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Abstract
We discuss practical methods for computing the space of solutions to an arbitrary homogeneous linear system of
partial differential equations with constant coefficients. These rest on the Fundamental Principle of Ehrenpreis–
Palamodov from the 1960s. We develop this further using recent advances in computational commutative algebra.

1. Introduction

Our calculus class taught us how to solve ordinary differential equations (ODE) of the form

c0φ + c1φ
′ + c2φ

′ ′ + · · · + cmφ
(m) = 0. (1.1)

Here we seek functions φ = φ(z) in one unknown z. The ODE is linear of order m, it has constant coef-
ficients ci ∈C, and it is homogeneous, meaning that the right-hand side is zero. The set of all solutions
is a vector space of dimension m. A basis consists of m functions

φ(z)= za · exp(uiz). (1.2)

Here ui is a complex zero with multiplicity larger than a ∈N of the characteristic polynomial

p(x)= c0 + c1x+ c2x2 + · · · + cmxm. (1.3)

Thus solving the ODE (1.1) means finding all the zeros of (1.3) and their multiplicities.
We next turn to a partial differential equation (PDE) for functions φ : R2→R that is familiar from

the undergraduate curriculum, namely the one-dimensional wave equation

φtt(z, t)= c2φzz(z, t), where c ∈R\{0}. (1.4)

D’Alembert found in 1747 that the general solution is the superposition of traveling waves,

φ(z, t)= f (z+ ct)+ g(z− ct), (1.5)

where f and g are twice differentiable functions in one variable. For the special parameter value c= 0,
the PDE (1.4) becomes φtt = 0, and the general solution has still two summands

φ(z, t)= f (z)+ t · h′(z). (1.6)

We get this from (1.5) by replacing g(z− ct) with 1
2c

(h(z+ct)− h(z−ct)) and taking the limit c→ 0.
Here, the role of the characteristic polynomial (1.3) is played by the quadratic form

qc(u, v) = v2 − c2u2 = (v− cu)(v+ cu). (1.7)

The solutions (1.5) and (1.6) mirror the algebraic geometry of the conic {qc = 0} for any c ∈R.
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Our third example is a system of three PDE for unknown functions

ψ : R4→C2, (x, y, z, w) �→ (
α(x, y, z, w), β(x, y, z, w)

)
.

Namely, we consider the following linear PDE with constant coefficients:

αxx + βxy = αyz + βzz = αxxz + βxyw = 0. (1.8)

The general solution to this system has nine summands, labeled a, b, . . . , h and (α̃, β̃):

α = az(y, z, w)− by(x, y)+ c(y, w)+ xd(y, w)+ xg(z, w)− xyhz(z, w)+ α̃(x, y, z, w),

β =−ay(y, z, w)+ bx(x, y)+ e(x, w)+ zf (x, w)+ xh(z, w)+ β̃(x, y, z, w). (1.9)

Here, a is any function in three variables, b, c, d, e, f , g, h are functions in two variables, and ψ̃ = (α̃, β̃)
is any function R4→C2 that satisfies the following four linear PDE of first order:

α̃x + β̃y = α̃y + β̃z = α̃z − α̃w = β̃z − β̃w = 0. (1.10)

We note that all solutions to (1.10) also satisfy (1.8), and they admit the integral representation

α̃ =
∫

t(exp(s2x+ sty+ t2(z+w)))dμ(s, t), β̃ =−
∫

s(exp(s2x+ sty+ t2(z+w)))dμ(s, t), (1.11)

where μ is a measure on C2. All functions in (1.9) are assumed to be suitably differentiable.
Our aim is to present methods for solving arbitrary systems of homogeneous linear PDE with constant

coefficients. The input is a system like (1.1), (1.4), (1.8), or (1.10). We seek to compute the corresponding
output (1.2), (1.5), (1.9), or (1.11), respectively. We present techniques that are based on the Fundamental
Principle of Ehrenpreis and Palamodov, as discussed in the classical books [7, 17, 23, 32]. We utilize
the theory of differential primary decomposition [12]. While deriving (1.5) from (1.4) is easy by hand,
getting from (1.8) to (1.9) requires a computer.

This article is primarily expository. One goal is to explain the findings in [8–12], such as the differ-
ential primary decompositions of minimal size, from the viewpoint of analysis and PDE. In addition to
these recent advances, our development rests on a considerable body of earlier work. The articles [15,
29, 31] are especially important. However, there are also some new contributions in the present article,
mostly in Sections 4, 5, and 6. We describe the first universally applicable algorithm for computing
Noetherian operators.

This presentation is organized as follows. Section 2 explains how linear PDE are represented by
polynomial modules. The Fundamental Principle (Theorem 2.2) is illustrated with concrete exam-
ples. In Section 3, we examine the support of a module and how it governs exponential solutions
(Proposition 3.7) and polynomial solutions (Proposition 3.9). Theorem 3.8 characterizes PDE whose
solution space is finite dimensional. Section 4 features the theory of differential primary decomposition
[9, 12]. Theorem 4.4 shows how this theory yields the integral representations promised by Ehrenpreis–
Palamodov. This result appeared implicitly in the analysis literature, but the present algebraic form is
new. It is the foundation of our algorithm for computing a minimal set of Noetherian multipliers. This is
presented in Section 5, along with its implementation in the command solvePDE in Macaulay2 [21].

The concepts of schemes and coherent sheaves are central to modern algebraic geometry. In Section 6,
we argue that linear PDE are an excellent tool for understanding these concepts and for computing their
behaviors in families. Hilbert schemes and Quot schemes make an appearance along the lines of [9, 11].
Section 7 is devoted to directions for further study and research in the subject area of this paper. It also
features more examples and applications.

2. PDE and polynomials

Our point of departure is the observation that homogeneous linear partial differential equations with
constant coefficients are the same as vectors of polynomials. The entries of the vectors are elements in
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the polynomial ring R=K[∂1, ∂2, . . . , ∂n], where K is a subfield of the complex numbers C. In all our
examples, we use the field K =Q of rational numbers. This has the virtue of being amenable to exact
symbolic computation, e.g. in Macaulay2 [21].

For instance, in (1.1), we have n= 1. Writing ∂ = ∂

∂z
for the generator of R, our ODE is given by one

polynomial p(∂)= c0 + c1∂ + · · · + cm∂
m, where c0, c1, . . . , cm ∈K. For n≥ 2, we write z= (z1, . . . , zn)

for the unknowns in the functions we seek, and the partial derivatives that act on these functions are

∂i = ∂zi =
∂

∂zi

. With this notation, the wave equation in (1.4) corresponds to the polynomial qc(∂)=
∂2

2 − c2∂2
1 = (∂2 − c∂1)(∂2 + c∂1) with n= 2. Finally, the PDE in (1.8) has n= 4 and is encoded in three

polynomial vectors (
∂2

1

∂1∂2

)
,

(
∂2∂3

∂2
3

)
and

(
∂2

1∂3

∂1∂2∂4

)
. (2.1)

The system (1.8) corresponds to the submodule of R2 that is generated by these three vectors.
We shall study PDE that describe vector-valued functions from n-space to k-space. To this end, we

need to specify a spaceF of sufficiently differentiable functions such that F k contains our solutions. The
scalar-valued functions in F are either real-valued functions ψ :�→R or complex-valued functions
ψ :�→C, where� is a suitable subset of Rn or Cn. Later we will be more specific about the choice of
F . One requirement is that the space F k should contain the exponential functions

q(z) · exp(utz)= q(z1, . . . , zn) · exp(u1z1 + · · · + unzn). (2.2)

Here u ∈Cn and q is any vector of length k whose entries are polynomials in n unknowns.

Remark 2.1 (k= 1) A differential operator p(∂) in R annihilates the function exp(utz) if and only if
p(u)= 0. This is the content of [27, Lemma 3.25]. See also Lemma 3.26. If p(∂) annihilates a function
q(z) · exp(utz), where q is a polynomial of positive degree, then u is a point of higher multiplicity on
the hypersurface {p= 0}. In the case n= 1, when p is the characteristic polynomial (1.3), we have a
solution basis of exponential functions (1.2).

Another requirement for the space F is that it is closed under differentiation. In other words, if

φ = φ(z1, . . . , zn) lies in F , then so does ∂i • φ = ∂φ
∂zi

for i= 1, 2, . . . , n. The elements of F k are vector-
valued functions ψ =ψ(z). Their coordinates ψi are scalar-valued functions in F . All in all, F should
be large, in the sense that it furnishes enough solutions. Formulated algebraically, we want F to be an
injective R-module [25]. A more precise desideratum, formulated by Oberst [28–30], is that F should
be an injective cogenerator.

Examples of injective cogenerators include the ring C[[z1, . . . , zn]] of formal power series, the space
C∞(Rn) of smooth complex-valued functions over Rn, or more generally, the space D′(Rn) of complex-
valued distributions on Rn. If� is any open convex domain in Rn, then we can also take F to be C∞(�)
or D′(�). In this paper, we focus on algebraic methods. Analytic difficulties are mostly swept under
the rug.

Our PDE are elements in the free R-module Rk, that is, they are column vectors of length k whose
entries are polynomials in ∂ = (∂1, . . . , ∂n). Such a vector acts on F k by coordinate-wise application of
the differential operator and then adding up the results in F . In this manner, each element in Rk defines
an R-linear map F k→F . For instance, the third vector in (2.1) is an element in R2 that acts on functions
ψ : R4→C2 in F 2 as follows:(

∂2
1∂3

∂1∂2∂4

)
• (ψ1(z),ψ2(z)) = ∂3ψ1

∂z2
1∂z3

+ ∂3ψ2

∂z1∂z2∂z4

. (2.3)

The right-hand side is a scalar-valued function R4→C, that is, it is an element of F .

https://doi.org/10.1017/S0017089521000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000355


Glasgow Mathematical Journal S5

Our systems of PDE are submodules M of the free module Rk. By Hilbert’s Basis Theorem, every
module M is finitely generated, so we can write M = imageR(A), where A is a k× l matrix with entries
in R. Each column of A is a generator of M, and it defines a differential operator that maps F k to F . The
solution space to the PDE given by M equals

Sol(M) := {
ψ ∈F k : m •ψ = 0 for all m ∈M

}
. (2.4)

It suffices to take the operators m from a generating set of M, such as the l columns of A. The case
k= 1 is of special interest, since we often consider PDE for scalar-valued functions. In that case, the
submodule is an ideal in the polynomial ring R, and we denote this by I . The solution space Sol(I) of the
ideal I ⊆ R is the set of functions φ in F such that p(∂) • φ = 0 for all p ∈ I. Thus, ideals are instances
of modules, with their own notation.

The solution spaces Sol(M) and Sol(I) are C-vector spaces and R-modules. Indeed, any C-linear
combination of solutions is again a solution. The R-module action means applying the same differen-
tial operator p(∂) to each coordinate, which leads to another vector in F k. This action takes solutions
to solutions because the ring of differential operators with constant coefficients R=C[∂1, . . . , ∂n] is
commutative.

The purpose of this paper is to present practical methods for the following task:

Given a k× l matrix A with entries in R=K[∂1, . . . , ∂n], compute a good
representation for the solution space Sol(M) of the module M= imageR(A).

(2.5)

If k= 1 then we consider the ideal I generated by the entries of A and we compute Sol(I).
This raises the question of what a “good representation” means. The formulas in (1.2), (1.5), (1.9)

and (1.11) are definitely good. They guide us to what is desirable. Our general answer stems from the
following important result at the crossroads of analysis and algebra. It involves two sets of unknowns
z= (z1, . . . , zn) and x= (x1, . . . , xn). Here x gives coordinates on certain irreducible varieties Vi in Cn

that are parameter spaces for solutions. Our solutions ψ are functions in z. We take F =C∞(�) where
�⊂Rn is open, convex, and bounded.

Theorem 2.2 (Ehrenpreis–Palamodov Fundamental Principle). Consider a module M ⊆ Rk, represent-
ing linear PDE for a function ψ :�→Ck. There exist irreducible varieties V1, . . . , Vs in Cn and finitely
many vectors Bij of polynomials in 2n unknowns (x, z), all independent of the set�, such that any solution
ψ ∈F admits an integral representation

ψ(z)=
s∑

i=1

mi∑
j=1

∫
Vi

Bij (x, z) exp
(
xtz
)

dμij(x). (2.6)

Here mi is a certain invariant of (M, Vi) and each μij is a bounded measure supported on the variety Vi.

Theorem 2.2 appears in different forms in the books by Björk [7, Theorem 8.1.3], Ehrenpreis [17],
Hörmander [23, Section 7.7], and Palamodov [32]. Other references with different emphases include [5,
25, 29]. For a perspective from commutative algebra see [11, 12].

In the next sections, we will study the ingredients in Theorem 2.2. Given the module M, we com-
pute each associated variety Vi, the arithmetic length mi of M along Vi, and the Noetherian multipliers
Bi,1, Bi,2, . . . , Bi,mi . We shall see that not all n of the unknowns z1, . . . , zn appear in the polynomials Bi,j

but only a subset of codim(Vi) of them.
The most basic example is the ODE in (1.1), with l= n= k= 1. Here Vi = {ui} is the ith root of the

polynomial (1.3), which has multiplicity mi, and Bi,j = zj−1. The measure μij is a scaled Dirac measure
on ui, so the integrals in (2.6) are multiples of the basis functions (1.2).

In light of Theorem 2.2, we now refine our computational task in (2.5) as follows:

Given a k× l matrix A with entries in R=K[∂1, . . . , ∂n], compute the varieties Vi

and the Noetherian multipliers Bij(x, z). This encodes Sol(M) for M = imageR(A).
(2.7)
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In our introductory examples, we gave formulas for the general solution, namely (1.5) and (1.9). We
claim that such formulas can be read off from the integrals in (2.6). For instance, for the wave equa-
tion (1.4), we have s= 2, B1,1 = B1,2 = 1, and (1.5) is obtained by integrating exp(xtz) against measures
dμi1(x) on two lines V1 and V2 in C2. For the system (1.8), we find s= 6, with m1 =m2 =m3 = 1 and
m4 =m5 =m6 = 2, and the nine integrals in (2.6) translate into (1.9). We shall explain such a translation
in full detail for two other examples.

Example 2.3 (n= 3, k= 1, l= 2) The ideal I = 〈∂2
1 − ∂2∂3, ∂2

3 〉 represents the PDE

∂2φ

∂z2
1

= ∂2φ

∂z2∂z3

and
∂2φ

∂z2
3

= 0 (2.8)

for a scalar-valued function φ = φ(z1, z2, z3). This is [10, Example 4.2]. A Macaulay2 computation as
in Section 5 shows that s= 1, m1 = 4. It reveals the Noetherian multipliers

B1 = 1, B2 = z1, B3 = z2
1x2 + 2z3, B4 = z3

1x2 + 6z1z3.

Arbitrary functions f (z2)=
∫

exp(tz2)dt are obtained by integrating against suitable measures on the
line V1 = {(0, t, 0) : t ∈C} ⊂C3. Their derivatives are found by differentiating under the integral sign,
namely f ′(z2)=

∫
t · exp(tz2)dt. Consider four functions a,b,c,d, each specified by a different measure.

Thus, the sum of the four integrals in (2.6) evaluates to

φ(z)= a(z2)+ z1b(z2)+ (z2
1c
′(z2)+ 2z3c(z2))+ (z3

1d
′(z2)+ 6z1z3d(z2)). (2.9)

According to Ehrenpreis–Palamodov, this sum is the general solution of the PDE (2.8).

Our final example uses concepts from primary decomposition, to be reviewed in Section 3.

Example 2.4 (n= 4, k= 2, l= 3). Let M⊂ R4 be the module generated by the columns of

A=
[
∂1∂3 ∂1∂2 ∂2

1∂2

∂2
1 ∂2

2 ∂2
1∂4

]
. (2.10)

Computing Sol(M) means solving
∂2ψ1

∂z1∂z3

+ ∂
2ψ2

∂z2
1

= ∂2ψ1

∂z1∂z2

+ ∂
2ψ2

∂z2
2

= ∂3ψ1

∂z2
1∂z2

+ ∂3ψ2

∂z2
1∂z4

= 0. Two solu-

tions are ψ(z)= (φ(z2, z3, z4), 0
)

and ψ(z)= exp(s2tz1 + st2z2 + s3z3 + t3z4) ·
(
t,−s

)
.

We apply Theorem 2.2 to derive the general solution to (2.10). The module M has six associ-
ated primes, namely P1 = 〈∂1〉, P2 = 〈∂2, ∂4〉, P3 = 〈∂2, ∂3〉, P4 = 〈∂1, ∂3〉, P5 = 〈∂1, ∂2〉, and P6 = 〈∂2

1 −
∂2∂3, ∂1∂2 − ∂3∂4, ∂2

2 − ∂1∂4〉. Four of them are minimal and two are embedded. We find that m1 =m2 =
m3 =m4 =m6 = 1 and m5 = 4. A minimal primary decomposition

M =M1 ∩M2 ∩M3 ∩M4 ∩M5 ∩M6 (2.11)

is given by the following primary submodules of R4, each of which contains M:

M1 = imR

[
∂1 0

0 1

]
, M2 = imR

[
∂2 ∂4 0 0 ∂3

0 0 ∂2 ∂4 ∂1

]
, M3 = imR

[
∂2 ∂3 0

0 0 1

]
,

M4 = imR

[
∂5

3 ∂1 0 0

0 ∂2 ∂1 ∂3

]
, M5 = imR

[
∂1 ∂5

2 0 0

0 0 ∂2
1 ∂2

2

]
, M6 = imR

[
∂1 ∂2 ∂3

∂2 ∂4 ∂1

]
.

The number of Noetherian multipliers Bij is
∑6

i=1 mi = 9. We choose them to be

B1,1=
[

1

0

]
, B2,1=

[
x1

−x3

]
, B3,1=

[
1

0

]
, B4,1 =

[
x2z1

−1

]
, B5,i =

[
0

z1z2

]
,

[
0

z1

]
,

[
0

z2

]
,

[
0

1

]
, B6,1 =

[
x4

−x2

]
.

https://doi.org/10.1017/S0017089521000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000355


Glasgow Mathematical Journal S7

These nine vectors describe all solutions to our PDE. For instance, B3,1 gives the solutions
[α(z1, z4)

0

]
,

and B5,1 gives the solutions
[ 0

z1z2β(z3, z4)

]
, where α, β are bivariate functions. Furthermore, B1,1 and

B6,1 encode the two families of solutions mentioned after (2.10).
For the latter, we note that V6 = V(P6) is the surface in C4 with parametric representation

(x1, x2, x3, x4)= (s2t, st2, s3, t3) for s, t ∈C. This surface is the cone over the twisted cubic curve, in the
same notation as in [11, Section 1]. The kernel under the integral in (2.6) equals[

x4

−x2

]
exp

(
x1z1 + x2z2 + x3z3 + x4z4

) = t2

[
t

−s

]
exp

(
s2tz1 + st2z2 + s3z3 + t3z4

)
.

This is a solution to M6, and hence to M, for any values of s and t. Integrating the left- hand side over
x ∈ V6 amounts to integrating the right-hand side over (s, t) ∈C2. Any such integral is also a solution.
Ehrenpreis–Palamodov tells us that these are all the solutions.

3. Modules and varieties

Our aim is to offer practical tools for solving PDE. The input is a k× l matrix A with entries in R=
K[∂1, . . . , ∂n], and M = imageR(A) is the corresponding submodule of Rk =⊕k

j=1 Rej. The output is the
description of Sol(M) sought in (2.7). That description is unique up to basis change, in the sense of [12,
Remark 3.8], by the discussion in Section 4. Our method is implemented in a Macaulay2 command,
called solvePDE and to be described in Section 5.

We now explain the ingredients of Theorem 2.2 coming from commutative algebra (cf. [18]). For
a vector m ∈ Rk, the quotient (M : m) is the ideal {f ∈ R : fm ∈M}. A prime ideal Pi ⊆ R is associated
to M if there exists m ∈ Rk such that (M : m)= Pi. Since R is Noetherian, the list of associated primes
of M is finite, say P1, . . . , Ps. If s= 1 then the module M is called primary or P1-primary. A primary
decomposition of M is a list of primary submodules M1, . . . , Ms ⊆ Rk where Mi is Pi-primary and M=
M1 ∩M2 ∩ · · · ∩Ms.

Primary decomposition is a standard topic in commutative algebra. It is usually presented for ideals
(k= 1), as in [27, Chapter 3]. The case of modules is analogous. The latest version of Macaulay2 has
an implementation of primary decomposition for modules, as described in [9, Section 2]. Given M, the
primary module Mi is not unique if Pi is an embedded prime.

The contribution of the primary module Mi to M is quantified by a positive integer mi, called the
arithmetic length of M along Pi. To define this, we consider the localization (RPi )

k/MPi . This is a module
over the local ring RPi . The arithmetic length is the length of the largest submodule of finite length
in (RPi )

k/MPi ; in symbols, mi = length
(
H0

Pi
((RPi )

k/MPi )
)
. The sum m1 + · · · +ms is an invariant of the

module M, denoted amult(M), and known as the arithmetic multiplicity of M. These numbers can be
computed in Macaulay2 as in [12, Remark 5.1]. We return to these invariants in Theorem 4.3.

To make the connection to Theorem 2.2, we set Vi = V(Pi) for i= 1, 2, . . . , s. Thus, Vi is the irre-
ducible variety in Cn defined by the prime ideal Pi in R=K[∂1, . . . , ∂n]. The integer mi is an invariant
of the pair (M, Vi): it measures the thickness of the module M along Vi.

By taking the union of the irreducible varieties Vi we obtain the variety

V(M) := V1 ∪ V2 ∪ · · · ∪ Vs ⊂Cn.

Algebraists refer to V (M) as the support of M, while analysts call it the characteristic variety of M.
The support is generally reducible, with ≤ s irreducible components. For instance, the module M in
Example 2.4 has six associated primes, and an explicit primary decomposition was given in (2.11).
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However, the support V (M) has only four irreducible components in C4, namely one hyperplane, two-
dimensional planes, and one nonlinear surface (twisted cubic).

Remark 3.1. If k= 1 and M = I, then the support V(M) coincides with the variety V(I) attached as
usual to an ideal I, namely the common zero set in Cn of all polynomials in I.

The relationship between modules and ideals mirrors the relationship between PDE for vector-valued
functions and related PDE for scalar-valued functions. To pursue this a bit further, we now define two
ideals that are naturally associated with a given module M ⊆ Rk.

The first ideal is the annihilator of the quotient module Rk/M = cokerR(A), which is

I := AnnR(Rk/M)= {f ∈ R : fm ∈M for all m ∈ Rk
}
.

The second is the zeroth Fitting ideal of Rk/M, which is the ideal in R generated by the k× k minors of
the presentation matrix A. It is independent of the choice of A, and we write

J := Fitt0(R
k/M)= 〈k× k subdeterminants of A

〉
.

We are interested in the affine varieties in Cn defined by these ideals. They are denoted by V (I) and V (J),
respectively. The following is a standard result in commutative algebra.

Proposition 3.2. The three varieties above are equal for every submodule M of Rk, that is,

V(M)= V(I)= V(J)⊆Cn. (3.1)

Proof. This follows from [18, Proposition 20.7].

Remark 3.3. It can happen that rank(A)< k, for instance when k> l. In that case, I = J = {0} and
V(M)=Cn. Geometrically, the module M furnishes a coherent sheaf that is supported on the entire

space Cn. For instance, let k= n= 2, l= 1, and A=
(

∂1

−∂2

)
. The PDE asks for pairs (ψ1,ψ2) such

that ∂ψ1/∂z1 = ∂ψ2/∂z2. We see that Sol(M) consists of all pairs
(
∂α/∂z2, ∂α/∂z1

)
, where α= α(z1, z2)

runs over functions in two variables. In general, the left kernel of A furnishes differential operators for
creating solutions to M.

The following example shows that (3.1) is not true at the level of schemes (cf. Section 6).

Example 3.4. (n= k= 3, l= 5) Let R=C[∂1, ∂2, ∂3] and M the submodule of R3 given by

A=
⎛⎜⎝∂1 0 0 0 0

0 ∂2
1 ∂2 0 0

0 0 0 ∂1 ∂3

⎞⎟⎠ .

We find I = 〈∂2
1 , ∂1∂2〉 ⊃ J = 〈∂4

1 , ∂3
1∂3, ∂2

1∂2, ∂1∂2∂3〉. The sets of associated primes are

Ass(I) = {〈∂1〉, 〈∂1, ∂2〉
}

with amult(I)= 2

⊂ Ass(M) = {〈∂1〉, 〈∂1, ∂2〉, 〈∂1, ∂3〉
}

with amult(M)= 4

⊂ Ass(J) = {〈∂1〉, 〈∂1, ∂2〉, 〈∂1, ∂3〉, 〈∂1, ∂2, ∂3〉
}

with amult(J)= 5

The support V(M) is a plane in 3-space, on which I and J define different scheme structures. Our module
M defines a coherent sheaf on that plane that lives between these two schemes. We consider the PDE
in each of the three cases, we compute the Noetherian multipliers, and from this we derive the general
solution. To begin with, functions in Sol(J) have the form

α(z2, z3)+ z1β(z3)+ z2
1γ (z3)+ z1δ(z2)+ c · z3

1.
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The first two terms give functions in the subspace Sol(I). Elements in Sol(M) are vectors(
ρ(z2, z3), σ (z3)+ z1τ (z3),ω(z2)

)
.

These represent all functions C3→C3 that satisfy the five PDE given by the matrix A.

Remark 3.5. The quotient R/I embeds naturally into the direct sum of k copies of Rk/M, via 1 �→
ej. This implies Ass(I)⊆Ass(M). It would be worthwhile to understand how the differential primary
decompositions of I,J and M are related, and to study implications for the solution spaces Sol(I), Sol(J),
and Sol(M). What relationships hold between these?

Lemma 3.6. Fix a k× l matrix A(∂) and its module M ⊆ Rk as above. A point u ∈Cn lies in V(M) if and
only if there exist constants c1, . . . , ck ∈C, not all zero, such that⎛⎜⎜⎝

c1

...

ck

⎞⎟⎟⎠ exp (u1z1 + · · · + unzn) ∈ Sol(M). (3.2)

More precisely, (3.2) holds if and only if (c1, . . . , ck) · A(u)= 0.

Proof. Let aij(∂) denote the entries of the matrix A(∂). Then (3.2) holds if and only if
k∑

i=1

aij(∂) • (ci exp (u1z1 + · · · + unzn))= 0 for all j= 1, . . . , l.

This is equivalent to
k∑

i=1

ciaij(u) exp (u1z1 + · · · + unzn)= 0 for all j= 1, . . . , l.

This condition holds if and only if (c1, . . . , ck) · A(u) is the zero vector in Cl. We conclude that, for any
given u ∈Cn, the previous condition is satisfied for some c ∈Ck\{0} if and only if rank(A(u))< k if and
only if u ∈ V(M)= V(I). Here we use Proposition 3.2.

Here is an alternative way to interpret the characteristic variety of a system of PDE:

Proposition 3.7. The solution space Sol(M) contains an exponential solution q(z) · exp(utz) if and only
if u ∈ V(M). Here q is some vector of k polynomials in n unknowns, as in (2.2).

Proof. One direction is clear from Lemma 3.6. Next, suppose q(z) exp (utz) ∈ Sol(M). The partial
derivative of this function with respect to any unknown zi is also in Sol(M). Hence,

∂i • (q(z) exp (utz))= (∂i • q(z)) exp (utz)+ uiq(z) exp (utz) ∈ Sol(M) for i= 1, . . . , n.

Hence, the exponential function (∂i • q(z)) exp (utz) is in Sol(M). Since the degree of ∂i • q(z) is less
than that of q(z), we can find a sequence D= ∂i1∂i2 · · · ∂is such that D • q is a nonzero constant vector
and (D • q) exp (utz) ∈ Sol(M). Lemma 3.6 now implies that u ∈ V(M).

The solution space Sol(M) to a submodule M ⊆ Rk is a vector space over C. It is infinite-dimensional
whenever V (M) is a variety of positive dimension. This follows from Lemma 3.6 because there are
infinitely many points u in V (M). However, if V (M) is a finite subset of Cn, then Sol(M) is finite-
dimensional. This is the content of the next theorem.

Theorem 3.8. Consider a module M ⊆ Rk, viewed as a system of linear PDE. Its solution space
Sol(M) is finite-dimensional over C if and only if V(M) has dimension 0. In this case, dimCSol(M)=
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dimK(Rk/M)= amult(M). There is a basis of Sol(M) given by vectors q(z)exp(utz), where u ∈ V(M) and
q(z) runs over a finite set of polynomial vectors, whose cardinality is the length of M along the maxi-
mal ideal 〈x1 − u1, . . . , xn − un〉. There exist polynomial solutions if and only if m= 〈x1, . . . , xn〉 is an
associated prime of M. The polynomial solutions are found by solving the PDE given by the m-primary
component of M.

Proof. This is the main result in Oberst’s article [30], proved in the setting of injective cogenerators
F . The same statement for F =C∞(�) appears in [7, Ch. 8, Theorem 7.1]. The scalar case (k= 1) is
found in [27, Theorem 3.27]. The proof given there uses solutions in the power series ring, which is an
injective cogenerator, and it generalizes to modules.

By a polynomial solution we mean a vector q(z) whose coordinates are polynomials. The m-primary
component in Theorem 3.8 is computed by a double saturation step. When M= I is an ideal, then this
double saturation is I : (I : m∞), as seen in [27, Theorem 3.27]. For submodules M of Rk with k≥ 2, we
would compute M : Ann(Rk/(M : m∞)). The inner colon (M : m∞) is the intersection of all primary com-
ponents of M whose variety Vi does not contain the origin 0. It is computed as (M : f )= {m ∈ Rk : fm ∈
M}, where f is a random homogeneous polynomial of large degree. The outer colon is the module (M : g),
where g is a general polynomial in the ideal Ann(Rk/(M : f )). See also [9, Proposition 2.2].

It is an interesting problem to identify polynomial solutions when V (M) is no longer finite and to
decide whether these are dense in the infinite-dimensional space of all solutions. Here “dense” refers to
the topology on F used by Lomadze in [26]. The following result gives an algebraic characterization of
the closure in Sol(M) of the subspace of polynomial solutions.

Proposition 3.9. The polynomial solutions are dense in Sol(M) if and only if the origin 0 lies in every
associated variety Vi of the module M. If this fails, then the topological closure of the space of polynomial
solutions q(z) to M is the solution space of M : Ann(Rk/(M : m∞)).

Proof. This proposition is our reinterpretation of Lomadze’s result in [26, Theorem 3.1].

The result gives rise to algebraic algorithms for answering analytic questions about a system of PDE.
The property in the first sentence can be decided by running the primary decomposition algorithm in
[9]. For the second sentence, we need to compute a double saturation as above. This can be carried out
in Macaulay2 as well.

4. Differential primary decomposition

We now shift gears and pass to a setting that is dual to the one we have seen so far. Namely, we discuss
differential primary decompositions [9, 12]. That duality is subtle and can be confusing at first sight.
To mitigate this, we introduce new notation. We set xi = ∂i = ∂zi for i= 1, . . . , n. Thus, R is now the
polynomial ring K[x1, . . . , xn]. This is the notation we are used to from algebra courses (such as [27]).
We write ∂x1 , . . . , ∂xn for the differential operators corresponding to x1, . . . , xn. Later on, we also identify
zi = ∂xi , and we think of the unknowns x and z in the multipliers Bi(x, z) as dual in the sense of the Fourier
transform.

The ring of differential operators on the polynomial ring R is the Weyl algebra

Dn = R〈∂x1 , . . . , ∂xn〉 =K〈x1, . . . , xn, ∂x1 , . . . , ∂xn〉.

The 2n generators commute, except for the n relations ∂xi xi − xi∂xi = 1, which expresses the Product
Rule from Calculus. Elements in the Weyl algebra Dn are linear differential operators with polynomial
coefficients. We write δ • p for the result of applying δ ∈Dn to a polynomial p= p(x) in R. For instance,
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xi • p= xip and ∂xi • p= ∂p/∂xi. Let Dk
n denote the k-tuples of differential operators in Dn. These operate

on the free module Rk as follows:

Dk
n × Rk→ R : (δ1, . . . , δk) • (p1, . . . , pk)=

k∑
j=1

δj • pj.

Fix a submodule M of Rk and let P1, . . . , Ps be its associated primes, as in Section 3. A differential
primary decomposition of M is a list A1, . . . , As of finite subsets of Dk

n such that

M= {m ∈ Rk : δ •m ∈ Pi for all δ ∈Ai and i= 1, 2, . . . , s
}
. (4.1)

This is a membership test for the module M using differential operators. This test is geometric since the
polynomial δ •m lies in Pi if and only if it vanishes on the variety Vi = V(Pi).

Theorem 4.1 Every submodule M of Rk has a differential primary decomposition. We can choose the
sets A1, . . . , As such that |Ai| is the arithmetic length of M along the prime Pi.

Proof and discussion. The result is proved in [12] and further refined in [9]. These sources also
develop an algorithm. We shall explain this in Section 5, along with a discussion of the Macaulay2
command solvePDE, which computes differential primary decompositions.

The differential operators in A1, . . . , As are known as Noetherian operators in the literature; see [10,
11, 15, 31]. Theorem 4.1 says that we can find a collection of amult(M)=m1 + · · · +ms Noetherian
operators in Dk

n to characterize membership in the module M.

Remark 4.2 The construction of Noetherian operators is studied in [7, 8, 10, 11, 23, 31]. Some of these
sources offer explicit methods, while others remain at an abstract level. All previous methods share
one serious shortcoming, namely they yield operators separately for each primary component Mi of
M. They do not take into account how one primary component is embedded into another. This leads to
a number of operators that can be much larger than amult (M). We refer to [12, Example 5.6] for an
instance from algebraic statistics where the previous methods require 1044 Noetherian operators, while
amult(M)= 207 suffice.

While Theorem 4.1 makes no claim of minimality, it is known that amult(M) is the minimal number
of Noetherian operators required for a differential primary decomposition of a certain desirable form. To
make this precise, we begin with a few necessary definitions. For any given subset S of {x1, . . . , xn}, the
relative Weyl algebra is defined as the subring of the Weyl algebra Dn using only differential operators
corresponding to variables not in S:

Dn(S) := R〈∂xi : xi �∈ S〉 ⊆Dn. (4.2)

Thus, if S =∅, then Dn(S)=Dn, and if S = {x1, . . . , xn}, then Dn(S)= R=K[x1, . . . , xn].
For any prime ideal Pi in R we fix a set Si ⊆ {x1, . . . , xn} that satisfies K[Si]∩ Pi = {0} and is maximal

with this property. Thus, Si is a maximal independent set of coordinates on the irreducible variety V(Pi).
Equivalently, Si is a basis of the algebraic matroid defined by the prime Pi; cf. [27, Example 13.2]. The
cardinality of Si equals the dimension of V(Pi).

Theorem 4.3 The differential primary decomposition in Theorem 4.1 can be chosen so that Ai ⊂
Dn(Si)k. The arithmetic length of M along Pi is a lower bound for the cardinality of Ai in any differential
primary decomposition of M such that Ai ⊂Dn(Si)k for i= 1, . . . , s.

Proof and discussion. This was shown in [12, Theorem 4.6]. The case of ideals (k= 1) appears in [12,
Theorem 3.6]. See also [9]. The theory developed in [12] is more general in that R can be any Noetherian
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K-algebra. In this paper, we restrict to polynomial rings R=K[x1, . . . , xn] where K is a subfield of C.
That case is treated in detail in [9].

We next argue that Theorems 2.2 and 4.1 are really two sides of the same coin. Every element A
in the Weyl algebra Dn acts as a differential operator with polynomial coefficients on functions in the
unknowns x= (x1, . . . , xn). Such a differential operator has a unique representation where all derivatives
are moved to the right of the polynomial coefficients:

A(x, ∂x)=
∑

r,s∈Nn

cr,sx
r1
1 · · · xrn

n ∂
s1
x1
· · · ∂ sn

xn
, wherecr,s ∈K. (4.3)

There is a natural K-linear isomorphism between the Weyl algebra Dn and the polynomial ring K[x, z]
which takes the operator A in (4.3) to the following polynomial B in 2n variables:

B(x, z)=
∑

r,s∈Nn

cr,sx
r1
1 · · · xrn

n zs1
1 · · · zsn

n . (4.4)

In Sections 1, 2, and 3, polynomials in R=K[x1, . . . , xn]=K[∂1, . . . , ∂n] act as differential operators
on functions in the unknowns z= (z1, . . . , zn). For such operators, polynomials in x are constants. By
contrast, in the current section, we introduced the Weyl algebra Dn. Its elements act on functions in x=
(x1, . . . , xn), with polynomials in z being constants. These two different actions of differential operators,
by Dn and R on scalar-valued functions, extend to actions by Dk

n and Rk on vector-valued functions. We
highlight the following key point:

Our distinction between the z -variables and x-variables is absolutely essential. (4.5)

The following theorem is the punchline of this section. It allows us to identify Noetherian operators
(4.3) with Noetherian multipliers (4.4). This was assumed tacitly in [11, Section 3].

Theorem 4.4 Consider any differential primary decomposition of the module M as in Theorem 4.3. Then
this translates into an Ehrenpreis–Palamodov representation of the solution space Sol(M). Namely, if
we replace each operator A(x, ∂x) in Ai by the corresponding polynomial B(x, z), then these amult(M)
polynomials satisfy the conclusion of Theorem 2.2.

Example 4.5 (k= l= n= 1) We illustrate Theorem 4.4 and the warning (4.5) for an ODE (1.1) with
m= 3. Set p(x)= x3 + 3x2 − 9x+ 5= (x− 1)2(x+ 5) in (1.3). The ideal I = 〈p〉 has s= 2 associated
primes in R=Q[x], namely P1 = 〈x− 1〉 and P2 = 〈x+ 5〉, with m1 = 2 and m2 = 1, so amult(I)= 3.
A differential primary decomposition of I is given by A1 = {1, ∂x} and A2 = {1}. The three Noetherian
operators translate into the Noetherian multipliers B11 = 1, B12 = z, B21 = 1. The integrals in (2.6) now
furnish the general solution φ(z)= αexp(z)+ βzexp(z)+ γ exp(−5z) to the differential equation φ ′ ′ ′ +
3φ ′ ′ − 9φ ′ + 5φ = 0.

The derivation of Theorem 4.4 rests on the following lemma on duality between x and z.

Lemma 4.6 Let p and q be polynomials in n unknowns with coefficients in K. We have

q(∂z) •
(
p(z) exp (xtz)

)= p(∂x) •
(
q(x) exp (xtz)

)
. (4.6)

Proof. The parenthesized expression on the left equals p(∂x) • exp(xtz), while that on the right equals
q(∂z) • exp(xtz). Therefore, the expression in (4.6) is the result of applying the operator p(∂x)q(∂z)=
q(∂z)p(∂x) to exp (xtz), when viewed as a function in 2n unknowns.
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We now generalize this lemma to k≥ 2, we replace p by a polynomial vector that depends on both x
and z, and we rename that vector using the identification between (4.3) and (4.4).

Proposition 4.7 Let B(x, z) be a k-tuple of polynomials in 2n variables and A(x, ∂x) ∈Dk
n the corre-

sponding k-tuple of differential operators in the Weyl algebra. Then we have

q(∂z) • (B(x, z) exp (xtz))= A(x, ∂x) • (q(x) exp (xtz)). (4.7)

Proof. If k= 1, we write A(x, ∂x)=∑
α

cα(x)∂αx as in (4.3) and B(x, z)=∑
α

cα(x)zα as in (4.4). Only
finitely many of the polynomials cα(x) are nonzero. Applying Lemma 4.6 gives

A(x, ∂x) • (q(x) exp (xtz))=∑
α

cα(x)q(∂z) • (zα exp (xtz))= q(∂z) • (B(x, z) exp (xtz)).

The extension from k= 1 to k≥ 2 follows because the differential operation • is K-linear.

We now take a step toward proving Theorem 4.4 in the case s= 1. Let M be a primary submodule of
Rk with Ass(M)= {P}. Its support V(M)= V(P) is an irreducible affine variety in Cn. Consider the sets
of all Noetherian operators and all Noetherian multipliers:

A := {A ∈Dk
n : A •m ∈ P for all m ∈M

}
and

B := {B ∈K[x, z] : B(x, z)exp(xtz) ∈ Sol(M)for all x ∈ V(P)
}
. (4.8)

Proposition 4.8 The bijection between Dk
n and K[x, z]k, given by identifying the operator A in (4.3) with

the polynomial B in (4.4), restricts to a bijection between the sets A and B.

Proof. Let m1, . . . , ml ∈K[x]k be generators of M. Suppose A ∈A. Then
k∑

i=1

Ai(x, ∂x) •
l∑

j=1

mij(x)fj(x)

vanishes for all x ∈ V(P) and all polynomials f1, . . . , fl ∈C[x]. Since the space of complex-valued
polynomials is dense in the space of all entire functions on Cn, the preceding implies

k∑
i=1

Ai(x, ∂x) •mij(x) exp (xtz)= 0 for all z ∈Cn, x ∈ V(P) and j= 1, . . . , l.

Using Proposition 4.7, this yields
k∑

i=1

mij(∂z) • Bi(x, z) exp (xtz)= 0 for all z ∈Cn, x ∈ V(P) and j= 1, . . . , l.

We conclude that the polynomial vector B(x, z) corresponding to A(x, ∂x) lies in B.
To prove the converse, we note that the implications above are reversible. Thus, if B(x, z) is in B, then

A(x, ∂x) is in A. This uses the fact that linear combinations of the exponential functions x→ exp (xtz),
for z ∈Cn, are also dense in the space of entire functions.

Proof of Theorem 4.4. Let A be any finite subset of A which gives a differential primary decompo-
sition of the P-primary module M. This exists and can be chosen to have cardinality equal to the length
of M along P. Let B be the set of Noetherian multipliers (4.4) corresponding to the set A of Noetherian
operators (4.3). Proposition 4.8 shows that the exponential function z→ B(x, z)exp(xtz) is in Sol(M)
whenever x ∈ V(P) and B ∈B. Hence all C-linear combinations of such functions are in Sol(M). More
generally, by differentiating under the integral sign, we find that all functions of the following form are
solutions of M:

ψ(z)=
∑
B∈B

∫
V(P)

B(x, z)exp(xtz)dμB(x).
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We need to argue that all solutions in F =C∞(�) admit such an integral representation. Suppose first
that all associated primes of M are minimal. Then each Ai spans a bimodule in the sense of [9, Theorem
3.2 (d)]. Hence, for each associated prime Pi, the module

Mi = {m ∈ Rk : δ •m ∈ Pi for all δ ∈Ai}
is Pi-primary, and M=M1 ∩ · · · ∩Ms is a minimal primary decomposition. The operators in Ai are in
the relative Weyl algebra Dn(Si) and fully characterize the Pi-primary component of M. We may thus
follow the classical analytical constructions in the books [7, 23, 32] to patch together the integral repre-
sentation of Sol(Mi) for i= 1, . . . , s, under the correspondence of Noetherian operators and Noetherian
multipliers. Therefore, all solutions have the form (2.6).

Things are more delicate when M has embedded primes. Namely, if Pi is embedded, then the operators
in Ai only characterize the contribution of the Pi-primary component relative to all other components
contained in Pi. We see this in Section 5. One argues by enlarging Ai to vector space generators of the
relevant bimodule. Then the previous patching argument applies. And, afterward one shows that the
added summand in the integral representation are redundant because they are covered by associated
varieties V(Pj) containing V(Pi).

5. Software and algorithm

In this section, we present an algorithm for solving linear PDE with constant coefficients. It is based
on the methods for ideals given in [8, 10, 11]. The case of modules appears in [9]. We note that the
computation of Noetherian operators has a long history, going back to work in the 1990’s by Ulrich
Oberst [28, 29, 30, 31], who developed a construction of Noetherian operators for primary modules.
This was further developed by Damiano, Sabadini and Struppa [15] who presented the first Gröbner-
based algorithm. It works for primary ideals under the restrictive assumption that the characteristic
variety has a rational point after passing to a (algebraically nonclosed) field of fractions. Their article
also points to an implementation in CoCoA, but we were unable to access that code. Since these early
approaches rely on the ideals or modules being primary, using them in practice requires first computing
a primary decomposition. If there are embedded primes, the number of Noetherian operators output by
these methods will not be minimal either.

We here present a new algorithm that is universally applicable, to all ideals and modules over a poly-
nomial ring. There are no restrictions on the input and the output is minimal. The input is a submodule M
of Rk, where R=K[x1, . . . , xn]. The output is a differential primary decomposition of size amult(M) as
in Theorem 4.3. A first step is to find Ass(M)= {P1, . . . , Ps}. For each associated prime Pi, the elements
A(x, ∂x) in the finite set Ai ⊂Dn(Si) are rewritten as polynomials B(x, z), using the identification of (4.3)
with (4.4). Only the codim(Pi) many variables zi with xi �∈ Si appear in these Noetherian multipliers B.

We now describe our implementation for (2.7) in Macaulay2 [21]. The command is called
solvePDE, as in [12, Section 5]. It is distributed with Macaulay2 starting from version 1.18 in the
package NoetherianOperators [8]. The user begins by fixing a polynomial ring R=K[x1, . . . , xn].
Here K is usually the rational numbers QQ. Fairly arbitrary variable names xi are allowed. The argument
of solvePDE is an ideal in R or a submodule of Rk. The output is a list of pairs

{
Pi, {Bi1, . . . , Bi,mi}

}
for

i= 1, . . . , s, where Pi is a prime ideal given by generators in R, and each Bij is a vector over a newly cre-
ated polynomial ring K[x1, . . . , xn, z1, . . . , zn]. The new variables zi are named internally by Macaulay2.
The system writes dxi for zi. To be precise, each new variable is created from an old variable by prepend-
ing the character d. This notation can be confusing at first, but one gets used to it. The logic comes from
the differential primary decompositions described in [12, Section 5].

Each Bij in the output of solvePDE encodes an exponential solution Bij(x, z)exp(xtz) to M. Here x
are the old variables chosen by the user, and x denotes points in the irreducible variety V(Pi)⊆Cn. The
solution is a function in the new unknowns z= (dx1, . . . , dxn). For instance, if n= 3 and the input is in
the ring QQ[u,v,w], then the output lives in the ring QQ[u,v,w,du,dv,dw]. Each solution to the PDE
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is a function ψ(du, dv, dw), and these functions are parametrized by a variety V(Pi) in a 3-space whose
coordinates are (u, v, w).

We now demonstrate how this works for two examples featured in the introduction.

Example 5.1. Consider the third order ODE (1.1) in Example 4.5. We solve this as follows:

R = QQ[x]; I = ideal(xˆ3+ 3∗xˆ2 - 9∗x+ 5); solvePDE(I)

{{ideal(x - 1), {| 1 |, | dx |}}, {ideal(x+ 5), {| 1 |}}}

The first line is the input. The second line is the output created by solvePDE. This list of s= 2 pairs
encodes the general solution φ(z). Remember: z is the newly created symbol dx.

Example 5.2. We solve the PDE (1.8) by typing the 2× 3 matrix whose columns are (2.1):

R = QQ[x1,x2,x3,x4];

M = image matrix {{x1ˆ2,x2∗x3,x1ˆ2∗x3},{x1∗x2,x3ˆ2,x1∗x2∗x4}}; solvePDE(M)

The reader is encouraged to run this code and to check that the output is the solution (1.9).

The method in solvePDE is described in Algorithm 1 below. A key ingredient is a translation map. We
now explain this in the simplest case, when the module is supported in one point. Suppose V(M)= {u}
for some u ∈Kn. We set mu = 〈x1 − u1, . . . , xn − un〉 and

γu : R→ R, xi �→ xi + ui for i= 1, . . . , n. (5.1)

The following two results are straightforward. We will later use them when M is any primary module,
u is the generic point of V (M), and K=K(u) is the associated field extension of K .

Proposition 5.3 A constant coefficient operator A(∂x) is a Noetherian operator for the mu-primary mod-
ule M if and only if A(∂x) is a Noetherian operator for the m0-primary module M̂ := γu(M). Dually,
B(z) exp (utz) is in Sol(M) if and only if B(z) is in Sol(M̂).

We note that all Noetherian operators over a K-rational point can be taken to have constant coef-
ficients. This follows from Theorem 3.8. This observation reduces the computation of solutions for a
primary module to finding the polynomial solutions of the translated module. Next, we bound the degrees
of these polynomials.

Proposition 5.4 Let M̂⊆ Rk be an m0-primary module. There exists an integer r such that mr+1
0 Rk ⊆ M̂.

The space Sol(M̂) consists of k-tuples of polynomials of degree ≤ r.

Propositions 5.3 and 5.4 furnish a method for computing solutions of an mu-primary module M. We
start by translating M so that it becomes the m0-primary module M̂. The integer r provides an ansatz∑k

j=1

∑
|α|≤r vα,jzαej for the polynomial solutions. The coefficients vα,j are computed by linear algebra

over the ground field K . Here are the steps:

1. Let r be the smallest integer such that mr+1
0 Rk ⊆ M̂.

2. Let Diff(M̂) be the matrix whose entries are the polynomials m̂i • (zαej) ∈ R. The row labels are
the generators m̂1, . . . , m̂l of M̂, and the column labels are the zαej.

3. Let kerK (Diff(M̂)) denote the K-linear subspace of the R-module kerR (Diff(M̂)) consisting of
vectors (vα,j) with all entries in K . Every such vector gives a solution

k∑
j=1

∑
|α|≤r

vα,jzα exp (utz)ej ∈ Sol(M). (5.2)
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Algorithm 1 SolvePDE
Input: An arbitrary submodule M of Rk

Output: List of associated primes with corresponding Noetherian multipliers.
1: for each associated prime ideal P of M do
2: U←MRk

P ∩ Rk

3: V← (U : P∞)
4: r← the smallest number such that V ∩ Pr+1Rk is a subset of U
5: S← a maximal set of independent variables modulo P
6: K← Frac(R/P)
7: T←K[yi : xi �∈ S]
8: γ ← the map defined in (5.5)
9: m← the irrelevant ideal in T

10: Û← γ (U)+mr+1Tk

11: V̂← γ (V)+mr+1Tk

12: N← a K-vector space basis of the space of k-tuples of polynomials of degree ≤ r
13: Diff(Û)← the matrix given by the •-product of generators of Û with elements of N
14: Diff(V̂)← the matrix given by the •-product of generators of V̂ with elements of N
15: K← kerK (Diff(Û))/ kerK (Diff(V̂))
16: A← a K-vector space basis of K
17: B← lifts of the vectors in A⊂ Tk to vectors in R[dx1, . . . , dxn]k

18: return the pair (P, B)

Example 5.5 [n= k= r= 2] The following module is m0-primary of multiplicity three:

M= imageR

[
∂3

1 ∂2 − c1∂
2
1 − c2∂1 c3∂

2
1 + c4∂1 + c5

0 0 1

]
. (5.3)

Here c1, c2, c3, c4, c5 are arbitrary constants in K. The matrix Diff(M) has three rows, one for each
generator of M, and it has 12 columns, indexed by e1, z1e1, . . . , z2

2e1, e2, z1e2, . . . , z2
2e2. The space

kerK(Diff(M)) is 3-dimensional. A basis furnishes the three polynomial solutions[−1

c5,

]
,

[ −(z1 + c2z2)

c5z1 + c2c5z2 + c4

]
,

[ −((z1 + c2z2)2 + 2c1z2)

c5(z1+c2z2)2 + 2c4z1 + 2(c1c5+c2c4)z2 + 2c3

]
. (5.4)

We now turn to Algorithm 1. The input and output are as described in (2.7). The method was intro-
duced in [9, Algorithm 4.6] for computing differential primary decompositions. We use it for solving
PDE. It is implemented in Macaulay2 under the command solvePDE. In our discussion, the line
numbers refer to the corresponding lines of pseudocode in Algorithm 1.

Line 1 We begin by finding all associated primes of M. These define the irreducible varieties Vi in
(2.7). By [19, Theorem 1.1], the associated primes of codimension i coincide with the minimal
primes of Ann Exti

R(M, R). This reduces the problem of finding associated primes of a module
to the more familiar problem of finding minimal primes of a polynomial ideal. This method
is implemented and distributed with Macaulay2 starting from version 1.17 via the command
associatedPrimes Rˆk/M. See [9, Section 2].

The remaining steps are repeated for each P ∈Ass(M). For a fixed associated prime P, our goal is to
identify the contribution to Sol(M) of the P-primary component of M.
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Lines 2–3 To achieve this goal, we study solutions for two different R-submodules of Rk. The
first one, denoted U, is the intersection of all Pi-primary components of M, where Pi

are the associated primes contained in P. Thus U =MRk
P ∩ Rk, which is the extension-

contraction module of M under localization at P. It is computed as U = (M : f∞), where
f ∈ R is contained in every associated prime Pj not contained in P.

The second module, denoted V , is the intersection of all Pi-primary components of M,
where Pi is strictly contained in P. Hence, V = (U : P∞) is the saturation of U at P. We
have U = V ∩Q, where Q is a P-primary component of M. Thus, the difference between
the solution spaces Sol(U) and Sol(V) is caused by the primary module Q.

When P is a minimal prime, U is the unique P-primary component of M, and V = Rk.
Line 4 The integer r bounds the degree of Noetherian multipliers associated to U but not V .

Namely, if the function φ(z)= B(x, z) exp (xtz) lies in Sol(U)\Sol(V) for all x ∈ V(P),
then the z-degree of the polynomial B(x, z) is at most r. This will lead to an ansatz for
the Noetherian multipliers responsible for the difference between Sol(U) and Sol(V).

Lines 5–8 The modules U and V are reduced to simpler modules Û and V̂ with similar properties.
Namely, Û and V̂ are primary and their characteristic varieties are the origin. This reduc-
tion involves two new ingredients: a new polynomial ring T in fewer variables over a field
K that is a finite extension of K , and a ring map γ : R→ T .

Fix a maximal set S = {xi1 , . . . , xin−c} with P∩K[xi1 , . . . , xin−c ]= {0}. We define T :=
K[yi : xi /∈ S], where K= Frac(R/P). This is a polynomial ring in n− |S| = c new vari-
ables yi, corresponding to the xi not in the set S of independent variables. Writing ui for
the image of xi in K= Frac(R/P), the ring map γ is defined as follows:

γ : R→ T , xi �→
{

yi + ui, if xi /∈ S,

ui, if xi ∈ S.
(5.5)

By abuse of notation, we denote by γ the extension of (5.5) to a map Rk→ Tk.
Lines 9–11 Let m := 〈yi : xi �∈ S〉 be the irrelevant ideal of T . We define the T -submodules

Û := γ (U)+mr+1Tk and V̂ := γ (U)+mr+1Tk of Tk.

These modules are m-primary: their solutions are finite-dimensional K-vector spaces
consisting of polynomials of degree ≤ r. The polynomials in Sol(Û)\Sol(V̂) capture the
difference between Û and V̂ , and also the difference between U and V after lifting.

Lines 12–14 We construct matrices Diff(Û) and Diff(V̂) with entries in K[zi : xi �∈ S]. As in (5.2), their
kernels over K correspond to polynomial solutions of Û and V̂ . The set N = {zαej : |α| ≤
r, j= 1, . . . , k} is a K-basis for elements of degree ≤ r in K[zi : xi �∈ S]k. The yi-variables

act on the zi variables as partial derivatives, i.e. yi = ∂

∂zi

. We define the matrix Diff(Û)

as follows. Let Û1, . . . , Û� be generators of Û. The rows of Diff(Û) are indexed by these
generators, the columns are indexed by N , and the entries are the polynomials Ûi • zαej.
In the same way, we construct Diff(V̂).

Lines 15–16 Let kerK (Diff(Û)) be the space of vectors in the kernel of Diff(Û) whose entries are in
K. The K-vector space kerK (Diff(Û)) parametrizes the polynomial solutions

k∑
j=1

∑
|α|≤r

vα,jzαej ∈ Sol(Û).

The same holds for V̂ . The quotient space K := kerK (Diff(Û))/ kerK (Diff(V̂)) char-
acterizes excess solutions in Sol(Û) relative to Sol(V̂). Write A for a K-basis
of K.

Lines 17–18 We interpret A as a set of Noetherian multipliers for M by performing a series of lifts and
transformations. For each element v̄ ∈A, we choose a representative v ∈ kerK (Diff(Û)).
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The entries of v are in K= Frac(R/P) and may contain denominators. Multiplying v by
a common multiple of the denominators yields a vector with entries in R/P, indexed
by N . We lift this to a vector u= (uα,j) with entries in R. The Noetherian multiplier
corresponding to u is the following vector in R[dxi : xi �∈ S]k:

B(x, dx)=
k∑

j=1

∑
|α|≤r

uα,j(x)dxαej.

Applying the map v̄ �→ u to each v̄ ∈A yields a set B of Noetherian multipliers. These
multipliers describe the contribution of the P-primary component of M to Sol(M).

The output of Algorithm 1 is a list of pairs (P, B), where P ranges over Ass(M) and B= {B1, . . . , Bm}
is a subset of R[dx1, . . . , dxn]k. The cardinality m is the multiplicity of M along P. The output describes
the solutions to the PDE given by M. Consider the functions

φP(dx1, . . . , dxn)=
m∑

i=1

∫
V(P)

Bi(x, dx) exp (x1dx1 + · · · + xndxn)dμi(x).

Then the space of solutions to M consists of all functions∑
P∈Ass(M)

φP(dx1, . . . , dxn).

A differential primary decomposition of M is obtained from this by reading dxi as ∂xi . Indeed, the
command differentialPrimaryDecomposition described in [9] is identical to our command
solvePDE. All examples in [9, Section 6] can be interpreted as solving PDE.

6. Schemes and coherent sheaves

The concepts of schemes and coherent sheaves are central to modern algebraic geometry. These gener-
alize varieties and vector bundles, and they encode geometric structures with multiplicities. The point
is that the supports of coherent sheaves and other schemes are generally nonreduced. We here argue
that our linear PDE offer a useful way to think about the geometry of these objects. That perspective
motivated the writing of [27, Section 3.3].

The affine schemes we consider are defined by ideals I in a polynomial ring R. Likewise, submodules
M of Rk represent coherent sheaves on Cn. We study the affine scheme Spec(R/I) and the coherent sheaf
given by the module Rk/M. The underlying geometric objects are the affine varieties V (I) and V (M) in
Cn. The latter was discussed in Section 3. The solution spaces Sol(I) or Sol(M) furnish nonreduced struc-
tures on these varieties, encoded in the integral representations due to Ehrenpreis–Palamodov. According
to Section 4, these are dual to differential primary decompositions. Coherent sheaves were a classical
tool in the analysis of linear PDE, but in the analytic category, where their role was largely theoreti-
cal. The Ehrenpreis–Palamodov Fundamental Principle appears in Hörmander’s book under the header
Coherent analytic sheaves on Stein manifolds [23, Chapter VII]. Likewise, Treves’ exposition, in the
title of [35, Section 3.2], calls for Analytic sheaves to the rescue. By contrast, sheaves in this paper are
concrete and algebraic: they are modules in Macaulay2.

One purpose of this section is to explore how PDE and their solutions behave under degenerations. We
consider ideals and modules whose generators depend on a parameter ε. This is modelled algebraically
by working over the field K =C(ε) of rational functions in the variable ε. Algorithm 1 can be applied
to the polynomial ring R=K[x1, . . . , xn] over that field. We think of ε as a small quantity and we are
interested in what happens when ε→ 0.
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Our discussion in this section is very informal. This is by design. We present a sequence of examples
that illustrates the geometric ideas. The only formal result is Theorem 6.6, which concerns the role of
the Quot scheme in parametrizing systems of linear PDE.

Example 6.1 (n= 2) Consider the prime ideal Iε = 〈∂2
1 − ε2∂2〉. For nonzero parameters ε, by

Theorem 2.2, the solutions to this PDE are represented as one-dimensional integrals

αε(z1, z2)=
∫

exp(ε t z1 + t2 z2)dt ∈ Sol(I).

By taking the limit for ε→ 0, this yields arbitrary functions a(z2). These are among the solutions to
I0 = 〈∂2

1 〉. Other limit solutions are obtained via the reflection t �→−t. Set

βε(z1, z2)=
∫

exp(− ε t z1 + t2 z2)dt ∈ Sol(I).

Note the similarity to the one-dimensional wave equation (1.5) with c= ε. The solution for ε = 0 is given
in (1.6). This is found from the integrals above by taking the following limit:

limε→0

1

2ε

(
αε(z1, z2)− βε(z1, z2)

)= ∫ limε→0

exp(εtz1 + t2z2)− exp(− εtz1 + t2z2)

2ε
dt

=
∫

tz1exp(t2z2)dt

= z1b(z2).

(6.1)

We conclude that the general solution to I0 equals φ(z1, z2)= a(z2)+ z1b(z2), where b is any function
in one variable. The calculus limit in (6.1) realizes a scheme-theoretic limit in the sense of algebraic
geometry. Namely, two lines in (1.7) converge to a double line in C2.

Example 6.2 (n= 3). For ε �= 0 consider the curve t �→ (εt3, t4, ε2t2) in C3. Its prime ideal equals Iε =
〈∂2

1 − ∂2∂3, ∂2
3 − ε4∂2〉. The solution space Sol(Iε) consists of the functions

φ(z1, z2, z3)=
∫

exp(εt3z1 + t4z2 + ε2t2z3)dt. (6.2)

What happens to these functions when ε tends to zero? We address this question algebraically. The
scheme-theoretic limit of the given ideal Iε is the ideal in Example 2.3. This is verified by a Gröbner
basis computation (cf. [18, Section 15.8]). Passing from ideals to their varieties, we see a toric curve in
C3 that degenerates to a line with multiplicity four.

We claim that the formula in (2.9) arises from (6.2), just as in Example 6.1. Namely, set i=√−1
and let φs ∈ Sol(Iε) be the function that is obtained from φ in (6.2) by replacing the parameter t with ist.
Then the following four functions on the left are solutions to Iε:

φ0 + φ1 + φ2 + φ3 −→ a(z2),

ε−1(φ0 + iφ1 + i2φ2 + i3φ3) −→ z1b(z2),

ε−2(φ0 + i2φ1 + i4φ2 + i6φ3) −→ z2
1c
′(z2)+ 2z3c(z2),

ε−3(φ0 + i3φ1 + i6φ2 + i9φ3) −→ z3
1d
′(z2)+ 6z1z3d(z2).

The functions obtained as limits on the right are precisely the four summands seen in (2.9). Thus, the
solution spaces to this family of PDE reflect the degeneration of the toric curve.

Such limits make sense also for modules. If a module Mε ⊆ Rk depends on a parameter ε then we
study its solution space Sol(Mε) as ε tends to zero. Geometrically, we examine flat families of coherent
sheaves on Cn or on Pn−1. A typical scenario comes from the action of the torus (C∗)n, where Gröbner
degenerations arise as limits under one-parameter subgroups. The limit objects are monomial ideals (for
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Figure 1. The coefficient vectors of the solutions to the PDE in Example 6.3 correspond to the above
linear spaces with the given inclusions. We obtain two complete flags in C3, along with one interaction
between the two. Experts on quiver representations will take note.

k= 1) or torus-fixed submodules (for k≥ 2). The next example illustrates their rich structure with an
explicit family of torus-fixed submodules.

Example 6.3 (n= 2, k= 3, l= 6) Given a 3× 6 matrix A with random real entries, we set

M = imageR

(
A · diag(∂1, ∂

2
1 , ∂3

1 , ∂2, ∂2
2 , ∂3

2 )
) ⊂ R3.

Then M is torus-fixed andm-primary, wherem= 〈∂1, ∂2〉, and amult(M)= 10. A basis of Sol(M) is given
by ten polynomial solutions, namely the standard basis vectors e1, e2, e3, four vectors that are multiples
of z1, z1, z2, z2, and three vectors that are multiples z2

1, z1z2, z2
2. The reader is invited to verify this with

Macaulay2. Here is the input for one concrete instance:

R = QQ[x1,x2]

M = image matrix {{7∗x1,5∗x1ˆ2,8∗x1ˆ3, 5∗x2,9∗x2ˆ2,5∗x2ˆ3},

{8∗x1,9∗x1ˆ2,8∗x1ˆ3, 4∗x2,2∗x2ˆ2,4∗x2ˆ3},

{3∗x1,2∗x1ˆ2,6∗x1ˆ3, 4∗x2,4∗x2ˆ2,7∗x2ˆ3}}

solvePDE(M)

By varying the matrix A, and by extracting the vector multipliers of 1, z1 and z2
1, we obtain any com-

plete flag of subspaces in C3. The vector multipliers of 1, z2, and z2
2 give us another complete flag of

subspaces in C3, and the multiplier of z1z2 gives us the intersection line of the planes corresponding to
the multipliers of z1 and z2. This is illustrated in Figure 1. Thus flag varieties, with possible additional
structure, appear naturally in such families.

The degenerations of ideals and modules we saw point us to Hilbert schemes and Quot schemes. Let
us now also take a fresh look at Example 5.5. The modules M in that example form a flat family over
the affine space C5 with coordinates c= (c1, c2, c3, c4, c5). For c= 0 we obtain the PDE whose solution
space equals C{e1, z1e1, z2

1e1}. But, what happens when one of the coordinates of c tends to infinity?
That limit exists in the Quot scheme.

In our context, Hilbert schemes and Quot schemes serve as parameter spaces for primary ideals and
primary modules. This was shown for ideals in [11] and for modules in [9]. In what follows we shall
discuss the latter case. Fix a prime ideal P of codimension c in R=K[x1, . . . , xn]. Write K for the field
of fractions of the integral domain R/P, as in Line 6 of Algorithm 1. We write u1, . . . , un for the images
in K of the variables x1, . . . , xn in R. After possibly permuting these variables, we shall assume that
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P∩K[xc+1, . . . , xn]= {0}. The set {uc+1, . . . , un} is algebraically independent over K , so it serves as S
in Line 5.

Consider the formal power series ring S=K[[y1, . . . , yc]] where y1, . . . , yc are new variables. This is
a local ring with maximal ideal m= 〈y1, . . . , yc〉. We are interested in m-primary submodules L of Sk.
The quotient module Sk/L is finite-dimensional as a K-vector space, and we write ν = dimK(Sk/L) for its
dimension. The punctual Quot scheme is a parameter space whose points are precisely those modules.
We denote the Quot scheme by

Quotν(Sk)= {L⊂ Sk : L submodule with Ass(L)=m and dimK(Sk/L)= ν}. (6.3)
This is a quasiprojective scheme over K, i.e. it can be defined by a finite system of polynomial equations
and inequations in a large but finite set of variables. Each solution to that system is one submodule L.
This construction goes back to Grothendieck, and it plays a fundamental role in parametrizing coherent
sheaves in algebraic geometry. While a constructive approach to Quot schemes exists, thanks to Skjelnes
[34], the problem remains to write defining equations for Quotν(Sk) in a computer-readable format, for
small values of c, k, ν. A natural place to start would be the case c= 2, given that coherent sheaves
supported at a smooth point on a surface are of considerable interest in geometry and physics [1, 3,
20, 22].

The next two examples offer a concrete illustration of the concept of Quot schemes. We exhibit the
Quot schemes that parametrize two families of linear PDE we encountered before.

Example 6.4 (c= 2, k= 3, ν = 10) Consider the formal power series ring S=K[[y1, y2]] where K is
any field. Replacing ∂1, ∂2 with y1, y2 in Example 6.3, every 3× 6 matrix A over K defines a submodule
L of S3. The quotient S3/L is a 10-dimensional K-vector space, so L corresponds to a point in the
Quot scheme Quot10(S3). By varying A, we obtain a closed subscheme of Quot10(S3), which contains the
complete flag variety we saw in Example 6.3.

Example 6.5 For S=K[[y1, y2]], the scheme Quotν(Sk) is an irreducible variety of dimension kν − 1,
by [3, Theorem 2.2]. If k= 2, ν = 3 then this dimension is five. The affine space with coordinates c in
Example 5.5 is a dense open subset W of Quot3(S2), by [3, Section 7].

For k= 1, the Quot scheme is the punctual Hilbert scheme Hilbν(S); see [6]. The points on this Hilbert
scheme represent m-primary ideals of length ν in S=K[[y1, . . . , yc]]. It was shown in [11, Theorem
2.1] that Hilbν(S) parametrizes the set of all P-primary ideals in R of multiplicity ν. This means that
we can encode P-primary ideals in R by m-primary ideals in S, thus reducing scheme structures on any
higher-dimensional variety to a scheme structure on a single point. This was generalized from ideals
to submodules (k≥ 2) by Chen and Cid-Ruiz [9]. Geometrically, we encode coherent sheaves by those
supported at one point, namely the generic point of V (P), corresponding to the field extension K/K.
Here is the main result from [9], stated for the polynomial ring R, analogously to [11, Theorem 2.1].

Theorem 6.6 The following four sets of objects are in a natural bijective correspondence:

(a) P-primary submodules M in Rk of multiplicity ν over P,
(b) K-points in the punctual Quot scheme Quotν

(
K[[y1, . . . , yc]]k

)
,

(c) ν-dimensional K-subspaces of K[z1, . . . , zc]k that are closed under differentiation,
(d) ν-dimensional K-subspaces of the Weyl–Noether module K⊗R Dk

n,c that are R-bimodules.

Moreover, any basis of the K-subspace (d) can be lifted to a finite subset A of Dk
n,c such that

M= {m ∈ Rk : δ •m ∈ P for all δ ∈A}. (6.4)

Here Dn,c is the subalgebra of the Weyl algebra Dn consisting of all operators (4.3) with sc+1 =
· · · = sn = 0. This is a special case of (4.2). Elements in Dn,c are differential operators in ∂x1 , . . . , ∂xc

whose coefficients are polynomials in x1, . . . , xn. Note that Dn,0 = R and Dn,n =Dn. Equation (6.4) says
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that A is a differential primary decomposition for the primary module M. The Noetherian operators
in A characterize membership in M. In this paper, however, we focus on the K-linear subspaces in
item (c). By clearing denominators, we can represent such a subspace by a basis B of elements in
K[x1, . . . , xn][z1, . . . , zc]. These are precisely the Noetherian multipliers needed for the integral rep-
resentation of Sol(M). In summary, Theorem 6.6 may be understood as a theoretical counterpart to
Algorithm 1. The following example elucidates the important role played by the Quot scheme in our
algorithm.

Example 6.7 (n= 4, c= 2, k= 3, ν = 10) Let P be the prime ideal in [11, equation (1)]. Equivalently, P
is the prime P6 in Example 2.4. The surface V(P)⊂C4 is the cone over the twisted cubic curve. Consider
the point in Quot10(K[[y1, y2]]3) given by a matrix A as in Example 6.4. The bijection from (b) to (a) in
Theorem 6.6 yields a P-primary submodule M of multiplicity 10 in K[x1, . . . , x4]3. Generators for the
module M are found by computing the inverse image under the map γ , as shown in [9, equation (2)].
This step is the analogue for modules of the elimination that creates a large P-primary ideal Q from
[11, equation (5)]. Geometrically speaking, the 10-dimensional space of polynomial vectors that are
solutions to the PDE in Example 6.3 encodes a coherent sheaf of rank 3 on the singular surface V(P).

The ground field K in Section 5 need not be algebraically closed. In particular, we usually take
K =Q when computing in Macaulay2. But this requires some adjustments in our results. For instance,
Theorem 3.8 does not apply when the coordinates of u ∈Cn are not in K . In such situations, we may
take K to be an algebraic extension of K . We close with an example that shows the effect of the choice
of ground field in a concrete computation.

Example 6.8 (n= k= 2, l= 3) Consider the module M given in Macaulay2 as follows:

R = QQ[x1,x2]; M = image matrix {{x1,x1∗x2,x2},{x2,x1,x1∗x2}};

dim(Rˆ2/M), degree(Rˆ2/M), amult(M)

The output shows that amult(M)= 5 when K =Q, but ν = amult(M)= 6 when K =C: Applying now
the command solvePDE(M), we find the differential primary decomposition

{{ideal (x2, x1), {| 1 |, | 0 |, | -dx1 |}}, {ideal (x2 - 1, x1 - 1), {|-1 |}},
| 0 | | 1 | | dx2 | | 1 |

2
{ideal (x1 + x2 + 1, x2 + x2 + 1), {| x2+1 |}}}

| 1 |

The module M has three associated primes over K =Q. The first gives three polynomial solu-

tions, including
(−z1

z2

)
. The second prime contributes

(−1

1

)
exp(z1 + z2), and the third gives(

x2 + 1

1

)
exp(x1z1 + x2z2), where (x1, x2) is 1

2
(− 1+√3i,−1−√3i) or 1

2
(− 1−√3i,−1+√3i). Here

K=Q(
√

3i) is the field extension of K =Q defined by the third associated prime.

7. What next?

The results presented in this article suggest many directions for future study and research.

7.1. Special ideals and modules

One immediate next step is to explore the PDE corresponding to various specific ideals and modules
that have appeared in the literature in commutative algebra and algebraic geometry.
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One interesting example is the class of ideals studied recently by Conca and Tsakiris in [14], namely
products of linear ideals. A minimal primary decomposition for such an ideal I is given in [14, Theorem
3.2]. It would be gratifying to find the arithmetic multiplicity amult(I) and the solution spaces Sol(I) in
terms of matroidal data for the subspaces in V (I).

A more challenging problem is to compute the solution space Sol(J) when J is an ideal generated by
n power sums in R=Q[∂1, . . . , ∂n]. This problem is nontrivial even for n= 3. To be more precise, we
fix relatively prime integers 0< a< b< c, and we consider the ideal

Ja,b,c = 〈∂a
1 + ∂a

2 + ∂a
3 , ∂b

1 + ∂b
2 + ∂b

3 , ∂ c
1 + ∂ c

2 + ∂ c
3〉.

If (a, b, c)= (1, 2, 3) then V(J1,2,3)= {0} and Sol(J1,2,3) is a six-dimensional space of polynomials,
spanned by the discriminant (z1 − z2)(z1 − z3)(z2 − z3) and its successive derivatives. In general, it is
conjectured in [13] that V(Ja,b,c)= {0} if and only if abc is a multiple of 6. If this holds then Sol(Ja,b,c)
consists of polynomials. If this does not hold, then we must compute V(Ja,b,c) and extract the Noetherian
multipliers from all associated primes of Ja,b,c. For instance, for (a, b, c)= (2, 5, 8) with K =Q, the arith-
metic multiplicity is 38, one associated prime is 〈∂1 + ∂2 + ∂3, ∂2

2 + ∂2∂3 + ∂2
3 〉, and the largest degree of

a polynomial solution is 10.
It will be worthwhile to explore the solution spaces Sol(M) for modules M with special combinatorial

structure. One natural place to start are syzygy modules. For instance, take

A(∂) =

⎛⎜⎜⎜⎜⎝
∂2 ∂3 ∂4 0 0 0

−∂1 0 0 ∂3 ∂4 0

0 −∂1 0 −∂2 0 ∂4

0 0 −∂1 0 −∂2 −∂3

⎞⎟⎟⎟⎟⎠ , (7.1)

which is the first matrix in the Koszul complex for n= 4. Since rank(A)= 3, the module M = imageR(A)

is supported on the entire space, i.e. V(M)=C4. Its solutions are the gradient vectors ∇α =∑4
j=1

∂α

∂zj

ej,

where α = α(z1, z2, z3, z4) ranges over all functions in F .
Toric geometry [27, Chapter 8] furnishes modules whose PDE should be interesting. The initial

ideals of a toric ideal with respect to weight vectors are binomial ideals, so the theory of binomial pri-
mary decomposition applies, and it gives regular polyhedral subdivisions as in [27, Theorem 13.28].
Nonmonomial initial ideals should be studied from the differential point of view. Passing to coherent
sheaves, we may examine the modules representing toric vector bundles and their Gröbner degenera-
tions. In particular, the cotangent bundle of an embedded toric variety, in affine or projective space, is
likely to encompass intriguing PDE.

7.2. Linear PDE with polynomial coefficients

We discuss an application to PDE with non-constant coefficients, here taken to be polynomials. Our
setting is the Weyl algebra D=C〈z1, . . . , zn, ∂1, . . . , ∂n〉. A linear system of PDE with polynomial coef-
ficients is a D-module. For instance, consider a D-ideal I , that is, a left ideal in the Weyl algebra D. The
solution space of I is typically infinite-dimensional.

We construct solutions to I with the method of Gröbner deformations [33, Chapter 2]. Let w ∈Rn be
a general weight vector, and consider the initial D-ideal in(−w,w)(I). This is also a D-ideal, and it plays the
role of Gröbner bases in solving polynomial equations. We know from [33, Theorem 2.3.3] that in(−w,w)(I)
is fixed under the natural action of the n-dimensional algebraic torus (C∗)n on the Weyl algebra D. This
action is given in [33, equation (2.14)]. It gives rise to a Lie algebra action generated by the n Euler
operators

θi = zi∂i for i= 1, 2, . . . , n.
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These Euler operators commute pairwise, and they generate a (commutative) polynomial subringC[θ ]=
C[θ1, . . . , θn] of the Weyl algebra D. If J is any torus-fixed D-ideal, then it is generated by operators of
the form xap(θ )∂b where a, b ∈Nn. We define the falling factorial

[θb] :=
n∏

i=1

bi−1∏
j=0

(θi − j).

The distraction J̃ is the ideal in C[θ ] generated by all polynomials [θb]p(θ − b)= xbp(θ )∂b, where
xap(θ )∂b runs over a generating set of J. The space of classical solutions to J is equal to that of J̃.
This was exploited in [33, Theorem 2.3.11] under the assumption that J is holonomic, which means that
J̃ is zero-dimensional in C[θ ]. We here drop that assumption.

Given any D-ideal I , we compute its initial D-ideal J = in(−w,w)(I) for w ∈Rn generic. Solutions to
I degenerate to solutions of J under the Gröbner degeneration given by w. We can often reverse that
construction: given solutions to J, we lift them to solutions of I . Now, to construct all solutions of J we
study the Frobenius ideal F= J̃. This is an ideal in C[θ ].

We now describe all solutions to a given ideal F in C[θ ]. This was done in [33, Theorem 2.3.11] for
zero-dimensional F. Ehrenpreis–Palamodov allows us to solve the general case. Here is our algorithm.
We replace each operator θi = zi∂i by the corresponding ∂i. We then apply solvePDE to get the general
solution to the linear PDE with constant coefficients. In that general solution, we now replace each coor-
dinate zi by its logarithm log(zi). In particular, each occurrence of exp(u1z1 + · · · + unzn) is replaced by
a formal monomial zu1

1 · · · zun
n . The resulting expression represents the general solution to the Frobenius

ideal F.

Example 7.1 As a warm-up, we note that a function in one variable z2 is annihilated by the squared
Euler operator θ 2

2 = z2∂2z2∂2 if and only if it is a C-linear combination of 1 and log(z2). Consider the
Frobenius ideal given by Palamodov’s system [11, Example 11]:

F= 〈θ 2
2 , θ 2

3 , θ2 − θ1θ3〉.
To find all solutions to F, we consider the corresponding ideal 〈∂2

2 , ∂2
3 , ∂2 − ∂1∂3〉 in C[∂1, ∂2, ∂3]. By

solvePDE, the general solution to that constant coefficient system equals

α(z1)+ z2 · β ′(z1)+ z3 · β(z1),

where α and β are functions in one variable. We now replace zi by log(zi) and we abbreviate A(z1)=
α(log(z1)) and B(z1)= β(log(z1)). Thus, A and B are again arbitrary functions in one variable. We
conclude that the general solution to the given Frobenius ideal F equals

φ(z1, z2, z3)= A(z1)+ z1 · log(z2) · B′(z1)+ log(z3) · B(z1).

This method can also be applied for k≥ 2, enabling us to study solutions for any D-module.

7.3. Socle solutions

The solution space Sol(M) to a system M of linear PDE is a complex vector space, typically infinite-
dimensional. Our algorithm in Section 5 decomposes that space into finitely many natural pieces, one
for each of the integrals in (2.6). The number amult(M) of pieces is a meaningful invariant from com-
mutative algebra. Each piece is labeled by a polynomial Bij(x, z) in 2n variables, and it is parametrized
by measures μij on the irreducible variety Vi.

This approach does not take full advantage of the fact that Sol(M) is an R-module where R=
C[∂1, . . . , ∂n]. Indeed, if ψ(z) is any solution to M then so is (∂i •ψ)(z). So, if we list all solutions
then ∂i •ψ is redundant provided ψ is already listed. More precisely, we consider

Sol(M)/〈∂1, . . . , ∂n〉Sol(M). (7.2)
This quotient space is still infinite-dimensional over C, but it often has a much smaller description
than Sol(M). A solution to M is called a socle solution if it is nonzero in (7.2). We pose the problem of
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modifying solvePDE so that the output is a minimal subset of Noetherian multipliers which represent all
the socle solutions. The solution will require the prior development of additional theory in commutative
algebra, along the lines of [9, 11, 12].

The situation is straightforward in the case of Theorem 3.8 when the support V (M) is finite. Here the
space Sol(M) is finite-dimensional, and it is canonically isomorphic to the vector space dual of Rk/M, as
shown in [30]. Finding the socle solutions is a computation using linear algebra over K =C, similar to
the three steps after Proposition 3.7. For instance, let k= 1 and suppose that I is a homogeneous ideal in
R. The socle solutions are sometimes called volume polynomials [33, Lemma 3.6.20]. The most desirable
case arises when I is Gorenstein. Here the socle solution is unique up to scaling, and it fully characterizes
I . For instance, consider the power sum ideal 〈∑n

i=1 ∂
s
i : s= 1, . . . , n〉. This is Gorenstein with volume

polynomial �=∏1≤i<j≤n (zi − zj). For n= 3, the ideal I is J1,2,3 in Subsection 7.1. Here Sol(I) is a C-
vector space of dimension n!. However, as an R-module, it is generated by a single polynomial �. A
future version of solvePDE should simply output Sol(I)= R�.

It is instructive to revisit the general solutions to PDE we presented in this paper and to highlight
the socle solutions for each of them. For instance, in Example 2.3, we have amult(I)= 4 but only one
of the four Noetherian multipliers Bi gives a socle solution. The last summand in (2.9) gives the socle
solutions. The first three summands can be obtained from the last summand by taking derivatives. What
are the socle solutions in Example 2.4?

7.4. From calculus to analysis

The storyline of this paper is meant to be accessible for students of multivariable calculus. These students
know how to check that (1.9) is a solution to (1.8). The derivations in Examples 2.3, 2.4, 5.1, 5.2, 6.1,
6.3, and 6.8 are understandable as well. No prior exposure to abstract algebra is needed to follow these
examples, or to download Macaulay2 and run solvePDE.

The objective of this subsection is to move beyond calculus and to build a bridge to advanced themes
and current research in analysis. First of all, we ought to consider inhomogeneous systems of linear PDE
with constant coefficients. Such a system has the form

A(∂) •ψ(z)= f (z), (7.3)
where A is a k× l matrix as before and f is a vector inF l, whereF is a space of functions or distributions.
Writing ai for the ith column of A, the system (7.3) describes vectors ψ = (ψ1, . . . ,ψk) with ai •ψ = fi

for i= 1, . . . , l. The study of the inhomogeneous system (7.3) is a major application of Theorem 2.2.
We see this in Palamodov’s book [32, Chapter VII], but also in the work of Oberst who addresses the
“canonical Cauchy problem” in [28, Section 5]. An important role is played by the syzygy module
kerR(A)⊂ Rl, whose elements are the R-linear relations on the columns a1, . . . , al. A necessary condi-
tion for solvability of (7.3) is that the Fourier transform of the right-hand side f = (f1, . . . , fl) satisfies
the same syzygies. Hörmander shows in [23, Theorem 7.6.13] that the converse is also true, under cer-
tain regularity hypotheses on f . Thus, the computation of syzygies and other homological methods (cf.
[18, Part III]) are useful for solving (7.3). Treves calls this Simple algebra in the general case [35,
Section 3.1]. We point to his exact sequence in [35, equation (3.5)]. Syzygies can be lifted to D-modules
[33, Section 2.4] via the Gröbner deformations in Subsection 7.2.

Another issue is to better understand which collections of vectors Bij arise as Noetherian multipliers
for some PDE. The analogous question for Noetherian operators of ideals is addressed in [11, Theorem
3.1]. That result is essentially equivalent to the characterization in [23, Theorem 7.7.7] of spaces A of
Noetherian operators for a primary module as being closed under the Lie bracket. More work on this
topic is needed. This is related to the issue of primary fusion, discussed at the end of [12, Section 5],
which concerns the compatibility of minimal sets of Noetherian operators for associated primes that are
contained in one another.

We end with a pointer to current research in calculus of variations by De Phillippis and collaborators
in [2, 16]. Each solution μ to the PDE A •μ= 0 is a Radon measure on an open set in Rn with values
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in Rk. Such a measure μ is called A-free, and one is interested in the singular part μs of μ. Analysts
view solutions among smooth functions as classical and well-understood, and they care primarily about

irregularities and their rectifiability. One studies μs via the polar vector
dμ

d|μ| in Rk. The main result in

[16] states that this vector always lies in the wave cone �A. This is a real algebraic variety in Rk which
is an invariant of our module M= imageR(A). When A= curl as in (7.1), the wave cone is a Veronese
variety, and the result is Alberti’s Rank-One Theorem. The article [2] proves the same conclusion for
more refined wave cones, and it offers a conjecture relating the geometry of wave cones to the singu-
lar supports of solutions [2, Conjecture 1.6]. It would be interesting to compute these real varieties in
practice and to learn about A-free measures from the output of solvePDE.

7.5. Numerical algebraic geometry

In applications, one often does not have access to an exact representation of a problem, but rather some
approximation with possible errors introduced by measurements or finite-precision arithmetic. The last
decade of developments in numerical algebraic geometry [4] provides tools for the numerical treatment
of such polynomial models. In that paradigm, a prime ideal P⊂C[x] is represented by a witness set,
i.e. a set of deg(P) points approximately on V(P)∩ L, where L is a generic affine-linear space of dimen-
sion c= codim(P). Similarly, radical ideals are collections of witness sets corresponding to irreducible
components. Dealing with general ideals and modules is much more subtle, since these have embed-
ded primes. One idea, pioneered by Leykin [24], is to consider deflations of ideals. Modules were not
considered in [24]. Deflation has the effect of exposing embedded and nonreduced components as iso-
lated components, which can subsequently be represented using witness sets. One drawback is that the
deflated ideal lies in a polynomial ring with many new variables.

We advocate the systematic development of numerical methods for linear PDE with constant coef-
ficients. Noetherian operators and multipliers can be used to represent arbitrary ideals and modules.
For each prime P, both the field K= Frac(R/P) and the spaces in (4.8) should be represented purely
numerically. Along the way, one would extend the current repertoire of numerical algebraic geometry
to modules and their coherent sheaves.

First steps toward the numerical encoding of affine schemes were taken in [10], for ideals I with
no embedded primes. The key observation is that the coefficients of the Noetherian operators for the
P-primary component of I can be evaluated at a point u ∈ V(P) using only linear algebra over C. This
linear algebra step can be carried out purely numerically.

Inspired by this, we propose a numerical representation of an arbitrary module M ⊆ Rk. Let (Pi, Si, Ai)
be a differential primary decomposition as in Theorem 4.3. Assuming the ability to sample generic points
ui ∈ V(Pi), we encode the sets Ai by their point evaluations Ai(ui)= {A(ui, ∂x) : A(x, ∂x) ∈Ai}. Each
evaluated operator A(ui, ∂x) gives an exponential solution B(ui, z) exp (ut

iz) to the PDE given by M via the
correspondence in Proposition 4.8. We obtain a numerical module membership test: a polynomial vector
m ∈ Rk belongs to M with high probability if A(ui, ∂x) •m vanishes at the point ui for all A ∈Ai(ui) and
i= 1, . . . , s. The exponential functions z→ B(ui, z) exp (ut

iz), which depend on numerical parameters
ui, serve as an encoding of the infinite-dimensional C-vector space Sol(M).

Another potential research direction is the development of hybrid algorithms, where numerical infor-
mation is used to speed up symbolic computations. Assuming the numerical approximations to be
accurate enough, the output of a hybrid algorithm is exact. For Noetherian operators of ideals with
no embedded components, this is explored in [10], and it is already implemented in the Macaulay2
package NoetherianOperators [8] using the command noetherianOperators(I, Strategy =>
“Hybrid”). It will be desirable to extend this hybrid method to the command solvePDE, in the full
generality seen in Algorithm 1.

In conclusion, the numerical solution of partial differential equations is the key to computational
science. The case of linear PDE with constant coefficients serves as a base case. We hope that the
techniques described in this article will be useful for the future applications.
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