset V of f(X) k-open in f(X) such that f(cl(U)) = cl(V).

THEOREM 4. Every k-space X 1is the tmage under a minimal k-map f of a k-
extremally disconnected space M ; if M’ is another k-extremally disconnected space
and f':M' — X is a minimal k-map, there is a homeomorphism h: M’ such that
f'h=f.

Our proof, following Gleason’s construction of minimal projective extensions,
depends on the Stone representation theory for Boolean algebras. Let U denote
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a Boolean algebra. The set S() of all maximal proper filters ¢ of U (i.e., sub-
sets 1 not containing 0 and maximal with respect to the property that 4, B
in ¢ implies 4 A B € t) is made into a space by taking as a base for the open
sets those subsets of S(A) of the form p(4) = {r € S(A): 4 € ¢} where 4 is
in Y. Furthermore, 4 — p(4) is an isomorphism of 2 onto the Boolean algebra
of all cl-open subsets of S(2). We shall say that a space is totally disconnected
whenever it has a base of cl-open sets. The category of totally disconnected
spaces and their maps is dual to the category of Boolean algebras and homo-
morphisms (4, Section 11). If X and Y are totally disconnected spaces and u
is a homomorphism from the Boolean algebra A (X) of cl-open subsets of X
into the Boolean algebra (YY) of cl-open subsets of V, the canonical map
p(u): Y — X is determined as follows: given y in ¥, the set 1 of all cl-open sub-
sets NV of X such that u (V) contains y is a maximal filter of (X); this implies
that Mg is a singleton. p(u) () is this single element of M. However, the only
maximal filter of A(X) whose intersection is a given point x of X is the set of
all cl-open subsets of X containing x. Therefore,

@) if p(u) (y) € N, N cl-open, then y € u(N).

A closed subset M of a space X is called regular if M = cl(int M) or, equiva-
lently, if M = cl(V) for some open set V. If M = cl(V) for some k-open subset
V of X, then M is called k-regular. Whenever a regular (k-regular) closed set
cl(V) is given, it will be understood that V is open (k-open). Let Reg(X)
(Reg(k, X)) denote the set of all regular (k-regular) closed subsets of X. It is
well known that Reg(X), partially ordered by inclusion, is a complete Boolean
algebra under the following definitions of join, meet, and complement. Let
{D,} = {cl(V,)} be any subset of Reg(X). Set

3) ViD; = cl(\J;int D;) = cl(J,;V,
4) N:D; = cl(int "\ D)),
(5) —D = cl(X\D) = cl(X\cl(V)) foreach D = cl(V) € Reg(X).

For two regular closed sets:
(6) D1 Vv Dg = Cl(Vl U V2) = D]_ UDg, and

(7) D1 A Dy = cl(int(clV; N clVs)) = cl((int cl V) M (int cl V3))
= cl(V; M\ Vy) using (1).

II

Since the k-open subsets of X are closed under the formation of finite inter-
sections and finite unions, (6) and (7) imply that Reg(k, X) is a sublattice of
Reg(X). The union of a k-family of k-open sets is k-open, so (3) implies that
Reg (%, X) is closed under the formation of joins of k-subsets. If X is a k-space,
then (5) implies that Reg(k, X) contains the Boolean complement of each of
its elements. Therefore, Reg(k, X) is a k-complete Boolean algebra for each
k-space X.
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Proceeding to the proof of Theorem 4, the Stone space S = S(Reg(k, X)),
where X is the given k-space, is k-extremally disconnected by definition.
Observe:

8) Ifr €S,x € MNy,and V a k-open neighbourhood of x, then cl(V) is in .

For if W is a k-open complement of V, either cl(V) or cI(W) isin ¢ (since ¢ is a
maximal filter) and if cI(W) € ¢, then x is in VN cl(W), a contradiction.
Now each r is a family of closed subsets of the space X with the finite inter-
section property; so /M has a member, say x. If y is an element of X distinct
from x, there is a k-open neighbourhood V of x such that y ¢ cl(V). By (8),
cl(V) is in t; hence, v is not in Mz. Define f(r), for each ¢ in S, to be the single
element of My and note that (8) now reads: if f(r) belongs to the k-open set V,
then cl(V) is in ¢ and therefore ¢ is in p(cl(V)). In other words:

(9) If V 1s k-open in X, f~1(V) C p(cl(V)) and V C f(p(cl(V))). But ¢ €
p(cl(V)) implies cl(V) € r, which implies f(r) € cl(V);i.e.:

(10) If V is k-open in X, then f(o(cl(V))) C cl(V).

To prove that f is continuous at t, let U be a neighbourhood of f(x) and V
a k-open neighbourhood of f(r) such that cl(V) C U. Then by (9) and (10),
p(cl(1)) is an open neighbourhood of ¢ whose image under f is contained in
cl (V). To prove fis onto, let x be an element of X. The set of all cI( 1) such that
V' is a k-open neighbourhood of x is contained in a maximal proper filter
r €8, and

fx) € N C Ni{cl(V): Vis a k-open neighbourhood of x}
C {V: Vis a k-open neighbourhood of x} = {x}.

Each non-void open subset of S contains a set p(cl(V)), 7" non-void, which in
turn, by (9), contains f~1(V); so by Lemma 2, f is minimal. And f is a k-map,
since if NV is a k-regular closed subset of S, then N is of the form p(cl(1V)) for
some k-open subset V of X; hence, V C f(p(cl(V))) C cl(V). This implies that
f(N) = cl(V), as desired. This proves the existence part of Theorem 4; the
following lemma facilitates the uniqueness proof.

LeMMA 6. Let f: X — V be a minimal map. Then u(.1) = f(.1) is a Boolean
algebra isomorphism of Reg(X) onto Reg(Y) whose inverse is given by

pH (V) = ol (f71(V)) = cl(int /=1 (cl(V))).

If X and Y are k-spaces and f is a minimal k-map, then u carries Reg(k, X) onto
Reg(k, V).

Proof. Using Corollary 1, for each 4 in Reg(X) we have f(.1) ¢ Reg(V)
and

p(=A4) = fel(XN\A) = cl(YNSXN(XN\A)])

(YNFIAD = —f(4) = —u(4).

I

Il
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Also, u(4 V B) = u(4) V u(B) so that u is a homomorphism. If u(cl(U)) is
void, then so is f(cl(U)) = cl(Y \f(X\U)). Thus Y\ f(X\U) is void and
S(XN\U) = Y. Since f is minimal, X \ U must be all of X: hence, U is void.
Therefore, cl(U) is void. So fis 1-1. Given V open in Y, one easily checks that

J(l(f~1(V))) = flcl(int f~1(cl(V)))) = cl(V)

and this proves the first statement of the lemma. The definition of a k-map
implies that u carries Reg(k, X) into Reg(k, ¥). Since, in general, the inverse
image under a map of a k-open set is k-open, u~! carries Reg(k, V) into
Reg(k, X).

Turning to the uniqueness assertion of Theorem 4, suppose fi:M; — X is a
minimal k-map carrying the k-extremally disconnected space M ; onto the k-
space X (¢ = 1,2). Reg(k, M) consists of the cl-open subsets of M; and by
Lemma 6 there is a natural isomorphism wu; from this Boolean algebra onto
Reg(k, X) (z = 1, 2). By the previously mentioned duality, the isomorphism
¥ = uo"'ur of Reg(k, M,) onto Reg(k, M,) induces a homeomorphism
h:ﬂfg — AMl.

If fih # f», then there is an element p of M, such that fih(p) # f2(p). To
reach a contradiction, choose V a k-open neighbourhood of fi4(p) such that

() L(p) €el(V) = .
Now fik(p) & Vimplies that k(p) € cl(fi"!(V)) = w=*(4). According to (2),

p must belong to
Y () = pa7'(4) = cl(int f27'(4)) C fo7'(4).

Therefore, f2(p) is in A, contradicting (*). Consequently, fik = fs, and this
concludes the proof.

COROLLARY 2. In the category M (k) of k-spaces and minimal k-maps, a space
s projective if and only if it is k-extremally disconnected.

Proof. The composition of k-maps is a k-map, so N (k) is, indeed, a category.
Now suppose X is projective in M (k). Let M be k-extremally disconnected and
f:M — X a minimal k-map. Because X is projective, there is a k-map h: X — M
such that fi = idyx. Consequently, % is 1-1. If 2(X) is properly contained in
M, then X = fh(X) is a proper subset of X by the minimality of f, a contradic-
tion. Therefore, & carries X homeomorphically onto M and X is k-extremally
disconnected.

Conversely, suppose X is k-extremally disconnected. Let f:4 — B and
g2:X — B be minimal k-maps. Let e:}M — 4 be a minimal k-map with M k-
extremally disconnected. Then fe:M — B and ¢g:X — B are two minimal k-
maps with M and X k-extremally disconnected, so there is a homeomorphism
h:X — M such that feh = g. Thus ek is the required map in M (k).

Remarks. Consider the category €(k) of k-spaces and all k-maps. As in the
first part of the proof of Corollary 2, every projective in §(k) is easily seen to
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be k-extremally disconnected. The converse would follow if we knew that each
k-map from a k-extremally disconnected space X onto a k-space B could be
restricted to a subspace M of X such that M — B were a minimal k-map and
M were a k-space. We have not been able to prove this. To carry out a pro-
gramme in € (k) similar to that of Rainwater (3) in the category € of all spaces
and maps, it would be necessary to prove the following: given X k-extremally
disconnected, there is a map f;iP — X in €(&) such that P is projective in
§(k), f is onto, and f can be restricted to a minimal k-map onto X. In the
category @, every extremally disconnected space is easily seen to be the image
of a free space. By analogue, we define the k-free space kD, D a set, to be the
Stone space of the Boolean algebra of subsets A4 of D such that either 4 or
DN\A is a k-set. However, we have not been able to prove that the k-free
spaces have properties in €(%) analogous to the properties possessed by the
free spacesin €.
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