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ON COMPONENTS OF STABLE AUSLANDER-REITEN
QUIVERS THAT CONTAIN HELLER LATTICES:
THE CASE OF TRUNCATED POLYNOMIAL RINGS

SUSUMU ARIKI, RYOICHI KASE anpD KENGO MIYAMOTO

Abstract. Let A be a truncated polynomial ring over a complete discrete
valuation ring O, and we consider the additive category consisting of A-lattices
M with the property that M ® K is projective as an A ® K-module, where IC
is the fraction field of O. Then, we may define the stable Auslander—Reiten
quiver of the category. We determine the shape of the components of the stable
Auslander—Reiten quiver that contain Heller lattices.

Introduction

The shape of Auslander—Reiten quivers is one of fundamental interests
in representation theory of algebras. For algebras over a field, a wealth of
examples are given in textbooks, [ASS| for example. Let O be a complete
discrete valuation ring, € a uniformizer, K its fraction field, kK = O/eQ its
residue field. Let A be an O-order, namely an O-algebra which is free of
finite rank as an O-module. If A ® K is a semisimple algebra, we may also
find results in the literature. However, few results seem to be known for
the case when A ® K is not a semisimple algebra. An exception is a famous
work by Hijikata and Nishida, but their main focus is on a Bass order and
A ® K needs to be a quasi-Frobenius radical square zero algebra for a Bass
order [HN, Theorem 3.7.1].

Recall that an A-module is called an A-lattice or a Cohen—Macaulay
A-module if it is free of finite rank as an O-module. (Cohen-Macaulay A-
modules are by definition finitely generated A-modules which are Cohen—
Macaulay as O-modules. Since O is regular here, Cohen—Macaulay O-
modules are free [Y, (1.5)] and vice versa.) Then, it is known that for any
nonprojective A-lattice M with the property that M ® K is projective as an
A ® K-module, there is an almost split sequence ending at M, and dually,
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for any noninjective A-lattice M with the property that M ® K is injective
as an A ® K-module, there is an almost split sequence starting at M. See
[AR] for example. Thus, if A ® K is self-injective, we may define the (stable)
Auslander—Reiten quiver consisting of such A-lattices. Typical examples of
such A-lattices are Heller lattices. For group algebras, Heller lattices were
studied by Kawata [K]|, and it inspired us to study the components that
contain Heller lattices for the case of orders in non-semisimple algebras.

In this article, we determine the shape of the components of the stable
Auslander—Reiten quiver that contain Heller lattices, for the truncated
polynomial rings A = O[X]/(X"™). As O[X]/(X™) is a Gorenstein O-order,
that is, Homp (A4, O) is a projective A-module [I, Section 4], we explain
explicit construction of almost split sequences for a Gorenstein O-order,
which generalizes construction of almost split sequences in [T], and use this
construction to do necessary calculations. Main difficulty in the computation
is the proof that certain direct summands of the middle terms of those
almost split sequences are indecomposable. We use elementary brute force
argument to overcome this difficulty. Then, some argument on tree classes
which takes the possibility of the existence of loops in the stable Auslander—
Reiten quiver into account proves the result. This argument is necessary
because there may exist loops [W].

If A® K is a special biserial algebra, we may calculate indecomposable
A ® k-modules and their Heller lattices. It is natural to consider the above
problem in this setting. We will report some results in this direction in
future work.

81. Preliminaries

1.1 Gorenstein orders

We start by observing that A = O[X]/(X") is a symmetric O-order. By
abuse of notation, we write 1, X, ..., X" ! for the standard O-basis of A.
Define 6; € Homp (A, O), for 0 <i<n—1, by

: 1 ifj=n—i—1
. 7Y — ’
QZ(X)_{O if j#An—i—1.

Then we have the following lemma.

LEMMA 1.1. 60; — X' induces an isomorphism of (A, A)-bimodules
Homp (A, O) ~ A.

Proof. As X0;=0;X: X7+ 0;(X7T)=6j41—i—1, we have X0;=
0; X = '92'—&—1' [
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REMARK 1.2. A different definition of Gorenstein order is given in [CR,
Section 37]: it requires not only that every exact sequence of A-lattices
0—>A—>M— N —0 starting at A splits, but also that AK is a
semisimple algebra. Perhaps the semisimplicity condition was added by some
technical reasons.

REMARK 1.3. In [Al, Chapter I, Section 7], the definition of O-order
itself is different. If we restrict to the case when O is a Dedekind domain,
A is an O-order in his sense if A is not only a finitely generated projective
O-module but also A ® K is a self-injective K-algebra.

Then, a Gorenstein O-order is a Noetherian O-algebra A which is Cohen—
Macaulay as an O-module and Homp (A, O) ~ A as (A, A)-bimodules [A1,
Chapter 111, Section 1]. Nowadays, Gorenstein O-orders in Auslander’s sense
are called symmetric O-orders [IW, Definition 2.8].

Lemma 1.1 implies that A= O[X]/(X") is a symmetric O-order. Note
that A is also a Gorenstein ring, since depth A = dim A and if the parameter
ideal €A is the intersection of two ideals I and J then either I = e¢Aor J =cA
holds.

LEMMA 1.4. Let A= O[X]/(X™), for n>2. Then there are infinitely
many pairwise nonisomorphic indecomposable A-lattices.

Proof. 1If there were only finitely many, then [A2, Section 10] and [Y,
(3.1), (4.22)] would imply that A is reduced, contradicting our assumption
that n > 2. Below, we give an example of a family of infinitely many pairwise
nonisomorphic indecomposable A-lattices.

For r € Zsg,let L, = O" @ OX @ - - - ® OX"! C A. Then the represent-
ing matrix of the action of X on L, with respect to the basis is given by
the following matrix:

Therefore, we have L, @ K~ A® K and L, % L; whenever r # s. In par-
ticular, L., for r=0,1,2, ..., are pairwise nonisomorphic indecomposable
A-lattices. [
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Since O is a complete local ring, End 4(X) is a local O-algebra for every
indecomposable A-lattice X [CR, (6.10)(30.5)]. Thus, the Jacobson radical
Rad End 4(X) consists of all noninvertible endomorphisms of X. Another
consequence is that A is semiperfect and every finitely generated A-module
has a projective cover [CR, (6.23)].

In the next subsection, we assume that A is a Gorenstein O-order and we
explain a method to construct almost split sequences for A-lattices. Note
that there exists an almost split sequence ending (resp. starting) at M if
and only if M ® K is projective (resp. injective) [AR], [RR, Theorem 6].

1.2 Construction of almost split sequences
We recall several definitions.

DEFINITION 1.5. Let A be an O-order, M and N A-lattices. The radical
Rad Hom (M, N) of Homa(M, N) is the O-submodule of Homy4 (M, N)
consisting of f € Homa(M, N) such that, for all indecomposable A-
lattice X, we have hfg € Rad Enda(X), for any g € Homa(X, M) and
h € Hom4 (N, X). It is equivalent to the condition that 1 — gf is invertible,
for all g € Hom4 (N, M), and to the condition that 1 — fg is invertible, for
all g € Hom4 (N, M).

Let A be an abelian category with enough projectives, C an additive full
subcategory which is closed under extensions and direct summands. Then,
f€Home(M, N) in C is called right minimal in C if an endomorphism
h € End¢(M) is an isomorphism whenever f = fh, right almost split in C if
it is not a split epimorphism and for each X € C and h € Hom¢ (X, N) which
is not a split epimorphism, there is s € Hom¢ (X, M) such that fs=h. If f
is both right minimal in C and right almost split in C, f is called minimal
right almost split in C. Similarly, g € Home (L, M) is called left minimal in C
if an endomorphism h € End¢ (M) is an isomorphism whenever g = hg, left
almost split in C if it is not a split monomorphism and for each Y € C and h €
Home (L, Y) which is not a split monomorphism, there is ¢t € Home (M, Y)
such that tg = h, and if g is both left minimal in C and left almost split in C,
g is called minimal left almost split in C. We have the following proposition
in this general setting [A1, Chapter II, Proposition 4.4].

PROPOSITION 1.6. Suppose that C is an additive full subcategory of
an abelian category A with enough projectives such that C is closed under
extensions and direct summands. Let L, M, N € C. Then the following are
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equivalent for a short exact sequence

0L M-Iy N 0

(a) f is right almost split in C and g is left almost split in C.
(b) f is minimal right almost split in C.

(c) f is right almost split and End¢(L) is local.

(d) g is minimal left almost split in C.

(e) g is left almost split in C and End¢(N) is local.

We return to O-orders over a complete discrete valuation ring O. Among
equivalent conditions in Proposition 1.6, we choose (c) as the definition of
an almost split sequence for lattices over an O-order.

DEFINITION 1.7. Let A be an O-order, L, E, M A-lattices. A short exact
sequence
0—L—E2sM—0

is called an almost split sequence (of A-lattices) ending at M if
(i) the epimorphism p does not split;

(i) L and M are indecomposable;
(iii) the morphism p: E — M induces the epimorphism

Homy (X, p) : Homa (X, ) — Rad Homa (X, M),
for every indecomposable A-lattice X.

DEFINITION 1.8. Let f: M — N be a morphism between A-lattices. We
say that f is an irreducible morphism if

(i) f is neither a split monomorphism nor a split epimorphism;
(ii) if there are g € Homa(M, L) and h € Homy4 (L, N) such that f = hg,
then either g is a split monomorphism or A is a split epimorphism.

LEMMA 1.9. Let A be an O-order, L, E, M A-lattices. We suppose that
an almost split sequence for A-lattices ending at M exists. Then, a short
exact sequence

0—L-5EXM-—0

s an almost split sequence if and only if v and p are irreducible.

Proof. The arguments in [ARS, V. Theorem 5.3] and [ARS, V. Proposi-
tion 5.9] work without change in our setting. 0
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REMARK 1.10. The definitions of almost split sequences and irreducible
morphisms are taken from [R2], although it is assumed that A® K is a
semisimple algebra there.

DEFINITION 1.11. Let A be an O-order. For an indecomposable A ® k-
module N, we view N as an A-module, and take the projective cover p:
P — N. We denote Ker(p) by Zn and direct summands of the A-lattice Zn
are called Heller lattices of N. Note that Zy is uniquely determined up to
isomorphism.

In the sequel, we consider an indecomposable A-lattice M with the
property

(%) M ® K is projective as an A ® K-module,

and show how to construct the almost split sequence ending at M.

REMARK 1.12. Heller lattices have the property (x). Indeed, for an
indecomposable A ® k-module N, Zy is an A-submodule of the projective
A-module P, and we have eP C Zy. Thus, Zy ® K =P ® K is projective
and so are their direct summands.

Let D = Homp(—, O) and define the Nakayama functor for A-lattices by
v=D(Homa(—, A)) = Homp(Homa(—, A), O).

LEMMA 1.13. Let M be an A-lattice, p: P — M its projective cover. We
define
L = D(Coker(Homy(p, A))).

Then we have the exact sequence of A-lattices

0— L —s u(P) " u(M) —s 0.

Proof. Homa(Ker(p), A) is an A-lattice since Ker(p) and A are.
Since the cokernel of Homy(p, A) : Homa (M, A) — Homy(P, A) is an A-
submodule of Hom 4 (Ker(p), A), Coker(Homu(p, A)) is a free O-module.
Then, Ext},(Coker(Hom4(p, A)), O) = 0 implies the result. [

REMARK 1.14. If we take a minimal projective presentation @) Lph
M of an A-lattice M, we have the short exact sequence

0 — Coker(Homa(p, A)) — Homu(Q, A)
— Coker(Homy(gq, A)) = Tr(M) — 0.
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Thus, L = D(Coker(Homy4(p, A))) represents the Auslander—Reiten trans-
late 7(M) = DQ2 Tr(M) of the A-lattice M.

Taking a suitable pullback of the exact sequence from Lemma 1.13,
we may construct almost split sequences as follows. This generalizes the
construction in [T]. We give the proof of Proposition 1.15 in the appendix,
for the convenience of the reader.

The right and left minimality in Proposition 1.6 implies that the almost
split sequence ending at M and the almost split sequence starting at L are
uniquely determined by M and L respectively, up to isomorphism of short
exact sequences. Thus, we may define the Auslander—Reiten translate 7 and
7~ by 7(M)=_L and 77 (L) = M.

PROPOSITION 1.15.  Suppose that A is a Gorenstein O-order, M
an indecomposable nonprojective A-lattice with the property (*), and let
p: P — M be its projective cover. For ¢ € Homy(M,v(M)), we consider
the pullback diagram along p:

0 E M 0

L

Lo
v(p)

L

v(P) —= v(M) ——0

0

Then the following (1) and (2) are equivalent.

(1) The pullback 0 — L — E — M — 0 is an almost split sequence.
(2) The following three conditions hold.

(i) @ does not factor through v(p).
(ii) L is an indecomposable A-lattice.

(iii) For all f € Rad Enda(M), ¢f factors through v(p).

If A is a symmetric O-order, then we have functorial isomorphisms
v(X) ~ X, for A-lattices X. Hence, we pull back 0 - L — P — M — 0 along
¢ € End4 (M) in this case. Further, the left term L = 7(M) and the middle
term E of the almost split sequence satisfy the property (x).

1.3 Translation quivers and tree classes
In this subsection we recall fundamentals of translation quivers.

DEFINITION 1.16. Let @ = (Qo, Q1), where Qg is the set of vertexes
and ()1 is the set of arrows, be a locally finite quiver, that is, there are
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only finitely many incoming and outgoing arrows for each vertex. If a map
v:Q1 — Zso X Zxo is given, we call the pair (Q,v) a valued quiver. Let
7:Q — @ be a quiver automorphism. Then, we call the pair (Q, 7) a stable
translation quiver if the following two conditions hold:

(i) @ has no loops and no multiple arrows.
(ii) For each vertex z € )y, we have

{yeQo|me—=yinQ1}={yeQo|y—xin Q1}.

We call the triple (Q, v, 7) a valued stable translation quiver if (@, T) is a
stable translation quiver and if v(z — y) = (a, b) then v(7(y) — x) = (b, a).

DEFINITION 1.17. Let (@, 7) be a stable translation quiver and C a full
subquiver of Q. We call C' a component of (Q, ) if:

(i) C is stable under the quiver automorphism 7;

(i) C is a disjoint union of connected components of the underlying
undirected graph;

(iii) there is no proper subquiver of C' that satisfies (i) and (ii).

Note that components are also stable translation quivers.

ExaMPLE 1.18. Let (A,v) be a valued quiver without loops and
multiple arrows. Then, the set Z x A becomes a valued stable translation
quiver by defining as follows:

e arrows are (n,z)— (n,y) and (n—1,y) — (n,z), for z —y in A and
n el
o if v(x —y)=(a,b), for z —yin A, then
v((n, z) = (n,y)) = (a,b)  and  v((n—1,9) = (n,2)) = (b, a).
o 7((n,x)) = (n—1,z).
We denote the valued stable translation quiver by ZA.

Now we recall Riedmann’s structure theorem [B, Theorem 4.15.6]. For
the definition of admissible subgroups, see [B, Definition 4.15.4].

Definition-Theorem 1.19. Let (Q, ) be a stable translation quiver and
C' a component of (@, 7). Then there is a directed tree 7" and an admissible
subgroup G C Aut(ZT') such that C' ~ ZT /G as a stable translation quiver.
Moreover,
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(1) the underlying undirected graph T of T is uniquely determined by C.
(2) G is unique up to conjugation in Aut(ZT).

The underlying tree T is called the tree class of C.

DEFINITION 1.20. Let (A,v) be a valued quiver without loops and
multiple arrows. For x — y in A, we write v(z = y) = (day, dyz). If there
is no arrow between x and y, we understand that d;, = dy, = 0. Let Q- be
the set of positive rational numbers.

(i) A subadditive function on (A, v) is a Qsg-valued function f on the set
of vertexes of A such that 2f(z) >3_ , dy.f(y), for each vertex z.

(ii) An additive function on (A, v) is a Qsp-valued function f on the set
of vertexes of A such that 2f(x) =3_, ., dy.f(y), for each vertex z.

The following lemma is well known. See [B, Theorem 4.5.8], for example.

LEMMA 1.21. Let (A,v) be a valued quiver without loops and multiple
arrows, and we assume that the underlying undirected graph A is connected.

(1) Suppose that (A, v) admits a subadditive function.

(i) If A has a finite number of vertezes, then A is one of finite or
affine Dynkin diagrams.

(ii) If A has infinite number of vertexzes, then A is one of infinite
Dynkin diagrams Ao, Boo, Coo, Doo o1 AZ.

(2) If (A, v) admits a subadditive function which is not additive, then A is
either a finite Dynkin diagram or Aso.

(3) (A,v) does not admit a bounded subadditive function if and only if A
1s Aso.

1.4 AR quivers
We define the stable Auslander—Reiten quiver for symmetric O-orders as
follows.

DEFINITION 1.22. Let A be a symmetric O-order over a complete
discrete valuation ring O. The stable Auslander—Reiten quiver of A is a
valued quiver such that:

e vertexes are isoclasses of nonprojective A-lattices M such that M ® K is
projective;
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b
e valued arrows M (a—’>) N for irreducible morphisms M — N, where the

value (a, b) of the arrow is given as follows.

(a) For a minimal right almost split morphism f: E — N, M appears a
times in F as a direct summand.

(b) For a minimal left almost split morphism g: M — E, N appears b
times in F as a direct summand.

A component of the stable Auslander—Reiten quiver is defined in the
similar way as the stable translation quiver.

LEMMA 1.23. Let A be a symmetric O-order over a complete discrete
valuation ring O, and let C' be a component of the stable Auslander—Reiten
quiver of A. Assume that C satisfies the following conditions:

(i) There exists a T-periodic indecomposable A-lattice in C.
(ii) The number of vertexes in C is infinite.

Then C has no loops. In particular, C is a valued stable translation quiver.

Proof. As in the proof of [B, Theorem 4.16.2], we know that all
indecomposable A-lattices in C are 7-periodic. Thus, we may choose nx > 2,
for each X € C, such that 7"%(X) ~ X. Define a Qs ¢-valued function f on
C by

nxy—1

f(X)= an Z rank 7(X).
=0

C' does not have multiple arrows by definition. For each indecomposable
N, there is an irreducible morphism M — N if and only if there is an
irreducible morphism 7(N)— M by the existence of the almost split
sequence 0 — 7(N) — E — N — 0. The condition on valued arrows may also
be checked. Thus, C'\ {loops} is a valued stable translation quiver, and we
may apply the Riedmann structure theorem. We write C'\ {loops} = ZT/G,
for a directed tree T and an admissible subgroup G. Then f is a Qg-valued
function on T'. For X € T, one can show that

Z dy x rank Y < rank X + rank 7(X),
X—=Y

which implies that f is a subadditive function.
We now suppose that C has a loop. Then, f is not additive. Thus,
Lemma 1.21 and our assumption (ii) imply that T = A. Thus, we may
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assume without loss of generality that 7" is a chain of irreducible maps
Xi—=>Xo—- =X, — -

Then, for any Y € C, there is a unique r such that Y is in the 7-orbit
through X,.. We may assume that X, has a loop, for some r. The almost
split sequence starting at X, is

0=X, > XYoo X, or (X,1) =71 (X,) =0,
where [ > 1. In particular, we have

f(Xr) Z (2 - l)f(Xr) = f(XT+1) + f(XT—l) Z f(XT’-‘rl)'

We show that f(X,,) > f(Xmt1), for m >=r. Suppose that f(X,,—1)=>
f(Xy) holds. The same argument as above shows 2f(X,,) > f(X—1) +
f(Xm+1), and the induction hypothesis implies f(X,—1) + f(Xmt1) =
f(Xm) + f(Xm+1). Hence f(Xp) = f(Ximt1). Thus, f is bounded. But
T = A, does not admit a bounded subadditive function. Hence, we conclude
that C has no loops and C' is a valued stable translation quiver. 0

1.5 No loop theorem
In this subsection, we show an analogue of Auslander’s theorem and use
this to show “no loop theorem”.

LEMMA 1.24. Let A be an O-order, M an indecomposable A-lattice.
Then, there exists an integer s such that M/e*M is an indecomposable

A/ek A-module, for all k > s.
Proof. An O-linear map D : A — Endp(M) is called a derivation if

D(zy) =zD(y) + D(z)y

for all z,y € A. We denote by Der(A, Endp(M)) the O-module of deriva-
tions. Note that Der(A, Endp(M)) is an O-order since A and M are.

Let k be a positive integer. For f € Endp(M) such that af(m + M) =
flam + €M), for a € A and m € M, we define D; € Homp (A, Endo(M))
as follows.

Dy¢(a)(m) = e *(f(am) — af(m)), forac Aandmée M.
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The following computation shows that Dy is a derivation.
Dy(zy)(m) = e *(f(zym) — zy(m))
= ¢ "(af(ym) — zyf(m)) + € *(f(wym) — xf(ym))
= Dy (y)(m) + Dy (x)(ym).

Let Der(k) be the O-submodule of Der(A, Endp(M)) which is generated by
all such Dy, and we define Der(co) =3 -, Der(k). Since Der(A, Endp(M))
is a finitely generated O-module, there exists an integer s such that

Der(co Z Der(k

We show that the algebra homomorphism Enda(M) — Enda(M/e¥M)
is surjective, for all k>s. Let 6 € Enda(M/e*M), for k>s. We fix
f € Endp(M) such that

fm+ M) =0(m+ M),  forme M.
Then, there exist ¢; € O and f; € Endp (M) that satisfy

film+ €M) = 0;(m + €M),
for some 1 <l; <s—1and6§; € EndA(M/eliM),

such that Dy = vaz 1 ¢iDy,. More explicitly, we have
N
flam) —af(m Zek Lici(fi(am) — afi(m)), fora€ A and m e M.
=1

It implies that f — Zf\il e*~lic;f; € Ends(M). Since it coincides with 6 if
we reduce modulo €, we have proved

m(End (M) — End (M /e*M)) + ¢ End 4 (M /e* M) = End 4 (M/e*M).

Thus, Nakayama’s lemma implies that End 4 (M) — End (M /e*M) is sur-
jective, and we have an isomorphism of algebras Enda(M)/e* End (M) ~
Enda(M/e*M). As O is a complete local ring, the lifting idempotent
argument works [CR, (6.7)]. Hence, if M/e* M is decomposable, so is M. []

We recall the Harada—Sai lemma from [ARS, VI. Corollary 1.3].
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LEMMA 1.25. Let B be an Artin algebra, {N; |1 <1< 2™} a collection
of indecomposable B-modules such that the length of composition series of
N; is less than or equal to m, for all i. If none of f; € Homp(N;, Nit1)
(1<i<2™—1) is an isomorphism, then

fom_1--- f1=0.

PROPOSITION 1.26. Let A be a symmetric O-order over a complete
discrete valuation ring O, and assume that A is indecomposable as an O-
algebra. Let C' be a component of the stable Auslander—Reiten quiver of A.
Assume that the number of vertexes in C is finite. Then C exhausts all
nonprojective indecomposable A-lattices.

Proof. We add indecomposable projective A-lattices to the stable
Auslander—Reiten quiver of A to obtain the Auslander—Reiten quiver of A.
We show that if C' is a finite component of the Auslander—Reiten quiver
then C exhausts all indecomposable A-lattices. Assume that M is an
indecomposable A-lattice which does not belong to C'. It suffices to show

Homy (M, N) =0=Homu (N, M), forall NeC.

To see that it is sufficient, let P be a direct summand of the projective
cover of N e€C. Then, PeC by N €C and Homa(P,N)#0. As A is
indecomposable as an algebra, there is no indecomposable projective A-
lattice () with the property that

Hom(Q, R) =0 =Homu(R, Q),

for all indecomposable projective A-lattices R € C'. It implies that any direct
summand @ of the projective cover of M belongs to C'. Then Hom 4 (Q, M) #
0 implies that M € C, which contradicts our assumption. Thus, C' exhausts
all indecomposable A-lattices.

Assume that there exists a nonzero morphism f &€ Homy(M, N). As
M &C and N € C, f is not a split epimorphism. We consider the almost
split sequence of A-lattices ending at N, and we denote by Ny, ..., N, the
indecomposable direct summands of the middle term of the almost split
sequence. Let

gi(l) :N;— N
be irreducible morphisms. Then, there exist f; € Homy4 (M, N;) such that

F=> "
i=1
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If V; is nonprojective, we apply the same procedure to f;. If IV, is projective,
fi factors through the Heller lattice Rad N; of the irreducible A ® k-module
N;/Rad(N;). Thus, we apply the procedure after we replace N; with Rad N;.
After repeating n times, we obtain,

1
=39 o"hi,
such that ggj )
morphisms M — X;, where X; are indecomposable A-lattices in C' and they
are not isomorphisms.

are morphisms among indecomposable A-lattices in C, h; are

Since the number of vertexes in C' is finite, there exists an integer s such
that X/e*X is indecomposable, for all X € C'. Let m be the maximal length
of A/e*A-modules X/e°X | for X € C. Applying Lemma 1.25 to the Artin
algebra A/e®A with n =2" — 1, we obtain

Hom (M, N) = ¢ Homu4 (M, N),

and Nakayama’s Lemma implies Homux(M, N)=0. The proof of
Homy (N, M) =0 is similar. We start with a nonzero morphism f &
Hom 4 (N, M) and consider the almost split sequence of A-lattices starting
at N. Let N1, ..., N, be the indecomposable direct summands of the middle
term of the almost split sequence as above, and let

gV N-—N,

be irreducible morphisms. If N; is projective, then we replace N; with
Rad N;. Then, after repeating the procedure n times, we obtain

f= Z hig§") e 91(1)7

where h; are morphisms from indecomposable A-lattices in C' to M.
Then, we may deduce Homu4(N, M) =0 by the Harada-Sai lemma and
Nakayama’s lemma as before. 0

THEOREM 1.27. Let A be a symmetric O-order over a complete discrete
valuation ring O, and let C be a component of the stable Auslander—Reiten
quiver of A. Suppose that:

(i) there exists a T-periodic indecomposable A-lattice in C;
(ii) the stable Auslander—Reiten quiver of A has infinitely many vertexes.
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Then, the number of vertexes in C' is infinite and C is a valued stable
translation quiver.

Proof. As in the proof of Lemma 1.23, C' admits a subadditive function
by the condition (i). Hence, the tree class of the valued stable translation
quiver C'\ {loops} is one of finite, affine or infinite Dynkin diagrams. In the
first two cases, the number of vertexes in C is finite, since all vertexes in
C are 7-periodic. Then we may apply Proposition 1.26 and it contradicts
the condition (ii). Thus, the tree class is one of infinite Dynkin diagrams
and the number of vertexes in C' is infinite. Then, Lemma 1.23 implies that
there is no loop in C and C' is a valued stable translation quiver. [

§2. The case A= 0O[X]/(X")

2.1 Heller lattices

Let M; = x[X]/(X"?), for 1 <i<n— 1. They form a complete set of
isoclasses of nonprojective indecomposable A ® k-modules. We realize M;
as the A ® k-submodule X‘A + eA/eA of A® k= A/eA. We view M; as
an A-module. Then, p: A — M; defined by f— X'f + €A is the projective
cover of M;. Therefore, the Heller lattice Z; of M;, which is an A-submodule
of A, is given as follows:

Zi=0e®OeX @ - OeX" " apo0X" a0X" " ag...o0Xx"

Then the representing matrix of the action of X on Z; with respect to the
above basis is given by the following matrix:

n—1
0 : : 0
1 .
0
X 10
1 0
0 1 0
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Thus, Enda(Z;) ~{M € Mat(n, O) | MX = XM} is a local O-algebra,
since the right hand side is contained in

a 0 0
: , a€Q
* 0
a
\ 7
It follows the next lemma. Note that p € Enda(Z;) is determined by

p(e) € Z;.
LEMMA 2.1. We have the following.

(1) The Heller lattices Z; are pairwise nonisomorphic indecomposable A-
lattices.
(2) If p€ Rad Enda(Z;) then p(e) has the form

ple)=age+ -4 an_ i 1eX" " pa, X" 4 da, X0
where a; € O, for 1 <i<n—1, and ag € €O.

We now consider the following pullback diagram:

0 Zn—i E; Z 0
|

O—Zn—i—>A ela A’;y—w
where ¢ is defined by ¢(e) = X"~ ! and
PeX) =+ =o(eX" T = (X" ) = = p(X"7) =0,
7(f,g) = X""'f —eg, for (f,g) € A® A, and ¢ is given as follows.
L(eX7) = (eX7, X)) if0<j<i—1,
u(X7) = (X7,0) ifi<j<n—1.
REMARK 2.2. Using the exact sequences

0—Zp i > ADA—Z; =0 and 0—Zp1—>A—rk—0,

one computes
k ifi=1,

0 otherwise.

Exty (k, A) = {
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LEMMA 2.3. We have the following.

(1) ¢ does not factor through .
(2) For any p € Rad Enda(Z;), ¢p factors through .

Proof. (1) If there is a morphism p = (1, p2): Z; - A® A such that
7= ¢, then we have X" ui(e) — eua(e) = e(pur (X)) — pa(e)) = XL
This is a contradiction.

(2) Write

p(€) = ape + -+ - + an—i1€X" 7 pa, X a XL

Then, by Lemma 2.1, there exists a € O such that ap =ca. We define
p € Homy (Z;, A® A) by u(e) = (0, —aX"1). Then, it is easy to check that
= ¢p holds. 0

By Proposition 1.15 and Lemma 2.3, we have an almost split sequence
0=Z,—i—E;— Z;—0,
where E; ={(f,g9,h) e A& A Z; | 7(f,g) = ¢(h)} is given by
Ei=0 X" 0)@0(eX, X" H L 0)@- 00X, X1 0)
©O(X"0,0) 20X, 0,000 -20(X"1,0,0)
DOXTH0,6)®00,0,eX)D---DO0,0,eX 1)
® 00,0, X" 00,0, X" " ® 00,0, X" 1),

To simplify the notation, we define ag = bg =0 and

_J(xmk,0,0) if 1<k<n—1i,
T (exnk, X2k ) if i<k <n,

(
(0,0, X" %) if 1 <k <,
(0,0, eX™ ) if i < k <mn,
(X1 0,¢)  if k=n.

by,

Then, we have

Xan = J Ok (k#n—i+1)
7 ) eans (k=n—1i4+1)
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br—1 (k#i+1,n)
Xb = { ebp_s (k=i+1)
ap—i+bp_1 (k=n)

and
Ker(X*) = € (Oa; ® Ob;).

1<j<k

2.2 Almost split sequence ending at Z;
In this subsection, we show that the middle term FE; of the almost split
sequence
0=Zpni—E;—2;—=0

is indecomposable, for 2 <1< n — 1.
PropPOSITION 2.4. We have the following.

(1) A is an indecomposable direct summand of E.
(2) For2<i<n-—1, E; are indecomposable A-lattices.

Proof. (1) As Z,_1=Rad A, it follows from [Al, Chapter III, The-
orem 2.5]. We also give more explicit computational proof here. Define
Tk, Y € B1, for 1 <k < n, as follows:

a1 +eby if k=1,
rp=<ar+b, if2<k<n—1,

by, if k=n,
b f1<k<n—1,
Yk = an — eb, if k=n.

Then they form an O-basis of E1. Moreover, we have Xx1 =0 and Xy; =0,

€11 if k=2,
Xz =xp_1, for2<k<n, and Xyr =< Yr_1 if 3<k<n—1,
—€Yn—1 if k=n.

Thus, the O-span of {zj |1 < k< n} is isomorphic to the indecomposable
projective A-lattice A. In particular, A is an indecomposable direct sum-
mand of F7, and the other direct summand is indecomposable, because it
becomes A ® K after tensoring with .
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(2) E,—1 does not have a projective direct summand by [A1, Chapter III,
Theorem 2.5]. Thus, [A1, Chapter III, Propositions 1.7, 1.8] and (1) imply
that E,_; ~7(FE}) is indecomposable. We assume 2 < i <n — 2 in the rest
of the proof.

Suppose that F; = E' @ E” with B/, E” #0. Since Z;,  K=Z,_; @ K =
AR K, we have F; K~ AR K& A ® K, which implies that

FeoK~xAoK~E oK.
In particular, rank E' = n = rank E”. Since
0— F' NKer(X*) = E' - Im(X*) =0

and Im(X*) is a free O-module, we have the increasing sequence of O-
submodules

0C---C E’ﬂKer(Xk) - E’ﬂKer(XkH) C---CENKer(X")=F

such that all the O-submodules are direct summands of £’ as O-modules.
Thus, we may choose an O-basis {€} }1<k<n such that e, € E' N Ker(X*)\
Ker(X*~1). Similarly, we may choose an O-basis {e} }1<x<n of E” such that
el € B NKer(X*) \ Ker(X*1). Write

6;6 = apay + Brby + A;ﬁ, for ay, B € O and A;C € Ker(Xk*I),
el = yray + kb + Ay, for qy, 6 € O and A € Ker(X* 1),

Without loss of generality, we may assume
' e Ker(X* 1) nE", " eKer(XFH)NE.
Since {e}, e} and {ax, by} are O-bases of Ker(X*)/Ker(X*1), we have

a0k — Bryk € €O. . .
As Xe) € Ker(X*71) N E', there are f,g_)l, e fl( ) € O such that

Xef= [k -+ £
Similarly, there are g,gk_)l, R ggk) € O such that

Xefl =" el 44 gPel.
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The coefficient of a;_; in Xe) is given by

ap ifk#Fn—i+1,
ey, ifk=n—i+1.

Thus, we have

f ifk#n—i+1,
hon- if k=n—i+1.
Similarly, we have the following.
5 Bk if k#4741,
%\ if k=i+1.
vy if k#En—i+1,
9o = it k=n—i+1.

if ki1,

k)5 _
k=1 = {dkﬁkzm4.

We shall deduce a contradiction in the following three cases and conclude
that F; is indecomposable, for 2 <i<n — 2.
(Case a) 2<n—1i<i.
(Case b) 2<i=mn—1.
(Casec) 2<i<n—i.

Suppose that we are in (Case a). We multiply each of e}, and e} by suitable
invertible elements to get new O-bases of E' and E” in order to have the
equalities

@)_{lﬁk%n—i+L

f (k) 1 ifk#£i+1,
=17 Ve ifk=n—i+1, 1=

d
M I e k=i,

in the new bases. For k =1, we keep the original basis elements €] and ef.
Suppose that we have already chosen new e} and e, for 1<j<k—1. If
k#n—i+1,i+ 1, then

I8 0™ (1651 — Bro1vh-1) = Sk — Brv

implies that f,gli)l and g,g]i)l are invertible. Thus, multiplying e}, and e} with

(k)

their inverses respectively, we have f,g’i)l =1, g;,”; = 1 in the new basis. Note
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<041 51) _ (az 52) L (Oéni 5ni>
Mo Y2 02 Yn—i On—i)

If k=n —i+ 1, then, by using i #n — i, we have

that we have

n—i+1 n—i+1
flnr g )an—i5n—¢=6an—z’+15n—i+1,

n—i n—
n—i+1) (n—i+l
fé_i ) 1(1—' )/Bn—i’)/n—i = 6ﬂn—i+17n—i+1.

Tt follows that f(n_-Hl)g(n_-iH) € €0\ €20, and we may assume

n—i n—i
fr(L’ri:’H-l) =, g7(l’r7;—12+1) _ 1,

by swapping E’ and E” if necessary. Thus, we have

(an—i 5n—z’> _ (an—i—H Glﬁn—z‘ﬂ) L (ai 6151‘)
Tn—i  On—i €Vn—i+1 6n—i+1 €Yi i )
Finally, if £ =4+ 1, then the similar argument shows

fi(i-i-l)gl(i-i-l) ceO\ 620,

and we may assume that (fi(i+1), gEiH)) is either (e, 1) or (1, €). In the former

a1 B :<Oé¢ 6_1@'): e taiyr e 1Bt
v 0 e 0 €Vit1 €it1 )’

which implies that «a;41, B;+1 € €0, a contradiction. Thus, we obtain

case,

fi(i—l—l) _1, gi(z‘+1) .

Therefore, we have obtained the desired formula. In particular, we have the
following.

Qgp—1 = Oy, f,gli)lﬁk—1 = g,(gli)lﬁk» g;@ﬂkq = f;gli)ﬂk, O—1 = O,

Xag = f;gli)lak—h Xby = g;ik,)lbkq + Ok,nln—i,

where 6y, is the Kronecker delta. Suppose that 1 <k <n — 1. Then, we
have

XAy, = X(ej, — agag, — Biby) = Xej, — fk(;]i)lakak—l - g](gk_)lﬂkbk—la
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f 1 = f;gli)l(%q — op—1ap—1 — Br—1bp—1)
= féﬁ)162_1 - f,ﬁ'i)lakak_l — g;gli)lﬂkbk—1-
We compute Xej — fk(:li)leg_l in two ways:
Xej — f;gk)ﬁ;g—l = XA} - figli K1 €E,

Xej, — lgk)lek 1= 1&1?26272+"'+f1k) 1EFE.

93

Thus, we have Xej = lgk)lek 1, for 1 <k <n — 1. Next suppose that k£ = n.

Then, the similar computation shows

Bran—i + XA;I - 7(171)1 ;z 1= Xe 7(:1)1% 1= fﬁ”)zen g+ -+ f1n)e/1-

We compute X" ile! — f(n X"~/ | in two ways as before, and we

obtain

XrorAL - xnial = p Xl g f X = 0,

Hence, we have fé@Q =...= fgi)l 41 = 0. We define

tm=ch,  zp=ep+ XTRFMe i) for 1<k <n

Then, {zx | 1 <k <n} is an O-basis of F’, since

Xn—k—l(féﬁ)'ef 4 fln)e’l) S Ker(X’f_l).

7 N—1

Further, we have z, =e¢j, for 1 <k <i—1. In particular, z,_; =€),

n — 1 <1 — 1. Then, we can check that

zp_1 i k#En—i+1,
sz: . .
€zp—1 fk=n—1+1.

Thus, we conclude that E' ~ Z,, ;. Recall that the exact sequence

0—>Zn_l—>E7,—)ZZ—>O

— 1.

by

does not split. On the other hand, F; ~ Z,_; ® Z; implies that it must
split, by Miyata’s theorem [M, Theorem 1]. Hence, E; is indecomposable in

(Case a).
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Next assume that we are in (Case b). Then, f,g’i)l and g,ili)l, for k#1141,
are invertible as before, and we may choose

fk(;li)l =1, g]g]i)l =1.

If Kk =14+ 1, note that

i+1 i+1

fi(“r o = €Qiy1, fi(H g, = €Bit1,
i+1 i+1

QZ(H )%' = €Yit1, QZ(H )5, = €dit1.

Thus, a4, 5; € €O if fl.(iﬂ) is invertible, and ~;, §; € €O if g(iH) is invertible.

7

But both are impossible. Further,

fi(i+1)g,§i+1)(ai6i _ 5172) = 62(Oéi+16i+1 - /6i+1’7i+1)

i+1) (i+1)

implies fi( ) 9, € €20\ 0. Thus, we may choose

fi(z‘+1) —c gi(i+1) .

Hence, we may assume without loss of generality that

f(k) k) 1 ifk#i+1,
FL T e i k=it 1
(0 B) (B m ) (o0 )
7 01 Vi 0i Yir1  Oit1 Yo On)

and Xay = f,g’i)lak_l, Xb, = g,gli)lbk_l + 0k na;. For 1 <k <n—1, we have

k k k &
XA~ flg—)lA;ffl = Xep — flg—)le;cfl = ig_)ze;gﬂ +-+ fl( )6,1;

and the same argument as before shows that

k .
X! — Ig—)le;ﬁ—l it k#n,
% = (n) 1 (n) s m) , .
f’nfle’nfl—’_fi 61++f1 € if £k=n.

Now, we compute
i—1 -1 —i+1
X 6%—1 :f(riz )"‘fgiil )e;z—i_

X'a, = fé@l e fi(i+1)ai = €a;,
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Xibn = Xi_l(bn,1 + CLi) = g(n,;D c 'ggjil)bi + fz‘(i)l s f1(2)a1

n

=eb; +ai.
Thus, we have

Xiel — X! | = X' (anan + Bnby + A) — €€
= e(ona; + Bubi — €;) + X' A}, + Brar.

Ifi+1<k<n—-1thenk—-i+1<n—7=1and

i k k—i+1
X e;:f,i_)l-"f,g s )e;c_ieeE'.

—1

Thus, X*A! € eE’. On the other hand, we have

Xiel, — X7Vl = XY (Xel, — el )= XN+ £l
— fi(n)Xi_l ;: f@'(N)Xi_l(aiai + ﬁzbz + A;)
= "X s + BiX ) = £ (auay + Biby).

1

Hence, we obtain f3,a; = f-(n)

" (aar + B;b1) mod €O. The similar computa-

tion using e} shows dna1 = fi(n) (via1 4 6;b1) mod €O. If fl-(n) was invertible, it
would imply 5;, §; € €O, which contradicts a;0; — B;y; € O*. Thus, fi(n) €eO
and we have f,,d, € €O, which is again a contradiction. Hence, E; is
indecomposable in (Case b).

Finally, suppose that we are in (Case c). Since E;~7(E,_;), for
2<i<n-—2,and E,_; is indecomposable by (Cases a), it follows from [A1,
Chapter III, Propositions 1.7, 1.8] that E; is indecomposable in (Case c¢). []

2.3 Almost split sequence ending at E;
We construct an almost split sequence ending at F;, for 2<i<n — 2.
Define 7: A%* & E;, for 2<i<n —2, by

w(p g, 8) = (ep+ X' 71q, X" 'p, eq + X+ X" s),
for (p, q,r, s) € A%%. Note that

7(1,0,0,0) = ay, 7(0,1,0,0) = by,
7T(0, O,l,O)an,h 7T(O, O, 0, 1):bl

https://doi.org/10.1017/nmj.2016.53 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.53

96 S. ARIKI, R. KASE AND K. MIYAMOTO

LEMMA 2.5. Let 7: A®* — E; be as above. Then,

(1) = is an epimorphism;
(2) Ker(m)~ E,—;, for2<i<n—2.

Proof. (1) It is easy to check that ak, by € Im(7), for 1 < k < n. Note that
E; is generated by {apn, by, bp—1, b;} as an A-module and a,,—; = Xb,, — by_1.
(2) We define an A-module homomorphism ¢ : E,,_; — A®* by

Xnip

L(fagah):<ga _Xf+ ’fa _h> ) fOI‘ (fagah)eEnfi-

We write h = hoe + h1eX + -+ hi_1eX" P+ X 4+ -+ + hyp_ 1 XL, for
h; € O. Then,

Xnih
€

— hOXn—i + thn—i—l—l oot hilen_l.

Note that (f,g,h)€ A®3 belongs to E,_; if and only if h€ Z,_; and
X'f —eg=hoX" . It is clear that ¢ is a monomorphism and it suffices
to show that Im(:) = Ker(). Since

m(f, g, h)

= (eg—Xif-i-

n—i

X" 1p

7Xn_igue<_Xf+ €

) +eXf— X"—ih>

X1y

€

- <69—X"f+ , X"y, 0) =(0,0,0),
we have Im(:) C Ker(). Let (p, ¢, , s) € Ker(m). Then we have

ep+ Xt =0,

€q+eXr+X"s = 0.

The third equation shows that the projective cover A — M,_; = X" 'A +
€AJeAC A® kK given by frs X"7'f + €A sends s to 0. Thus, we have
s € Zy,_;. Further,

X" s pe(—ep+ Xir) = X" s+ e( X g+ X)
= XN X" s+ eq+ Xr)=0
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anl(is)

implies X'r — ep = . Hence, we have (r,p, —s) € E,,—; and

X" s
€

L(T’,p, _S): (p7 —XT— , Ty S) :(p7 q, T, 3)'

Therefore, we have Ker(m) = Im(¢), which implies Ker(r) ~ E,,_;. [

We consider the following pullback diagram:

where ¢ is the isomorphism F,,_; ~ Ker(7) defined in the proof of Lemma 2.5,

and
¢lag) =0 for 1<k <n,
¢(bg) =0 forl<k<n-—1,
o(by) = by for k=n.
LEMMA 2.6. Suppose that2 <i<n —1i. Let p € Rad End 4(E;) such that

plan) = aay + Bb, + A, p(bn) = & an + by, + B,
where o, 3, a/, B' € O and A, B € Ker(X"1). Then we have the following.

(1) B€eO, and a € €O if and only if 5’ € €O.
(2) af —Bd €€0.

Proof. (1) We compute p(eX" b, — X" 'a,) in two ways. Since
X""ip, =eb; +a; and X" la, =eca;, we have p(eX" b, — X" la,) =
€2p(b;) € €2E;. On the other hand, since X"~ b, = eb; + a;, we have

p(eX" b, — X" 1a,)
= X" ay + B'by + B) — X" aa, + b, + A)
=ed' X" a, + 28'b; + (8 — a)a; — efby + eX"'B.
Then, X" ‘a;, = eag_n1; and X" by, = eby_p1q, for n —i+1<k<n —1,

imply that eX" ‘B € ¢2E;. Hence, we may divide the both sides by e.
Reducing modulo €, we have

(' —a)ay — Bb1 =0 mod eE;,

since X" a,, =0 mod eF; if 2 <i < n — i. Now, the claim is clear.
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(2) Since p(ay), p(bx) € Ker(X*), we may write

plar) = axar + Bibi + A,
p(br) = ajar + Bibx + B,
where ay, By, o}, B € O and Ay, By € Ker(X*~1). We claim that
apB — Bray = apf’ — Ba’.
To see this, observe that we have the following identities in FE;/Ker(X*~1).

aay, + Bby = p( X" *a,) = p(a) mod Ker(X* 1) if k>n—i,
aeay, + Bby = p(X"*a,) = ep(ap) mod Ker(X*1) ifi<k<n—i,
aca + Beby, = p(X" Fa,) = ep(ar)  mod Ker(XF1) if k <4,

ap + B'b, = p(X"*b,) = p(br) mod Ker(X* 1) if k>n —i,
deay, + B'b, = p(X"7Fb,) = p(by) mod Ker(X*~1) ifi<k<n—i,
oeay, + B'eby = p(X"Fb,) = ep(by) mod Ker(XF 1) if k <.

Thus, if we denote

(Ek, Bk‘) = (ak + Ker(Xk_l), by + Ker(){k—l))7
(@, E;c) = (p(ax) + Ker(Xk_l), p(br) + Ker(Xk_l)),

Then, we have
_ = ap A, R R « o/>
ar, b =(a), b,) = (ag, b or
(@ k)(Bk 5;{) (@, by,) = (@ k)(ﬁ P
_ T a de
(@, br) <ﬁ€_1 ﬁ/> :
Therefore, we have oy 0), — fr), = af’ — fa/. In particular, if af’ — Ba/ €

O, then p is surjective, which contradicts p € Rad End 4 (FE;). 0

LEMMA 2.7. Suppose that 2<i<n—1i, and let $ € Endx(E;) be as in
the definition of the pullback diagram. Then we have the following.

(1) ¢ does not factor through .
(2) For any p € Rad End4(E;), ¢p factors through .
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Proof. (1) Suppose that there exists
¢=(¢17¢27¢3,¢4) EzHA@A@A@A

such that m) = ¢. Then, we have

0 = mp(an) = (ep1(an) + X' Pa(an), X" "Y1 (an), epa(an)
+ eX3(an) + X"_iw4(an)),

b1 = 7 (bn) = (1 (bn) + X2 (bn), X" "1 (bn), €32 (bn)
+ €X3(by) + X" a(by)).

The first equality implies ¢4(X" a,) € €2A by the following computation.

¢4(Xn_1an) = Xi_l(Xn_i¢4(an)) = _Xi_l(e"?bZ(an) + €X¢3(an))
= —eX" " a(an) — e3(X'ay) = €Y1(an) — E¥3(an—i).
Thus, we conclude 14(X" %, ) =0 mod €A from

61[)4(Xn_ibn) = 6¢4(Xn_i_1an7i + Xn_i_lbnfl) = ey(ay + €b;)
= y(ear) + 2Pa(b) = (X" La,) + 2a(b;) € EA.
On the other hand, using b; = (0,0, X"~ 1), the second equality implies
6¢2(bn) + 6X¢3(bn) + Xn_iw4(bn) = Xn—l’

and we have 4(X™b,) # 0 mod eA. Hence, we have reached a contradic-
tion.

(2) Let p € Rad End 4 (E;). We write p(ay) = aa, + b, + A and p(by,) =
'an + B'b, + B, where a,B,a/,8 €O and A, B<cKer(X"!). Then,
¢p(an) = Bby and ¢p(b,) = B'b1.

By Lemma 2.6(1), S €eO and if § was invertible then « would be
invertible, which contradicts Lemma 2.6(2). Thus, 3, 5’ € €O and we may
define 15 : E; — A by

Banlf B/anlh
(f’g’ h’) H 62 + 2 )

€

where (f, g,h)€ADA® Z; with X" 'f —eg=X""'h/e. This is well
defined. Indeed, we have 12(a;) =0 and a(bg) =0, for 1 <k <n—1, and

¢2(an) = éXn_l: ¢2(bn) 6

€ €

xnt
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Then
=1(0,12,0,0):E;, > A ADA® A

satisfies m1h = (X 1eho, 0, €1)) = p. [

By Proposition 1.15 and Lemma 2.7, we have an almost split sequence

0—=E,—; —~F—E —0,

where F; = {(p, q,7,5,t) € AY* © E; | n(p,q,7,8) = p(t)}, for 2<i < n —i.
We define z;, = (0,0, 0,0, ag) € F;, for 1 < k< n, and z, y, wy € F;, for
1<k<n, by
(OOOX*kak) if1<k<n—i,
T =
F (0,0, —X2—i=h=1 Xk o) ifn—i<k<n
(0,0,0,0, b) if 1<k <1,
yr = < (0,0,0, X" R b tap_ipq) ifi<k<n,
(0,0,0, X7 b,) if k=n.
(0, xR xR 0, 0) if 1<k<i,
e (ki e xRt xR 0.0) if i < k <n.

Note that (p, ¢, r, s, t) € F; if and only if
(ep+ Xlg, X" 'p, eq + eXr 4+ X" 's) = Bpb1,

where t =Y "}_ | (agax + Brbr).

LEMMA 2.8. {xg, Yk, 2k, Wi | 1 <k <n} is an O-basis of F;.

Proof. It suffices to show that they generate F; as an O-module, since
rank F; = 4n. Let Fi’ be the O-submodule generated by {x, yk, 2k, wi | 1 <

k <n}. We show first that (Ker(w),0) C F/. Recall that any element of
(Ker(m), 0) = (Im(¢), 0) has the form

Xn—ip
(gv_Xf+ 7f7_h70>7

€

where (f, g, h) €EA®AD® Z,_; and X'f —eg= X""1h/e. Thus, X" ‘g=0
and ¢ is an O-linear combination of X"~ *+¢ for i < k < n. Thus, subtracting
the corresponding O-linear combination of wg, for ¢ < k < n, we may assume
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g = 0. Since
heZy ;i =0e® - ®O0eX1pOX' - -a0X" !,

we may further subtract an O-linear combination of zy, for 1 <k < n, and
we may assume g = h = 0 without loss of generality. Then, (0, =X f, f, 0, 0),
for f€ A with X'f =0, is an O-linear combination of wy, for 1 <k <.
Hence, (Ker(7), 0) C F!. Next we show that (0,0, 0, 0, Ker(¢)) C F’. But it
is clear from (0,0, 0, 0, a;) = 2k, for 1 < k < n, and

if 1< k<4,
(0,0,0,0, bk>={y’“ n !
Yk — Th—ip1 i<k <n.

Suppose that (p,q,r,s,t) € F;. Write t = b, +t such that 5€ O and
t' € Ker(¢). Then, to show that (p,q,r, s,t)€F/, it is enough to see
(p,q, 7, s, Bby) € F!. Since

eq+eXr+ X" is=pX""1
we have (p, ¢, 7, s — X"~1) € Ker(r). Therefore, we deduce
(P, q,7, 5, Bba) = (p, ¢, 7 5 — BXTH,0) + B(0,0,0, X7, by) €
because (0, 0,0, X~ b,) = y,. 0

Let F! be the O-span of {xy, yi, wi | 1 <k <n}, F/ the O-span of {z |
1 <k <n}. It is easy to compute as follows.

{%4 if kAi+1,

X —
YT Yews i k=i+1.

Tk_1 iftk#n—i+1,
Xxkz . .
€Xp—i—wyp ifk=n—1+1.

Yk—1 if k#i+1,
Xyk = . .
ey, +x1 if k=i+1.

zp_1 fk#En—i4+1,
Xz = . .
€zp—; Lk=n-—1+1.

Hence, the direct summands F, and F}’ of F; = F] @ F are A-lattices and
Fi” >~ Zn—i-
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LEMMA 2.9. The middle term of the almost split sequence ending at Ej;,
for 2<i<n—2, is the direct sum of Z,_; and an indecomposable direct
summand.

Proof.  Since 7(Z;)~ Z,—; implies 7(F;)~ FE,_;, we may assume
2 <i<n—i without loss of generality. Let F] be the A-lattice as above.
Then we have to show that F is an indecomposable A-lattice. Suppose that
F! is not indecomposable. Then, there exist A-sublattices Z and L such that
F/~Z@®Land Z® K~A®K. Since

Ker(X*)NF] = @ (Ow; + Ox; + Oy;),

1<y<k
we may choose an O-basis {e; | 1 <k < n} of Z such that
ek = Wy + By + Yeyk + Ak,

where ay, B, € O with (ag, B, ) € (€0)®3 and Ay € Ker(X*1) N L.
Then,
Ker(XF)NZ=0e, @ --- @ Oe,

and at least one of ay, Bk, vk is invertible. Write
k k
Xep = f,i,)lek_l +t fl( ey,
for fl(k), R f,gli)l € O. We first assume that 2 <i < n — i. Note that

apwg—1 + BrTr—1 + WYp—1 + XA ifk#Fi+1,n—i+1,

Qi1 Wn—i + Pp—it1(exn_; — w1)

Xey = + Yn—it1Yn—i + X An—it1 ifk=n—i+1,
ajprew; + Bip1w;
+’yz~+1(eyi+m1)+XAi+1 if k=1+1.

Thus, we have

fé@l(ak_l, Br—1, %—1)

(akvﬁlm’)/k) 1fk‘7éz+1,n—z+]_’
= (Qp—it1, Bn—it1, Tn—iv1) ifk=n—i+1,
(€qit1, Bit1, €%it1) if k=14 1.
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We may assume one of the following two cases occurs.

1) P =1 (ktn—it+1), 774 =

@) [ =1k#i+1), [ =

In fact, since at least one of ay, Bk, V¢ is invertible, if k #£n — i+ 1, + 1
then f,g’i)l is invertible. We multiply its inverse to ey, and we obtain

f1(2)::f7,(i)1:1 and (alyﬂlafyl):"':(ai')ﬁiv’yi)

in the new basis. By the same reason, we have flgli)l ¢ €20, for all k. Suppose
that both fg:Hl) and fi(Hl) are invertible. Then, we may reach

(Oéu Bi, %’) = (604i+1, 5¢+17 6%’+1) == (€an—i, Br—i, E%—z’)

= (€an—it1, €Bn—it1, €Yn—it1),

which is a contradiction. Suppose that both f(n_jﬂ) and fi(iH) are not

n—
invertible. Then,

(i Bis Vi) = (g1, € 'Biv1, Yis1) =+ = (i, € Briy Yn—i)

1 —1 —1
= (€ "n—it1, € Pnitl, € Yn—itl),

which implies that none of ay—i11, Bn—it1, Yn—i+1 is invertible. Thus, we
have proved that we are in case (1) or case (2). Suppose that we are in case
(1). Then, we have

Xey, — J"}gli)lekf1 — fk(;li)gelc72 i Jrfl(k)e1

XAk—Ak,1 ifk;én—i—i-l,i—l—l,
=0 XAy i1 —€Apni — Pnoirwr ifk=n—i+1,
XAZ'Jrl—Ai—I—’}/Z'Jrl{L‘l if k=i+ 1.

Since Ay € Ker(X*) N L, we obtain that

er—1 ifk#n—i+1,i+1,
Xep =< €ep_i + fl(nfiﬂ)el ifk=n—1+1,
e+ f ey if k=i+1,
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and XA, ;11 =X%A, j0=---=X'A,. As we are in case (1),
(a1, B1,m) = (a2, B2, 72) = - - - = (i, Bs, i)
= (€tit1, Bit1, €Yit1) =+ - = (€0n—i, Bn—i, €Yn—i)
= (OénfiJrla aniJrla 7n7i+1) == (Oln, Bny 'Yn)a

so that we may write

jorn—1+1<k<n,

B eqwy + By + eyyr + A if 1<k <1
k= 1<k<n—i

awg + Brg +yyp + Ap i i+

(n—i+1)

with o, v € O and g € O*. Then, Xe,_ij+1 = €ep—i + f; ey implies

cown_; + Blexn_i —wy) + eyyn_i + XA,

(nfiJrl)(

=een_i+ fi eawr + Br1 + evyr).

We equate the coefficients of w; on both sides. Since contribution from X*A4,,
comes from X'w; 1 = ew; only, we conclude that 3 € €O, which contradicts

BeO0*.
Suppose that we are in case (2). Then, the same argument as above shows
that
€k_1 ifk#n—i+1,i+1,
Xep =< ep_i+ fl(n_iﬂ)el ifk=n—i+1,
ee; + f ey if k =i+ 1.

We define an O-basis {e] } of Z as follows:

(i) k—ek(1<k<i);

(H) €n—i = €n—i le_l €n—2i+1 + fln H_l)('il;
(111) L =en_ 1 . flerl) B f1(1+1 fl(nferl)e
(

iv) el =ey f1 ek,iﬂ(i+1§k<n,k7én—i,n—1).

n (2 )

Then, we have Z ~ Z;. To summarize, we have proved that if there is a
direct summand of rank n then it must be isomorphic to Z;. As there is an
irreducible morphism Z; — E;, E; must be a direct summand of F,_; and
we conclude E; ~ E,_;. Then there exist a}, b), € E,—;, for 1 <k <n, such
that

a, = aa, + Bb, + A,
by, = va, + b, + B,
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where a, 8,7, € O with ad — fy€ O*, A, B € Ker(X"!), and

o — a,_, (k#n—i+1)
b eaj_, (k=n—i+1),
Ve 1 (k#i+1,n)
Xt = {ebl_, (k=i+1)

al .+, (k=n).
We compute X" “a,, and X" b, as follows.
ca; = e(aal + BbY) + Baly + X" A,
eb; = e(yal + ob}) + day + X" ' B.

Since X" *A, X" 'B €€F,_; by 2<i<n —1i, we have 8,9 € €O, which is
a contradiction.

Thus, F/ is indecomposable if 2 <i<n —i. It remains to consider 2 <
i =mn —i. We choose an O-basis {ej | 1 <k <n} of Z and write

ex = apWg + BrTr + YeYk + Ak,
as before. Then, we have

Xe apWi—1 + BrTr—1 + Myr—1 + X Ay if k#1+1,
k= . .
ajr1€w; + Bip1(exi —wy) + vip1(ey; + 1) + XA if k=i+1,

and it follows that

(k) _
Joy (Qk—1, Br—1, Yk—1) {(6041'+17€Bi+176%+1) if k=qi+1.

Hence, we may assume f,gli)l =1, for k#i+ 1, and fi(Hl) = ¢, without loss
of generality. Since Aj € Ker(X*~1)N L, we obtain from the computation
of Xej, — flgli)lek_l that

er_1 if k#£i+1,
X@k: (i+1) . iy
ee; + f1 er if k=i+1,

and XA; 1 = X?A;,0=---=X"A,. Let \, i1, v be the coefficient of wy,_; 1,
Tp—itl, Yn—i+1 in A, respectively. Then the coefficient of wi, x1, y1 in
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X Ay are €, eu, ev. Since fl(iﬂ)el = XA;11 — €A; — Bip1w1 + Y1171, wWe
have

f1(i+1)oz1 =341 mod €O, fl(iJrl)/Bl =7i+1 mod €0,
f1(i+1),yl =0 modeO.
'L+1

We may show that f1
not,

is not invertible, but whenever it is invertible or

YI=Yo=:" =" and Bl:BQZZﬁn

imply that 8 =0 mod €O and v = 0 mod €O, for 1 < k < n. It follows that
we may choose an O-basis {a}, b} | 1 <k <n} of L in the following form.

a% = /\;ka + xp + A%,
= Nywk, + yi + By,
where N, \ € O and A}, Bj, € Ker(X*~1)n Z. Write

k—
Z d +h Db,

Multiplying a}, = \jwi + x + A}, with X, we obtain

o — AR T @1+ XA if k£i+1,
g 6)\§+1wi+exi—w1+XA’i+1 if k=7+1.

Thus, g]gk_)l =1, for k#i+1, gl(iH) =¢, and h,(ck_)l =0, for all k. Further, we
have

Xd —g(k) d _ XA, —A%il ifk:;él'—i—l,
PoOIRRTREL T XA — Al —wy i k=i L
We obtain Xaj —aj,_; =0if k#i4 1, and if k =4+ 1 then Xaj, | — eaj is
equal to ‘ ‘
gyﬂ)a’l + h§2+1)b’1 =XAj | — A —wr.
Since XA | = X?Al ,=-..=X"""A] , the coefficient of z; in XA/ isin
€. Thus,

(Xlggiﬂ) + X{hg”l) + Dwy + g( 4+ hgiﬂ)yl =0 modeF].
We must have gi”l), h(ZH) € €O, but then w; =0 modeF], which is
impossible. Hence, F} is indecomposable if 2 <n — i =1. 0
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83. Main result

In this section, we prove the main result of this article.

THEOREM 3.1. Let O be a complete discrete valuation ring, A=
O[X]/(X™), for n > 2. Then, the component of the stable Auslander—Reiten
quiver of A which contains Z; and Zy,_; is ZLAx /(T2 if 2i #n, and ZA /(T)
that is, homogeneous tube if 2i =n.

Proof. Let C be a component of the stable Auslander—Reiten quiver of
A that contains a Heller lattice. As Heller lattices are 7-periodic for A =
O[X]/(X™), Theorem 1.27 and Lemma 1.4 implies that C' is a valued stable
translation quiver and its tree class is one of A, Boo, Coo, Do and AZ.
If i=1 or i=n— 1, then Proposition 2.4(1) implies that the subadditive
function considered in the proof of Lemma 1.23 is not additive. Thus, the
tree class of C' is As. We now assume that i # 1, n — 1. Proposition 2.4(2)
implies that the Heller lattices Z; and Z,,_; are on the boundary of the stable
Auslander—Reiten quiver, and the tree class can not be A. If the tree class
was one of By, Csx and Dy, then F; or F,,_; would have at least three
indecomposable direct summands. But it contradicts Lemma 2.9. Therefore,
the tree class is Ay. Then, the component C must be a tube, and the rank
is the period of the Heller lattices Z; and Z,,_;, which is two if n — i #£14,
one if n — i =1. []

Acknowledgment. Before we started this project, the first author had
asked his student Takuya Takeuchi for some experimental computation for
n = 3 case. We thank him for this computation at the preliminary stage of
the research.

Appendix

In this appendix, we prove Proposition 1.15. The proof uses arguments
from [Bu] and [R1]. As it is clear that (1) implies (2), we show that (2)
implies (1). Let us consider the injective resolution of O as an O-module:

0—0-5K-1K/0—0.
Since Ext (X, O) =0 for any free O-modules of finite rank X, we have

0 — Homo (X, ©) — Home (X, K) — Homo (X, K/O) — 0.
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In particular, if we define functors D’'=Homp(—,K) and D" =
Homp(—, K£/0O), then we have the short exact sequence

0 — D(Homu (M, —)) — D'(Homa(M, —)) — D"(Hom (M, —)) — 0,
for any A-lattice M. We define functors
V' = D' Homy(—, A), V" =D"Homa(—, A),

which we also call Nakayama functors. Applying the Nakayama functors
v, V', V" to M, we obtain the following exact sequences

0—v(M)—V(M)—V'(M)—0,

and 0 — Homy (—, v(M)) — Homy(—, v/(M)) — Homa(—, v""(M)). Let
A be the functorial isomorphism defined by
D(Homu (M, A) ®4 —) = Homp(Homa (M, A) ®4 —, O)
~ Homy (—, Homp(Homy4 (M, A), O))
= Homy(—, v(M)).
We define \' and \” in the similar manner by replacing v with v/ and v".

Let
par : Homa (M, A) ®4 — — Homy (M, —)

be the natural transformation defined by ¢ ® x +— (m +— ¢(m)z). Then, it
induces the following three morphisms of functors

Dups: DHompg (M, —) — D(Homa (M, A) @4 —),
D'ppg: D' Homy (M, —) — D' (Homa (M, A) @4 —),
D"y : D" Homa (M, —) — D" (Homa (M, A) @4 —).
Then, we have the following commutative diagram of functors on A-lattices.

dy

0—D Homy (M, —) —— D' Homyu (M, —) D" Homa(M, —)—0

AoDppy NoD' N'oD" unr

Ly

0—— Homu(—, v(M)) ——Hom(—, v/(M)) ——=Homu(—, V" (M))

with exact rows, where ¢, and d. are given by compositions of ¢ and d on
the left.
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LEMMA A.1. Let X be an A-lattice. If M ® K is a projective A ® K-
module, then:

1) D'un(X) is an isomorphism and natural in X ;
ii) Dup(X) is a monomorphism and natural in X ;
iii) if M is a projective A-module, then Dyup(X) is an isomorphism;
iv) D"up(X) is an epimorphism and natural in X.

(
(
(
(

Moreover, the sequence

D Homa(M, X) 222200 gom 4 (X, v(M))
o(MoD' —1o *
deoN oD i XDt B Hom 4 (M, X)

15 exact.

Proof. Observe that we have an isomorphism
HOInA®;C(M QI AR ]C) Qg X HOIHA®;C(M QK X® IC),

since M ® K is a projective A ® C-module. Thus, Coker(pps(X)) is a torsion
O-module and D’ Coker(ups(X)) =0. Then,

0 — D' Homa(M, X) 2, p/(Hom (M, A) 4 X)

— Ext!i (Coker(up (X)), K) =0,
proving (i). As Coker(un(X)) is a torsion O-module, (ii) also follows. The

proof of (iii) is the same as (i). The proof of (iv) is similar. By chasing the
diagram above, (i) implies the exact sequence. 0

LEMMA A.2. Let M be an A-lattice, p: P — M the projective cover, and
we define
L = D(Coker(Hom4(p, A))).

Then, we have the following exact sequence of functors.

0 — D Homy (M, —) 2oDparl),

Homa(—, v(M)) — Extly(—, L) — 0.
Proof. We recall the short exact sequence

0—-L—v(P)—v(M)—0.
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Applying the functor Hom 4 (X, —), for an A-lattice X, we obtain
Hom (X, v(P)) — Homu (X, v(M)) — Extl (X, L)

— Exty (X, v(P)) =0,

since v(P) is an injective A-lattice. Thus, we have the following diagram
with exact rows:

v(p)«
Homy (X, v(P) o Homa(X,v(M)) —— ExtY(X,L) — 0

0 — DHomu(M,X) — Homu(X,v(M)) —= D" Homua(M, X)

We show that v(p). factors through Ao Dups(X): D Homuy(M, X)—
Homy (X, v(M)). Consider the commutative diagram

Homy (M, A) @4 X Homy (P, A) ®4 X
par (X) pp(X)
p*
Homa (M, X) Homu(P, X).

By dualizing the diagram, we obtain the commutative diagram

v(p)s
Homa (X, v(M)) r Homa(X, v(P))
T AoD(pnr (X)) T AoD(pp (X))
D *
D Homyu(M, X) r D Homu(P, X),

and Ao D(up(X)) is an isomorphism. Therefore, v(p). factors through
D Homy (M, X). Since Coker(p*) is an O-submodule of Hom 4 (Ker(p), X), it
is a free © module of finite rank and Ext},(Coker(p*), O) = 0. It follows that
Dp* is an epimorphism. This implies that Im(v(p)«) =Im(X o D(up(X))),
and we get the desired exact sequence. 0
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By Lemma A.2, we have the commutative diagram

Homa(X,v(M)) —— Exty(X,L) — 0

0 = Im(AoD(uy(X))) — Homa(X,v(M)) —= D" Homyu (M, X),

0 ——Im((¥(p)«)

which implies that there exists a monomorphism Ext!(X,L)—
D" Homy (M, X).

We set X = M. Then 0 — Ext} (M, L) — D" Enda(M). Since M is inde-
composable, Soc(D” End4(M)) is a simple End4(M)-module, and hence
there exists an isomorphism

Soc(Exty (M, L)) =~ {f € D"(End4(M)) | f(Rad End(M)) = 0}.

We are ready to prove that (2) implies (1) in Proposition 1.15. By
the condition (2)(i), 0 L — FE — M — 0 does not split. As L and M
are indecomposable by the condition (2)(ii), we show that every f e
Rad Hom 4 (X, M) factors through E under the condition (2)(iii). Consider
the commutative diagram

0 L F X 0
b

0 L E M 0
Ll

0 L v(P) — v(M) —— 0

v(p)

with exact rows, where F' is the pullback of X and E over M. Let £ be
an element in Ext! (M, L) which represents the second sequence. Then, the
condition (2)(iii) implies that Rad End 4 (M )¢ = 0 and ¢ € Soc(Extl (M, L)).
Consider the commutative diagram

0 4>EX}C114(M, L) D,/HOIHA(M, M)
l Exth (f,L) i D" Homy (M, f)

0 — Exty(X, L)

D" Hom (M, X).
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Let ¢ be the image of ¢ under Ext), (M, L) — D" Hom4 (M, M). Since

D" Homu (M, f)(&) () =& (fy) € ¢ (Rad Enda(M)) =0

for 1 € Homy (M, X), we have Extl(f, L)(¢) =0. Hence, 0 -+ L — F —
X — 0 splits. Then, it implies that f factors through FE.

[ASS]

[A1]

[A2]

[AR]

[ARS]

(B]

[Bu]

[CR]
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