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Abstract

For G a profinite group, we construct an equivalence between rational G-Mackey functors
and a certain full subcategory of G-sheaves over the space of closed subgroups of G called
Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K
is K-fixed.

This extends the classification of rational G-Mackey functors for finite G of Thévenaz
and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence
is instrumental in the classification of rational G-spectra for profinite G, as given in the
second author’s thesis.

2020 Mathematics Subject Classification: 54B40 (Primary); 18F20, 20E18 (Secondary)

1. Introduction

The classification of rational Mackey functors for finite groups is well known and highly
useful. An algebraic version of this result is given by Thévenaz and Webb [TW95]. A version
more suited to algebraic topology can be found in work of Greenlees and May [GM95,
appendix A]. In this case the classification is given as an equivalence of categories

MackeyQ(G) ∼=
∏

(H)�G

Q[WGH] − mod, (1·1)

where the product runs over G-conjugacy classes of subgroups of G. Greenlees and May
proved this result in order to classify rational G-spectra (for finite G) in terms of an algebraic
model. A gentle introduction to classifying rational G-spectra (and similar results) can be
found in work of the first author and Kędziorek [BK20].

Profinite groups (compact Hausdorff totally-disconnected topological groups) are an
important class of topological groups that contain all finite groups. Examples of where
profinite groups occur include the automorphism groups of Galois extensions of fields, the
étale fundamental groups of algebraic geometry and the Morava stabiliser group Sn from
chromatic homotopy theory. The standard example is the p-adic integers Z∧

p for p a prime.

† The second author gratefully acknowledges support from the Engineering and Physical Sciences Research
Council under Grant 1631308. No data were created or analysed in this study.

C© The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0305004122000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000299
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0305004122000299


346 DAVID BARNES AND DANNY SUGRUE

The main result of this paper is an extension of the classification of rational Mackey
functors to profinite groups.

THEOREM A. For G a profinite group, there is an exact equivalence

Here SG denotes the space of closed subgroups of G, see Definition 2·8 for the topology.
A Weyl-G-sheaf over SG is a G-equivariant sheaf over SG such that the stalk at a closed
subgroup K � G is K-fixed. Hence, the stalk at K has an action of the Weyl group WGK.
This result appears as Theorem 4·8 in the main body.

The reason why Mackey functors for finite groups have a simpler description is that SG
is a discrete space when G is finite. In which case, a Weyl-G-sheaf over SG is a product of
Q-modules with actions of the Weyl groups. Choosing representatives for conjugacy classes
gives the description (1·1) above. Furthermore, the rational Burnside ring for a profinite
group is isomorphic to the ring of continuous functions from SG/G to Q. Hence, when G is
finite, the rational Burnside ring is simply a product of copies of Q, indexed over the set of
conjugacy classes of subgroups of G.

Our next result, see Lemma 2·17, extends a vital identity on rational G-Mackey functors
from the finite case to the profinite case. In the finite setting, the restriction map induces an
isomorphism

eH
K M(H)∼= eK

KM(K)NH(K), (1·2)

where eH
K is the idempotent in the rational Burnside ring of H corresponding to the conjugacy

class of K � H. To extend this to the profinite case, we use the idempotents eH
N,K and eK

N,K of
Definition 2·13, which are analogous to eH

K and eK
K .

LEMMA B. Let K � H be open subgroups of G and N an open normal subgroup of K.
Restriction from H to K induces an isomorphism

eH
N,KM(H) ∼= eK

N,KM(K)NH (K).

The following is Proposition 2·21 and relates the equivariance of the stalks to that of
representing sections. This proposition and the preceding lemma are key to proving the
equivalence of categories of Theorem A.

PROPOSITION C. Let E be a Weyl-G-sheaf over SG and K a closed subgroup of G. A germ
over K can be represented by an NK-equivariant section over a neighbourhood of K, for
some open normal subgroup N of G.

This work is part of the second author’s PhD thesis, [Sug19], completed under the super-
vision of the first author. That thesis applies the main result of this paper to obtain a
classification of rational G-spectra for profinite G in terms of chain complexes of Weyl-
G-sheaves over SG, see [Sug19, chapters 3 and 6]. This extends the work of the first author
on the case where G is the p-adic integers, [Bar11]. A further application of the classifi-
cation of rational G-Mackey functors in terms of sheaves is a calculation of the injective
dimension of these categories in terms of the Cantor–Bendixson rank of the space SG, see
[Sug19, chapter 8].
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1·1. Organisation

We define the categories involved in Section 2 and construct the two functors of the
classification in Section 3. We prove directly that the functors give an equivalence in
Section 4. We end the paper with some examples and the relation between G-sheaves over
SG and Weyl-G-sheaves over SG, see Section 5.

2. Mackey functors and sheaves

We introduce the definitions and categories that are used in the paper.

2·1. Basic facts on profinite groups

We give a few reminders of useful facts on profinite groups. More details can be found in
Wilson [Wil98] or Ribes and Zalesskii [RZ00].

A profinite group is a compact, Hausdorff, totally disconnected topological group. A
profinite group G is homeomorphic to the inverse limit of its finite quotients:

The limit has the canonical topology which can either be described as the subspace topology
on the product or as the topology generated by the pre-images of the open sets in G/N under
the projection map G → G/N, as N runs over the open normal subgroups of G.

Closed subgroups and quotients by closed subgroups of profinite groups are also profinite.
A subgroup of a profinite group is open if and only if it is finite index and closed. The trivial
subgroup {e} is open if and only if the group is finite. The intersection of all open normal
subgroups is {e}. Any open subgroup H contains an open normal subgroup, the core of H in
G, defined as the following intersection. Note that as H has finite index in G, this intersection
has only finitely many distinct terms.

CoreG(H) =
⋂
g∈G

gHg−1.

We can also define a profinite topological space to be a Hausdorff, compact and totally
disconnected topological space. As with profinite groups, such a space is homeomorphic
to the inverse limit of a filtered diagram of finite spaces. Moreover, a profinite topological
space has a closed-open basis.

2·2. Mackey functors for profinite groups

There are many equivalent definitions of Mackey functors for a finite group G. Our
preferred version is a collection of abelian groups indexed over the subgroups of G with
induction (transfer), restriction and conjugation maps satisfying a list of axioms. In turn,
there are several (inequivalent) extensions to profinite groups. Since we have in mind appli-
cations to algebraic topology and the work of Fausk [Fau08], we choose a generalisation
that emphasises the role of the open subgroups.

The following definition can be found in Bley and Boltje [BB04, definition 2·1 and exam-
ples 2·2] as the “finite natural Mackey system” and in Thiel [Thi11, definition 2·2·12]. In
the case of a finite group, it restricts to the usual definition.
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348 DAVID BARNES AND DANNY SUGRUE

Definition 2·1. Let G be a profinite group, then a rational G-Mackey functor M is:

(i) a collection of Q-modules M(H) for each open subgroup H � G;

(ii) for open subgroups K, H � G with K � H and any g ∈ G we have a restriction map,
an induction map and a conjugation map

RH
K : M(H) =⇒ M(K), IH

K : M(K) =⇒ M(H) and Cg : M(H) =⇒ M(gHg−1).

These maps satisfy the following conditions.

(i) For all open subgroups H of G and all h ∈ H the structure maps are unital

RH
H = IdM(H) = IH

H and Ch = IdM(H).

(ii) For L � K � H open subgroups of G and g, h ∈ G, there are composition rules

IH
L = IH

K ◦ IK
L , RH

L = RK
L ◦ RH

K , and Cgh = Cg ◦ Ch.

The first two are transitivity of induction and restriction. The last is associativity of
conjugation.

(iii) For g ∈ G and K � H open subgroups of G, there are composition rules

RgHg−1

gKg−1 ◦ Cg = Cg ◦ RH
K and IgHg−1

gKg−1 ◦ Cg = Cg ◦ IH
K .

This is the equivariance of restriction and induction.

(iv) For open subgroups K, L � H of G

RH
K ◦ IH

L =
∑

x∈[K\H/L]
IK
K∩xLx−1 ◦ Cx ◦ RL

L∩x−1Kx.

This condition is known as the Mackey axiom.

A map of Mackey functors f : M → N is a collection of Q-module maps

f (H) : M(H) −→ N(H)

for each open subgroup H � G, which commute with the induction, restriction and conjuga-
tion maps. We use MackeyQ(G) to denote this category.

See Thévenaz and Webb [TW95] for an introduction into Mackey functors for finite
groups. The case of rational Mackey functors is also discussed in work of the first author
with Kędziorek [BK20]. Alternative definitions of Mackey functors in a general setting are
discussed in Lindner [Lin76, definition 1].

We have some standard examples similar to those for finite groups.

Example 2·2. Consider the profinite group given by the p-adic integers, Z∧
p . The open sub-

groups in this case are of the form pkZ∧
p for k � 0. We define a constant Mackey functor

by sending each open subgroup to Q with all restriction and conjugation maps taken to be
the identity. The subgroup plZ∧

p is contained inside pkZ∧
p if and only if l � k. The Mackey

axiom forces the induction maps to be

I
pkZ∧

p

plZ∧
p

= multiplication by pl−k.
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In general, there is a constant Mackey functor for any profinite group G, which takes value
Q at every open subgroup H of G. The conjugation and restriction maps are identity maps
and induction from K to H is multiplication by the index of K in H.

Example 2·3. Let R(G) denote the ring of finite dimensional complex representations of
the profinite group G. We define a rational Mackey functor MR by MR(H) = R(H) ⊗Q,
with induction and restriction induced by induction and restriction of representations.
Conjugation is induced from precomposition with the conjugation homomorphism of
groups.

In the case of finite groups, another common example is the fixed point Mackey functor.
A profinite analogue exists, but one needs to be more careful over the action of G on a
Q-module.

Definition 2·4. A rational discrete G-module M is a Q-module such that

colim
H �

open
G

MH ∼= M.

The definition is equivalent to the statement that any m ∈ M is stabilised by an open sub-
group of G. If we give a rational G-module M the discrete topology, then the action of G on
M is continuous if and only if M is discrete in the preceding sense.

Example 2·5. Given M a discrete G-module, there is a Mackey functor which at an open
subgroup H � G takes value MH . The restriction maps are inclusion of fixed points and the
conjugation maps are given by left multiplication. The induction map from K to H is given
by summing over the action of a left transversal of K in H (which is finite as the subgroups
are open).

Example 2·6. The rational Burnside ring AQ(G) of a profinite group G defines a rational
Mackey functor. For H an open subgroup of G, the ring AQ(H) is the rational Grothendieck
ring of finite H-sets (that is, finite discrete topological spaces with a continuous action of
H). The multiplication is given by the product of H-sets.

Restriction and induction between AQ(H) and AQ(K) are given by the usual restric-
tion and induction of sets with group actions. Moreover, the restriction maps are maps of
rings. Conjugation is induced from precomposition with the conjugation homomorphism of
groups.

Given a G-Mackey functor M, we can define an action of the Burnside ring AQ(H) on the
abelian group M(H) by

[H/K] := IH
K RH

K : M(H) −→ M(H)

and extending linearly from the additive basis for AQ(H) given by H/K for open subgroups
K of H. The Mackey axiom implies that this action is compatible with the multiplication of
AQ(H), so that M(H) is a module over AQ(H). Moreover, the following square commutes
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We also have the relation, known as Frobenius reciprocity, between induction and the
action of Burnside rings. Let α ∈ AQ(H), β ∈ AQ(K), m ∈ M(K) and n ∈ M(H), then

α · IH
K (m) = IH

K (RH
K (α) · m) IH

K (β) · n = IH
K (β · RH

K (n)).

See Yoshida [Yos80, definition 2·3 and example 2·11]. We summarise this discussion in the
following proposition.

PROPOSITION 2·7. If M is a Mackey functor for a profinite group G and H is an open
subgroup of G, then each M(H) has an AQ(H)-module structure. Moreover, the restric-
tion map M(H) → M(K) is a map of modules over the restriction map AQ(H) → AQ(K),
which is compatible with the conjugation maps. The Burnside ring actions satisfy Frobenius
reciprocity with respect to the induction maps.

2·3. Burnside ring idempotents

As with finite groups, there is a description of the rational Burnside ring in terms of
continuous maps out of the space of subgroups of G. We will use this structure repeatedly,
so we examine the result in detail and use it to describe idempotents of the Burnside ring.

Definition 2·8. For G a profinite group, the space of closed subgroups of G, SG, is the
topological space

where S(G/N) is a finite space with the discrete topology. For N � N′, the corresponding
map of the limit diagram is

pN,N′ : S(G/N) −→ S(G/N′) H/N �−→ HN′/N′.

The limit is topologised as either the subspace of the product or as the coarsest topology so
that the projection maps

pN : SG −→ S(G/N) H �−→ HN/N

are continuous. The group G acts continuously on SG by conjugation, g ∈ G sends a closed
subgroup K to gKg−1 = gK.

Following Gartside and Smith [GS10, lemma 2·14], we can give a compact-open basis
for this topology.

LEMMA 2·9. An explicit basis for SG is the collection of closed and open sets

OG(N, J) = {K ∈ SG | NK = J}
such that N is an open normal subgroup of G, and J is an open subgroup of G (that
contains N).

Proof. The set OG(N, J) is the pre-image of the set {J/N} ∈ S(G/N) under pN , hence it is
open and closed. To see this is a basis, let A ∈ OG(N, J) ∩ OG(N′, J′) and set N′′ = N ∩ N′,
then

A ∈ OG(N′′, N′′A) ⊆ OG(N, J) ∩ OG(N′, J′).
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These sets are compatible with the G-action:

gOG(N, J) = {gK | NK = J} = OG(N, gJ).

Since any open subgroup of G has form N K for N some open normal subgroup of G and K
a closed subgroup of G, we can rewrite the basis to consist of the sets

If we fix K and allow N to vary, these sets give a neighbourhood basis for K ∈ SG. We
further define

OG(N, J) = OG(N, J)/G ⊆ SG/G,

the quotient under the conjugation action. This set is open in SG/G as the quotient map is
open. It is closed as OG(N, K) is compact. We will also make use of the equality

OG(N, NK) = ONK(N, NK).

THEOREM 2·10. For G a profinite group, there is an isomorphism of commutative rings

AQ(G) ∼= C(SG/G, Q).

Proof. This is Dress [Dre71, theorem B·2·3(a)]. As with finite groups, the isomor-
phism maps [G/H] to the function which sends a conjugacy class of closed subgroup K
to |(G/H)K |.

LEMMA 2·11. For G a profinite group, there is a natural isomorphism of commutative
rings

Proof. Since any G/N-set is a G-set by precomposing with the quotient G → G/N, we
have the given map of rings, which is injective. Surjectivity follows as a continuous action
of G on a finite set factors through some finite quotient of G.

Remark 2·12. Similar to Pontryagin duality, the previous lemma and theorem imply that the
canonical map

induced by the surjections SG/G → S(G/N)/(G/N) is an isomorphism.

This type of isomorphism holds for any profinite space X. The difficult step is proving
surjectivity. This comes from the fact that any map X →Q must have finite image and hence
factor through some finite quotient of X. See Ribes and Zalesskii [RZ00, proposition 1·1·16
(a) and lemma 5·6·3].

An idempotent of AQ(H) = C(SH/H, Q) corresponds to an open and closed subset of
SH/H. The projection map pH : SH → SH/H is open and both domain and codomain are
compact, hence an open and closed subset of SH defines an idempotent of AQ(H). Indeed,
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the set of idempotents of AQ(H) is in bijection with the set of open, closed and H-invariant
subsets of SH.

Definition 2·13. For U an open and closed subset of SH/H, there is an idempotent eH
U ,

the characteristic function of U.

An open and closed subset V of SH (that is not necessarily H-invariant) defines
an idempotent eH

V := eH
pH(V) of AQ(H), the characteristic function of V/H. In turn, we

define

eH
N,J = eH

OH(N,J) = eH
OH(N,J)

the characteristic function for OH(N, J) = OH(N, J)/H, for J an open subgroup of H.
We relate our closed-open basis for SG to idempotents of C(SG/G, Q) and the additive

basis of that ring. For the formula we will use the Moebius function μ for pairs of subgroups
D � K

μ(D, K) =
∑
i�0

( − 1)ici,

where ci is the number of strictly increasing chains from D to K of length i. Note that a chain
of the form D<K has length 1 and, by convention, μ(K, K) = 1.

PROPOSITION 2·14. For G a profinite group, with open normal subgroup N and closed
subgroup K

eG
N,NK =

∑
N�NA�NK

|NA|
|NG(NK)|μ(NA, NK)[G/NA].

Proof. The sum is finite as we range over open subgroups of G that contain N.
The method is to reduce the calculation to the case of finite groups, and use the formula

for idempotents of the rational Burnside ring of the finite group G/N from Gluck [Glu81,
section 2]. The reduction comes from the following commuting diagrams, where pN : SG →
S(G/N) sends H to HN/N. The second diagram uses the homeomorphism of G-spaces:

G/NA ∼= (G/N)/(NA/N).

If we replace pN by pN : SG/G → S(G/N)/(G/N) the two diagrams above remain commu-
tative.

The first diagram and the formula for idempotents gives

eG
N,NK =

∑
N�NA�NK

|NA|
|NG(NK)|μ(NA, NK)

[
(G/N) / (NA/N)

] ◦ pN .

The second diagram completes the proof.
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The coefficients are constant under certain conjugations. More precisely, for K � J � G
open subgroups of G and a ∈ NG(J), if we define

αK,J = |K|
|NG(J)|μ(K, J), then αK,J = αaKa−1,J .

A simple observation shows that for a rational G-Mackey functor M, each component
M(H) is a sheaf over the profinite space SH/H. This holds as M(H) is a module over
AQ(H) = C(SH/H, Q).

PROPOSITION 2·15. Suppose X is a profinite space and M is a C(X, Q)-module, then M
determines a sheaf of Q-modules over X.

Proof. Let B be an open-closed basis for X. Given a module M, we define a sheaf F
by giving its values on B. Let U ∈B and define the characteristic function of U to be the
map which sends elements of U to 1 and the rest of X to 0. This map, which is denoted
eU ∈ C(X, Q), is continuous as U is both open and closed. We define F(U) = eUM. For
V ⊆ U in B, we define the restriction map to be the projection (where Vc is the complement
of V in X)

eUM ∼= eVM ⊕ eVc∩UM −→ eVM

which is equivalent to multiplying by eV .
The sheaf condition follows as we have a closed-open basis of a compact space and hence

can write any open cover of a basis element as a finite partition of basis elements.

COROLLARY 2·16. If M is a Mackey functor over a profinite group G, then for each open
subgroup H of G, the Q-module M(H) defines a sheaf over SH/H, the space of H-conjugacy
classes of closed subgroups of H.

Paraphrasing the corollary, we see that a G-Mackey functor is a collection of sheaves,
one for each open subgroup of G. The rough idea of the equivalence is to patch parts of
these sheaves together to construct a G-equivariant sheaf. It will take some time to make this
rigorous, but we can give a useful relation between the various sheaves M(H). This relation
is an extension of a result for finite groups, as referenced in the proof, see also Equation
(1·2) of the introduction.

LEMMA 2·17. Let K � H be open subgroups of G and N an open normal subgroup of K.
Restriction from H to K gives an isomorphism

eH
N,KM(H) ∼= eK

N,KM(K)NH (K).

Proof. The method is to reduce the problem to the case of finite groups. Similarly to
Greenlees and May [GM92, definition 3] or Thévenaz and Webb [TW95], we may define a
G/N-Mackey functor M by

M(J/N) = M(J).

Proposition 2·14 implies that when J � N,

eJ
N,KM(J) ∼= eJ/N

K/NM(J/N).
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Now that we have Mackey functors for finite groups, we may use [Gre98, example 5C(i)
and corollary 5·3] to see that restriction induces an isomorphism

eK/N
K/NM(K/N)NH/N (K/N) ∼= eH/N

K/N M(H/N).

Alternative proofs of that result occur in [Sug19, lemma 6·1·9] and [BK20]. Combining
these isomorphisms and the fact NH/N(K/N) ∼= NH(K)/N, we obtain

eK
N,KM(K)NH (K) = eK

N,KM(K)NH(K)/N

= eK/N
K/NM(K/N)NH/N (K/N)

= eH/N
K/N M(H/N)

= eH
N,KM(H).

2·4. Equivariant sheaves

We begin with the definition of a G-equivariant sheaf over a profinite G-space X where G
is a profinite group. The second author gives two equivalent definitions in [Sug19], see also
[BS20]. We work with just one for brevity.

Definition 2·18. A G-equivariant sheaf of Q-modules over X is a map of topological
spaces p : E → X such that:

(i) p is a G-equivariant map p : E → X of spaces with continuous G-actions,

(ii) (E, p) is a sheaf space (étale space) of Q-modules,

(iii) each map g : p−1(x) → p−1(gx) is a map of Q-modules for every x ∈ X, g ∈ G.
We will write this as either the pair (E, p) or simply as E. We call E the total space, X the

base space and p the structure map.
We call p−1(x) the stalk of E at x and denote it Ex. An element of a stalk is called a germ.
Note that points (i) and (ii) give a map of sets for point (iii), but they do not imply that

it is a map of Q-modules. Given a G-equivariant sheaf (E, p) over X and x ∈ X, the stalk Ex

(equipped with the discrete topology) has a continuous action of stabG(x).
As in the non-equivariant case, given an open subset U ⊆ X the space of (continuous)

sections

E(U) = �(U, E) = {s : U −→ E | p ◦ s = IdU}
has an addition operation (defined stalk-wise). The sections are not required to be G-
equivariant. Allowing U to vary defines a functor from the set of open subsets of X to
Q-modules. Moreover, one can show that

colim
U�x

�(U, E) = Ex = p−1(x)

as in the non-equivariant setting.
Given a section s : U → E and g ∈ G, we can define

g ∗ s = g ◦ s ◦ g−1 : gU −→ E

which sends v = gu to gs(u) = gs(g−1v). Hence, if U is invariant under the action of a
subgroup H (that is, hU = U for all h ∈ H), the space of sections �(U, E) has an H-action.
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The fixed points of this space are those sections which commute with the action of H, which
we call H-equivariant sections.

Definition 2·19. A Weyl-G-sheaf of Q-modules over SG is a G-sheaf of Q-modules over
SG such that action of H on EH is trivial. Hence EH has an action of the Weyl group WGH
of H in G. We use Weyl-G-sheafQ(SG) to denote this category.

The idea of the classification result is to construct a Mackey functor M from a Weyl-G-
sheaf E by setting M(H) = E(SH)H . For this we need SH to be an open subset of SG when
H is open in G.

LEMMA 2·20. For H a closed subgroup of G, SH is closed in SG. This subspace is also
open when H is open.

Proof. The open statement follows from noting that

SH =
⋃

K∈SH

OH(Core(H), Core(H)K).

For the closed statement we see that H is the limit of finite groups of the form H/(H ∩ N) =
HN/N for N an open normal subgroup of G. Since S(HN/N) is a closed subset of S(G/N),
the result follows by taking limits.

We also need a result which can be described as saying that a section of a G-equivariant
sheaf over a profinite G-space is “locally sub-equivariant”. See [Sug19, section 4·3] for
related results.

PROPOSITION 2·21. If E is a Weyl-G-sheaf over SG and K a closed subgroup of G, then
any sK ∈ EK can be represented by an NK-equivariant section

s : ONK(N, NK) −→ E

for N some open normal subgroup of G.

Proof. Let s : OMK(M, MK) = U → E be a section representing sK . The set s(U) is not
necessarily closed under the action of G, but if gu ∈ U and gs(u) ∈ s(U) for some g ∈ G and
u ∈ U, then

ps(gu) = gu = gp(s(u)) = p(gs(u))

as p is G-equivariant. Since p is injective when restricted to s(U), we see that s(gu) = g(s(u)).
The method of the proof is to restrict the domain and codomain so that they are closed under
the action of NK, for N some open normal subgroup of G.

The set s(U) is open (by definition of the topology on a sheaf space) and is the image of
compact set. Hence, there is an open normal subgroup M′ of G such that M′s(U) = s(U) by
[BS20, lemma A·1]. Let

V =
⋂
k∈K

ks(U)

which consists of only finally many distinct terms as M′ ∩ K has finite index in K. Moreover,
sK = s(K) ∈ V as s(K) is K-fixed, so V is a non-empty compact open subset of E which is
invariant under M′′K for some open normal subgroup M′′ of G.
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The set p(V) is open and contains K, hence we can find a basic open set containing K of
the form

W = ONK(N, NK) ⊆ OMK(M, MK) ∩ p(V)

for some N � M ∩ M′′. The section s|W is NK-equivariant by our earlier argument as gw ∈ W
and gs(w) ∈ V ⊆ s(U) for all g ∈ NK and w ∈ W.

3. The functors

In this chapter we will construct a correspondence between rational G-Mackey functors
and Weyl-G-sheaves over SG. We shall explicitly construct functors between the categories,
see Theorems 3·5 and 3·13. In Theorem 4·8 we will see that these functors are equivalences
of categories.

3·1. Weyl-G-sheaves determine Mackey functors

We define a functor:

Mackey: Weyl-G-sheafQ(SG) −→ MackeyQ(G).

We will not need the input sheaf to be a Weyl-G-sheaf, a detail we return to in Subsection
5·2.

Construction 3·1. Let (E,p) be a G-sheaf over SG, we define a Mackey functor
Mackey(E) as follows.

For H � G an open subgroup define

Mackey(E)(H) = E(SH)H = {s : SH −→ E | p ◦ s = IdSH}H

the set of H-equivariant sections on SH. The conjugation maps Cg are given by the G-action
on the sheaf E.

For K � H another open subgroup, the restriction map

RH
K : E(SH)H =⇒ E(SK)K

is given by restriction of a section to the subspace SK.
Let T ⊂ H be a left transversal of K in H. For β a section of SK, let β be the extension

by zero to SH. We define the induction map by

IH
K : E(SK)K =⇒ E(SH)H , β �→

∑
h∈T

h ∗ β.

We prove that the induction functor is well defined in Lemma 3·2. The structure maps
compose and interact appropriately by Lemma 3·3. Lemma 3·4 proves that the Mackey
axiom holds.

LEMMA 3·2. The induction map given in Construction 3·1 is well defined.
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Proof. Let hK = h′K be two representatives for the same coset. Since the section β is
K-fixed,

h ∗ β = h′ ∗ β

as h and h′ differ by an element of K. It follows that IH
K is independent of the choice of T .

The sum of h ∗ β over h ∈ T is H-equivariant as T is a transversal.

LEMMA 3·3. The structure maps of Mackey(E) are unital, associative, transitive and
equivariant.

Proof. The part of most interest is that the induction maps are transitive and equivariant.
The first follows from the fact that given open subgroups J � K � H, one can combine a
transversal of J in K with a transversal of K in H to get a transversal of J in H. This gives
the transitivity. For equivariance, the result follows as one can conjugate a transversal to get
a transversal of the conjugate.

We note that SH is invariant under the action of NGH � G, so E(SH) has a continuous
action of NGH.

It remains to show the Mackey axiom, which is a direct calculation.

LEMMA 3·4. The construction Mackey(E) satisfies the Mackey axiom.

Proof. We start with J, L � H where H, J, L � G are open. We can decompose H into
double cosets.

H =
∐

hL∈H/L

hL =
∐

x∈[J\H/L]
JxL =

∐
x∈[J\H/L]

⋃
j∈J

jxL =
∐

x∈[J\H/L]
jx∈J/J∩xLx−1

jxxL.

Given a transversal T for L in H we have

RH
J IH

L (β) =
(∑

h∈T

h ∗ β
) ∣∣∣SJ

=
( ∑

x∈[J\H/L]
jx∈J/J∩xLx−1

jxx ∗ β
)∣∣∣SJ

=
∑

x∈[J\H/L]
jx∈J/J∩xLx−1

(
jxxβ|S(x−1Jx∩L)

)
,

where the extension by zero in the third term is with respect to H and in the in the fourth
term it is with respect to J. If we start from the other direction we have:

∑
x∈[J\H/L]

IJ
J∩xLx−1 ◦ Cx ◦ RL

x−1Jx∩L(β) =
∑

x∈[J\H/L]
jx∈J/J∩xLx−1

jxx ∗
(
β|S(L∩x−1Jx)

)

=
∑

x∈[J\H/L]
jx∈J/J∩xLx−1

(
jxxβ|S(L∩x−1Jx)

)

proving that the two sides coincide.
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Similar arguments to the above show that a map of sheaves E → E′ induces a map of
G-Mackey functors Mackey(E) → Mackey(E′). We summarise this section in the following
theorem.

THEOREM 3·5. Let G be a profinite group. If E is a G-sheaf of Q-modules over SG, then
Mackey(E) from Construction 3·1 is a Mackey functor and the assignment is functorial.
Hence, there is a functor

Mackey: Weyl-G-sheafQ(SG) −→ MackeyQ(G).

3·2 Mackey functors determine Weyl-G-sheaves

We construct a functor in the opposite direction, from rational G-Mackey functors to
Weyl-G-sheaves of Q-modules over SG. We start by constructing the stalks of the Weyl-G-
sheaf.

Definition 3·6. For M a rational G-Mackey functor and K a closed subgroup of G, we
define a Q-module

Sheaf(M)K = colim
J�K

M(J)(K) = colim
N �

open
G

M(NK)(K) = colim
N �

open
G

eNK
N,NKM(NK).

The maps in the colimits are induced by the restriction maps of M and applying idempotents.
The notation M(J)(K) refers to the stalk of the SJ/J-sheaf M(J) at the J-conjugacy class of
K, for J an open subgroup of G containing K.

The restriction maps are compatible with taking stalks since eH
N,NK ∈ AQ(H) restricts to

an idempotent f ∈ AQ(J) for K � J � H, where the support of f is those subgroups of J (up
to J-conjugacy) which are H-conjugate to an element of OH(N, NK). This support contains

K ∈ OJ(N, NK) = OH(N, NK) ∩ SJ.

We begin our construction of a rational G-equivariant sheaf (E, p) over SG from a Mackey
functor M. We first define E and p.

Construction 3·7. If M is a rational G-Mackey functor, we define the underlying set of the
sheaf space

Sheaf(M) =
∐

K∈SG

Sheaf(M)K .

The projection map p : Sheaf(M) → SG sends all of Sheaf(M)K to K. The conjugation maps
of M induces maps

Sheaf(M)K −→ Sheaf(M)gKg−1

for each g ∈ G. Thus Sheaf(M) has a G-action and p is G-equivariant.

We construct a set of sections that will give a basis for a topology on Sheaf(M). For H an
open subgroup of G, define a map

θH : M(H) −→
{

s : SH −→
∐

K∈SH

Sheaf(M)K

}H
,
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where θH(m) sends K � H to mK , the image of m ∈ M(H) in Sheaf(M)K . We must check
that θH(m) defines an H-equivariant map. As restriction and applying idempotents are
equivariant, the square below commutes:

Since Ch = IdM(H), we have the desired equivariance. We also see that mK is fixed by NH(K).
We can restrict a section s = θNK(m) coming from m ∈ eNK

N,NKM(NK) to a section over

ONK(N, NK) = OG(N, NK).

The sets s(OG(N, NK)) for varying open and normal N, closed K, and s = θNK(m) for m in
eNK

N,NKM(NK), define a topology on Sheaf(M) by Lemma 3·8.
The G-action is continuous by Lemma 3·9 and the projection map p is a G-equivariant

local homeomorphism by Proposition 3·10.
Lemma 3·11 shows that (Sheaf(M), p) is a sheaf of Q-modules. Lemma 3·12 completes

the construction by showing that we have a Weyl-G-sheaf.

LEMMA 3·8. The sets s(OG(N, NL)) constructed above form a basis for a topology on

Sheaf(M) =
∐

K∈SG

Sheaf(M)K =
∐

K∈SG

colim
N �

open
G

eNK
N,NKM(NK).

Proof. Given a ∈ Sheaf(M)L, we can find a representative m ∈ eNL
N,NLM(NL). We then take

the composite

eNL
N,NLM(NL) −→ M(NL)

θNL−−→
{

s : SNL −→
∐

K∈SNL

Sheaf(M)K

}NL
.

We see that mL = θNL(m)(L) = a and so each germ is in the image of one of our chosen
sections. It follows that the open sets s(OG(N, NK)) cover Sheaf(M).

Now we show that the intersection of two basis sets is a union of basis elements. Take
sections t1 = θN1K1(m1) and t2 = θN2K2 (m2) and let

x ∈ t1(OG(N1, N1K1)) ∩ t2(OG(N2, N2K2)).

We construct a t(OG(N, NK)) satisfying

x ∈ t(OG(N, NK)) ⊆ t1(OG(N1, N1K1)) ∩ t2(OG(N2, N2K2)).

Given such an x, we let L = p(x), which is a closed subgroup of G. We see that

L ∈ OG(N1, N1K1) ∩ OG(N2, N2K2)

and t1(L) = t2(L) in Sheaf(M)L. Hence, there is an open normal subgroup N � N1 ∩ N2 of
G such that m1 and m2 restricted to eNL

N,NLM(NL) agree. It follows that t1 and t2 agree when
restricted to ONL(N, NL) = OG(N, NL). We define t to be this common refinement and see

t(OG(N, NL)) ⊆ t1(OG(N1, N1K1)) ∩ t2(OG(N2, N2K2)).
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LEMMA 3·9. The G-action on the space Sheaf(M) from Construction 3·7 is continuous.

Proof. Take a basic open set s(OG(N, NK)) for s = θNK(m) with m ∈ M(NK). Take any
point (g, tL) in the pre-image of s(OG(N, NK)) under the group action map. Then

(gt)(gLg−1) = s(gLg−1) ∈ Sheaf(M)gLg−1 .

We can therefore find an open normal subgroup N and representatives such that

(gt)|OG(N,NgLg−1)
= s|OG(N,NgLg−1)

, hence t|OG(N,NL) = (g−1s)|OG(N,NL) .

These sections have N-invariant domains and are obtained from an N-fixed module
M(NL). We can conclude that the open set:

W = gN × t(OG(N, NL))

is contained in pre-image of s(OG(N, NK)) under the group action map.

PROPOSITION 3·10. The projection map in Construction 3·7 is a continuous G-map and a
local homeomorphism.

Proof. We first prove that p is continuous. Given a basic open subset of SG of the form
OG(N, NK), we have that

p−1(OG(N, NK)) =
∐

L∈OG(N,NK)

Sheaf(M)L.

Take s ∈ Sheaf(M)L and a section

t : OG(N′, N′L) −→
∐

L∈OG(N′,N′L)

Sheaf(M)L,

with t(L) = s and N′ � N. Then t(OG(N′, N′L)) ⊆ p−1(OG(N, NK)) and is open.
We now show that p is a local homeomorphism. A point s in Sheaf(M)L has a neigh-

bourhood of the form t(OG(N, NK)) as seen previously. Let f = p|t(OG(N,NK)), we claim that

f : t(OG(N, NK)) −→ OG(N, NK)

is a homeomorphism. Since f is bijective and continuous, we need only show that it is open.
A basic open set of t(OG(N, NK)) is a set of the form t′(OG(N′, N′K′)) � t(OG(N, NK))

for OG(N′, N′K′) ⊆ OG(N, NK). The map f sends t′(OG(N′, N′K′)) to OG(N′, N′K′), which
is open in OG(N, NK).

LEMMA 3·11. If U is any open subset of SG, then the set of sections of p over U from
Construction 3·7 is a Q-module. Hence (Sheaf(M), p) is a sheaf of Q-modules.

Proof. Given two sections s and t of p we can restrict ourselves to neighbourhoods of SG
and E such that p is a local homeomorphism. From the construction of the topology on E it
follows that on this region, s and t come from elements of some M(NK), where N is an open
normal subgroup and K is a closed subgroup of G. The addition of M(NK) defines a section
s + t. Similarly, the Q-action on M(NK) defines q · t for q ∈Q.
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LEMMA 3·12. The G-sheaf of Q-modules (Sheaf(M), p) defined in Construction 3·7 is a
Weyl-G-sheaf. That is, g ∈ G gives maps of Q-modules

p−1(K) = Sheaf(M)K −→ Sheaf(M)gKg−1

and Sheaf(M)K is K-fixed for each K ∈ SG.

Proof. If K ∈ SG, then

p−1(K) = Sheaf(M)K = colim
J

M(J)(K)

with J running over all of the open subgroups containing K. An element g ∈ G induces maps

Sheaf(M)K −→ Sheaf(M)gKg−1

by acting as Cg on the terms M(J)(K). This action is a map of Q-modules and hence gives a
Q-module map on the stalks.

The Q-module M(J) is J-fixed and the idempotents defining the stalk M(J)(K) are J-fixed
and hence K-fixed. Thus (Sheaf(M), p) is a Weyl-G-sheaf.

We summarise this work in the following theorem. The additional statement here is that
the construction is functorial. This follows from the fact that maps of Mackey functors
commute with actions of Burnside rings.

THEOREM 3·13. For G a profinite group, there is a functor

Sheaf : MackeyQ(G) −→ Weyl-G-sheafQ(SG)

which sends a Mackey functor M over G to a Weyl-G-sheaf denoted Sheaf(M), as defined in
Construction 3·7.

We end this subsection by noting that the maps θH from Construction 3·7 are injective.

LEMMA 3·14. Let m ∈ M(H). If θH(m)(L) = mL = 0 for all L � H, then m = 0 in M(H).

Proof. For L � H, there is an open normal subgroup N such that the image of m in
eNL

N,NLM(NL) is zero. As m is H-fixed, the image of m is NH(NL)-fixed. By Lemma 2·17,
restriction and applying idempotents gives an isomorphism

eH
N,NLM(H) ∼= eNL

N,NLM(NL)NH (NL).

Hence, we see that eH
N,NLm is zero in eH

N,NLM(H). As the sets OH(N, NL) are an open cover
of the compact space SH/H, we see that m must be zero in M(H).

4. The equivalence

In this section we prove that the two functors Mackey and Sheaf are inverse equivalences,
see Theorem 4·8.

4·1. The equivalence on sheaves

We prove that for a Weyl-G-sheaf of Q-modules F, we have an isomorphism of
equivariant sheaves of Q-modules

Sheaf ◦ Mackey(F) ∼= F.
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The first part is to show that we have an isomorphism on each stalk. For that, we need to
know how the action of the Burnside ring on Mackey functors translates to sheaves.

LEMMA 4·1. Let F be G-sheaf of Q-modules on SG and K � H open subgroups of G.
The Mackey functor M = Mackey F satisfies([

H/K
]

(s)
)

(L) = |(H/K)L|s(L)

for all L ∈ SH and s ∈ M(H) = F(SH)H.

Proof. The element [H/K] ∈ AQ(H) acts on M(H) by the formula[
H/K

]
(s) =

∑
hK∈H/K

Chs|SK .

As s ∈ M(H) is H-fixed, the section t = Chs|SK satisfies t(hJh−1) = s(hJh−1) for J ∈ SK. It is
zero outside of S(hKh−1). Hence, for L ∈ SH, t(L) is non-zero exactly when L ∈ S(hKh−1).
This is equivalent to the condition hNA ∈ (H/K)L. We see that([

H/K
]

(s)
)

(L) =
∑

hK∈G/K

s|S(hKh−1)
(L) =

∑
hK∈(H/K)L

s(L).

We can now see that a idempotent of AQ(H) acts by restricting a section and then
extending the result by zero.

PROPOSITION 4·2. For H an open subgroup of G, let U be an H-invariant open and closed
subset of SH. If F is a G-sheaf then eH

UMackey(F)(H) is equal to the set of H-equivariant
sections of SH which are zero outside U. Hence, eH

UMackey(F)(H) ∼= F(U)H.

Proof. The definition of Mackey(F) gives:

Mackey(F)(H) = F(SH)H .

Since the sets of the form OH(N, NK) form a basis for SH where N is open and normal in
H, we can assume that U = OH(N, NK). By Proposition 2·14 (and using the notation αNA,NK

from the proof of that proposition), we have the first equality below for s ∈ F(SH)H .

eH
N,NKs(L) =

∑
N�NA�NK

(
αNA,NK[G/NA](s)

)
(L)

=
( ∑

N�NA�NK

αNA,NK |(G/NA)L|
)

s(L)

= eH
N,NK(L)s(L).

The second is Lemma 4·1. The last is an instance of how [G/NA] ∈ AQ(H) defines a function
from SH/H to Q, see Theorem 2·10.

PROPOSITION 4·3. If F is a Weyl-G-Sheaf over SG, then for each K ∈ SG we have an
isomorphism of Q-modules

ψK : Sheaf ◦ Mackey(F)K −→ FK .
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Proof. The left-hand side can be expanded to

colim
N �

open
G

eNK
N,NKMackey(F)(NK) = colim

N �
open

G
eNK

N,NKF(S(NK))NK

∼= colim
N �

open
G

F(ONK(N, NK))NK

using Proposition 4·2 for the last term. The right-hand side is

colim
N �

open
G

F(ONK(N, NK)).

The inclusions F(ONK(N, NK)NK → F(ONK(N, NK) induce the desired map ψK . It is an iso-
morphism as any germ can be represented by a section that is locally sub-equivariant by
Proposition 2·21

The proof requires F to be a Weyl-G-sheaf as we need the local sub-equivariance property.
We now check that the preceding isomorphism is compatible with the group actions.

LEMMA 4·4. Let F be a Weyl-G-sheaf of Q-modules. If K ∈ SG and g ∈ G, then the
following square commutes

where ψK is the map defined in the proof of Proposition 4·3.

Proof. A germ sK ∈ Sheaf ◦ Mackey(F)K can be represented by an NK-equivariant section

s : ONK(N, NK) → F.

This section is also a representative for ψK(sK), from which the commutativity of the square
follows.

THEOREM 4·5. If F is any Weyl-G-sheaf of Q-modules, then the maps ψK induce an
isomorphism

ψ : Sheaf ◦ Mackey(F) −→ F

in the category of Weyl-G-Sheaves.

Proof. By Proposition 4·3 and Lemma 4·4, we see that they are isomorphic as G-
sets. To prove that they are topologically equivalent, we need to show that they have the
same sections. As both objects are sheaves, it suffices to do so locally, which amounts
to considering sections that represent stalks. By Proposition 4·3, a germ over K ∈ SG of
Sheaf ◦ Mackey(F) is represented by some element of F(ONK(N, NK))NK . By the local
sub-equivariance property of Proposition 2·21 the same is true for a stalk of F.

4·2. The equivalence on Mackey functors

The starting point is to give a levelwise isomorphism of Q-modules.

https://doi.org/10.1017/S0305004122000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000299


364 DAVID BARNES AND DANNY SUGRUE

PROPOSITION 4·6. If H is an open subgroup of a profinite group G and M a Mackey functor
for G, then there is an isomorphism of Q-modules (constructed in the proof)

θH : M(H) −→ Mackey ◦ Sheaf(M)(H).

Proof. Recall from Constructions 3·1 and 3·7 that the stalks of Sheaf(M) are given by

Sheaf(M)K = colim
J �

closed
K

M(J)(K) = colim
N �

open
G

M(NK)(K) = colim
N �

open
G

eNK
N,NKM(NK).

Recall the map θH from Construction 3·7

θH : M(H) −→
{

s : SH −→
∐

K∈SH

Sheaf(M)K

}H
,

where θH(m)(K) = mK , the image of m in Sheaf(M)K . The topology on Sheaf(M) is defined
in terms of θH(m) for varying H and m.

The composite of the two functors at H is

Mackey ◦ Sheaf(M)(H) = Sheaf(M)(SH)H

=
{

s : SH −→
∐

K∈SH

Sheaf(M)K

∣∣∣ s continuous, p ◦ s = Id
}H

.

Since the topology was defined using the images of θH , it follows that θH(m) is a continuous
section. Thus θH defines a map as in the statement. Moreover, it is additive and surjective,
injectivity follows from Lemma 3·14.

THEOREM 4·7. The maps θH induce a natural isomorphism of Mackey functors

θ : M −→ Mackey ◦ Sheaf(M).

Proof. We need to show that the correspondence between M and Mackey ◦ Sheaf(M)
commutes with the three maps; restriction, induction and conjugation.

For conjugation and restriction one can calculate the effect directly on a stalk of some
m ∈ M(H), for H an open subgroup of G. One will see that the map θ is compatible with
conjugation as the restriction maps of a Mackey functor are equivariant and the action of the
Burnside ring is compatible with conjugation. Similarly, since θ is defined via the restriction
maps of Mackey functors and the restriction of Mackey ◦ Sheaf(M) is defined by restricting
a section to a smaller domain, θ is compatible with restrictions.

Induction requires more work. Suppose K � H are open and s ∈ M(K). We must show that
the square

commutes, where IH
K is the induction map for Mackey ◦ Sheaf(M).
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Chasing through the definitions gives(
IH
K θK(m)

)
L

=
( ∑

h∈H/K

h ∗ θK(m)
)

L
=

∑
h∈H/K

h−1Lh�K

(h ∗ θK(m))L.

In the final equality we replace the extension by zero by an explicit condition on the
subgroups.

Conversely, we use the Mackey axiom to rewrite (θHIH
K (m))L ∈ Sheaf(M)L. We may

choose a representative a ∈ eNL
N,NLM(NL) for this germ, with N � K an open normal subgroup

of G. Then

a = eNL
N,NLRH

NLIH
K (m)

= eNL
N,NL

∑
[NL\H/K]

INL
NL∩xKx−1 ◦ Cx ◦ RK

K∩x−1NLx(m)

= eNL
N,NL

∑
[NL\H/K]

INL
NL∩xKx−1 ◦ RxKx−1

NL∩xKx−1 ◦ Cx(m).

=
∑

[NL\H/K]
INL
NL∩xKx−1

(
RNL

NL∩xKx−1

(
eNL

N,NL

) · RxKx−1

NL∩xKx−1Cx(m)
)

.

Consider the term RNL
NL∩xKx−1eNL

N,NL. If this is non-zero, there is a subgroup J of NL ∩ xKx−1

in the support of the idempotent. Hence,

L � NL = NJ � xKx−1.

If x ∈ [NL\H/K
]= [

L\H/K
]

is such that L � xKx−1, then NL ∩ xKx−1 = NL. The corre-
sponding summand is

eNL
N,NL · RxKx−1

NL Cx(m)

which is sent to Cx(m)L in the L-stalk.
The collection of x ∈ [L\H/K

]
such that L � xKx−1, is exactly the set hK ∈ H/K such

that h−1Lh � K (the canonical isomorphism sends LxK to xK). Hence,

(θHIH
K (m))L =

∑
h∈H/K

h−1Lh�K

(θhKh−1Ch(m))L =
∑

h∈H/K
h−1Lh�K

(h ∗ θK(m))L.

We combine Theorems 4·5 and 4·7 and note that our constructions are compatible with
maps in the two categories to obtain the main result.

THEOREM 4·8. If G is a profinite group then the category of rational G-Mackey functors
is equivalent to the category of Weyl-G-sheaves over SG. Furthermore, this is an exact
equivalence.
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5. Consequences
5·1. Examples

Just as non-equivariantly, one can make constant sheaves and skyscraper sheaves. We
leave the details to the second author’s thesis [Sug19] and the forthcoming paper by the
authors [BS20]. The stalks of the constant sheaf at a Q-module B are all isomorphic to B.
The sections are as for the non-equivariant constant sheaf.

Example 5·1. The Burnside ring Mackey functor corresponds to the constant Weyl-G-Sheaf
at Q. The constant sheaf at a Q-module B corresponds to the Mackey functor AQ ⊗ B.

For an equivariant skyscraper sheaf, one picks a closed subgroup K of G and a discrete
WGK-module C. The stalk at K is C, for g ∈ G, the stalk at gKg−1 is gC (with the expected
gKg−1-action), all other stalks are zero. The sections of this sheaf over U are given by a
direct sum of copies of gB, with one copy for each gKg−1 ∈ U, where the sums runs over
G/K.

Example 5·2. For K a closed subgroup of G, we can describe the Mackey functor M that
corresponds to the skyscraper sheaf SkyK(C) built from a discrete WGK-module C. At an
open subgroup H, M(H) is the H-fixed points of SkyK(C)(SH). When K is open, there are
only finitely many distinct conjugates of K, hence we can express M(H) as a finite direct
sum indexed by the distinct conjugates gKg−1 of K that are subgroups of H

M(H) = SkyK(C)(SH)H =
( ⊕

{gKg−1�H}
gC
)H

.

If K is the trivial group, then the Mackey functor MC corresponding to Sky{e}(C) is the fixed
point Mackey functor, see Example 2·5, of the discrete G-module C.

It can be illuminating to perform the reverse calculation. The fixed point Mackey func-
tor MC is cohomological, that is, restriction followed by induction is multiplication by the
subgroup index

IH
K RH

K = [H, K].

See Thévenaz and Webb [TW95, section 16] for further details of cohomological Mackey
functors.

This equation simplifies the behaviour of idempotents, particularly when we calculate the
stalk of Sheaf(MC) at some closed subgroup K. As a self-map of MC(NK),

eNK
N,NK =

∑
N�NA�NK

|NA|
|NNK(NK)|μ(NA, NK)[NK : NA]

=
∑

N�NA�NK

|NA|
|NK|μ(NA, NK)[NK : NA]

=
∑

N�NA�NK

μ(NA, NK)

which is zero for non-trivial K and the identity map for K the trivial group. Hence, the stalks
at non-trivial subgroups are zero. We then use the fact that C is discrete to complete the
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calculation

C = colim
N �

open
G

CN = colim
N �

open
G

MC(N).

5·2. Weyl Sheaves from equivariant sheaves

As mentioned, Construction 3·1 does not require the input G-sheaf to be a Weyl-G-
sheaf. Hence, given a sheaf F, Sheaf ◦ Mackey(F) is a Weyl-G-sheaf. We can construct this
operation explicitly.

PROPOSITION 5·3. If F is a G-sheaf then the underlying set of Sheaf ◦ Mackey(F) is∐
K∈SG

FK
K .

Furthermore, the map F → Sheaf ◦ Mackey(F) is induced from the stalkwise inclusions of
fixed points.

Proof. The stalks are given by

One can prove directly that the stalks FK
K form a Weyl-G-sheaf, as Proposition 2·21 implies

that a K-fixed germ can be represented by a section that is N K-equivariant for some open
normal subgroup N. One can also prove that a map from a Weyl-G-sheaf E to F will factor
through the composite Sheaf ◦ Mackey(F). See [BS20, section 10] for further such results.

REFERENCES

[Bar11] D. BARNES. Rational Zp–equivariant spectra. Algebr. Geom. Topol. 11(4) (2011), 2107–2135.
[BB04] W. BLEY and R. BOLTJE. Cohomological Mackey functors in number theory. J. Number Theory

105(1) (2004), 1–37.
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