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1. Introduction

Kleene algebras were introduced by Brignole and Monteiro in [BM67]. Earlier,
Kalman [Kal58] called such distributive lattices with an involution ∼ satisfying x ∧
∼x ≤ y ∨ ∼y as ‘normal i-lattices’. Kleene algebras can be seen as generalisations of,
for instance, Boolean, Łukasiewicz, Nelson and Post algebras; see [BD74]. The notion
used here should not to be confused with the other Kleene algebra notion generalising
regular expressions.

Clearly, any pseudocomplemented Kleene algebra is defined on a distributive
double pseudocomplemented lattice. According to [San86], a pseudocomplemented
Kleene algebra (L,∨,∧,∼, ∗, 0, 1) is congruence-regular if and only if the distributive
double p-algebra (L,∨,∧, ∗, +, 0, 1) is congruence-regular. Varlet [Var72] has shown
that any double p-algebra is congruence-regular if and only it is determination-trivial,
that is, x∗ = y∗ and x+ = y+ imply that x = y. Therefore, a pseudocomplemented
Kleene algebra is congruence-regular if and only if it is determination-trivial. In
this paper, we study the representation of (congruence-)regular pseudocomplemented
Kleene algebras whose underlying lattice is algebraic.
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It is well known that any Boolean algebra defined on an algebraic lattice is
isomorphic to the powerset algebra ℘(U) of some set U. In this paper, we prove an
analogous result for a regular pseudocomplemented Kleene algebra and the algebra of
rough sets defined by a tolerance induced by an irredundant covering of a set.

Rough sets were introduced by Pawlak in [Paw82]. In rough set theory it is assumed
that our knowledge about a universe of discourse U is given in terms of a binary
relation reflecting the distinguishability or indistinguishability of the elements of U.
According to Pawlak’s original definition, the knowledge is given by an equivalence E
on U interpreted so that two elements of U are E-related if they cannot be distinguished
by their properties known by us. Nowadays, in the literature, numerous studies can be
found in which approximations are determined by other types of relations.

If R is a given binary relation on U, then, for any subset X ⊆ U, the lower
approximation of X is defined as

XH = {x ∈ U | R(x) ⊆ X}

and the upper approximation of X is

XN = {x ∈ U | R(x) ∩ X , ∅},

where R(x) = {y ∈ U | x R y}. The set XH may be interpreted as the set of objects that
certainly are in X in view of the knowledge R, because if x ∈ XH, then all elements
to which x is R-related are in X. Similarly, the set XN may be considered as the set
of elements that are possibly in X, since x ∈ XN means that there exists at least one
element in X to which x is R-related. Note that the maps H and N are dual, that is,
XHc = XcN and XNc = XHc for all X ⊆ U, where Xc denotes the complement U\X of X.

The rough set of X is the pair (XH, XN), and the set of all rough sets is

RS = {(XH, XN) | X ⊆ U}.

The set RS may be canonically ordered by the coordinatewise order

(XH, XN) ≤ (YH,YN) ⇐⇒ XH ⊆ YH and XN ⊆ YN.

The structure of RS is well studied in the case when R is an equivalence; see
[Com93, Dün97, GW92, Itu99, Jär07, Pag98, PP88]. In particular, J. Pomykała and
J. A. Pomykała showed in [PP88] that RS is a Stone lattice. Later this result was
improved by Comer [Com93] by showing that RS is a regular double Stone algebra.
In [GW92], Gehrke and Walker proved that RS is isomorphic to 2I × 3K , where I is
the set of singleton R-classes and K is the set of nonsingleton equivalence classes of
R.

If R is a quasiorder (that is, a reflexive and transitive binary relation), then RS is
a completely distributive and algebraic lattice [JRV09]. We showed in [JR11] how
one can define a Nelson algebra RS on this algebraic lattice. In addition, we proved
that if L = (L,∨,∧,∼,→, 0, 1) is a Nelson algebra defined on an algebraic lattice, then
there exists a set U and a quasiorder R on U such that L is isomorphic to the rough set
Nelson algebra RS determined by R.
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Let R be a tolerance on U: that is, R is a reflexive and symmetric binary relation on
U. The pair (H, N) of rough approximation operations forms an order-preserving Galois
connection on the powerset lattice (℘(U),⊆) of U: that is, XN ⊆ Y ⇔ X ⊆ YH for any
X, Y ⊆ U. The essential facts about Galois connections can be found in [EKMS93],
for instance. Because R is reflexive, also XH ⊆ X ⊆ XN for all X ⊆ U. Properties of
rough approximations defined by tolerances are given in [Jär99, JR14], and they are
not recalled here.

It is known that if R is a tolerance, then RS is not necessarily even a lattice
[Jär99]. However, we proved in [JR14] that if R is a tolerance induced by an
irredundant covering of U, then (RS,∨,∧,∼, (∅, ∅), (U,U)) is a Kleene algebra such
that RS is algebraic and completely distributive. This means that RS forms a double
pseudocomplemented lattice. Our main result shows that if L = (L,∨,∧, ∼, ∗, 0, 1)
is a regular pseudocomplemented Kleene algebra defined on an algebraic lattice,
then there exists a set U and a tolerance R induced by an irredundant covering of
U such that L is isomorphic to the rough set pseudocomplemented Kleene algebra
RS = (RS,∨,∧,∼, ∗, (∅, ∅), (U,U)) determined by R.

The paper is structured as follows. In the next section, we recall some notions
and facts related to De Morgan, Kleene and Heyting algebras. In particular, we are
interested in De Morgan and Kleene algebras enriched by pseudocomplementation. In
Section 3, we study rough sets defined by tolerances induced by irredundant coverings.
In particular, the structure of their completely join-irreducible elements is given. Varlet
[Var72] has proved that any distributive double pseudocomplemented lattice is regular
if and only if any chain of its prime filters has at most two elements. In Section 4,
we first show that if L = (L, ∨, ∧, ∼, ∗, 0, 1) is a pseudocomplemented De Morgan
algebra defined on an algebraic lattice, then L is regular if and only if the set of
completely join-irreducible elements of L has at most two levels. At the end of the
section, we consider irredundant coverings and their tolerances determined by regular
pseudocomplemented Kleene algebras defined on algebraic lattices. Section 5 contains
our representation theorem and its proof. The construction is also illustrated by an
example. Finally, Section 6 contains some concluding remarks.

2. Preliminaries

In this section, we recall some general lattice-theoretical notions and notation which
can be found, for instance, in the books [BD74, DP02, Grä98]. For more specific
results, a reference will be given.

An element j of a complete lattice L is called completely join-irreducible if j =
∨

S
implies that j ∈ S for every subset S of L. Note that the least element, 0, of L is
not completely join-irreducible. The set of completely join-irreducible elements of L
is denoted by J(L), or simply by J if there is no danger of confusion. A complete
lattice L is spatial if, for each x ∈ L,

x =
∨
{ j ∈ J | j ≤ x}.
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An element x of a complete lattice L is said to be compact if, for every S ⊆ L,

x ≤
∨

S =⇒ x ≤
∨

F for some finite subset F of S .

Let us denote by K(L) the set of compact elements of L. A complete lattice L is said
to be algebraic if, for each a ∈ L,

a =
∨
{x ∈ K(L) | x ≤ a}.

Note that if L is an algebraic lattice, then its completely join-irreducible elements
are compact. Let the lattice L be both algebraic and spatial. Since any compact element
can be written as a finite join and any finite join of compact elements is compact,
the compact elements of L are exactly those that can be written as a finite join of
completely join-irreducible elements.

A complete lattice L is completely distributive if, for any doubly indexed subset
{xi, j}i∈I, j∈J of L, ∧

i∈I

(∨
j∈J

xi, j

)
=

∨
f : I→J

(∧
i∈I

xi, f (i)

)
,

that is, any meet of joins may be converted into the join of all possible elements
obtained by taking the meet over i ∈ I of elements xi, k, where k depends on i.

A complete ring of sets is a family F of sets such that
⋃
S and

⋂
S belong to F

for any subfamily S ⊆ F .

Remark 2.1. Let L be a lattice. Then the following are equivalent.

(a) L is isomorphic to a complete ring of sets.
(b) L is algebraic and completely distributive.
(c) L is distributive and doubly algebraic (that is, both L and the dual L∂ of L are

algebraic).
(d) L is algebraic, distributive and spatial.

A De Morgan algebra is an algebra L = (L,∨,∧,∼, 0, 1) of type (2, 2, 1, 0, 0) such
that (L,∨,∧, 0, 1) is a bounded distributive lattice and ∼ satisfies, for all x, y ∈ L,

∼∼x = x and x ≤ y ⇐⇒ ∼y ≤ ∼x.

This definition means that ∼ is an isomorphism between the lattice L and its dual L∂.
Thus, for a De Morgan algebra L, the underlying lattice L is self-dual and, for each
x, y ∈ L,

∼(x ∨ y) = ∼x ∧ ∼y and ∼(x ∧ y) = ∼x ∨ ∼y.

We say that a De Morgan algebra is completely distributive if its underlying lattice
is completely distributive. Let L be a completely distributive De Morgan algebra. We
define, for any j ∈ J , the element

g( j) =
∧
{x ∈ L | x � ∼ j}. (2.1)

This g( j) ∈ J is the least element which is not below ∼ j. The function g : J → J
satisfies that:
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(J1) if x ≤ y, then g(x) ≥ g(y); and
(J2) g(g(x)) = x.

In fact, (J ,≤) is self-dual by the map g.
Let L be a De Morgan algebra defined on an algebraic lattice. The underlying lattice

L is doubly algebraic, because it is self-dual. Therefore, the lattice L has all equivalent
properties (a)–(d) of Remark 2.1. Also, the operation ∼ is expressed in terms of g by

∼x =
∨
{ j ∈ J | g( j) � x}. (2.2)

For studies on the properties of the map g, see, for example [Cig86, JR11, Mon63].
A Kleene algebra is a De Morgan algebra L satisfying

x ∧ ∼x ≤ y ∨ ∼y (K)

for each x, y ∈ L. It is proved in [CdG81] that, for any Kleene algebra L and x, y ∈ L,

x ∧ y = 0 implies y ≤ ∼x. (2.3)

If L is a completely distributive Kleene algebra, then j and g( j) are comparable for any
j ∈ J : that is,

(J3) g( j) ≤ j or j ≤ g( j).

A Heyting algebra is a bounded lattice L such that, for all a, b ∈ L, there is a
greatest element x of L satisfying a ∧ x ≤ b. This element x is called the relative
pseudocomplement of a with respect to b, and it is denoted by a⇒ b. Heyting algebras
are not only distributive, but they satisfy the join-infinite distributive law (JID): that
is, if

∨
S exists for some S ⊆ L, then, for each x ∈ L,

∨
{x ∧ y | a ∈ S } exists and

x ∧ (
∨

S ) =
∨
{x ∧ y | y ∈ S }. Conversely, any complete lattice satisfying the JID is a

Heyting algebra, with a⇒ b =
∨
{c | a ∧ c ≤ b}.

A double Heyting algebra L is such that both L and its dual L∂ are Heyting algebras;
see, for instance [Kat73]. This means that in L there are two implications,⇒ and⇐,
which are fully determined by ≤, and⇐ satisfies a ∨ x ≥ b if and only if x ≥ a⇐ b for
all a, b, x ∈ L. These structures are also called Heyting–Brouwer algebras.

A Heyting algebra L such that (L,∨,∧,∼, 0, 1) is a De Morgan algebra is called a
symmetric Heyting algebra; see [Mon80]. Each symmetric Heyting algebra defines a
double Heyting algebra such that a⇐ b equals ∼(∼a⇒ ∼b).

Example 2.2. (a) Every De Morgan algebra defined on an algebraic lattice
determines a symmetric Heyting algebra, by Remark 2.1.

(b) A complete lattice is a double Heyting algebra if and only if it satisfies the JID
and the MID, the dual condition of the JID. In particular, every finite distributive
lattice is a double Heyting algebra. Of course, not every finite and distributive
lattice is self-dual, that is, a symmetric Heyting algebra.

(c) One double Heyting algebra may define several symmetric Heyting algebras. For
instance, the Boolean algebra 22 with 0 < a, b < 1 is a double Heyting algebra
and we can define a De Morgan operation ∼ in 22 by two ways: either (i) a 7→ a
and b 7→ b; or (ii) a 7→ b and b 7→ a. These mappings are De Morgan operations
when, for both cases, we set ∼0 = 1 and ∼1 = 0.
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In a lattice L with the least element 0, an element x ∈ L is said to have a
pseudocomplement if there exists an element x∗ in L having the property that for
any z ∈ L, x ∧ z = 0⇔ z ≤ x∗. The lattice L itself is called pseudocomplemented, if
every element of L has a pseudocomplement. Every pseudocomplemented lattice is
necessarily bounded, having 0∗ as the greatest element. The algebra (L,∨,∧, ∗, 0, 1) is
called also a p-algebra for short. The following hold for every a, b ∈ L.

(i) a ≤ b implies that b∗ ≤ a∗.
(ii) The map a 7→ a∗∗ is a closure operator.
(iii) a∗ = a∗∗∗.
(iv) (a ∨ b)∗ = a∗ ∧ b∗.
(v) (a ∧ b)∗ ≥ a∗ ∨ b∗.

An algebra (L,∨,∧, ∗, +, 0, 1) is called a double p-algebra if (L,∨,∧, ∗, 0, 1) is a
p-algebra and (L,∨,∧, +, 0, 1) is a dual p-algebra (that is, z ≥ x+ ⇔ x ∨ z = 1 for all
x, y ∈ L). In the literature, the term double pseudocomplemented lattice is often used
instead of double p-algebra. Each Heyting algebra L defines a distributive p-algebra
by setting x∗ := x⇒ 0, and if L is also a double Heyting algebra, it determines a
distributive double p-algebra, where x+ := x⇐ 1.

For a double p-algebra (L, ∨, ∧, ∗, +, 0, 1), the determination congruence Φ is
defined by

Φ := {(x, y) | x∗ = y∗ and x+ = y+}.

A double p-algebra is called determination-trivial if Φ = {(x, x) | x ∈ L}. This is
obviously equivalent to the fact that the double p-algebra satisfies that

x∗ = y∗ and x+ = y+ imply x = y. (M)

An algebra is called congruence-regular if every congruence is determined by any
class of it: two congruences are necessarily equal when they have a class in
common. Varlet has proved in [Var72] that double p-algebras satisfying (M) are
exactly the congruence-regular ones. In addition, Katrin̆ák [Kat73] has shown that
any congruence-regular double pseudocomplemented lattice forms a double Heyting
algebra such that

a⇒ b = (a∗ ∨ b∗∗)∗∗ ∧ [(a ∨ a∗)+ ∨ a∗ ∨ b ∨ b∗], (2.4)
a⇐ b = (a+ ∧ b++)++ ∨ [(a ∧ a+)∗ ∧ a+ ∧ b ∧ b+]. (2.5)

A pseudocomplemented De Morgan algebra is an algebra (L,∨,∧,∼, ∗, 0, 1) such
that (L,∨,∧,∼, 0, 1) is a De Morgan algebra and (L,∨,∧, ∗, 0, 1) is a p-algebra. In fact,
such an algebra forms a double p-algebra, where the pseudocomplement operations
determine each other by

∼x∗ = (∼x)+ and ∼x+ = (∼x)∗. (2.6)

Sankappanavar has proved in [San86] that a pseudocomplemented De Morgan algebra
satisfying (M) truly is a congruence-regular pseudocomplemented De Morgan algebra.
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Therefore, in the subsequent work, we may call pseudocomplemented De Morgan and
Kleene algebras regular when they satisfy (M). Note that regular pseudocomplemented
De Morgan algebras define symmetric (double) Heyting algebras, where the operations
⇒ and⇐ are given by (2.4) and (2.5).

A pseudocomplemented De Morgan algebra L is normal (see [Mon80]) if, for all
x ∈ L,

x∗ ≤ ∼x. (N)

Note that if L is normal, then, for every x ∈ L and y = ∼x, ∼(∼y)+ = y∗ ≤ ∼y. Hence
(∼y)+ ≥ y and so x+ ≥ ∼x. Thus

x∗ ≤ ∼x ≤ x+.

It is known (see, for example, [Kat73]) that in any distributive double p-algebra, the
‘regularity condition’ (M) is equivalent to the condition

x ∧ x+ ≤ y ∨ y∗. (D)

This means that if L is a normal and regular pseudocomplemented De Morgan algebra,
then, for any x, y ∈ L,

x ∧ ∼x ≤ x ∧ x+ ≤ y ∨ y∗ ≤ y ∨ ∼y.

Therefore, any normal and regular pseudocomplemented De Morgan algebra forms
a Kleene algebra. On the other hand, any pseudocomplemented Kleene algebra is
normal by (2.3). Hence we have shown the following result.

Remark 2.3. Any regular pseudocomplemented De Morgan algebra is a Kleene
algebra if and only if it is normal.

A filter F of a lattice L is called proper if F , L. A proper filter F is a prime filter
if a ∨ b ∈ F implies that a ∈ F or b ∈ F. The set of prime filters of L is denoted by
Fp(L), or by Fp if there is no danger of confusion. Proper ideals and prime ideals are
defined analogously. Clearly, F is a prime filter if and only if L\F is a prime ideal.

If L is a bounded distributive lattice, then any prime filter F is contained in a
maximal prime filter. Moreover, any maximal prime filter is a maximal proper filter.
If L is a distributive lattice, then the principal filter [ j) = {x ∈ L | x ≥ j} of each j ∈ J
is prime. For any j ∈ J , the prime filter [ j) is maximal if and only if j is an atom.

Fact 2.4. For any bounded distributive lattice, the following are equivalent.

(a) There is no three-element chain of prime filters.
(b) For any P,Q ∈ Fp , P ⊂ Q implies that Q is a maximal filter.

Proposition 2.5 [Var72]. Let (L,∨,∧, ∗, +, 0, 1) be a distributive double p-algebra. The
following are equivalent.

(a) L is regular.
(b) Any chain of prime filters (or ideals) of L has at most two elements.
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3. Rough sets defined by tolerances induced by irredundant coverings

Let R be a tolerance on U. A nonempty subset X of U is a preblock if X2 ⊆ R.
A block is a maximal preblock: that is, a preblock B is a block if B ⊆ X implies that
B = X for any preblock X. Thus any subset ∅ , X ⊆ U is a preblock if and only if it
is contained in some block. Each tolerance R is completely determined by its blocks:
that is, a R b if and only if there exists a block B such that a, b ∈ B.

A collection H of nonempty subsets of U is called a covering of U if
⋃
H = U.

A covering H is irredundant if H\{X} is not a covering for any X ∈ H . Each
covering H defines a tolerance RH =

⋃
{X2 | X ∈ H}, called the tolerance induced

by H . Obviously, the sets in H are preblocks of RH and RH (x) =
⋃
{B ∈ H | x ∈ B}.

Thus x ∈ B implies that B ⊆ RH (x) for any B ∈ H .
We proved in [JR14] that H is irredundant if and only if H ⊆ {RH (x) | x ∈ U}. In

addition, if H is irredundant, then H consists of blocks of RH [JR15]. We can now
write the following lemma which states that each irredundant covering H consists
of such RH (x)-sets that are blocks of RH . Therefore, we may simply speak about
tolerances induced by an irredundant covering without specifying the covering in
question.

Lemma 3.1. Let R be a tolerance induced by an irredundant covering H of U. Then
H = {R(x) | R(x) is a block}.

Proof. By the above, H ⊆ {R(x) | R(x) is a block}. On the other hand, suppose that
R(x) is a block. Because H is a covering, there is B ∈ H such that x ∈ B. This gives
that B ⊆ R(x). Since H is irredundant, B is a block. Because both R(x) and B are
blocks, B = R(x) and R(x) ∈ H . �

Let L be a lattice with the least element 0. An element a is an atom of L if it covers
0, that is, 0 ≺ a. We denote by A(L) the set of atoms of L, and simply by A if there
is no danger of confusion. The lattice L is atomistic, if x =

∨
{a ∈ A | a ≤ x} for all

x ∈ L. It is well known that a Boolean lattice is atomistic if and only if it is completely
distributive; see [Grä98], for example.

Let R be tolerance on U. In [Jär99] it is proved that (N, H) is an order-preserving
Galois connection on the complete lattice (℘(U),⊆). This implies that ℘(U)H = {XH |
X ⊆ U} is a complete lattice such that∧

H =
⋂
H and

∨
H =

(⋃
H

)NH
for allH ⊆ ℘(U)H. Similarly, ℘(U)N = {XN | X ⊆ U} is a complete lattice in which, for
allH ⊆ ℘(U)N, ∧

H =

(⋂
H

)HN
and

∨
H =

⋃
H .

Because (N, H) is a Galois connection, (℘(U)H,⊆) and (℘(U)N,⊆) are isomorphic. In
[JR14], we proved that if R is a tolerance induced by an irredundant covering, then
℘(U)H and ℘(U)N are atomistic Boolean lattices such that {R(x)H | R(x) is a block}
and {R(x) | R(x) is a block} are their sets of atoms, respectively. By Lemma 3.1,
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{R(x) | R(x) is a block} is the unique irredundant covering inducing R. The Boolean
complement operation in ℘(U)H is XH 7→ XHcH and the complement operation in ℘(U)N

is XN 7→ XNcN.

Lemma 3.2. Let R be a tolerance induced by a covering H of U, let B ∈ H and let
X ⊆ U. Then:

(a) XN =
⋃
{C ∈ H | X ∩C , ∅};

(b) BH = {x ∈ U | R(x) = B}; and
(c) ifH is irredundant, then ∅ , BH = B\

⋃
(H\{B}).

Proof. (a) The proof can be found in [Jär99].
(b) Let B ∈ H . If x ∈ BH, then R(x) ⊆ B. Since B is a block, x ∈ B implies that

B ⊆ R(x). Thus R(x) = B. On the other hand, R(x) = B gives x ∈ BH.
(c) Suppose thatH is irredundant and B ∈ H . Then X := B\

⋃
(H\{B}) is nonempty.

We prove that X = BH. Let x ∈ X and y ∈ R(x). Since x R y, there exists C ∈ H such that
x, y ∈ C. If C , B, then x ∈

⋃
(H\{B}) and x < X, which is a contradiction. Therefore

C = B and y ∈ B. Thus R(x) ⊆ B and x ∈ BH. Conversely, let x ∈ BH. Suppose that
x ∈

⋃
(H\{B}). Then there exists C , B in H such that x ∈ C. But x ∈ C implies that

C ⊆ R(x) ⊆ B, which is not possible because H is irredundant. Therefore x ∈ X and
the proof is complete. �

We studied, in [JR14], the lattice-theoretical properties of

RS = {(XH, XN) | X ⊆ U}.

Let us recall here some of these results. We showed that RS is a complete lattice if and
only if RS is a complete sublattice of the direct product ℘(U)H × ℘(U)N. This means
that if RS is a complete lattice, then, for {(Ai, Bi)}i∈I ⊆ RS,∧

i∈I

(Ai, Bi) =

(⋂
i∈I

Ai,
(⋂

i∈I

Bi

)HN)
(3.1)

and ∨
i∈I

(Ai, Bi) =

((⋃
i∈I

Ai

)NH
,
⋃
i∈I

Bi

)
. (3.2)

In addition, we proved that RS is an algebraic and completely distributive lattice if and
only if R is induced by an irredundant covering. We also noted that if R is a tolerance
induced by an irredundant covering of U, then the algebra

(RS,∨,∧,∼, (∅, ∅), (U,U))

is a Kleene algebra such that the operations ∧ and ∨ are defined as in (3.1) and (3.2),
and

∼(XH, XN) = (XcH, XcN) = (XNc, XHc).

Because RS is a self-dual algebraic and distributive lattice, it is spatial by Remark 2.1.
In addition, RS forms a double p-algebra and a symmetric (double) Heyting algebra.
Our next lemma describes the pseudocomplements and the dual pseudocomplements
in RS.
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Lemma 3.3. Let R be a tolerance induced by an irredundant covering. For any
(A, B) ∈ RS,

(A, B)∗ = (BcH, BcN) and (A, B)+ = (AcH, AcN).

Proof. The lattice operations of RS are described in (3.1) and (3.2). Recall also that
(N, H) is a Galois connection. First, we show that (A, B) ∧ (BcH, BcN) = (A ∩ BcH, (B ∩
BcN)HN) equals (∅, ∅). It suffices to show that the right component (B ∩ BcN)HN is ∅,
because then, necessarily, the left component A ∩ BcH is empty. Indeed, (B ∩ BcN)HN =

(BH ∩ BcNH)N = (BH ∩ BHNc)N ⊆ (BHN ∩ BHNc)N = ∅N = ∅.
On the other hand, if (A, B) ∧ (X,Y) = ∅ for some (A, B) ∈ RS, then B ∧ Y = ∅ in the

corresponding Boolean lattice ℘(U)N. This gives Y ⊆ BcN. Because X = ZH and Y = ZN

for some Z ⊆ U, XN = ZHN ⊆ Z ⊆ ZNH = YH. This implies that XNN ⊆ YHN ⊆ Y ⊆ BcN.
We obtain XN ⊆ (XN)NH ⊆ BcNH. Now B ∈ ℘(U)N implies that Bc ∈ ℘(U)H. Hence
BcNH = Bc and we get X ⊆ XNH ⊆ BcH. We have now shown that (X, Y) ≤ (BcH, BcN),
which completes the proof.

The other claim for (A, B)+ can be proved similarly. �

Now the rough set algebra

RS = (RS,∨,∧,∼,∗ , (∅, ∅), (U,U))

is a pseudocomplemented Kleene algebra.

Proposition 3.4. If R is a tolerance induced by an irredundant covering, then the
pseudocomplemented Kleene algebra RS is regular.

Proof. We show that condition (M) holds. If (A, B)∗ = (C, D)∗, then BHc = BcN =

DcN = DHc. So BH = DH and BHN = DHN. Because B,D ∈ ℘(U)N, B = BHN = DHN = D.
Similarly, (A, B)+ = (C,D)+ implies that A = C. We have proved that (A, B) = (C,D).

�

Let R be a tolerance on U induced by an irredundant covering. By Remark 2.3,
the pseudocomplemented Kleene algebra RS is normal. This means that, for all
(A, B) ∈ RS,

(A, B)∗ ≤ ∼(A, B) ≤ (A, B)+.

The elements (XH, XN)⇒ (YH, YN) and (XH, XN)⇐ (YH, YN) can be computed as in
(2.4) and (2.5). It is well known that, for any distributive p-algebra L, the skeleton
S ∗(L) = {a∗ | a ∈ L} forms a Boolean algebra (S ∗(L),t,∧, ∗, 0, 1), where a t b = (a∗ ∧
b∗)∗. If L is a distributive double p-algebra, also the dual skeleton S +(L) = {a+ | a ∈ L}
forms a Boolean algebra (S +(L),∨,u, +, 0, 1), where a u b = (a+ ∨ b+)+. We may now
define S ∗(RS) = {(BcH, BcN) | B ∈ ℘(U)N} and S +(RS) = {(AcH, AcN) | A ∈ ℘(U)H}.

Lemma 3.5. If R is a tolerance induced by an irredundant covering, then

(℘(U)N,⊇) � (S ∗(RS),≤) and (℘(U)H,⊇) � (S +(RS),≤).
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Proof. We prove that ϕ : B 7→ (BcH, BcN) is an order-isomorphism from (℘(U)N,⊇) to
(S ∗(RS), ≤). If B,C ∈ ℘(U)N and B ⊇ C, then Bc ⊆ Cc. This gives BcH ⊆ CcH and
BcN ⊆ CcN, that is, (BcH, BcN) ≤ (CcH,CcN) in RS. Conversely, (BcH, BcN) ≤ (CcH,CcN)
implies that BHc = BcN ⊆CcH = CNc and BH ⊇CH. Therefore, also, BHN ⊇CHN. Because
B,C ∈ ℘(U)N, B = BHN and C = CHN. Thus B ⊇ C. The map ϕ is trivially onto.

Similarly, we can show that the map A 7→ (AcN, AcN) is an order-isomorphism from
(℘(U)H,⊇) to (S +(RS),≤). �

Note that all lattices mentioned in Lemma 3.5 are as Boolean lattices also dually
isomorphic with themselves. Our next proposition describes the set of completely
join-irreducible elements of RS.

Proposition 3.6. Let R be a tolerance induced by an irredundant covering. Then

J(RS) = {(R(x)H,R(x)N) | R(x) is a block}
∪ {(∅,R(x)) | R(x) is a block and |R(x)| ≥ 2}.

Proof. Let x be an element such that R(x) is an block. If |R(x)| ≥ 2, then ({x}H, {x}N) =

(∅,R(x)) ∈ RS. Since R(x) is an atom of ℘(U)N, (∅,R(x)) is an atom of RS. Trivially,
all atoms are completely join-irreducible.

Next, we show that if R(x) is a block, then (R(x)H, R(x)N) is completely join-
irreducible. Assume that (R(x)H, R(x)N) =

∨
{(Xi

H, Xi
N) | i ∈ I}. This means that

Xi
H ⊆ R(x)H for all i ∈ I. Because each Xi

H belongs to ℘(U)H and R(x)H is an atom
of ℘(U)H, ∅ ⊆ Xi

H ⊆ R(x)H implies that every Xi
H is equal either to ∅ or to R(x)H.

But since x ∈ R(x)H = {x}NH, each Xi
H cannot be ∅. Therefore, there exists k ∈ I

such that Xk
H = R(x)H. We know that R(x) = {x}N = {x}NHN = R(x)HN = Xk

HN ⊆ Xk.
Thus R(x)N ⊆ Xk

N. By assumption, Xi
N ⊆ R(x)N for all i ∈ I. Hence R(x)N = Xk

N and
(R(x)H,R(x)N) = (Xk

H, Xk
N).

On the other hand, suppose that (XH, XN) is a completely join-irreducible element
of RS. In [JR14, Remark 4.6], we proved that each element of RS can be represented
as the join of a subset of

{(R(x)H,R(x)N) | x ∈ U} ∪ {(∅,R(x)) | |R(x)| ≥ 2}.

But since (XH, XN) is itself a completely join-irreducible element, (XH, XN) =

(R(x)H,R(x)N) for some x ∈ U, or (XH, XN) = (∅,R(x)) for some x such that |R(x)| ≥ 2.
Let us assume first that (XH, XN) = (R(x)H,R(x)N) for some x ∈ U. Because R(x) ∈

℘(U)N, there is a set {xi}i∈I ⊆ U such that R(x) =
⋃

i∈I R(xi) and each R(xi) is a block.
This gives R(x)N = (

⋃
i∈I R(xi))N =

⋃
i∈I R(xi)N. Analogously,(⋃

i∈I

R(xi)H
)NH

=

(⋃
i∈I

R(xi)HN
)H

=

(⋃
i∈I

R(xi)
)H

= R(x)H.

This means that
(R(x)H,R(x)N) =

∨
RS

{(R(xi)H,R(xi)N) | i ∈ I}.
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Since (R(x)H,R(x)N) is completely join-irreducible,

(R(x)H,R(x)N) = (R(xk)H,R(xk)N)

for some block R(xk).
Second, if (XH,XN) = (∅,R(x)) for some x such that |R(x)| ≥ 2, then R(x) =

⋃
i∈I R(xi)

for some index set I such that each R(xi) is a block. Because R(xi) ⊆ R(x) for all i ∈ I,
x R xi for all i ∈ I. If x , xi, then x, xi ∈ R(xi) means that |R(xi)| ≥ 2, and if x = xi, the
assumption that |R(x)| ≥ 2 gives |R(xi)| ≥ 2. Therefore, each (∅,R(xi)) is in RS and

(∅,R(x)) =
∨
RS

{(∅,R(xi)) | i ∈ I}.

But, since (∅,R(x)) is completely join-irreducible by assumption, (∅,R(x)) = (∅,R(xk))
for some k ∈ I such that |R(xk)| ≥ 2 and R(xk) is a block. �

For a tolerance induced by an irredundant covering H , we can express the
completely join-irreducible elements of RS also using elements ofH as

J(RS) = {(BH, BN) | B ∈ H} ∪ {(∅, B) | B ∈ H and |B| ≥ 2}.

Recall that BH and BN are given in terms of the irredundant coveringH in Lemma 3.2.
Note also that, since RS is spatial, its every element can be described as the join of
some elements in J(RS).

Because RS is a completely distributive Kleene algebra and, for any (A, B),
∼(A, B) = (Bc, Ac), we can by (2.1) define the map g : J(RS)→J(RS) by setting

g((C,D)) =
∧
{(XH, XN) | (XH, XN) � (Dc,Cc)}

for any (C,D) ∈ J(RS ).

Lemma 3.7. Let R be a tolerance induced by an irredundant covering.

(a) If R(x) is a block such that |R(x)| ≥ 2, then

g((∅,R(x))) = (R(x)H,R(x)N) and g((R(x)H,R(x)N)) = (∅,R(x)).

(b) If R(x) = {x}, then g(({x}, {x})) = ({x}, {x}).

Proof. (a) Suppose that R(x) is a block such that |R(x)| ≥ 2. Now (XH,XN) � (R(x)c,U)
is equivalent to XH * R(x)c. This means that XH ∩ R(x) , ∅. Thus there is y ∈ XH ∩
R(x). Because y ∈ R(x), R(x) ⊆ R(y), and y ∈ XH yields R(x) ⊆ R(y) ⊆ X. Thus R(x)H ⊆
XH and R(x)N ⊆ XN. Therefore (R(x)H,R(x)N) ≤

∧
{(XH, XN) | (XH, XN) � (R(x)c,U)} =

g((∅,R(x))).
On the other hand, x ∈ {x}NH = R(x)H * R(x)c gives (R(x)H,R(x)N) � (R(x)c,U) and

g((∅,R(x))) ≤ (R(x)H,R(x)N). Thus g((∅,R(x))) = (R(x)H,R(x)N). Because g(g( j)) = j
for any j ∈ J(RS ), g((R(x)H,R(x)N)) = (∅,R(x)).

(b) If R(x) = {x}, then R(x) is a block and R(x)H = R(x)N = R(x), because x is R-
related only to itself. Therefore ({x}, {x}) ∈ J(RS). Now ∼({x}, {x}) = ({x}c, {x}c) and
(XH, XN) � ({x}c, {x}c) holds if and only if x ∈ XH ⊆ XN. This implies that ({x}, {x}) ≤∧
{(XH, XN) | (XH, XN) � ({x}c, {x}c)} = g(({x}, {x})). On the other hand, ({x}, {x}) �

({x}c, {x}c) implies that g(({x}, {x})) ≤ ({x}, {x}). Thus g(({x}, {x})) = ({x}, {x}). �
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In the next section (see Lemma 4.5), we will show that if L is a regular
pseudocomplemented Kleene algebra defined on an algebraic lattice, then x ∈ J is
an atom if and only if x ≤ g(x). Therefore, by Lemma 3.7,

A(RS) = {({x}, {x}) | R(x) = {x}}
∪ {(∅,R(x)) | R(x) is a block and |R(x)| ≥ 2}. (3.3)

Note that (3.3) can be seen also directly. Let R(x) be a block. If |R(x)| ≥ 2, then we
have already seen in the proof of Proposition 3.6 that (∅,R(x)) is an atom. Obviously,
the completely join-irreducible element (R(x)H, R(x)N) cannot now be an atom. If
R(x) = {x}, then (R(x)H, R(x)N) = ({x}, {x}) is an atom, because there is no element
(∅, {x}) in RS.

Each equivalence relation E on U is ‘induced’ by the irredundant covering U/E
which consists of the equivalence classes of E. The covering U/E forms a partition of
U, that is, the sets in U/E do not intersect. The following lemma presents equivalent
conditions for such ‘isolated blocks’ in the case of tolerances induced by irredundant
coverings.

Lemma 3.8. Let R be a tolerance induced by an irredundant covering. For each R(x)
that is a block, the following are equivalent.

(a) R(y) = R(x) for all y ∈ R(x).
(b) (R(x)H,R(x)N) = (R(x),R(x)).
(c) Either R(x) = {x} or (∅,R(x)) is the only atom below (R(x)H,R(x)N).

Proof. (a)⇒ (b). If R(y) = R(x) for all y ∈ R(x), then y ∈ R(x) yields y ∈ R(x)H. Thus
R(x)H = R(x). This implies that R(x) ⊆ R(x)N = R(x)HN ⊆ R(x) and R(x)N = R(x).

(b)⇒ (c). If |R(x)| = 1, then R(x) = {x}. Suppose that |R(x)| ≥ 2. By (3.3), (∅,R(x))
is an atom of RS. Clearly, (∅,R(x)) < (R(x)H,R(x)N). Assume that (XH, XN) is an atom
below (R(x)H,R(x)N). Then, by (3.3), either: (i) XH = XN = {y} for some y such that
R(y) = {y}; or (ii) XH = ∅ and XN = R(y) for some y such that R(y) is a block having
at least two elements. (i) If R(y) = {y}, then {y} ⊆ R(x) gives that y R x, and hence
y = x. However, this is impossible, because |R(x)| ≥ 2 and |R(y)| = 1. (ii) If XH = ∅

and XN = R(y) for some y such that R(y) is a block having at least two elements,
then (∅, R(y)) ≤ (R(x), R(x)) gives R(y) ⊆ R(x). Because R(x) and R(y) are blocks,
R(x) = R(y).

(c)⇒ (a). If R(x) = {x}, then obviously (a) is satisfied. On the other hand, suppose
that (∅,R(x)) is the only atom of RS below (R(x)H,R(x)N). If y ∈ R(x), then R(x) ⊆ R(y),
because R(x) is a block. We are going to prove that R(x) = R(y). Assume, by
contraction, that R(x) ⊂ R(y). This means that there is z ∈ R(y)\R(x). Since z R y, there
is w ∈ U such that R(w) is a block, R(w) , R(x) and z, y ∈ R(w). Therefore |R(w)| ≥ 2.
Because y ∈ R(w), R(w) ⊆ R(y). On the other hand, x ∈ R(x) ⊂ R(y) gives y ∈ R(x) and
R(y) = {y}N ⊆ R(x)N. Therefore, (∅, R(w)) ≤ (R(x)H, R(x)N). Because (∅, R(w)) is an
atom, we obtain by assumption that R(x) = R(w) and z ∈ R(x), which is a contradiction.
�

https://doi.org/10.1017/S1446788717000283 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000283


70 J. Järvinen and S. Radeleczki [14]

4. Regularity in pseudocomplemented Kleene algebras

In this section, we study the structure of completely join-irreducible elements
of Kleene algebras defined on algebraic lattices. Such algebras form pseudo-
complemented Kleene algebras and we will prove that such an algebra is regular if and
only if the set J of the completely join-irreducible elements has at most two levels.
The obtained results are used in defining irredundant coverings and their tolerances.

A lattice L with 0 is called atomic if, for any x , 0, there exists an atom a ≤ x.
Clearly, every atomistic lattice is atomic.

Definition 4.1. The set of completely join-irreducible elements of a complete lattice
has at most two levels if, for any completely join-irreducible elements j and k, j < k
implies that j is an atom.

Remark 4.2. Let L be a complete lattice. If J has at most two levels, then, clearly, J
does not contain a chain of three (or more) elements.

If the lattice L is spatial, then these conditions are equivalent. Namely, assume that
J does not contain a chain of three elements. Let x < y be a maximal chain in J .
Suppose, by contradiction, that x is not an atom. Then there is z ∈ L with 0 < z < x.
Since L is spatial, there is j ∈ J such that j ≤ z. Now j < x < y is a chain inJ of three
elements, which is a contradiction.

Let L be a complete lattice. It is well known that if j is a completely join-irreducible
element, then j covers exactly one element, the lower cover of j. We denote this
element by j≺. Obviously,

j≺ =
∨
{x ∈ L | x < j}.

It is clear that j ∈ J is an atom if and only if j≺ = 0.

Lemma 4.3. Let L be a spatial lattice such that J has at most two levels.

(a) If j ∈ J\A, then j≺ is a join of atoms.
(b) The lattice L is atomic.

Proof. (a) Let j ∈ J\A. Since L is spatial, j≺ =
∨
{x ∈ J | x < j}. Because J has at

most two levels, each x ∈ J such that x < j is an atom. Therefore j≺ is a join of atoms.
(b) Since L is spatial, we need to show only that there is an atom below each j ∈ J .

If j is an atom, we have nothing to prove. Now let j ∈ J\A. Since j≺ , 0 is a join of
atoms by (i), there must be an atom below j. �

Proposition 4.4. Let (L,∨,∧,∼, ∗, 0, 1) be a pseudocomplemented De Morgan algebra
defined on an algebraic lattice. The following are equivalent.

(a) L is regular.
(b) J has at most two levels.
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Proof. (a)⇒ (b). Any pseudocomplemented De Morgan algebra defines a distributive
double p-algebra in which the dual pseudocomplement is defined as in (2.6). By
Proposition 2.5, there is no three-element chain in Fp. If j, k ∈ J with j < k, then
[ j) and [k) are prime filters such that [k) ⊂ [ j). By using 2.4, we get that [ j) is a
maximal prime filter. Then j is an atom of L and J has at most two levels.

(b)⇒ (a). We show that x∗ = y∗ and x+ = y+ imply that ∼x = ∼y. Notice that ∼x =

∼y is equivalent to x = y. Because L is spatial by Remark 2.1, ∼x =
∨
{ j ∈ J | j ≤ ∼x}

and ∼y =
∨
{ j ∈ J | j ≤ ∼y}. It suffices to show that, for any j ∈ J , j ≤ ∼x if and only

if j ≤ ∼y. Suppose for this that j ≤ ∼x.
If j ∈ A, then it must be that j ≤ ∼y. Otherwise, j ∧ ∼y = 0, which further implies

that j ≤ (∼y)∗ = ∼y+ = ∼x+ = (∼x)∗ by (2.5). Hence, we would get j = j ∧ ∼x = 0,
which is a contradiction.

If j ∈ J\A, then there is a ∈ A such that a < j. This is because L is atomic by
Lemma 4.3. Because L is, by Remark 2.1, completely distributive, we may define the
map g : J → J as in (2.1). We have g( j) < g(a). Since J has at most two levels, g( j)
is an atom.

Now j ≤ ∼x yields g( j) � x by (2.2). This implies that g( j) ∧ x = 0 since g( j) is an
atom. Thus g( j) ≤ x∗ = y∗. This gives g( j) ∧ y = 0 and g( j) � y. By using (2.2) again,
we obtain j ≤ ∼y.

We have now proved that j ≤ ∼x implies that j ≤ ∼y. The converse can be proved
symmetrically. Hence, for any j ∈ J , j ≤ ∼x if and only if j ≤ ∼y, as required. �

Let (L, ∨, ∧, ∼, 0, 1) be a Kleene algebra defined on an algebraic lattice. By
Proposition 4.4, the pseudocomplemented Kleene algebra L = (L,∨,∧, ∼, ∗, 0, 1) is
regular if and only if J has at most two levels. Therefore, if L is regular, J can be
trivially divided into two disjoint parts: the atoms A and the nonatoms J\A. On
the other hand, by (J1)–(J3), the map g : J → J is an order-isomorphism between
(J ,≤) and (J ,≥) such that each element x in J is comparable with g(x) ∈ J . This
means that J can be divided into three disjoint parts in terms of g: {x ∈ J | x < g(x)},
{x ∈ J | x = g(x)} and {x ∈ J | x > g(x)}. We can write the following lemma connecting
these two different ways of partitioning J .

Lemma 4.5. Let (L,∨,∧,∼, ∗, 0, 1) be a regular pseudocomplemented Kleene algebra
defined on an algebraic lattice. Then:

(a) A = {x ∈ J | x ≤ g(x)} and J\A = {x ∈ J | x > g(x)}; and
(b) if g(x) = x, then x is incomparable with other elements of J .

Proof. (a) Let x ∈ J . First, suppose that x � g(x). Because x and g(x) are comparable,
x > g(x). The fact that g(x) ∈ J means that g(x) , 0. Then 0 < g(x) < x and x < A.
On the other hand, if x < g(x), then, because J has at most two levels, x ∈ A. Finally,
if x = g(x) and x < A, there exists y such that 0 < y < x. Because L is spatial, there
exists j ∈ J such that j ≤ y < x. Therefore x = g(x) < g( j) and this yields that x is an
atom, which is a contradiction.

https://doi.org/10.1017/S1446788717000283 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000283


72 J. Järvinen and S. Radeleczki [16]

(b) Suppose that g(x) = x. By (a), x is an atom, so there cannot be y < x in
J . If x ≤ y, then g(y) ≤ g(x) = x gives g(y) = x, because x is an atom. Hence
x = g(x) = g(g(y)) = y. So x is comparable only with itself. �

Let (L,∨,∧,∼, ∗, 0, 1) be a regular pseudocomplemented Kleene algebra defined
on an algebraic lattice. Because J has at most two levels, A is the ‘lower level’ and
J\A is the ‘upper level’. For each x inJ\A, the element g(x) is an atom and g(x) < x.
Obviously, A is an antichain, that is, any two elements in A are incomparable. This
implies that also J\A is an antichain, because if x and y are elements of J\A such
that x < y, then g(x) and g(y) are atoms and g(x) > g(y), which is not possible.

We define a relation ' onA by

x ' y ⇐⇒ x ≤ g(y).

Because each atom x is such that x ≤ g(x) and x ≤ g(y) implies that y = g(g(y)) ≤ g(x),
the relation ' is a tolerance. For any x ∈ A, we denote

〈x〉 = {x ∨ y | y ' x} ∪ {g(x)}. (4.1)

Lemma 4.6. Let x, y ∈ A.

(a) y ∈ 〈x〉 if and only if g(y) ∈ 〈x〉 if and only if x = y.
(b) 〈x〉 = {x} if and only if g(x) = x.
(c) 〈x〉 ∩ 〈y〉 , ∅ if and only if x ' y.

Proof. (a) The equivalences follow directly from the definition of 〈x〉.
(b) Because g(x) ∈ 〈x〉 by definition, 〈x〉 = {x} implies that g(x) = x. On the other

hand, if g(x) = x, then x ' y implies that y ≤ g(x) = x. Because x and y are atoms,
x = y. Thus 〈x〉 = {x}.

(c) If x = y, the claim is clear. Let x , y and x ' y. Then x ∨ y ∈ 〈x〉 ∩ 〈y〉.
Conversely, assume that z ∈ 〈x〉 ∩ 〈y〉. It is clear that z is not an atom. Obviously,
z cannot be of the form g(a) for any atom a either, because g(a) can belong only to
〈a〉. Thus z < J . Now z ∈ 〈x〉 implies that z = x ∨ a for some a ' x and z ∈ 〈y〉 gives
z = y ∨ b for some b ' y. Then x = (y ∨ b) ∧ x = (x ∧ y) ∨ (x ∧ b). Because x , y are
atoms, x ∧ y = 0. Thus x = x ∧ b, which gives x ≤ b. Because also b is an atom, x = b
and x ' y. �

Let us define U =
⋃
{〈x〉 | x ∈ A}. It is clear that the familyH = {〈x〉 | x ∈ A} is an

irredundant covering of U, because x and g(x) belong only to 〈x〉 for any x ∈ A. We
denote by R the tolerance induced by H . For each x ∈ A, the set 〈x〉 is a block of R.
Because R is induced byH ,

R(x) =
⋃
{〈a〉 | x ∈ 〈a〉} (4.2)

for all x ∈ U. SinceA ⊆ J ⊆ U, there are three kinds of element in U. The following
corollary is obvious by equations (4.1) and (4.2).
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Corollary 4.7. Let x, y, z be elements of U =
⋃
{〈a〉 | a ∈ A}.

(a) If x ∈ A, then R(x) = 〈x〉.
(b) If y ∈ J\A, then y = g(a) for some a ∈ A and R(y) = R(a) = 〈a〉.
(c) If z ∈ U\J , then R(z) = 〈a〉 ∪ 〈b〉 for some distinct a, b ∈ A such that z = a ∨ b.

By applying the conditions of Corollary 4.7 in Lemma 3.2, we can write, for any
x ∈ J ,

R(x)H = {x, g(x)} and R(x)N =
⋃
{〈y〉 | R(x) ∩ 〈y〉 , ∅}. (4.3)

Lemma 4.6(c) gives that, for every x ∈ A,

R(x)N = R(g(x))N =
⋃
{〈y〉 | 〈x〉 ∩ 〈y〉 , ∅} =

⋃
{〈y〉 | x ' y}. (4.4)

5. Representation theorem

Let L = (L,∨,∧,∼, ∗, 0, 1) be a regular pseudocomplemented Kleene algebra such
that its underlying lattice is algebraic. As in Section 4, we denote H = {〈x〉 | x ∈ A}
and U =

⋃
H . The tolerance R is induced by the irredundant coveringH of U and the

corresponding rough set lattice is denoted by RS. Let us agree that we denote J(L)
simply by J and that J(RS) denotes the completely join-irreducible elements of RS.

For any x ∈ J , we define

ϕ(x) =

{
(∅,R(x)) if x < g(x),
(R(x)H,R(x)N) otherwise.

If x ∈ J , then R(x) is a block. Indeed, if x ∈ A, then R(x) = 〈x〉 is a block, and
if x ∈ J\A, then g(x) is an atom and R(x) = R(g(x)) = 〈g(x)〉 is a block. Thus
(R(x)H,R(x)N) ∈ J(RS ) for every x ∈ J by Proposition 3.6. Furthermore, if x < g(x),
then g(x) ∈ 〈x〉 = R(x) and |R(x)| ≥ 2. Therefore (∅,R(x)) ∈ J(RS ). This means that
the map ϕ : J → J(RS ) is well defined. Note also that if x = g(x), then x ∈ A and
R(x) = 〈x〉 = {x}. This gives that R(x)H = R(x)N = {x} and ϕ(x) = ({x}, {x}).

Lemma 5.1. The map ϕ : J → J(RS ) is an order-isomorphism.

Proof. First, we show that x ≤ y implies that ϕ(x) ≤ ϕ(y). If x = y, then, trivially,
ϕ(x) = ϕ(y). If x < y, then x ∈ A, y ∈ J\A and g(y) ∈ A. Therefore x < g(x)
and g(y) < y which imply that ϕ(x) = (∅, R(x)) and ϕ(y) = (R(y)H, R(y)N). By (4.4),
R(y)N = R(g(y))N =

⋃
{〈z〉 | z ' g(y)}. Since x ≤ y = g(g(y)), we know that x ' g(y) and

R(x) = 〈x〉 ⊆
⋃
{〈z〉 | z ' g(y)} = R(y)N, which implies that ϕ(x) ≤ ϕ(y).

Second, we show that ϕ(x) ≤ ϕ(y) implies that x ≤ y. We begin by noting that
if ϕ(x) ≤ ϕ(y), then x = g(x) and y = g(y) are equivalent, and they imply that x = y.
To see this, suppose that x = g(x). Then ϕ(x) = ({x}, {x}). Now ϕ(y) = (∅, 〈y〉) is
not possible, because we have assumed that ϕ(x) ≤ ϕ(y). Therefore, it must be
that ϕ(y) = (R(y)H, R(y)N). This gives x ∈ R(y)H = {y, g(y)} by (4.3), so that x = y or
x = g(y). Also the second equality gives x = g(x) = g(g(y)) = y. Analogously, g(y) = y
means that ϕ(y) = ({y}, {y}). If ϕ(x) = (∅, 〈x〉), then x ∈ 〈x〉 ⊆ {y} implies that x = y

https://doi.org/10.1017/S1446788717000283 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000283


74 J. Järvinen and S. Radeleczki [18]

and g(x) = g(y) = y = x. If ϕ(x) = (R(x)H, R(x)N), then R(x)H = {x, g(x)} ⊆ {y} gives
x = g(x) = y.

Therefore, we may assume that x , g(x) and y , g(y). We divide the rest of the
proof into four cases:

(i) x < g(x) and y < g(y);
(ii) x < g(x) and y > g(y);
(iii) x > g(x) and y < g(y);
(iv) x > g(x) and y > g(y).

(i) Let x < g(x) and y < g(y). Then x, y ∈ A which yields ϕ(x) = (∅,R(x)) = (∅, 〈x〉)
and ϕ(y) = (∅,R(y)) = (∅, 〈y〉). By ϕ(x) ≤ ϕ(y) we get x ∈ 〈x〉 ⊆ 〈y〉, which is possible
only if x = y by Lemma 4.6.

(ii) Suppose that x < g(x) and y > g(y). Hence x and g(y) are atoms. We have that
ϕ(x) = (∅,R(x)) = (∅, 〈x〉) and ϕ(y) = {R(y)H,R(y)N}. Now R(y)N = R(g(y))N =

⋃
{〈z〉 |

z ' g(y)}. Because x ∈ 〈x〉 ⊆
⋃
{〈z〉 | z ' g(y)}, we get x ∈ 〈z〉 for some z ' g(y). Then

z ≤ g(g(y)) = y. Since x and z are atoms, we obtain x = z, and therefore x ≤ y.
(iii) If x > g(x) and y < g(y), then y ∈ A and x ∈ J\A. Therefore ϕ(x) =

(R(x)H,R(x)N) and ϕ(y) = (∅,R(y)). Now R(x)H = {x, g(x)} , ∅, which contradicts that
ϕ(x) ≤ ϕ(y). Hence this case is not possible.

(iv) Assume that x > g(x) and y > g(y). Then g(x) and g(y) are atoms and x, y ∈
J\A. We know that ϕ(x) = ({x, g(x)},R(x)N) and ϕ(x) = ({y, g(y)},R(y)H}. By ϕ(x) ≤
ϕ(y), {x, g(x)} ⊆ {y, g(y)}. If x = y, then the proof is complete, and if x = g(y), then
x < y, because g(y) < y.

Finally, we show that the map ϕ is onto J(RS). Because R is induced by the
irredundant covering {〈x〉 | x ∈ A}, there are two kinds of element in J(RS): for each
x ∈ A, there is the rough set (〈x〉H, 〈x〉N), and for each x ∈ A such that |R(x)| = |〈x〉| ≥ 2,
there exists (∅, 〈x〉) in J(RS). So if j = (∅, 〈x〉), then ϕ(x) = j. Suppose that j =

(〈x〉H, 〈x〉N) for some x ∈ A. Because x ∈ A, x = g(x) or x < g(x). If x = g(x), then
〈x〉 = {x}, j = ({x}, {x}) and ϕ(x) = j. If x < g(x), then ϕ(g(x)) = (R(g(x))H,R(g(x))N) =

(R(x)H,R(x)N) = j. �

Lemma 5.2. For all x ∈ J , ϕ(g(x)) = g(ϕ(x)).

Proof. Because L is a completely distributive Kleene algebra, there are, by (J1)–(J3),
three kinds of element x in J with respect to the map g: (i) x < g(x); (ii) x = g(x); and
(iii) x > g(x). Based on this, we divide the proof into three cases.

(i) If x < g(x), then ϕ(x) = (∅,R(x)) and |R(x)| = |R(g(x))| ≥ 2. Therefore

ϕ(g(x)) = (R(g(x))H,R(g(x))N) = (R(x)H,R(x)N)
= g((∅,R(x))) = g(ϕ(x)).

(ii) If x = g(x), then R(x) = {x} and

ϕ(g(x)) = ϕ(x) = ({x}, {x}) = g(ϕ(x)).
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Figure 1. A finite regular pseudocomplemented Kleene algebra.

(iii) If x > g(x), then g(x) < g(g(x)) and, as in (i), |R(x)| = |R(g(x))| ≥ 2. Thus

ϕ(g(x)) = (∅,R(g(x))) = (∅,R(x)) = g((R(x)H,R(x)N)) = g(ϕ(x)). �

We proved in [JR11, Corollary 2.4] that if L = (L, ∨, ∧, ∼, 0, 1) and K =

(K, ∨, ∧, ∼, 0, 1) are two De Morgan algebras defined on algebraic lattices and
ϕ : J(L)→J(K) is an order-isomorphism such that ϕ(g( j)) = g(ϕ( j)) for all j ∈ J(L),
then the algebras L and K are isomorphic. By Lemmas 5.1 and 5.2, we can establish
the following representation result.

Theorem 5.3. Let L = (L,∨,∧, ∼, ∗, 0, 1) be a regular pseudocomplemented Kleene
algebra defined on an algebraic lattice. There exists a set U and a tolerance R on U
such that L � RS.

Example 5.4. Let us consider the Kleene algebra L depicted in Figure 1.
The (completely) join-irreducible elements are marked with filled circles. Now

A = {a, b, c} and J\A = { j, k, l}. Note that the elements ∼x are denoted for each
x ∈ J . Because the lattice L is finite, it is algebraic. It is easy to observe that J has at
most two levels. Therefore the pseudocomplemented Kleene algebra L is regular. By
Theorem 5.3, there exists a set U and a tolerance R on U such that the Kleene algebra
RS determined by R is isomorphic to L. Next, we will illustrate this construction.

Now g(a) = j, g(b) = k and g(c) = l. This means that the tolerance ' on A is such
that a ' b and b ' c. For simplicity, we denote a ∨ b by x and b ∨ c by y. The sets

〈a〉 = {a, j, x}, 〈b〉 = {b, k, x, y}, 〈c〉 = {c, l, y}

form an irredundant covering of U = {a, b, c, j, k, l, x, y} inducing R.

R(a) = R( j) = 〈a〉, R(b) = R(k) = 〈b〉, R(c) = R(l) = 〈c〉,
R(x) = 〈a〉 ∪ 〈b〉, R(y) = 〈b〉 ∪ 〈c〉.
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Figure 2. A rough set Kleene algebra isomorphic to the Kleene algebra of Figure 1.

The rough set system RS induced by the tolerance R is depicted in Figure 2. The
original Kleene algebra L is isomorphic to the Kleene algebra RS.

6. Some concluding remarks

Rough set lattices determined by quasiorders and by tolerances induced by
irredundant coverings form Kleene algebras such that their underlying lattices are
algebraic. Their set of completely join-irreducible elementsJ are such that each x ∈ J
is comparable with g(x) ∈ J . In this work, we have shown that rough set algebras
determined by tolerances induced by irredundant coverings are such that J has at
most two levels, and we proved in case of pseudocomplemented De Morgan algebras
defined on algebraic lattices that these are exactly the (congruence-)regular ones. In
case of an equivalence E, the set J of RS is such that each x ∈ J is comparable only
with g(x). This means that RS is isomorphic to 2I × 3K , where I is the set of singleton
E-classes and K is the set of E-classes having at least two elements. The regular
distributive double pseudocomplemented lattice RS defined by an equivalence is, in
fact, a regular double Stone algebra, and each regular double Stone algebra isomorphic
to a direct product of chains of 2 and 3 defines an equivalence E such that the rough
set algebra RS is isomorphic to the original regular double Stone algebra.

Obviously, we may divide the class of Kleene algebras defined on algebraic lattices
into two classes: the ones in which J has at most two levels, and those whose J
has at least three levels. As we have shown in this work, if J has at most two
levels, then these algebras can be represented by tolerances which are induced by
an irredundant covering. On the other hand, consider a Kleene algebra L defined
on an algebraic lattice such that there are at least three levels in J . Now we may
apply the results of [JR11], where we proved that the ones corresponding to rough sets
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determined by quasiorders are exactly those which satisfy the interpolation property: if
x, y ≤ g(x),g(y) for some x, y ∈ J , then there exists z ∈ J such that x, y ≤ z ≤ g(x),g(y).
Note that rough set systems defined by equivalences satisfy, trivially, this interpolation
property, because each x ∈ J is comparable only with g(x). Therefore the condition
x, y ≤ g(x), g(y) is never true for x , y. Note also that we showed in [JR11, Example
4.4] that the height of J can be arbitrarily high.

In the future, it would be interesting to study what other kinds of rough set structure
can be characterised as the class of Kleene algebras defined on algebraic lattices, by
defining conditions on the set J of completely join-irreducible elements.

Acknowledgements

We would like to thank the anonymous referees for the significant time and effort
they put in to provide expert views on our original manuscript. In particular, we
are grateful to them for pointing out an error in a proof and for their remarks on
terminology.

References

[BD74] R. Balbes and Ph. Dwinger, Distributive Lattices (University of Missouri Press, Columbia,
Missouri, 1974).

[BM67] D. Brignole and A. Monteiro, ‘Caracterisation des algèbres de Nelson par des egalités I’,
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