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Abstract

Large language models (LLMs) have significantly advanced artificial intelligence (AI) and natural language
processing (NLP) by excelling in tasks like text generation, machine translation, question answering and
sentiment analysis, often rivaling human performance. This paper reviews LLMs’ foundations, advance-
ments and applications, beginning with the transformative transformer architecture, which improved on
earlier models like recurrent neural networks and convolutional neural networks through self-attention
mechanisms that capture long-range dependencies and contextual relationships. Key innovations such
as masked language modeling and causal language modeling underpin leading models like Bidirectional
encoder representations from transformers (BERT) and the Generative Pre-trained Transformer (GPT)
series. The paper highlights scaling laws, model size increases and advanced training techniques that have
driven LLMs’ growth. It also explores methodologies to enhance their precision and adaptability, includ-
ing parameter-efficient fine-tuning and prompt engineering. Challenges like high computational demands,
biases and hallucinations are addressed, with solutions such as retrieval-augmented generation to improve
factual accuracy. By discussing LLMs’ strengths, limitations and transformative potential, this paper pro-
vides researchers, practitioners and students with a comprehensive understanding. It underscores the
importance of ongoing research to improve efficiency, manage ethical concerns and shape the future of
AT and language technologies.
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1. Introduction

Large language models (LLMs) have revolutionized artificial intelligence (AI) and natural language
processing (NLP) by achieving unprecedented proficiency in understanding and generating human
language. Built upon the transformative transformer architecture, LLMs excel in tasks such as text
generation, machine translation, question answering and sentiment analysis, often matching or
surpassing human performance (Naveed et al., 2024).

This paper provides a brief overview of LLMs, touching upon their theoretical foundations,
technical advancements and practical applications. We begin by introducing the transformer archi-
tecture, which addressed the limitations of earlier models like recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) through self-attention mechanisms that capture long-range
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dependencies and contextual relationships. We explore how scaling laws, increased model sizes
and advanced training techniques have propelled LLMs to new heights. Key innovations such as
masked language modeling (MLM) and causal language modeling (CLM) underpin models like
BERT (Devlin et al., 2019) and the GPT series. The paper also examines practical methodologies
that enhance the adaptability and precision of LLMs, including fine-tuning strategies like parameter-
efficient fine-tuning (PEFT) and techniques such as prompt engineering. We address challenges
associated with LLMs, such as computational demands, biases and hallucinations — where mod-
els generate plausible but incorrect information — and present solutions like retrieval-augmented
generation (RAG) to improve factual accuracy.

By outlining both the capabilities and limitations of LLMs, this paper aims to provide a founda-
tional understanding for legal researchers, practitioners and students. We emphasize the transforma-
tive potential of these models in shaping the future of Al and language technologies, underscoring
the importance of ongoing research to enhance efficiency and address ethical considerations.

2. Understanding the context: NLP and neural networks

NLP is a multidisciplinary field that combines linguistics, computer science and machine learning
to enable machines to interpret and generate human language. Early NLP systems relied heavily on
rule-based methods, which required extensive domain knowledge and were limited in scalability.
These were soon replaced by statistical approaches and simple neural networks like the perceptron
(Rosenblatt, 1958), which could learn basic patterns from data. These methods were soon replaced
by statistical approaches and simple neural networks (McCulloch & Pitts, 1943) like the perceptron,
which could learn basic patterns from data.

2.1. Neural networks: Foundations and challenges

Neural networks, inspired by the structure of the human brain, consist of layers of interconnected
nodes or “neurons.” These neurons process input data by applying weights' (scaling factors) and
biases® (offsets) before passing the result through an activation function. Early models like the
perceptron were capable of handling simple classification tasks by adjusting these parameters to
minimize errors, as quantified by a loss function® (Terven, Cordova-Esparza, Ramirez-Pedraza,
Chavez-Urbiola & Romero-Gonzalez, 2024) — a measure of the difference between predicted and
actual outputs. However, these models were limited to linear decision boundaries and struggled with
more complex, nonlinear problems.

The introduction of the backpropagation algorithm (Werbos, 1974) marked a significant
advancement, allowing neural networks to adjust weights and biases more effectively using gra-
dient descent. This method calculates gradients of the loss function to iteratively update the net-
work’s parameters. Despite this breakthrough, deeper networks encountered the vanishing gradient

'A weight in a neural network controls the importance of an input in influencing the output of a neuron. It adjusts the
input’s value before summing it with others, effectively determining how much the input will impact the neuron’s decision.
Higher weights give more significance to certain inputs, guiding the network’s behavior.

*Bias acts as an offset added to the weighted sum of inputs, allowing the activation threshold to shift. This adjustment helps
the model better fit the data by enabling more flexible decision boundaries, ensuring the neuron can activate even when inputs
are zero or minimal. It functions like the intercept in a linear equation, improving the networK’s ability to generalize across
diverse input patterns.

*The loss function refers to a measure of how far off a neural network’s predictions are from the actual values. When Paul
Werbos introduced the backpropagation algorithm, it allowed networks to adjust their internal parameters, such as weights
and biases, by calculating the error through this loss function. The goal during training is to minimize the loss, which indicates
that the model’s predictions are becoming more accurate. The backpropagation algorithm updates the network’s parameters
to reduce this loss iteratively, leading to improved model performance over time.
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problem* (Hochreiter, 1998), where gradients diminished as they propagated backward, slowing or
halting the learning process in earlier layers.

2.2. Hardware and architectural advances

The resurgence of neural networks in the 21st century was driven by advancements in hardware,
particularly graphics processing units (GPUs), which enabled efficient parallel computation. These
improvements made it feasible to train deeper networks on large datasets, resulting in breakthroughs
in tasks like computer vision and speech recognition. However, neural networks still faced limitations
in handling sequential data and long-range dependencies, crucial for many NLP tasks.

2.3. From RNNs and CNNs to transformers

To address these challenges, more advanced architectures were developed. RNNs (Rumelhart, Hinton
& Williams, 1986) introduced feedback loops to retain information across time steps, making them
suitable for sequential data. Similarly, CNNs (LeCun et al., 1989; Lecun, Bottou, Bengio, & Haffner,
1998), designed for grid-like data such as images, provided local pattern detection. While these
architectures offered improvements, they still struggled with scalability and efficiently capturing
long-range dependencies in NLP tasks.

The introduction of transformers revolutionized NLP by addressing these challenges, offering
superior handling of context and enabling parallel processing of large datasets. This innovation laid
the groundwork for the development of LLMs, which can capture intricate language patterns and
perform complex tasks with remarkable accuracy and fluency.

3. Transformers based architecture: a new paradigm

Introduced in the seminal 2017 paper Attention is All You Need (Vaswani et al., 2017), the transformer
architecture fundamentally shifted the way models process and understand sequential data by elimi-
nating the need for recurrent and CNNs traditionally used in language models. Instead, transformers
rely on a mechanism called self-attention, which allows them to consider the entire input sequence
simultaneously rather than processing it step-by-step.

4, Self-attention mechanism

Self-attention is the key innovation of the transformer architecture. Unlike recurrent networks,

which process data in order, or convolutional networks, which focus on local patterns, transformers

enable each word or token in the input to weigh the relevance of every other word in the sequence. It

enables the model to weigh the relevance of each word (or token) in the input sequence with respect

to each other word, capturing long-range dependencies and contextual relationships more effectively.
Mathematically, self-attention operates as follows:

1. Input representation:

Given an input sequence of tokens:

X =[x, Xy, -5 Xy)

*The vanishing gradient problem arises during the training of neural networks, mainly when using backpropagation to
update weights. It occurs when the gradients of the loss function with respect to the weights become extremely small as they
are propagated backward through many layers of the network. This results in weights in the early layers of the network not
being updated effectively, which slows down or stops the learning process. For further information see Hochreiter, Sepp. “The
vanishing gradient problem during learning recurrent neural nets and problem solutions.”
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Each token is embedded into a continuous vector space to obtain embeddings:

E=le.e,, ....e]
2. Linear projections:

For each embedding e;, we compute three vectors: a query q;, a key k; and a value v;, using learned
weight matrices W*, WK and WY:
qi=ex W?

k,»ze,»XWk

Vi=1¢ X wY
3. Scaled dot-product attention:

The attention score between token i and token j is calculated using the scaled dot-product of their

queries and keys:

‘ g ki
Attention Score; ; = ——2

TV

e q; - k! denotes the dot product of q; and the transpose of k.
o d, is the dimensionality of the key vectors.
e The division by Vdj scales the dot products to prevent large values that could result in small

gradients during training.

The attention weights are obtained by applying the softmax function (Figure 1) to the attention
scores:

oy = softmax(Attention Score;))

The output for each token i is a weighted sum of the value vectors v, of all tokens:

n
Z; = E al] . Vj
j=1

Output Softmax
Iaer activation function Probabilities
(1.3 [0.02]
2.2 |— — |0 .05
T e
0.7 j=1 0.01
.1 A | _0.02_

Figure 1. Illustrates the softmax activation function as used in large language models (LLMs). Each raw output is
exponentiated and then normalized by dividing by the sum of exponentiated outputs, ensuring the resulting probabilities
range from 0 to 1.
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4. Context vector computation:

Collectively, in matrix form:

Q=Ex WY
K=E x W¥
V=Ex W’

QK"
Vi
O Q, K, and V are matrices of queries, keys, and values for all tokens.

O K!is the transpose of K.
O The multiplication Q x K*' computes the attention scores for all pairs of tokens simultaneously.

Attention (Q, K, V) = softmax -V

This mechanism allows the model to focus on relevant parts of the input while generating output.
For example, in the sentence “The cat sat on the mat because it was soft,” the model can accurately
capture that “it” refers to “the mat” by assigning higher attention weights between these tokens.

4.1. Positional encoding

One challenge in processing sequences simultaneously is maintaining the sense of order in the data,
as transformers do not process inputs sequentially like RNNs. To address this, positional encod-
ing (Chen et al., 2021) is introduced. As shown in Figure 2, positional encoding adds information
about the position of each token in the sequence,” ensuring the model can differentiate between
words appearing at different positions and preserve the natural order of language (Kazemnejad,
Padhi, Ramamurthy, Das & Reddy, 2023). These encodings are incorporated into the model’s input
embeddings,® allowing transformers to maintain both position and context without the need for
recurrence.
The positional encoding PE is added to the input embeddings to inject positional information:

Eipput = E + PE
The positional encoding is defined using sine and cosine functions of varying frequencies:

For position pos and dimension i:

e For even dimensions (21i):

pos
2i

1 0000 dmodel

PE(pos, 2i) = sin

*Tokenization refers to the process of splitting text into smaller units called tokens that the model can process. In the con-
text of transformers, tokenization breaks down sentences into tokens, often words or subwords. Each token corresponds to a
specific index in a vocabulary list, allowing the model to work with the text numerically. Tokenization is a crucial first step
in transforming natural language into a format that a model can understand, making it an integral part of how transformers
handle input sequences and extract meaning.

°An embedding is a numerical representation of tokens (words or subwords) that encodes their meanings in the form of
vectors — arrays of numbers. These vectors place words in a multi-dimensional space where similar words are positioned closer
together, helping models like transformers understand relationships and context between tokens.
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Figure 2. The image illustrates how positional encoding works in transformers. Word embeddings (blue boxes) are created
from inputs like “The” and “quick,” while positional information (pink boxes) tracks word order. These are combined and
then passed to the transformer model (green box), enabling it to understand word order in sequence processing.

e For odd dimensions (2i + 1):

PE(pos, 2i + 1) = cos pos

2i

1 0000 dmodel
Where:

e pos is the position index of the token in the sequence.
e iisthe dimension index.
e d_model is the dimensionality of the embeddings.

This formulation allows the model to learn positional relationships because the positional encod-
ings provide unique vectors for each position, and the sinusoidal functions enable the model to
generalize to sequences longer than those seen during training.

4.2. Multi-head attention

While self-attention allows the model to consider relationships between tokens, multi-head attention
(represented in Figure 3) extends this capability by enabling the model to focus on different positions
and representation subspaces (Cordonnier, Loukas & Jaggi, 2021).

1. Multiple attention heads:

Instead of computing attention once, the model uses h different attention heads, each with its own
set of learned projections:
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Figure 3. Thisimage represents the core components of the transformer architecture, focusing on the multi-head attention
mechanism. The left side shows the stacked layers of multi-head attention and feedforward layers, which are applied both
to the input and output sequences. Positional encoding is added to account for word order in the sequence. On the right, a
zoom-in reveals how scaled dot-product attention works by combining query, key, and value matrices, normalized through
a softmax function, to calculate attention scores. This enables transformers to efficiently capture relationships between
words regardless of their position. (Vaswani et al., 2017).

For head i:
Q= Einput X Wi¢

— k
K; = Eipput X Wi
J— 14
Vi - Einput X Wi

head; = Attention(Q;, K}, V;)
2. Concatenation and output projection:

The outputs from all heads are concatenated and projected to form the final output:
MultiHead (Q, K, V) = Concat (head, ... head,) x W©
where WP is the output projection matrix.

By having multiple heads, the model can capture diverse aspects of the input, such as syntax and
semantics, and learn different types of relationships.
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4.3. Feed-forward networks and residual connections

After the multi-head attention layer, each position undergoes a fully connected position-wise feed-
forward network (FFN):

FFN(x) = max(0, x xW; + b;) x W, + b,
Where:
e W, and W, are weight matrices.

e b, and b, are bias vectors.
e max(0, x) denotes the rectified linear unit activation function.

The FEN is applied independently to each position, allowing the model to transform the attended
representations into a higher-level abstraction.

To facilitate training and improve gradient flow, the transformer architecture employs residual
connections and layer normalization:

1. Residual connections:

The input to each sublayer is added to its output:

Residual (x) = x + Sublayer (x)
2. Layer normalization:

The residual output is normalized to stabilize the training:
Output = LayerNorm (Residual (x))

These techniques help prevent vanishing or exploding gradients and allow for deeper networks by
ensuring that the signal remains strong as it moves through the layers.

5. Overall transformer architecture

The transformer architecture consists of two main components: the encoder and the decoder. This
design is particularly effective for sequence-to-sequence tasks like machine translation, where an
input sequence in one language is transformed into an output sequence in another.

5.1. Encoder-decoder structure

The encoder-decoder structure, illustrated in Figure 4, is a fundamental mechanism in sequence-to-
sequence models designed for tasks such as translation, summarization, and text generation.

The Transformer

('Hello', 'world', '!") Encoder Decoder ('Bonjour’, 'le', 'monde', '!', <eos>)

'*(<sos>, '‘Bonjour', 'monde’, 'I') €-----------+

Figure 4. Diagram of an encoder-decoder transformer model demonstrating sequence-to-sequence translation.
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The encoder processes the input sequence to generate a contextual representation. It begins by
converting input tokens into continuous vectors using an embedding layer and adds positional
encodings to retain the order of tokens. The encoder is composed of multiple identical layers, each
containing a multi-head self-attention mechanism and a position-wise FFN, both followed by residual
connections and layer normalization to enhance training stability and gradient flow.

The self-attention mechanism allows each token to attend to all other tokens in the sequence,
capturing dependencies regardless of distance. The FFN further transforms these representations,
introducing nonlinearity and enabling the model to learn complex patterns.

The decoder generates the output sequence by predicting one token at a time, using both the
encoder’s output and its own previously generated tokens. Like the encoder, it starts with an embed-
ding layer and positional encodings. Each decoder layer includes a masked multi-head self-attention
mechanism (to prevent access to future tokens), a multi-head attention mechanism over the encoder’s
output (allowing focus on relevant parts of the input) and a position-wise FFN, each followed by
residual connections and layer normalization.

During the encoding phase, the encoder processes the entire input sequence simultaneously, pro-
ducing encoded representations for each position. In the decoding phase, the decoder generates
the output sequence step by step. At each step, it considers its own past outputs through masked
self-attention and attends to the encoder’s output via encoder-decoder attention, enabling it to
incorporate information from the input sequence relevant to generating the next token.

5.1.1. Decoder-only transformers

In some applications, only the decoder part of the transformer is used. Decoder-only transformers,
such as the GPT series, are specialized for tasks involving sequence generation based on prior con-
text, like language modeling and text generation. These models consist solely of decoder layers with
masked multi-head self-attention to ensure that predictions depend only on preceding tokens. They
are trained to predict the next token in a sequence, making them ideal for tasks like autocomplete
and text continuation. A visual representation of this structure, showing an attention word heatmap
of a decoder-only architecture, is illustrated in Figure 5.

5.1.2. Encoder-only transformers

Conversely, encoder-only transformers consist solely of the encoder stack and are designed for lan-
guage understanding tasks. Models like BERT utilize this architecture. They employ bidirectional
self-attention mechanisms, allowing tokens to attend to both past and future positions, thereby
capturing context from the entire sequence. These models are trained using MLM, where some
input tokens are masked, and the model learns to predict them based on surrounding context. This
approach is effective for tasks such as sentiment analysis, named entity recognition, and question
answering.

5.2. Open perspective

Despite their strengths, transformers are not without challenges. The self-attention mechanism, while
powerful, requires significant computational resources, particularly in terms of memory. This is
because self-attention involves comparing every element in the input sequence with every other
element, which scales quadratically with the input length. For very large datasets or long input
sequences, this can become prohibitively expensive. However, recent research has been focused on
addressing these limitations by developing more efficient variants of transformers, such as sparse
transformers and reformers, which aim to reduce the computational load without sacrificing perfor-
mance. Additionally, quantized models” (Egashira, Vero, Staab, He & Vechev, 2024) further enhance

” A quantized model is a neural network where the precision of the model’s parameters (weights and activations) is reduced,
typically from floating-point (“fp,” typically 32-bit or 16-bit) to lower precision, such as 8-bit or even smaller, like 4-bit. The
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Figure 5. Attention heatmap from a decoder-only model, illustrating how each token in the sequence attends only to itself
and previous tokens. The triangular structure results from masked self-attention, ensuring the model generates text
autoregressively by relying solely on past context.

efficiency by reducing the precision of model weights (e.g., from 32-bit to 4-bit), allowing significant
reductions in memory usage and enabling models to run on smaller hardware without significant
performance.

6. LLMs: Scaling transformers to new heights

Building upon the transformative capabilities of the transformer architecture, LLMs represent a sig-
nificant advancement in Al by scaling the core innovations of transformers to unprecedented levels
(Naveed et al., 2024). LLMs leverage self-attention mechanisms and extensive training to capture
intricate patterns in text, enabling them to perform a wide array of language tasks with remarkable
proficiency.

6.1. Scaling laws and model sizes

A critical aspect of LLMs is their scale - in terms of model size, training data quantity and computa-
tional resources — which significantly impacts their performance. Research by Al labs and research

goal of quantization is to reduce the memory footprint and computational requirements of the model, enabling faster infer-
ence and allowing deployment on resource-constrained hardware like mobile devices or edge systems, without significantly
degrading performance. Quantization is especially important for large models, such as LLMs, to optimize them for efficiency
while maintaining accuracy.
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centers has established scaling laws that describe how increasing these factors lead to predictable
improvements in model capabilities:

e Model size (parameters): LLMs like GPT-3 and GPT-4 contain hundreds of billions of param-
eters. Increasing the number of parameters allows the model to capture more complex patterns
and nuances in language.

e Data quantity: Training on larger datasets exposes the model to a broader range of language
uses, contexts and knowledge. This diversity enhances the model’s ability to generalize across
different tasks.

o Compute resources: Training large models on vast datasets requires substantial computational
power. Advances in hardware (such as GPUs and TPUs) and distributed training techniques
have enabled the training of LLMs at this scale.

Scaling laws suggest that as we proportionally scale up model size, data and compute resources, the
model’s performance continues to improve, often following a power-law relationship. This has moti-
vated the development of ever-larger models to push the boundaries of language understanding and
generation. However, it must be noted that as of today, this approach brings with it several challenges
and considerations — both economical and ethical - such as the increasing need for expensive compu-
tational resources, environmental impact due to the large-scale consumption of electricity. This has
led researchers to look into different directions, such as using smaller models (Lu Z. et al, 2024) in
combination with use of highly curated and specialized training sets as an alternative to ever growing
models (Liu et al., 2024).

6.1.1. Domain-specific small language models

While scaling has driven remarkable achievements in general-purpose language models, recent
research has demonstrated the promise of smaller, specialized models trained on domain-specific
data. These models, typically ranging from hundreds of millions to a few billion parameters, leverage
targeted training data to achieve performance comparable to larger models within their special-
ized domains (Hsieh et al., 2023; Javaheripi et al., 2023). The efficiency of these models stems from
their concentrated focus on domain-specific patterns, terminology and task requirements, effectively
reducing the computational overhead associated with maintaining broad language understanding,
thus having a significantly reduced environmental impact with parameter counts several orders of
magnitude smaller (Schick & Schiitze, 2020). This approach has proven particularly valuable in fields
such as biomedicine (Gu et al., 2021) and legal document analysis® where domain expertise and pre-
cision are necessary. The success of these specialized models suggests that strategic data curation and
domain-focused architecture optimization may offer a complementary path to the scaling paradigm
(Zhang, Zeng, Wang & Lu, 2024).

6.2. Training techniques

LLMs are typically trained in two stages: pretraining (Schneider, Meske & Kuss, 2024; Wang, Li, Wu,
Hovy & Sun, 2023; Zhou et al.,, 2023) and fine-tuning (Parthasarathy, Zafar, Khan & Shahid, 2024).
During pretraining, the model learns general language representations from vast amounts of text data
without explicit supervision (Ding, Qin & Yang et al., 2023). Two primary objectives guide this phase:

1. Causal language modeling (CLM): Utilized by models like the GPT series, CLM trains the
model to predict the next word in a sequence given all previous words. This unidirectional
approach is suitable for generation tasks, where the model maximizes the likelihood of the
next word based on the preceding context.

¥See an example of a practical application: https://www.personal.ai/pi-ai/legal-ai-the-small-language-model-advantage.
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2. Masked language modeling (MLM): Employed by models such as BERT, MLM involves
predicting missing words in a sequence where some tokens are randomly masked. This bidi-
rectional approach allows the model to learn from both left and right contexts, minimizing the
prediction error for the masked tokens (Merchant, Rahimtoroghi, Pavlick & Tenney, 2020).

After pre-training, LLMs undergo fine-tuning on task-specific datasets to adapt them to particular
applications. Fine-tuning can be supervised, using labeled data for tasks like question answering,
sentiment analysis, or named entity recognition. In cases where labeled data is scarce, unsupervised
fine-tuning leverages unsupervised objectives to adapt the model to new domains.

Unsupervised learning plays a crucial role in the initial training phase, enabling the model to
learn general language patterns from unlabeled data. Supervised learning becomes important during
fine-tuning, where the model is taught to perform specific tasks based on labeled datasets.

6.2.1. Parameter-efficient fine-tuning (PEFT)

PEFT (Han, Gao, Liu, Zhang & Zhang, 2024; Xu, Xie, Qin, Tao & Wang, 2023) methods have emerged
to address the computational challenges associated with fine-tuning massive models with billions
of weights (Fu et al., 2023). Instead of updating all weights, techniques like Low-Rank Adaptation
(LoRA) allow only a small subset of weights to be fine-tuned. LoORA (Hu et al.,, 2021) introduces
low-rank matrices to specific layers, adapting the model without altering its full architecture, which
significantly reduces memory and computational demands.

Quantized LoRA (QLoRA) combines this approach with quantization, storing model weights
in lower-precision formats like 4-bit, further reducing resource needs while maintaining accuracy.
Quantization-aware LoRA (QA-LoRA) (Xu et al,, 2023) goes a step further by applying quanti-
zation selectively to critical weight matrices, balancing efficiency and performance in constrained
environments. These techniques enable the fine-tuning of large models on smaller hardware, reducing
computational overhead without sacrificing precision.

6.3. Parameter tuning

While fine-tuning optimizes model architecture for specific applications, parameter tuning offers
flexible adjustments to model outputs based on input prompts. This helps tailor responses for char-
acteristics like creativity, precision or length, enhancing task-specific performance without altering
the model’s structure (Liao, Li, Shang & Ma, 2022).

6.3.1. Key parametersin LLM tuning

e Temperature: This controls the randomness of the model’s output by adjusting the probability
distribution of predicted words. Lower temperatures make responses more deterministic, while
higher temperatures increase variability, fostering creativity in responses like poetry.

o Seed: The seed ensures reproducibility by fixing the random number generator’s starting point,
making it possible to produce the same outputs for identical inputs across multiple trials —
crucial for testing and debugging.

o Top-k sampling: This technique restricts the next word prediction to the k most probable words,
reducing the risk of the model choosing unlikely or incoherent words. Smaller values of k make
the output more focused, enhancing accuracy.

o Top-p (nucleus sampling): A more dynamic approach than Top-k, nucleus sampling selects
words whose combined probability exceeds a certain threshold (p), ensuring a balance between
diversity and coherence.

e Max Tokens: This parameter limits the number of tokens the model generates in response,
useful for managing the length of outputs, such as in summarization tasks where brevity is
needed.
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e Frequency and Presence Penalty: Both parameters manage word repetition. Frequency penal-
ties reduce redundancy by discouraging the model from repeating words, while presence
penalties further limit the reuse of words that have already appeared in the text.

o Stop sequences: These are specific tokens that signal the model to halt text generation, partic-
ularly useful for structured tasks or dialogues that need concise responses.

o Logit bias: Logit bias allows for direct control over the probability distribution, steering the
model toward or away from certain words - vital for ensuring the use of domain-specific
terminology or avoiding irrelevant language.

By adjusting these parameters, users can ensure LLMs meet specific needs, whether optimizing
for creativity, precision or domain-specific vocabulary. This layer of control complements fine-tuning
and provides a powerful toolset for task adaptation, enabling more effective utilization of LLMs across
diverse applications.

6.4. Prompt engineering

Prompt engineering is a technique used to optimize the inputs provided to LLMs, ensuring they gen-
erate more accurate, relevant and useful outputs (Chen, Zhang, Langrené & Zhu, 2023). A “prompt”
in this context refers to the text or instructions given to the model, guiding its response. Unlike meth-
ods that alter the model’s architecture or underlying weights, prompt engineering focuses solely on
refining the input to influence the output without changing the model itself.

6.4.1. Key conceptsin promptengineering
o Clarity and specificity: Well-crafted prompts are clear and specific, reducing ambiguity and
leading to more accurate responses.
o Contextual information: Providing the right amount of background or context can signifi-
cantly improve the relevance and coherence of the model’s outputs.
o Task demonstration (Few-shot learning): By including examples of the desired task (few-shot
learning), the model can generalize better and provide higher-quality responses.

6.4.2. Techniques in prompt engineering

1. Zero-shot prompting: The model is expected to generate a response without any examples,
relying purely on pre-trained knowledge.

2. One-shot prompting: A single example of the task is provided in the prompt, helping the
model better understand the format and expected output while still minimizing the number of
examples.

3. Few-shot prompting: A few examples of the task are included in the prompt, which helps the
model understand the format and expected output.

4. Chain-of-thought (CoT) prompting: CoT guides the model through a step-by-step reasoning
process, which is particularly effective for tasks that require logical progression or complex rea-
soning. CoT methodologies often have subcategories, such as Tabular CoT, which is tailored
for handling tasks that involve structured data or tables by applying step-by-step reasoning
within tabular formats.

5. Instruction tuning: Clear and direct instructions help the model perform specific tasks, such
as summarizing or generating lists.

6. Self-consistency: This technique involves generating multiple responses for the same prompt
and selecting the most consistent one, improving reliability, especially in reasoning tasks.
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6.5. Evaluating LLMs performance

Evaluating LLMs is essential to ensuring their accuracy, reliability and fairness across various appli-
cations, from healthcare to law. Performance evaluation can be divided into two main categories:
human assessments and automated methods.

Human evaluation involves domain experts or users reviewing model outputs for factors like
fluency, coherence, relevance and factual accuracy (Feng et al., 2024). This approach is especially crit-
ical in fields such as legal (Chalkidis, Fergadiotis, Malakasiotis, Aletras & Androutsopoulos, 2020),
financial (Wu et al., 2023) and medical applications (Wang & Zhang, 2024), where nuanced and
context-specific knowledge is required. However, human evaluation is labor-intensive and difficult
to scale for large volumes of model iterations or outputs.

Automated evaluation methods provide scalable and objective metrics. They measure aspects
such as fluency, accuracy and relevance of the text output. Common methods include the following:

¢ Bilingual Evaluation Understudy (BLEU) (Papineni, Roukos, Ward & Zhu, 2002), Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) and Metric for Evaluation
of Translation with Explicit ORdering (METEOR) (Lavie & Denkowski, 2009) scores: These
assess the quality of text generation (e.g., translation, summarization) by comparing model
outputs to reference texts based on content overlap and lexical similarity.

o Perplexity (Colla, Delsanto, Agosto, Vitiello & Radicioni, 2022) and F1 scores (Zhang, Wang &
Zhao, 2015): Perplexity measures how well a language model predicts sequences of text, focusing
on fluency. F1 scores, combining precision and recall, are used for classification tasks to evaluate
how well the model categorizes or identifies information.

e Adversarial robustness testing (Zimmermann, Brendel, Tramer & Carlini, 2022): This method
tests how LLMs perform under challenging or adversarial inputs, ensuring that models can
handle unexpected or tricky queries without producing incorrect or biased responses.

o Fairness and bias testing (Rodolfa, Saleiro & Ghani, 2020): These frameworks measure the
ethical performance of models by identifying and mitigating any gender, racial or cultural biases
in generated content, ensuring the model outputs are fair and nondiscriminatory.

These evaluation techniques help optimize LLMs for performance while ensuring they meet
ethical and reliability standards across various applications.

7. Context windows, hallucinations and other challenges in LLMs

LLMs excel in tasks involving language comprehension and generation, but they are not without
limitations. Two of the most prominent challenges are the management of context windows and the
issue of hallucinations, among other inherent difficulties in LLMs.

LLMs operate within fixed context windows (Dsouza, Glaze, Shin & Sala, 2024), typically from a
few thousands to a few hundred thousand tokens. This limitation constrains the amount of text the
model can consider at once. In scenarios requiring long-form analysis, like legal reviews or complex
conversations, earlier parts of the input might be discarded, leading to a loss of continuity and poten-
tially impacting the quality of the response. While newer models such as GPT-4 have extended context
windows, the inherent limitation remains, posing challenges for tasks that demand deep contextual
understanding.

Hallucinations (Azamfirei, Kudchadkar & Fackler, 2023) occur when LLMs generate text that is
plausible but incorrect or entirely fabricated (Ye, Liu, Zhang, Hua & Jia, 2023). Because LLMs generate
predictions based on statistical patterns learned from training data, they might confidently present
false information. This is particularly dangerous in critical fields such as healthcare, finance and law,
where factual accuracy is essential. Models can invent statistics, references or claims, complicating
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ChatGPT 40 v

Translate in italian the following sentence "The nurse helped the
patient walking."
The sentence "The nurse helped the patient walking." in Italian is:

"L'infermiera ha aiutato il paziente a camminare."

D3O POy

now translate "The doctor has visited the patient"

"The doctor has visited the patient" in Italian is:

"Il dottore ha visitato il paziente."

Figure 6. Thisimage demonstrates gender bias in LLMs. The model assumes a female nurse and a male doctor in its
translations, reflecting common stereotypes embedded in training data.

the task of trustworthiness. Mitigation strategies include refining training datasets, incorporating
real-time knowledge bases and enhancing human oversight during model fine-tuning.

LLMs also struggle with bias amplification, as they reflect the biases present in their training
data, which can perpetuate harmful stereotypes (illustrated in Figure 6, where an example of gender
bias learned by the model is depicted). Additionally, LLMs remain opaque in their decision-making
processes, making it difficult to interpret how outputs are generated. Finally, energy consumption is
a growing concern (Samsi et al., 2023), as training large models demands substantial computational
resources, raising ethical and environmental considerations.

8. Improving LLM accuracy: Retrieval-augmented generation (RAG)

LLMs have shown remarkable capabilities in natural language understanding and generation.
However, as previously presented, they still face limitations, particularly around the accuracy and
timeliness of the information they generate. These models are trained on vast datasets but may lack
up-to-date or domain-specific knowledge, leading to hallucinations, outdated responses, or factually
incorrect outputs. This is where RAG steps in to enhance the accuracy and factual reliability of LLMs.

8.1. Retrieval-augmented generation (RAG)

RAG is an advanced approach that integrates information retrieval systems with LLMs to enhance
their accuracy and relevance (Lewis et al., 2020; Li, Su, Cai, Wang & Liu, 2022). RAG models com-
bine the generative capabilities of LLMs with external knowledge sources, such as databases or
document collections, enabling the model to pull real-time information rather than relying solely
on pretrained data. This mechanism addresses the limitations of LLMs, such as hallucinations and
outdated knowledge, by grounding generated responses in retrieved, factual data. A flowchart illus-
trating the architecture of a RAG model, detailing the interaction between the retrieval and generation
components, is shown in Figure 7.

RAG operates in two phases: retrieval and generation. In the retrieval phase, the model searches
a vast external knowledge base to gather relevant information based on the input query. In the
generation phase, the retrieved data is then used to condition the response, enabling the LLM to
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Figure 7. The diagram showcases the workflow of retrieval-augmented generation (RAG). It starts with a prompt and query,
which are used to search external knowledge sources for relevant information. The retrieved information enhances the
context, which is then passed along with the original query to the large language model (LLM). This improved context helps
the LLM generate a more accurate and relevant text response.

provide more accurate and contextually grounded outputs. By integrating retrieval with generation,
RAG mitigates the issue of hallucinations, significantly reducing instances of fabricated or inaccurate
content.

The ability to retrieve up-to-date information makes RAG particularly effective for dynamic fields
such as news reporting, medical diagnostics and legal document analysis, where real-time accuracy
is paramount.

8.2. Evaluation of RAG efficacy and metrics

Evaluating the efficacy of RAG models requires both traditional and novel metrics tailored to the
retrieval-enhanced framework. Key metrics include the following:

e Retrieval accuracy: Ensures that the external knowledge source effectively supplements the
LLM, reducing hallucinations and improving factuality. Tools such as Retrieval Augmented
Generation Assessment (RAGAs) (Es, James, Espinosa-Anke & Schockaert, 2023) (RAG
Automatic Scoring) are emerging to automate this process by evaluating both the retrieval
quality and the final generated output.

e Factuality and groundedness: A critical metric for RAG models is ensuring that generated
responses are factually grounded in the retrieved documents. Evaluation frameworks like Luna
(Saidov, Bakalova, Taktasheva, Mikhailov & Artemova, 2024) assess how well the generated text
aligns with retrieved facts, helping to reduce inaccuracies and inconsistencies.

9. Conclusions

LLMs have revolutionized NLP by harnessing transformer architectures to achieve unprece-
dented proficiency in language understanding and generation. They have transformed industries
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such as healthcare, law and customer service by enabling applications that require high fluency
and precision. Despite these advancements, LLMs face ongoing challenges, including compu-
tational resource demands, context window limitations and issues related to bias and factual
accuracy.

Innovations like PEFT, quantization techniques and RAG are actively addressing these challenges,
enhancing the efficiency, scalability and reliability of LLMs. As these models continue to grow in
scale and capability, they hold the promise of extending beyond language tasks to impact fields like
computer vision and enable multimodal AI applications.

With a continued focus on improving efficiency and addressing ethical considerations, LLMs
are poised to play a pivotal role in shaping the future of technology and Al, driving forward the
capabilities of Al systems across a wide array of domains.
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