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Abstract

Density dependent Markov population processes in large populations of size N were
shown by Kurtz (1970), (1971) to be well approximated over finite time intervals by
the solution of the differential equations that describe their average drift, and to exhibit
stochastic fluctuations about this deterministic solution on the scale «/N that can be
approximated by a diffusion process. Here, motivated by an example from evolutionary
biology, we are concerned with describing how such a process leaves an absorbing
boundary. Initially, one or more of the populations is of size much smaller than N, and
the length of time taken until all populations have sizes comparable to N then becomes
infinite as N — oo. Under suitable assumptions, we show that in the early stages of
development, up to the time when all populations have sizes at least N1 =< for % <a<l,
the process can be accurately approximated in total variation by a Markov branching
process. Thereafter, it is well approximated by the deterministic solution starting from
the original initial point, but with a random time delay. Analogous behaviour is also
established for a Markov process approaching an equilibrium on a boundary, where one
or more of the populations become extinct.
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1. Introduction

A continuous-time version of the two morphs stage in the bare bones evolution model of
Klebaner et al. (2011, Section 3) can be represented as a pure jump Markov process X y on Z2 ,
with the first component the count of wild-type individuals, initially around their carrying
capacity, and the second the count of mutant individuals. The transition rates are

X — X+ (1,0) atratea;Xi,

+ at rate
’ ! N L4 N ’
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X — X+ (0,1) atrate arXy,

X — X+ (0,—1) atrate X {y<X1>+(X2)}
7_ 2 —— — .
N N

Initially, X has a value near its carrying capacity Naj, and X, = 0. At some time, which
we call 0, Zop mutant individuals are introduced into the population; Zg is thought of as fixed,
irrespective of the (large) value of N. The mutants and wild-type individuals differ only through
their birth rates a; and a>. Each species has per capita death rate given by the density of its own
population, together with an additional component of y multiplied by the density of individuals
of the other species. If y > 1, members of the other species cause a higher mortality rate than
those of the same species; if y < 1, they cause a lower mortality rate than those of the same
species, favouring the possibility of coexistence. If ap < yaj, the mutants have negligible
chance of survival, but if a; > yay, there is a nonzero probability py(Zo) =~ 1 — (ya; /(12)20
that the mutant strain will become established. In this case, ifalsoa; > y a3, the two populations
will eventually come to coexist; if, instead, a; < ya», the wild-type population will be driven
to extinction. Note that, as expected, coexistence is impossible if y > 1. In this paper we are
primarily interested in describing how the process develops up to the time at which the mutants
represent a positive fraction of the population when N is large. We also examine the detail of
how the wild-type becomes extinct when a; < yas.

This process is a particular example of a more general family of processes, that we now
investigate. We suppose that Xy is a Markov population process on Zﬁ having transition rates

(X d
X —> X+ J atrate Ng N,XGZ+,J€31,

where ¢ is a finite subset of Z¢. We assume that the functions g” are continuously differentiable
forx € Rﬁ and we write

F(x) :=ZJgJ(x), xeRi
Jegd

to denote the infinitesimal drift of the process xy := N~'Xy. Letting {P’/: J € ¢} be
independent rate 1 Poisson processes, the evolution of xy can be described (Kurtz (1978)) by
1 J J !
N (0 =2y () + - Y TPIINGL @) = xy () + | FGen@) du+my (), (1L1)
0
Jeg

where

J J AT
my(t) ==y J{ P (NGN(;\?) Gy } 1.2)
Jeg

and Glj\,(t) = fé gJ (xn(u)) du. The process my is a well-behaved vector-valued martingale.
In differential form, (1.1) can be expressed as

dxy () = F(xn(0)dr +dmy(1),

and the corresponding ‘deterministic equations’, given by leaving out the martingale innova-
tions, are
dg

5 = F®. (1.3)
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Our interest here is in deriving an approximation to the process x in circumstances in which
the initial state is close to X, an unstable equilibrium point of (1.3), as in the bare bones example
given above. In the seminal papers of Kendall (1956) and Whittle (1955), written in the context
of Bartlett’s (1949) Markovian SIR epidemic process, a basic description was proposed. Such
processes should behave much like branching processes near x, as far as those components in
which numbers are small are concerned, and should then look more and more like solutions to
the deterministic equations as the numbers grow. The deterministic part of the approximation
was established for general Markov population processes in Kurtz (1970, Theorem (3.1)), who
showed that, if limy o x5 (0) = xo then supg., < |xn(#) — &(¢)| — 0 in distribution for any
finite 7 > 0, where & satisfies (1.3) with £(0) = xo. In particular, if xo = x, Kurtz’s (1970)
theorem implies that x (z) stays asymptotically close to x over any fixed finite time interval.
However, the deterministic solution &y starting with xy(0) close to x may still eventually
escape from x, but the time that it takes to do so is asymptotically infinite as N — oo, so that
Kurtz’s (1970) theorem is not suitable for describing what eventually happens. Such outcomes
may nonetheless be of considerable practical importance in applications. The aim of this
paper is to show that the Kendall-Whittle description can indeed be established in considerable
generality, and to give some measure of the accuracy of the resulting approximation.

Under appropriate conditions, we prove that the process x, if it indeed escapes from xg, then
closely follows the path of the solution to the deterministic equations, but with a random time
shift, and that the time required to escape from x is of order O (log N). This behaviour is exactly
what one might expect on the basis of the Kendall-Whittle description, with the random time
shift reflecting the essential randomness that occurs in the early stages of the branching phase.
However, proving that it is actually the case is not so easy. One main difficulty is presented by
the asymptotically infinite length of time that elapses, while the process is escaping from the
boundary, since this necessitates good control over the behaviour of the process over long time
intervals. A related difficulty is to keep control of the branching approximation for along enough
time to ensure that the subsequent development is indeed almost deterministic. Our approach
is to establish an extremely accurate approximation, in terms of the total variation distance
between the probability distributions of the two processes, over a very long initial time interval.
Once this has been achieved, the subsequent development can be described well enough by the
deterministic solution. We then go on to prove complementary results, describing the behaviour
of a process that approaches a stable equilibrium point of the deterministic equations at which
some coordinates of the process take the value 0.

1.1. Assumptions

Our general setting is as follows. The specialization to the bare bones example is given in
Section 1.4. Denote by x! the first d; components of x and by x® the remaining d» = d — d;
components, and split J = (i, ..., ji) = (J M J@) in the same way. For transitions with
J@ # 0, suppose that the rates are always of the form gJ (x) = g’ (x)x5(s) for some s(J) such
that d; < s(J) < d, and that gj(xo) > 0; we also assume that J; > 0 for all i # s(J) such
that di < i < d, and that J;(;) > —1. We denote the set of all such transitions by J». These
assumptions are natural in a population context; in particular, if the constraints on the elements
of such J are violated, some of the components could become negative. The function F can

now be written in the form
_ (AN @), (&)
F(x)_(B(x))x + 0 s
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where, for each x, A(x) and B(x) are di x dp and d» x d» matrices, respectively, and c(x(l))
is a di-vector. Suppose that x(g]) is a strongly stable equilibrium of d& (1 /dr = ¢(£(V) and that
x(()z) = 0. Then the solution £ of the deterministic equations starting at xg is the constant xq, and
the stochastic system x, if started near xo with x](\?) (0) = 0, typically spends an amount of time
that is at least exponential in N before leaving the vicinity of xo (Barbour and Pollett (2012,
Theorem 4.1)). However, if the initial value xl(\,) (0) is not O, but takes the value xz(vg)o =N"1z,
for some 0 # Zj € Zdz, and if By := B(xp) is such that &y, the solution of (1.3) étarting from
this initial condition, leaves the neighbourhood of the boundary, then x » has positive probability
of doing so as well.

Henceforth, we shall suppose that xx(0) = xy ¢ satisfies |x](\})O — x(()l) | < N7/12_ Under
the equilibrium distribution for x N) when x " = 0, typical values of |x1(v1)0 - x(1)| are of or-
der O(N~1/2), so that such a starting condition is reasonable. Suppose also that x](\,go =N"1Z,.
Our assumptions imply that B has nonnegative off-diagonal entries near xo; we also assume that
it is irreducible, and that the largest eigenvalue Sy of By is positive. In addition, the elements
of the matrices A and B are assumed to be continuously differentiable functions of x. The
stability of xél) is expressed by assuming that the function c is of the form

cw)=Cw —x§") +éw),  weRY,
where C is a fixed di x dj matrix such that, for some y; < oo,
e x| < y1lx|, x eRY, >0,
as is the case if all the eigenvalues of C have negative real part, and where for some K., p; > 0,
and for wy, wy € Ril such that max;—1 2 |[w; — x(()])l < p1,

~ ~ . 1
Ewn) = &wa)| < Kelwy = wal{wi — wal + min [w; —x"}.
=1,

From the Perron—Frobenius theorem, there also exist 0 < y3 < 32 < oo such that

Bot

leB x| < yrefol|x], xeR2 >0

and

Bot

B0 x| > 3P |x],  xeRZ, >0 (1.4)

We also choose 0 < pp < p; small enough so that

bl = inf g/ (x)|>0 forallJ e .
|x—x0l=<p2
We denote by ||G || the matrix norm [|G|| := SUpy. |y|=1 {|Gy|}. For matrix functions G(x), we

write |Gl := sup|,_ <, |G (x)]l and

IDGl, == sup

|x—xo|<p, X —x0|<p

{IIB(X)—B(X/)II }

lx — x'|

In all the arguments that follow, constants involving the symbol k are defined solely in terms of
the functions A, B, and c, and associated constants such as py, and do not vary, either with N,
or with the choices made for the quantities e 1<i<4, appearing in Lemmas 2.1 and 2.2.
Constants involving the symbol § are typically to be chosen suitably small, but again only with
reference to the functions A, B, and ¢, and to associated constants such as p;.
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1.2. Main results

Under these assumptions, we carry out a programme indicated in Barbour (1980), but now
in more general circumstances. We first show that the initial behaviour of ij(\?) is well
approximated by that of a supercritical d,-type Markov branching process Z, defined at the
beginning of Section 3, whose mean growth rate matrix is BOT Let u " be the left eigenvector
of B(—)'— corresponding to By, normahzed so that u” 1 =1, and let the corresponding right
eigenvector be v, normalized so that #Tv = 1. Then branching process theory (Athreya and
Ney (1972, Chapter V.7, Theorem 2)) implies that Z(r)e ' — Wu almost surely (a.s.) as
t — oo, where the random variable W has mean Z(—)r v and satisfies W > 0 on the set of
nonextinction, and in consequence, for as long as this approximation holds

Poli+8y " log Wy, s

N ' '
the results that We use are proved in an online appendix; see Barbour er al. (2014). The
development of éN , the second group of components of the solution of the deterministic
equation, also initially parallels that of x 13 , in that the linear approximation to (1.3) near xg
yields

eBorzy Pt (uTZoyu  folithy e Zoly

@\ A N _
Ey ()~ N N = N , (1.6)

by virtue of the Perron—-Frobenius theorem (Seneta (2006, Theorem 2.7)). The quantity W
in (1.5) is replaced in (1.6) by its expectation, so that, apart from the random time shift
By 1(log W — logEW), the two paths are much the same. This simple description of the
development of xy turns out to be true also if all components, and not just those of the second
group, are considered; the formal statement of this, together with some estimate of the accuracy
of the approximation, is the main message of Theorem 1.1. Note that the approximations (1.5)
and (1.6) need ¢ to be large, so that in the first case the branching asymptotics and in the second
the Perron—Frobenius asymptotics give good approximations. On the other hand, ¢ should not
be so large as to invalidate the linearizations around x(, implicit in both approximations. It is
the need to satisfy both requirements simultaneously, with sufficient accuracy, and for large
enough values of ¢, that provides a major source of complication in the proofs.

In Section 3 we show that the branching approximation in fact holds in total variation up to a
time ‘L';\C/’a, chosen so that NvTxl(\%) (r;\‘,’a) is approximately N '~ forany o > % As is shown by
example in Section E of the online appendix (see Barbour et al. (2014)), approximation in total
variation is typically not accurate for o < 3, butitis essential to the subsequent argument that
we can take o < %, we take o = 12 for the remaining development If the branching process
is absorbed in 0, then so too, with h1gh probability, is x! N . If not, then we show that x (rN o)
is close to & (ti, o)» Where t,sv = ,30 (1 —a)log N + O(1) is the approximate time ¢ at which
the deterministic solution &y starting in x (0) satisfies v En(1) = N1~ The details are to
be found in Proposition 3.1.

In Section 4 we show that the deterministic and stochastic paths £y and Xy, both starting
at xN(rN 5/ 12)» and with time argument restarting at 0, stay asymptotically close for large N
until an elapsed time 1y (3), at which 1T €y first attains the value 8, for a small but fixed
& > 0; note that tn(§) = /30 alog N + O(1). The details are given in Proposition 4.1; the
fact that o < 2 is needed to maintain the accuracy of approximation up to times at which the
second components of the paths have attained asymptotically nonnegligible size. From this
point onwards Kurtz’s (1970) theorem, together with the Lipschitz continuity of the solutions
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of the deterministic equations with respect to their initial conditions, can be used to justify the
further deterministic approximation to xy as long as the deterministic curve remains within
some fixed, compact subset of Ri. Thus, xp closely follows the deterministic path, but at a
random rate, with the randomness quickly settling down to a fixed time shift of order O(1).
The combined theorem is as follows; the parts not justified by theorems in Kurtz (1970), (1978)
are proved in the following sections. For the statement of the theorem, we make the following
general definitions:

t2(0) ;= inf{r > 0: Z@t) =0},  ©5(0) := inf{r > 0: xP (1) = 0}, (1.7)
6o =inf{r: v Z(6) = N7 + 07 Z), (1.8)
T = inf{r: v Na( (1) = N7+ 0T Z), (1.9)
I o = By (1 — @) log N — log(v" Zp))
with the infimum of the empty set taken equal to oo, and for the particular choice o = 15—2, we
define : ;
zZ ._ _Z ) .
INx = TN5/120 TNx °= TN, 5/12: I "= Iy 5/12° (1.10)

For the Markov branching process Z, defined at the beginning of Section 3, we set W :=
lim, 00 v Z()e P,

Theorem 1.1. With the assumptions and deﬁnmons of Section 1.1, suppose that xy (0) is such
that |xN 0) — x( )| < N2 and that xN (O) N~1Zy for fixed 0 # Zy € 73 L Then,
except on an event E§;| of asymptotically negllglble probability, the paths of NxN) and
of Z can be coupled so as to be identical until the time min{tZ(0), ‘L’N*}, in which case
w2, =14, =By (L logN —log W} + O(N~7/4).

Let X be any fixed compact subset of Rd Suppose that T is such that &y (tN* +1) e XK
forall0 <t < T, where &y denotes the solutlon to the deterministic equation starting with
En(0) = xn(0). Then there exist constants y > 0, kp < 00, and an event E;,z such that, on
{‘L’]{,* <oo}NEnN N EI(/Z’

sup N (T, + 1) — En (3, + D] < kN7 (1.11)
0<r<5/128; " log N+T

and limy oo P[EL, | {t&, < 0o} N Eni] = 1.

The proof of the branching approximation is given in Section 3 and its content summarized
in Proposition 3.1. The proof of the subsequent deterministic approximation, up to a time
at which xp is away from the boundary, is given in Section 4 and its content summarized in
Proposition 4.1. The extension to further choices of T’ follows from Kurtz (1970, Theorem (3.1))
and approximation is then by a nondegenerate path. There is no universal choice possible for
the exponent y appearing in (1.11), which is a reflection of the greater delicacy required for
the approximations derived here than in the setting of Kurtz (1970) when any y < % would
satisfy; we give an example to illustrate this in Section E of the online appendix; see Barbour
et al. (2014).

Theorem 1.1 can be interpreted in the sense that, to a first approximation, the random
process xy follows the deterministic curve starting at the same point, but with a random delay
of rN N tfv <~ By {log(vTZO) log W}. The initial condition for Zy could be allowed to
depend on N in which case the distribution of W would depend on N, too: if | Z (N | — oo then
log(vTZO ) —log W) — ; 0, so that, to this level of approximation, the initial randomness
would disappear.
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1.3. Absorption

Our motivating example actually contains two periods in which the process is close to a
boundary, the second being when the wild-type becomes extinct. The setting is then almost
exactly as in Section 1.1, except for the fact that the deterministic solution converges to 0 in
some of its coordinates, instead of moving away from 0. In the notation of Section 1.1, this
corresponds to having the largest real part among the eigenvalues of By being negative; we
denote it by —fB;. In this setting, we also assume that the eigenvalues of C all have negative
real parts.

Under these modified assumptions, we consider stochastic and deterministic processes &;
and xy s that are started close to one another, as is implied by the previous results, at a point
where they are reasonably close to the stable equilibrium xg. To be more precise, we first
suppose that |xy 5(0) — xo| < &, and that &5 is the solution to the deterministic equations with
£5(0) = xn.5(0). We then show that for § chosen small enough, the two processes remain
close for a further time 7y (3) := B, (log8 + 12 log N), at which point the second group of
coordinates, those that are converging to 0, are of magnitude approximately N —>/12, and the first
coordinates are at a similar distance from x(()l) We also show that, if |£5(0) — 55 O] =0(N7Y)
for some y > 0, then, for § chosen small enough |‘§5 )(t ) — (1)(tN(8))| = 0NV
for some & > 0, and N312152 (1 (8)) — EP (1w (8))| = O(N~ V72) After this time, the
process (Nxy )(tN(S) + 1), t > 0) is well approximated by a branching process Z in total
variation, with rates as before. The following theorem summarizes these results; the proofs are
given in Section A of the online appendix; see Barbour et al. (2014).

Theorem 1.2. Suppose that the assumptions of Section 1.1 hold with the above modifications.
Then there exist 5 > 0 and an event Ey, whose complement has asymptotically negligible
probability, such that, on Ey, if |xn 5(0) — xo| < 8, and if |xy s(0) — éN,5(0)| = O(N™™) for
some y1 > 0, then

sup |y (1) — &y (0] < kKON, sup {eP a0 — E7 )} < KON

0=<t=<tn(9) 0=<t=tn(8)

with ty(8) = max{ﬂf] (logd + % log N), 0} and for suitable kKD kD and y > 0.
After ty (8), the process NxN’a(tN (8) + -) can be coupled to be identical until extinction to the
(now subcritical) Markov branching process Z, except on an event of asymptotically negligible
probability. In particular, for a suitable constant h*, the time ty(8) + Ty at which x,\%) is
absorbed in 0 is such that L(B1Ty —log N — log(vTEN s(tn(8))) —log(h™)) converges in
total variation as N — oo to a Gumbel distribution.

The approximation given by Theorem 1.2 shows that, to a first approximation, the random
process XN follows the deterministic curve starting at the same p01nt until the time #y(§) =
;31 (logé + 12 log N). The law of large numbers for Z starting at N x! N 5 (tN ¥)) then shows that

@
the same is true afterwards; however, for such times, x NS is uniformly small and x' N (t) is close
to xo, and so the conclusion is of little interest. By contrast, the branching approximation delivers
more detailed information. In particular, the time taken by the deterministic solution §y,s from
tn(8) until 7y = inf{t > 0: v &y s(t) = N~} is such that

N ~ B~ Hlog N +log(v ' &y 5ty (8)))}.

The deterministic solution itself never reaches 5 N, 5 = Qin finite time, but 7y is the sort of approx-
imation that might be made for the time to extinction, based on deterministic considerations.
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From Theorem 1.2 we see that this is reasonable, but that the duration in the stochastic model
has an additional random component 8, ! {G + log(h*)}.

1.4. The bare bones example

These results can all be applied to the bare bones example discussed earlier, which is of the
form proposedin Section 1.1, withd; = dp = 1. Intheinitial stages, the matrices A (x) and B(x)
are the scalars —y x1 and (a2 — yx1 — x2), and the function c(x1) = —a;(x; —a1) — (x1 —al)z,
sothatwehave C = —a; < OQandc(xy) = —(x1 — al)z.Assuming thata, > yaj, the unstable
equilibrium of the deterministic equations is xg = (a1, 0)7, and Bo = B(xg) =ax —ya; > 0.
The set $» consists of the transitions {(0, 1), (0, —1)}, and s(J) = 2 for both of them; the
corresponding functions g’ are a> and (yx; + x»), respectively. The process Z is a linear
birth and death process with per capita birth and death rates a; and yay, respectively, and its
behaviour is well understood. In particular, the limiting random variable W, conditional on the
event of nonextinction, has a gamma distribution Ga(Zy, 1). Hence, if Zy = 1, the delay in
following the deterministic curve, given in general by

Ty =t ~ B0~ {log(w" Zg) — log W},

has the distribution of {a» — ya; }~1G 1, where G has a Gumbel distribution.

For the latter stages of the example, in the case when a; < yajy, the wild-type individuals
eventually die out. To match the formulation in Section 1.3 it is necessary to swap the meaning
of the coordinates so that the second coordinate now represents the remaining numbers of wild-
type individuals. The matrices A(x) and B(x) become the scalars —y x; and (a; — yx2 — x1),
and the function c(x1) is given by —as (x; —az) — (x| —az)z, so that we obtain C = —ap = —«
and é(x1) = —(x; — a2)?. The strongly stable equilibrium of the deterministic equations with
the mutants established is given by xg = (a2, 0)T, and —B1 = B(xg) = a1 — yar < 0. The
set go consists as before of the transitions {(0, 1), (0, —1)}, and s(J) = 2 for both of them;
the corresponding functions g/ are a; and (y x| + x7), respectively. The branching process Z
is again a linear birth and death process, with per capita birth and death rates a; and yay,
respectively. For this process, the constant 4* appearing in the final approximation can be
evaluated using the definition in Heinzmann (2009, p. 299) as 1 — a;/(yaz). Combining this
with the above, we can deduce that the asymptotics of the entire time from the introduction of
a single mutant until the extinction of the wild-type individuals is given by

G 1 1—
— {log( al>+Gz}+T(N),
{aa —ya1}  {yax—ai} (yaz)

where TWV) = ({az—ya; }_1 +{yar—a; }_1) log N+ O(1) is the time taken for the deterministic
curve to get from the initial state, where the proportion of mutants is N !, to the state in which
the proportion of wild-type individuals is N~!; and G and G, are independent Gumbel random
variables. The duration of the closed stochastic epidemic, studied in Barbour (1975), could
also be approached in a similar way. In that example, however, the function c is identically 0,
so that the final stages have to be treated differently.

2. The deterministic solutions

For use in our arguments, we collect some properties of the solutions to the deterministic
equations in the neighbourhood of the initial point, deferring the proofs of the lemmas to the
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online appendix; see Barbour er al. (2014). We first use variation of constants to rewrite the
equations in the form

t
eV =D + / {AE@)EP W) + ¢V (u))} du
0
= x +eED©0) — x5

+ f t eCAEw)ED ) + EED ()} du, @2.1)
0
t
£@ (1) =£P(0) + / B(Eu)E® (u) du
0

t
=eM'ED(0) + / eMUTB(E W) — Bo}e® (u) du. 22)
0

We recall that, in the arguments that follow, constants involving the symbol k do not vary with
the choices made for the quantities e® 1<i<4 Inour applications, these quantities become
small, as N increases, as negative powers of N, and the assumptions made about them in the
lemmas are automatically satisfied for all sufficiently large N. For use in what follows, define

3 3
108, &) := ﬁo—llog<->, 1, e) = ﬁ1_110g<—) fors > ¢ >0, (2.3)
e e

where B is as in Section 1.1 and B is as in Section 1.3.

Lemma 2.1. Underthe assumptions of Section 1.1, there exists a Sy withQ < 8o < 1, depending
only on the functions A, B, and c and associated constants such as pp, with the (following
properties. If € satisfies (2.1) and (2.2), with initial condition such that |V (0) — x01)| <M
and |EP(0)| = P, and if

4y1e) < min{l, (%)} @ < 8,

and if also

1
£(D log<—2> §min{1, Bo ’ Bo i }
e® (4y2y1lIDBllpy) (32K, y;

then, for all 0 < t < 1(8o, €?),

sup [EQ ) — x| < kD{e® +e@efor} sup e AE@ )] < k@,
0<u<t 0<u<t
1
sup e_ﬁ0u|§'(2)(u) _ eBOuS(Z)(OH < JACN ) {8(1) 10g<_2> + E(Z)eﬁof}
O<u<t e@

for suitable KV k@, and k®. Furthermore, if € satisfies (2.1) and (2.2) with initial con-
dition §(0) satigfying 1€ (0) =@ (0)] < ¢ < k@ ()7 and £V (©0) — D (0)] <
k®e@ 10g(1/¢@) for some k¥ kS > 0,and 0 < y < 1, then there exist k© , kD k® and
0 < 8y < 89 such that, for all ¢ < min{k®, 81},

sup 1D @) —ED )| < k@ (@)r/2,
0<u<ty(81,6?®)

sup  {e P E@ W) —E@ )} < kD (@)1Hr/2,
0<u<ty(81,e@)

Here, §1 may depend on the choice of y, as well as on the functions A, B, and c.
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We also consider the final stages of such a process, before absorption in a strongly stable
equilibrium with the 2-components equal to 0. Under such circumstances, we can still work
under assumptions similar to those made in Section 1.1. The main difference is to require that
the eigenvalue of By with largest real part is negative; we denote it by —f8;. We also assume
that the equilibrium x is strongly attractive, in the sense that

1e€x| < yie ™ |x|, xeRY >0

for some k¥ > 0 and y; < 00; the previous assumptions of Section 1.1 only required ¥ > 0.
The analogue of Lemma 2.1 is then as follows.

Lemma 2.2. With the assumptions of Section 1.1, modified as in Section 1.3, let &5 satisfy (2.1)
and (2.2) with £5(0) =: x50 suc:h'that |xso — xo| < 8. Then, for any 0 < k' < min{k, B}, there
exists a 69 > 0 and constants kD such that, forall 0 < § < do,

supe[&V () — xi"| < kM5, supef|g® )| < kP,

u=0 u>0

sup P15 (u) — eBox P (0)] < kP62,

u>0

Furthermore, for any 0 > 0, there exists a §(60) > 0 such that, for any 0 < § < §(6),
if§5 satisfies (2.1) and (2.2) with £5(0) satisfying 1€5(0) — x50] < @, and if0 <n<éand
e®n=Y < K for K defined implicitly in Equation (D.33) of the online appendix (see Barbour
etal. (2014)), then

1 = T —
sup 1) — )] < kD@7,
0=<u=t(8,m)

2 =2 ~ _
sup  {ePEP ) — EP ()]} < k©@e®y~0
0<u<t1(8,n)

for suitable k® and k©.

Note that the estimates made in the discussion preceding Theorem 1.2 can be justified by
the final statements of Lemma 2.2. Taking ¢® = O(N~7) for some y > 0 and n = N~/12,
choose 6 such that & < max{«x’/B, 6y /5}.

3. The branching approximation

In this section we establish the approximation to N x](\]Z) b;f a Markov branching process Z
in the early stages, starting with xx(0) = xu o such that *& = N~1Zy and |x(1 — x(1)| <
: N,0 N, 0
85\;) =N fora > % The process Z is obtained by replacing g/ (xy(¢)) by g” (xo) in the
transition rates which have J@® = 0, and by taking its corresponding jumps to be J @, It is
a Markov branching process; for each J such that J® £ 0, an individual of type s(J) gives
birth to J; individuals of type i, d1 < i < d, (if Jsjy = —1, this represents the death of an
individual of type s(J)) with per capita rate g’ (xo). It is thus natural to index the components
of Zby {d) + 1, ..., d} to match the indexing in X ; we denote the resulting state space of Z

by Z. For z € Z, let

7’ @ = 0w, 9@ =) ¢’ @), 3.1)
Jeda

then, if Z is in state z, the time until its next jump is distributed as Exp (¢ (z)), and the probability
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that it is a J transition, causing a corresponding change of J@® in Z, is ¢/ (2)/q(z), J €
J2. Since there are only finitely many J € ¢, the means and covariances of the offspring
distributions of individuals of the different types are all finite. In particular, as noted in
Section 1.2, the mean growth rate matrix is given by B, whose positive left and right
eigenvectors u " and v are normalized so that #” 1 =u"v = 1. Our approximation shows
that, except on an event of negligible probability, the process Nxy~ can be constructed so as
to have paths identical to those of Z, up to the time 7:1% | at which, if ever, v' Z has grown by
at least the amount N'~¢ from its initial value of v" Zy. The full details are given below in
Proposition 3.1.

We begin by considering the first components x](\}) (+) of xy. Under our assumptions on F,
they satisfy the equation

dx (1) = An )P @) + P 0) — x) + Ex P (0) + dmY (o),

where my is as defined in (1.2), and this can be integrated by variation of constants to give
t
1 1 1 1 - 2 ~ (1
2y (0 = xg” + el — 1) + f eCUT Aoy ))x P () + E(x (u))) du

0

t
+m( @) + Cf €0 ) () du; (3.2)

0

note that , .
mg\l,)(t) + C/ ec(t_”)mg\})(u) du = / eCli=w dmg\l,) (u),
0 0

explaining the stochastic term in (3.2). For xl(\?), up to the time at which it has made n(N)
jumps, it is enough for now to know that it is bounded by N~=YIZo| + J*n(N)}, where
J* :=maxeg, |J].

We first use (3.2) to show that xl(vl)(t) moves away from xé” rather slowly. For this, it is
necessary to show that |m | remains uniformly small with high probability for a long enough
time interval. This is the substance of the following lemma. To state it, we define

y = inf{t > 0: |xn(t) — x0| > p2}

and use PV to denote probabilities given xy (0) = xn .

Lemma 3.1. Let Ty := klog N for some k > 0, and define

Ev)i={ sup Imy@)l=an)}.

0<t<TyATN

where ny1 (k) = (2«/%2,65; [J)DN~12(log N)3/2. Then PP[EN (k)] = O(N) for any

r>0.

Proof. Let E) (k) denote the event

PT(NGy (@ JTy log N
E;V(k) = {max sup M _ G]]V(t)' <2 N log }
€3 0<t<TyAty N JN

Note that the quantities G ZJ\, (t) are uniformly bounded in t < Ty, because the functions gJ
are continuous and xy (¢) is restricted to a compact set for such 7. Denoting this bound by g*,
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it follows from the Chernoff inequalities that, for N such that Ty > 1,

(log N)?

PIEN (k)] < 2|g|ﬂg*TNNexp{—W—+m

} =O(N"") foranyr >0. (3.3)

However, on the event E) (k),

(log N)*/2
sup  |my(1)] < (2f |J|)
0<t<TyATN % \/ﬁ

sothat Ey (k) D E/ v (k), which, with (3.3), proves the lemma.

Now define 7y (m) := inf{t > 0: |x(2) (t)] > m/N} and write

1 1 1
dV@,my = sup xP @) —xPl.

0<u<tAti(m)

Lemma 3.2. With the assumptions and notation of Section 1.1, fix any k > 0, and assume
that N is large enough so that

klogNmaX{VllxNO —xol)l ny ()} < @on Ky

where 1y, (k) = ny1(k)(1 + y1||Cllklog N). Suppose that Ey (k) occurs. Then, for all
0<t<klogN andm < N/{20k>y?K.||A| 5,(log N)?},

8 m
d\ (t,my < 7{ <|x(” —x +t||A||p2(ﬁ>> + n}\,l(k)}.

Proof. From (3.2) and the assumptions on C and p;, and from the definition of Ey (k), it
follows immediately that for ¢t < (t;(m) A klog N) such that

t
1
e / 4y, mydu < o, (3.4)
0
we have

o= x0T+ (o

! m
+n /0 {”A“pzﬁ + Ke{d) (u, m)y* + ||C||77N1(k)} du
1) 1 (1) ,
=7 IxNo - X |+t||A||,,2 + ng (t, m) + iy, (k). (3.5)

Now for ¢t < (t1(m) A klog N), (3.5) implies that

chfotd,(J)(u,m) du < yiK. j{m <r|x<” — x|+ %ﬂnAum(%» +rn/N1(k>}
= g{f) + 410 + 410}
=%
<L

the bound assumed in (3.4).
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Hence, since fot dl(\})(u, m) du is continuous in #, we can apply Lemma D.1 of the online
appendix (see Barbour et al. (2014)) with ¢ = 0 to show that, for all sufficiently large N, the
inequality (3.5) holds for all # < (t;(m) A klog N), and the lemma is proved.

Since, in the early phase, x[(\?) (1) ~ 0 and Lemma 3.2 shows that xl(vl)(t) ~ xél), the pro-

cess N x](vz) can plausibly be well approximated by replacing g/ (xy (1)) by g7 (xo) inits transition
rates, obtaining the Markov branching process Z. To show that this is indeed the case, we
consider a path starting in Zg, having Ji, ..., J, as its first n transitions and ¢1, ..., t, their
times. Then the probability density of this path segment is given by

n—1

[ [(expt= (a1 — g @DYg "+ ).

=0

where z; := Zo + Z§=1 Ji(z), to = 0, and the functions ¢ and qj are as in (3.1).
The corresponding expression for le(\?) is more complicated, since the process is only
Markovian if the state space is extended to include all the original coordinates. Define

- Z
gy (. 2) = g’([x(”, NDZ‘“)’ av .2 =Y gh D, 2)
Jego

forx € Rﬁ, z € Z,and J € J,, with [y, y2] denoting (yP—, y;)T. Writing

t
H (xD,7,1) = E(x(l)’z)(exp{—/o an (P w), 2) du}q/v(x};)(t),z)),

the probability density at {(J1, t1), ..., (Ju, ty)} is given by

n—1

1

IE(’(H H (e (), 2, 141 — l1)>;
=0

1 . .. 1)
here, E(x( \.2) denotes expectation conditional on xx (0) = ( l\)’("z)’ and [ as before denotes

expectation conditional on xy(0) = xxy,0. Hence, the likelihood ratio, with respect to the

branching process measure, of a path successively entering the states z(1 ,} 1= 21,22, ..., Zn
at times #(1 4 := 11, ..., t, is given by
n—1
~ 1
Ru(zq1ny, t,ny) == EO(H H+ (x;(v)(tl), 0ty — t1)>, (3.6)
1=0
where

Hj(x(l), Z, t)e’q(Z)

ﬁj(x(l), z,t) =

q’(2)
t J (D
:]E(x(')’Z)(eXp{— / {QN()Q(\})(”),Z)—C](Z)}du}M) 3.7)
0 g’ (2)

Let tp(n) denote the time at which xl(\?) makes its nth jump. Then |xl(vl) (u) — x(()l)l remains
uniformly of order

log N)>/2 N)log N
0{(og ) +N*°‘+”( ) log

N N } for0 <u < (r2(n(N)) AklogN),
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except on an event of probability O (N "), for any r > 0, because of Lemma 3.2. This implies
that the rates gy (xz(v (u), z) are close to qJ (z), J € $a, throughout the same u-interval. We
now use this to show that the joint distributions of the times and values of the first n(N) jumps
of the processes Z and Nxy are close to one another.

Lemma 3.3. Let xy(0) be such that x(P0) — x| = o(N=) and xP(0) = N7 7.
Then, for any fixed k > 0 and 4 3 <a <1, the total variation distance dTV) between the
distributions Of the paths of N xj(\%) and those of Z, restricted to the first kN'™% jumps, is such
that th_mod V =0.

Proof. Letting t(1 ) denote the times of the first n jumps of Z, the main aim is to show that
the likelihood ratio R, (Z{1,,), T{1,s)) defined in (3.6) is close to 1 with high probability. First,
defining

2 (D, 2,1, y)

t J
= B¢ (exp{— /0 an (@), 2) — g(2)) du}% 1{)&)(1):”)

forye N _IZ‘Jlrl , we can express the ratio

Ry 1(z(1,n41), H{1,n+1})
Ry (z{1,n)> t{1,n))

Var1(zZ{1,n+1)s Hln+1)) i=
as
Vit Z{Lnt 1) Hnt1) = BalH (Y, 21y a1 — )}, (3.8)
where E, denotes expectation with respect to the measure with probabilities p, (y) given by
(AN ), 2nmtsta = tamts W TG H9 G 00, 20,101 = 1) 7

fory e —.
Ry (z(1,n)> t{1,n)) N

Now, defining the o-fields X, := o (Z{1,4), T{1,)), the process (R, (Z{1,n}, T(1,n}), Zn, n = 0),
being a likelihood ratio, is a martingale with expectation 1. We wish to show that it stays close
to its expectation with high probability.

First, we consider the process xy obtained by replacing g(x) with g(xo) in the transition
rates for jumps J € $», whenever |x — xo| > 6Oy, yielding a new process xy g¢; the quantity
On < py is yet to be determlned We then conduct the whole analysis for xy g. Observe that,
in (3.8), the quantity H H Jn+1 (Y, Zu+1, thr1 —ty) is, from its definition (3.7), itself an expectation,
and that, for the process xy g, the quantity within the expectation is itself close to 1. To see
this, let 0* := maxyeg, {1 Dg” Il 5, /b]}; then

q}(en e (), 2)

g’ (2)

t
eXP{—/O {gn(xn o (u), 2) — Q(Z)}du} - 1‘

< explg(2)tQ*On}(1 + Q%ON) — 1

< Q*GN{G)q(z)rexp(Q(j)t) + 1},
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if also Oy < 1/{4Q*}. Hence, for xy g,
E{(Var 1 (Z{1 1) Tnt1y) — D | Ba)

00 3 2
< {Q”‘91\1}2/0 q(zn)eQ(Z”)’{(Z>q(zn)teq“")’/4+ 1} dr

<27{Q*0N).
Writing ¥y = 27{Q*0x}? and R, := R,(Z{1.,}, T(1.r}), We obtain
E{(Ry — 1)*} = E°{((Ry — Ry—1)*} + EX{(Ru—1 — 1)?)
< YNE'R; | + EX{(R,—1 — 1)?)
= IEO{(Rn_l — D1+ YN + ¥
<(I+yn)" -1
In consequence, for the process xy g, if 1y <1,

E{(Ru(Z{1.n)> T1.0)) — 1)?} < neyry = 27ne{Q*0n ). (3.9)

Now the total variation distance dry between probability measures P; and P> on a measurable
space (S, F) can be expressed as

drv Py, P2) := sup [P1(A) — P2(A)| = %f [Riz — 1]dP = — / min{0, Rjp — 1} dP,,
AeF s S
where R := dPP1/dP,. Inview of (3.9), it thus follows that for x ¢, d{-l\v,’e) =0 (n(N)l/ZON).
By Thorisson (2000, Chapter 3, Theorem 7.3, and Equation (8.19)), this also implies that the
process Nxy ¢ and the branching process Z can be realized on the same probability space in
such a way that their paths coincide up to the first (V) jumps, except on an event of probability
of order O (n(N)'/26y).
Now fix k > 0, to be specified later, and for m(N) := |Zy| + J*n(N), define

8 m(N)
oy = 7{m{|x<N”<0) — =] + klog N||A||m(T)} + n;v1<k>}

andeﬁf) = N~lm(N);setOy := 91(\,1) +91(V2). Note that withn(N) = O(Nl_"‘)for% <a<l1,
this choice of Oy satisfies Oy < 1/{4Q*} for all large enough N, and that the total variation
distance dﬁ’,’e) is of small order O{n(N)'/2(N~'n(N)log N + N~%)}. Now xy and XN, can
be coupled by running their paths identically until Ty (6y) := inf{t > 0: |xy ¢(t) —x0| > On}.
So, for this choice of Oy, let

oy =inflr > 01y, () —xg1 > 0}, oy i=inf{r > 0 [x{, (0] > 07},
If, for n(N) := kgN1~%, we can show that IP’[GIEII) A 015,) < T”(N3 A T5(0)] is asymptotically
small as N — oo, where t,, denotes the time of the nth jump of x N,)G and 7j,(0), as in (1.7), its
time of first hitting 0, the lemma will be proved.

It is immediate from the definition of 9](\,2 ) that a( ) > Tyv)y a.8. Then, by Lemma 3.2,
Plioy) < tuw) A THO)) N (o) < klog N}] = O(N ™) for any k, r > 0. Finally,

Pl{oy) < tav) A THO)} N {o) > klog N}]
< Pl{tucv) > klog N} 0 {jx, (klog N)| > 0}]
< d\\'” + P[0 < WP (klog N) < m(N) exp{—Pok log N},
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where W (t) := v Z(t)e o', However, choosing any k > ,3(;1 (1 —a), the latter probability is
asymptotically small, because m(N) = O(N'~%)and, writing 72(0) := inf{t > 0: Z(t) = 0},
asin (1.7),
{tlim W () = o} — (z2(0) < 00} as.
—00

(Athreya and Ney (1972, Chapter V.7, Theorem 2, Equation (27))). This proves the lemma.

As a result of Lemma 3.3, for any fixed k, probabilities for the paths of N xz(\/2> up to the
first kN'~¢ jumps can, with only small error, be computed using the branching process Z
instead. We complete our treatment of this phase of development by proving two further
lemmas. The first shows that the branching approximation remains accurate until 7 = 7y,
defined in (1.9). The second shows that xN(rN o) 18 close to a point on the solution &y of (1.3)
starting from xy o, except on an event Ey whose complement has asymptotically negligible
probability. The proofs are given in Section B of the online appendix; see Barbour et al. (2014).

Lemma 34. For ‘L’N o definedin(1.8), let 1)1%, o denote the number of jumps made by Z until time
'L’N o infinite if tN = 00. Then, under the assumptions of Section 1.1, there are constants kg
and 6o such that

_ _ 1—a
POkoN'™ < vE , < ool <e N,

Lemma 3.5. Suppose that 4 3<a< % Then there is a y > 0 and an event E, N satisfying
limpy— oo PO [EC N {‘L’N o < 00}l = 0 such that, on the event EN N {‘L’N o < 00}, we have

W (T o) = EN () = ONTOTY) x(Th o) — £ (15 )] = O(N ™ log N).

We summarize the results of this section in the following proposition. For use in the sections

to come, we specialize to o = %

Proposition 3.1. Suppose that |x(1)(0) x(])l < N~¥/12 and that Nx )(O) = Zo for some
fixed Zy. Define t2(0) as in (1.7), and rN*, ‘L'N*, and tN* as in (1. ]0) Then, under the
assumptions of Section 1.1, it is possible to couple the paths of N xl(vz) and of the branching
process Z in such a way that, except on an event of asymptotically negligible probability, they
are identical until time min {‘L’Z(O), 72 «}» when, in particular, r]% = t;f, . Furthermore, there
isay > 0 and constants k'Y and k® such that, if Ty, < 00,

1 1 - - 2 2 - —5/12—
ey () — £ iy )l < KON/ Plog N, e () — 67 (3,01 < KON
T = By (1 — ) log N — log W} + O(N /4,
except on an event E]‘V of negligible probability, where &y is the solution to the deterministic

equation starting with &y (0) = xn (0).
4. Intermediate growth

In the prev10us section, it has been shown that, on {ry,, < oo} N E N, the point xy (z3,) is
close to &y (IN*) where &y is the solution to (1.3) with initial condition &y (0) = xp,0, and z5,
isa nonrandom time defined in (1.10). We now show that xy (rN . T 1) stays uniformly close
to &y (tN* +1)forall 0 <t < 1y(8, en), for a suitably chosen 8’ > 0, not depending on N;
here, and throughout the section, we define

en = (@) < NTY2, .1
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with the last relation and the inequality e y > N /12 /|v| justified in view of the deﬁmtlon (1.10)
of 'L’N We also show that 8’ can be chosen so that all the components of &y (tN LT 1o (&, en))
are bounded away from 0. Hence, after this time Kurtz (1970, Theorem (3.1)) can be used to
continue the approximation of xy by £y along a nondegenerate path, as stated in Theorem 1.1.
We start by usm the Markov property to continue from 7y,. Let x := xy(1y,), ie.

(1) _xN (rN*) x1 = xN)(rN*) and define Xy (¢) := xy(ty, + ). Note that, from Lemma
2 1
1 1 1 1 [Zo| _
€8 (1) — 38| < k<”{|xg}0 —xV1+ <—UTZO)N 5/12}

< F® N-5/12

with k@ := kD (1 + max;<;<4{1/v;}). Then we can write
P =2+ / [AGN@)ES ) + G @)y du +m') 1),

D0 =xP + foB(iN(u>)f§v)<u>du+ﬁ1§3><r),

or, using variation of constants
200 =x" + e —xM) + /0 eCUTAGN W)ES ) + EEY )} du
+m 0 +c / € =053 () du, 4.2)
20 =xP + [0 BGEN@)E ) du +m'P ()
=By 4 /0 t PO B(Ry (1) — Bo)R (u) du

t
+m) (1) + Bo / B0 ) (u) du, 4.3)
0

where my (¢) := my (ty, +1) —my(ty,) and my is as in (1.2). The deterministic counterparts
of (4.2) and (4.3) have been given previously in (2.1) and (2.2). We first use the comparison
between these pairs of equations to show that x stays close to éN, where éN solves (1.3) with
EN 0) = xN(O) = x1. Afterwards, we can use Lemma 2.1 to show that SN( ) stays uniformly
close to &y (t N« T ) in the appropriate time interval, and that, at the end of this interval, & is
away from the boundary. In preparation for the next result, taking §p as in Lemma 2.1, note that
0 < 19(80,en) = By ! log(80/en) < k1 log N for a suitable choice of k; and for all sufficiently
large N.

Lemma 4.1. There exist 51 > 0 and an event Ey with ]P’[E 1= O(NT") foranyr > 0 such
that, on Ey, for all § < 1,

sup X0 (1) — EV ()] < kD@ NT1ZFAO),

0=<t=<to(80,6n)

@ z()
su {' (t)(z) En (t)I} < k@ (5N~ 1/12+x®)
0<t<to(80,eN) &y (D]

for some k™M (81), k® (81), and x (8) > 0, where lims_,¢ x (8) = 0.
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Proof. Define the (random) time
v = inf{t > 0: |xn () — x0| > p2},
and let E denote the event

PY(NGY (t
{max sup M — Gljv(l‘)‘ =<
Je€F 0<t<to(80,en)ATN N

VEki(log N)*/? }
VN

for ky as defined above. Then, by Lemma 3.1, P[E};] = O(N™") for any r > 0 and, on the
event Ey,

(log N>3/2)
vN )

The remaining argument involves careful use of the Gronwall inequality on the event Ey, to
translate the smallness of supy<; <, (s,.ex)azy [N (#)| into a corresponding closeness of Xy
and £y over a large part of this time interval. The main difficulty is that the length of the
interval tends to co with N.

Taking the difference of (4.2) and (2.1), we find that, on Ey,

sup lmn @) <yt i=nn1(ky) = 0(

0=<t=<t9(80,eN)NTN

£ @) - EP @)l
t
< / €U AGN @)ET () — Ay w)ESD (u)}] du

/ €U0z GED W) — 2EL @) du +
< Al y / 59 ) — EQ )] du
+n / &N DA py | En () — En ()] du
+nKe / 17y ) — N @ l{IFy ) — & )] + 18y () — x§” 1y du + )y,

for 0 <t < 1(80, en) A Tw, where 17y, := (1 4+ y1[|C|lk; log N)ny1. Writing
1 1 1 2 2 2
dV @0 = sup 5P @ —EP W), dP @0 = sup e PR @) —EP W)l
O<u<tAty O<u<tAty
it thus follows, for ¢t < 19(8p, en) A Ty and on Ey, that
t
1 2
Y@ <n f P d (u) | Al , du
0

t
+ 711 DAl /O AR @)(dy @) + MdY ) du

t
+nkdP ) /0 @O + 1ED @ — xPlydu + .
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Use Lemma 2.1 to bound AE\? (t) 1= supp<y < e_ﬁ(’”|§1(\,2) (u)|. Here, we can take ¢® = ey
and eV = (kD) 4 f®)N—5/12 log N for En(0) = xy (Ty+), in view of Proposition 3.1, (4.1),
and (4.2). This gives

d\ (1) < yi 51 ePNdP DN Allp, + kP en DA, @Y (1) +P1d (1))
+1d 0 + g, (4.4)

for all ¢ such that

K. f d\) (u) du

Observe also that, from Lemma 2.1,

ro _ 1
yiKe /0 EV ) — x$V 1 du < i K kD B ‘{e“> log<5> + 6}

for t < 19(8, en) and for any § < &g, where Jp is as in Lemma 2.1. With the above choice
of ¢V and for any 8 = &' chosen small enough, smaller than 8y if necessary, the right-hand
side is smaller than X g for all large enough N.

Now choose 0 < 81 < min{8o, 8’} such that 15?8 8; | DA||,, < 1 and & < p»/2, and
consider t < 19(81, &n) such that (4.5) is satisfied, and also such that

1 o _1
~.  yiK. f 10 ) — x§V | du < = (4.5)
=3 : =3

max{d\ (1), e?'d (1)) < 8 (4.6)

for which, immediately, + < 7 and ehot en < 61. Then, from (4.4), it follows that, for such ¢
and on Ey,

d\ @) < 201851 dP O Allpy + kP81 ID Ay} + 21y, 4.7)

We now take the difference of (4.3) and (2.2), from which it follows that, for ¢ as above and
on Ey,

500 —EY )] < f B0 (B (w)) — BEN )T ()] du

/ B0 (B(Ey () — Bo) (XY () — £ ()] du

(2)(t) + By /0 eBo(I—u)’,hg\ll)(u) dul,
giving, with ’77\/1 =1+ »|Boll/Bo)nn1, and from Lemma 2.1 and (4.6),
@ e -
dy' (1) < )/2/0 dy’ (W By ) — B(En )|l du
t
+ 72 fo KPey | B(Ey @) — BEy @) du
t
+ /0 d )| BGEn @) — Boll du + 1%,

t t
< kz{(Sl +lxly - xg‘>|)/ A () du + ey / d\ ) du} + 0k 4.8)
0 0
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for a suitable constant k». From (4.7), we have

t t
fo d\ ) du < k3eﬁ°’/0 d\P () du + 20y,

and, substituting this into (4.8), we obtain

t 1
dP (1) < ka(Sy + ey — 28D / d ) du + 0y, + ksen 10%(;)’7?\/1
0

for constants k4, k5, and for ¢ < 79(81, ey). Gronwall’s inequality now yields

d2 (1) < kenwy expikat 31 + 1x) — xV)

for suitable kg. For t = 19(81, £n), the right-hand side can be made to be of order O (N —1/2+x)
for any x > 0 by choosing §; = §1(x) small enough. In particular, choosing ¢ = #(51(x), en)
and recalling (4.1), we have

sup |5y () — £ )] < AP () = O(ey' N7V = oNTP (4.9

O<u<t

on the event Ey, and also, in view of (1.4) and the third inequality in Lemma 2.1,

(2) £
“ {IxN (u) — &5~ ()l
0<u<t

|§(2)(u)| } = 8;/1d](\]2)(t) = 0(N71/12+X)‘
N

In addition, from (4.7) and (4.9), it follows that on the event Ey,

sup 1%y (@) — £\ )l =1 dy (1) < kr(eP'd) (1) + g} = OV @4.10)

O<u<t

We now compare the assumed conditions (4.5) and (4.6), involving bounds on increasing
processes with jumps bounded by ¢ = N~! max Jeg |J| with the resulting estimates (4.9)
and (4.10). It then follows immediately from Lemma D.1 of the online appendix (see Barbour
et al. (2014)) that both (4.9) and (4.10) hold on Ey for all + < 1y(81(x), en) and for all
sufficiently large N, provided that x < l

It remains to observe that the solution SN of the deterministic equatlons starting from
50 = x1 = xn(Ty,) is close to the solution éN starting from EN 0) =&n (tN*) up to the time
t0(81, €n), because their starting points are close enough on E, N, as was shown in Propo-
sition 3.1. From the final statements of Lemma 2.1, taking ¢V = k(ON—=/12]og N and
e® = k@ N=512 it follows that, for some y >0,

sup [EPw)—EV @)= o), sup EP@—EP @) =0WT).

0=<u<ty(81,6®) 0=<u<ty(81,6?)

One final result is needed, to show that continuation using Kurtz (1970, Theorem (3.1))
represents following the deterministic path along an asymptotically nondegenerate path. The
proof is given in Section C of the online appendix; see Barbour et al. (2014).
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Lemma 4.2. Define

Ao E —1 &

IN =1y, + l0(5/, EN) = /30 {logN + log(vTZO)}.
Then, for suitably chosen 8’ < 8, all the components 0f§N (t10(8, €@)) = &y (in) are uniformly
bounded away from 0 for all large enough N.

We summarize the results of this section in the following proposition, which, with Proposi-
tion 3.1, completes the proof of Theorem 1.1. Theorem 1.2 is proved in Section A of the online
appendix; see Barbour et al. (2014).

Proposition 4.1. Let&y denote the solution to the deterministic equation starting with&y (0) =
XN .0 satisfying |x](\})0 - x(g | < N=/'2 and x(z) = N7'Z. Let exy < N7/12 be as defined
in (4.1), to(8,¢) as in (2.3), and rN* and tN as in (1.10). Then there exist §' > 0 and an
event Ey, whose complement has asymptotically negligible probability, such that, on Enx N
{ty, < oo} and for all large enough N,

sup  |xn (T, 1) — En(ty, + D] <k@E)NTY

0=<t=t9(8',en)

for some y > 0 and 0 < k(8") < oo, and that all components of fN(li/* +19(8, en)) are
bounded uniformly away from 0. Note also that

1, + 108 en) = By {5 log N — log(v T Zg) +log 8’ — logen} = By ' log N + O(1).
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