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Abstract. Can we quantify over absolutely every set? Absolutists typically affirm. while
relativists typically deny, the possibility of unrestricted quantification (in set theory). In the first
part of this article, I develop a novel and intermediate philosophical position in the absolutism
versus relativism debate in set theory. In a nutshell, the idea is that problematic sentences related
to paradoxes cannot be interpreted with unrestricted quantifier domains, while prima facie
absolutist sentences (e.g.. “no set is contained in the empty set”) are unproblematic in this respect
and can be interpreted over a domain containing all sets. In the second part of the paper, I develop
a semantic theory that can implement the intermediate position. The resulting framework allows
us to distinguish between inherently absolutist and inherently relativist sentences of the language
of set theory.

§1. Introduction. Generality absolutism is the claim that it is possible to quantify
over absolutely everything. Examples of absolutely general quantification are not hard
to find and involve fundamental logical, mathematical, and metaphysical claims, such
as ‘Everything is self-identical’ or ‘Nothing is a member of the empty set’. Intuitively,
these claims are absolutely unrestricted and their interpretation over a less than all-
inclusive domain would be a fundamental misinterpretation. Generality relativism is the
denial of generality absolutism, i.e., the claim that quantification is always restricted,
and that no quantifier ever achieves absolute generality.'

Despite its initial appeal, many have questioned absolutism. The strongest argument
against it, the Argument from Paradox as it is often called, comes from the semantic and
set-theoretic paradoxes. In a nutshell, the argument begins by assuming absolutism
and, with it, the existence of a domain containing absolutely everything. Now,
according to standard model-theoretic semantics, domains of quantification are sets.
Yet, Russell’s paradox immediately implies that no set can be universal. The reasoning
is well-known. Let M be a supposedly all-inclusive set, and consider M’s Russell
set Ry :=={x €M | x ¢ x}. If Ry is in M, which it should be if M is universal,
then it follows paradoxically that Ry, € Ry <> Ry ¢ Ryr. Thus, Ry is not in M,
whence M is not universal after all. Since this argument can be generalized to apply
to any kind of collection-like entity, the relativistic Argument from Paradox not only
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seemingly disqualifies universal set domains, but also any universal domain based
on any other collection-like entity. It follows, relativists claim, that no domain can
comprise absolutely everything.

Russell’s paradox, and the set-theoretic paradoxes more generally, have led to far-
reaching conceptual changes in the foundations of mathematics: the naive conception of
set implicitly at work in the early writings of Cantor and Frege, according to which every
predicate has a set extension, has been replaced by the nowadays standard iterative
conception of set. According to this, a set is anything obtainable from some previously
given objects, the urelements, by iterated application of set construction mechanisms,
such as the powerset and the union operation.” This elegant and sophisticated
conception has been enormously successful, and has lead to the nowadays standard
picture of the set universe as a cumulative hierarchy of sets.’

As Studd [46, chap. 2] among many others observes, though, that the cumulative-
iterative account is inherently relativistic. Since each stage in the cumulative hierarchy
has a successor stage that strictly extends all previous stages, no stage can be universal.
Consequently, it would seem, the cumulative-iterative account is incompatible with
absolutism. At the same time, the cumulative-iterative account provides an elegant and
widely accepted solution to Russell’s paradox and to the set-theoretic paradoxes more
generally: every stage has a Russell set, which however enters the cumulative hierarchy
only at a later stage. This blocks the paradox outright. But it also confronts us with
a seemingly unavoidable decision: we must either embrace absolutism, and forgo the
commonly accepted, elegant, and sophisticated solution to the paradoxes, or accept
the standard cumulative-iterative account, and give up absolutism.

In a semantic setting, the situation is analogous. The semantic paradoxes—the
paradoxes of semantic notions such as truth, satisfaction, and denotation—reveal a
tension between naive semantic principles. such as the interderivability of ¢ and “¢’ is
true”, and classical logic. Contextualist approaches to the semantic paradoxes propose
to retain classical logic and interpret the paradoxes as evidence that semantic notions
are non-naive and hierarchical. Contextualism provides a solution to the semantic
paradoxes that is philosophically well-motivated, technically elegant, and, importantly,
fully in keeping with standard hierarchical treatments of the paradoxes of set theory.
However, just like in the set-theoretic case, contextualism appears to be inherently
relativistic.*

In a recent publication, Rossi [42] has shown that, in the truth-theoretical setting,
this dilemma is by no means forced upon us, and that there is a way to combine a partial
form of absolutism—the view that at least some sentences can be given an absolutely
unrestricted interpretation—with contextualist, broadly hierarchical solutions to the
paradoxes.” Following Cartwright [9]. Rossi drops the assumption that domains have
to be entities, and instead advocates an ontologically neutral reading of the notion

2 One of the notable achievements of modern set theory is that urelements are dispensable
for mathematical concerns. The cumulative hierarchy constructed without urelements is
sometimes referred to as the hierarchy of pure sets. In what follows, I focus exclusively on
sets that are pure in this sense.

3 See Boolos [5], Incurvati [21], Jech [22], Kanamori [23, 24], Kunen [27], Maddy [30, 31], and
Potter [38].

For general background on contextualist approaches to the semantic paradoxes, see
Glanzberg [16, 17], Murzi & Rossi [35], and Parsons [37].
> This view is further expanded, and defended. in Murzi & Rossi [35].
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of a ‘domain’.® Moreover, he proposes to split up the sentences of the underlying
language in those that lead to paradoxes, such as the Liar sentence A, which says
of itself that it isn’t true, and those that are unproblematic in this respect, such
as, e.g., ‘5 + 7 = 12’ or ‘Everything is self-identical’. He then proposes a bipartite
semantics, where the unproblematic sentences are interpreted over an all-inclusive
(non-objectual) ‘domain’, while problematic sentences are interpreted over restricted,
set-sized domains. Thus, Rossi shows, we can combine absolutism for unproblematic
sentences with contextualist approaches to the semantic paradoxes.

In this paper, I put forward a bipartite semantics for set theory that allows us
to combine set-theoretic absolutism with the cumulative-iterative conception of sets.
As I show below, just like one can develop a semantic theory that combines partial
absolutism with standard hierarchical treatments of the semantic paradoxes, one can
also develop a semantics for set theory that combines partial absolutism with the
cumulative-iterative conception of sets. According to that position, the paradoxes show
that some sentences must be relativistically interpreted, whence it is not reasonable to
demand that every sentence be possibly given an absolutely unrestricted interpretation.
At the same time, it is reasonable to demand that some sentences be given an
absolutely unrestricted interpretation. This account, then, provides all the unrestricted
quantification one can reasonably ask for, or so I argue. The upshot is a novel
conception of quantification in set theory that allows us to retain the universal character
of set theory—a theory whose subject matter is the entire cumulative hierarchy, which
comprises absolutely all sets—and the open-ended, indefinitely extensible character of
this very same hierarchy.

The primary aim is to develop a new semantics for set theory along the lines
just sketched. This allows for an elegant, if standard, solution to the set-theoretic
paradoxes, while preserving the possibility of quantifying over absolutely all sets.
Crucially, I propose to use the bipartite and partially absolutistic semantics to identify a
class of inherently absolutistic sentences of the language of set theory. These sentences do
not have countermodels, neither in the standard sense of the cumulative hierarchy, nor
in the all-inclusive model containing all sets. They express, then, the most fundamental
facts about the set-concept and thereby shed new light on the concept of set.

The paper is structured as follows. §2 sets the stage by outlining the philosophical
debate between absolutism and relativism in set theory, with particular emphasis
on the cumulative-iterative conception and its role in responding to the paradoxes.
§3 introduces the bicontextualist framework in two stages: first through a heuristic
explanation (§3.1), and then through a formal development (§3.2-§3.6). §4 applies the
framework to the set-theoretic paradoxes, showing that the bicontextualist treatment
of paradoxes is in line with the standard treatment in nowadays set theory. §5 explores
how the framework allows us to isolate core structural features of the set concept. §6
addresses a number of potential objections and replies. §7 concludes. An appendix
provides background material on infinitary logic (A) and its use in formalizing set
theory (B).

® Within this work, ‘domains’ (with quotation marks) indicates an ontologically neutral, non-
standard reading of domains, according to which ‘domains’ are not entities, whereas domains
(without quotation marks) simply refer to standard set-theoretic, entity-based domains.
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§2. Relativism in set theory. The most influential critique of absolutism—again,
understood as the claim that absolutely unrestricted quantification is possible—is based
on the semantic and set-theoretic paradoxes. The modern version of the argument goes
back to Dummett [12], who took the set-theoretic paradoxes to show that the notion
of set is indefinitely extensible. But the core of the argument can already be traced back
to Russell, who similarly took the paradoxes to show that we can never quantify over
absolutely all sets.”

The argument runs as follows: The truth of absolutism requires a domain containing
absolutely everything, where domains are standardly conceived as sets, or—more
generally—collection-like entities. However, the notion of a set, and of a collection
more generally, is indefinitely extensible, which is taken to imply that no set, or
collection, can contain absolutely everything. Hence, the argument concludes, there
cannot be a domain containing absolutely everything, and so absolutism must be false.
This general version of the Argument from Paradox needs some unpacking, beginning
with the somewhat mysterious notion of indefinite extensibility.

Following Incurvati, “a concept C is indefinitely extensible iff whenever we succeed
in defining a set M of objects falling under C, there is an operation which, given M,
produces an object falling under C but not belonging to M”.% It is easy to show that
the concept set is indefinitely extensible in this sense. Let M be a set and consider the
subset Ry, € M which contains all and only those sets in M which are not members of
themselves, i.e., Ry := {x € M | x ¢ x}. Now reason is that, if Ry, is an element of
M, we can ask whether R, is contained in R, (since R, is defined to be a subset
of M). Ifitis, it must satisfy the defining condition of R, . that it is not self-membered,
and so R, cannot be an element of R,,. If R, is not a member of itself, it satisfies
the defining condition of Ry, . and therefore must be a member of itself. This implies
that Ry, € Ry <> Ry ¢ Ry, which entails absurdity in any logic at least as strong as
minimal logic. We can therefore reject that Ry, is an element of M, which implies that
there is a set (Rys) not contained in M. In Incurvati’s terminology, we started from
an object M falling under the concept ‘set’, and produced an object, R,,, also falling
under the concept ‘set’, but not belonging to M. Since M was completely arbitrary, the
reasoning applies to any set. Hence, the concept set is indefinitely extensible.

The formal derivation of Russell’s paradox uses the naive comprehension schema,
according to which every definable property ¢ (x) determines a set. Formally:

Naive Comprehension: For any formula ¢ (x) of the language of set
theory which lacks x free and contains no free occurrences of y, the
following is an axiom:

pVx(x €y < p(x)).

If we let (x) be x ¢ x, we get that x € y +» x ¢ x.

The indefinite extensibility of the set concept directly implies that there can be no
universal set. To see this, assume that U is a universal set. Now consider its Russell
set Ry: on pain of contradiction, Ry cannot be in U. So Ry is a set not contained in
the supposedly universal set U, whence U cannot be universal after all. The argument,

7" See Russell [43].
8 See Incurvati [21, p. 27, notation adjusted].
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which is just an instance of Russell’s paradox, is fully general, i.e., it makes no specific
assumptions about U. It therefore disqualifies any set from being universal.

In what follows, I will exclusively focus on sets. However, I should stress that the
argument from indefinite extensibility is not limited to sets: any collection-like entity is
equipped with a notion of membership, whence any supposedly all-inclusive collection
gives rise to a subcollection containing all and only the non-self-membered collections.
At this point, the only way to avoid a paradox would seem to require abandoning the
assumption of a universal collection.

Relativists claim that the non-existence of a universal set directly proves absolutism
wrong. Since, they reason, the all-inclusive domain postulated by absolutists contains
absolutely everything, and since sets are things, the all-inclusive domain of absolutism
must contain absolutely every set—that is, the universal domain has to be a
supercollection of the universal set. However, as the above reasoning shows, there
can be no universal set, whence there can’t be an all-inclusive domain after all either:
no domain can be all-inclusive, which is to say that all quantifier domains, and
quantification more generally, are restricted.

The set-theoretic paradoxes have led to far-reaching conceptual changes that affect,
to this day, our understanding of the foundations of mathematics. The iterative
conception of set, and its accompanying intended model of set theory, the cumulative
hierarchy, have both been developed in reaction to the discovery of the paradoxes. Their
immediate aim was to avoid the paradoxes; according to many, however, they genuinely
capture essential properties of our conception of sets, or of sets themselves.” According
to the iterative conception, “a set is something obtainable from the integers (or some
other well-defined objects) by iterated application of the operation ‘set of””.!” Instead
of postulating sets to be extensions of predicates (as in the naive, i.e., pre-iterative
conception), the iterative conception considers sets to be all and only those objects
that we obtain from given objects (the urelements) by applying accepted set-forming
mechanisms. Today’s standard set theory ZFC is widely regarded as an axiomatization
of the iterative conception.'!

The cumulative hierarchy V' organizes sets in an open-ended sequence of stages,
beginning at stage V) with the empty set, and then iterating the powerset operation
at successor stages V,41 and taking unions at limit stages V,. The resulting hierarchy
forms the ontological counterpart of the iterative conception, in the sense that it
provides structurally nice models of ZFC.

The cumulative-iterative conception immediately blocks Russell’s paradox. From an
axiomatic point of view, ZFC replaces the naive comprehension schema with the more
restricted separation schema:

Separation: For any formula ¢ (x) of the language of set theory which
lacks x free and contains no free occurrences of y and z, the following
is an axiom:

Vy3zVx(x €z <> x € y Ap(x)).

% See Boolos [5], Dummett [12], Godel [19], Incurvati [21], Kanamori [23], Parsons [37],
Shapiro [45], and Studd [46].
10" Godel [19, pp. 474-475].
! See Boolos [5], Kanamori [23], Maddy [30, 31], Potter [38], and Zermelo [50].
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The difference between naive comprehension and separation is that naive compre-
hension postulates the existence of a set y containing all objects with the property
o(x) outright, whereas separation only postulates the existence of a set z of all
objects satisfying ¢(x) which are members of a previously given set y. This blocks
the formal derivation of Russell’s paradox, because when we substitute x ¢ x for ¢(x),
we get Vy3zVx(x € z <3 x € y A x ¢ x), which only gives us the set z of all non-self-
membered sets in y.

From a conceptual or ontological point of view, the cumulative hierarchy avoids
Russell’s paradox in virtue of its open-ended character. For every stage V, in V,
the Russell set of V, is not in V,, but enters the hierarchy only at the later stage
Vai1 = P(V,)—the powerset of V. By the open-endedness of the construction, each
stage gets expanded in that way. As a result, we only get indefinitely many ‘Russell
sets’, each of which can be harmlessly integrated in V.

As Studd [46, chap. 2] has observed, the cumulative-iterative account is inherently
relativistic. Cantor’s theorem implies that P(V,,) is strictly larger than V,, and contains
objects which are not in the previous stages. Hence, the sequence of increasing stages
never reaches a final stage containing all sets, and no stage achieves absolute generality.

The cumulative-iterative account of set offers an elegant resolution to Russell’s
paradox by organizing sets in stages. However, as mentioned at the outset, this solution
seemingly comes at the cost of having to abandon absolutism: it offers an understanding
of sets in terms of an open-ended cumulative hierarchy—one that, by its very nature,
would appear to preclude the existence of an all-encompassing absolute domain. In
turn, this seemingly undermines the view of set theory as a comprehensive theory about
all sets.

Relativists are of course aware of the problem and have sought to simulate absolutely
general talk by means such as schemata (in the case of Russell) or modal operators
(in Studd’s case). But, it seems fair to say, these surrogates are all arguably inadequate
for a number of reasons. As is well-known, schemata don’t allow one to express
unrestricted existential generalisations. And, as Studd himself acknowledges, primitive
modal operators give rise to revenge paradoxes (see Studd [46. chap. 7]).

To summarize, the tension between absolutism and relativism arises from the fact
that each view captures an essential aspect of our set-theoretic practice. Absolutism
retains the intuitive idea that set theory is meant to be a theory of all sets. Relativism,
in contrast, captures the insight that the set-concept is itself inherently hierarchical and
open-ended. This latter feature is brought out with particular clarity in the cumulative-
iterative conception of sets and its formal counterpart ZFC. However, one must not
misunderstand ZFC as a technically convenient theory that is only designed to avoid
paradoxes. Rather, it reflects a deeper philosophical understanding of set-concept as an
inherently hierarchical concept, with sets being arranged stagewise in the cumulative
hierarchy. As such, the cumulative-iterative conception—and with it, ZFC—provides
the most compelling conceptual analysis of the set-concept currently available.

§3. Bicontextualism for set theory. At this point, it seems as if we’ve reached a
dilemma: we must choose between unrestricted quantification, on the one hand, and
the elegant but relativistic solutions to the paradoxes, on the other hand—we cannot
have both. In the truth-theoretic case, Rossi [42] has recently shown that this trade-off
can be overcome, and that it is possible to combine absolutism understood as the claim
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that absolutely unrestricted quantification is possible with the relativistic solutions to
the paradoxes.

As Parsons [37] long pointed out, there are obvious similarities between the
set-theoretic and the semantic paradoxes. More specifically, in the truth-theoretic
case, contextualists postulate an open-ended hierarchy of contexts accompanied by
a sequence of growing domains; in the set-theoretic case, the cumulative-iterative
conception postulates an open-ended hierarchy of growing ranks. In keeping with
this observation, I propose to generalise Rossi’s bipartite approach to the semantic
paradoxes to the set-theoretic paradoxes and to set theory more generally.

The first step is to notice that the relativistic Argument from Paradox and the prima
facie examples for absolutism are, strictly speaking, not incompatible. Absolutists
maintain that, e.g., Vx x = x is unproblematic, and requires an absolutely unrestricted
interpretation of its quantifier. Relativists, in contrast, argue that we cannot interpret
the quantifiers in the Liar sentence or in Russell’s paradox over an unrestricted
domain, on pain of contradiction, and conclude from this that no quantifier can have
unrestricted range.

While the argument correctly rejects absolutism for sentences involved in paradoxical
reasoning, it does not tell against an absolutely unrestricted interpretation of
unproblematic sentences. The problem here is that the failure of absolutism for
certain paradoxical sentences simply does not imply the failure of absolutism for
all sentences.'” While the paradoxes may indeed undermine a strong version of
absolutism, understood as the view that it must be possible to provide an absolutely
unrestricted interpretation of all sentences, they do not tell against absolutism’s core
tenet, that absolute generality is possible, and that it is possible to provide an absolutely
unrestricted interpretation of sentences like Vx x = x.

This position is a natural middle ground between strong absolutism and relativism—
one that allows us to interpret unproblematic sentences like Vx x = x over an
all-inclusive, non-objectual ‘domain’, and problematic sentences like A over set-
sized domain. In a truth-theoretic setting, Rossi [42] calls this bicontextualism.
Due to the similarities between the semantic and truth-theoretic paradoxes, I apply
bicontextualism’s key ideas to set theory and the foundations of mathematics. As in
the case of truth-theoretic bicontextualism, I allow the interpretation of unproblematic
sentences from the language of set theory. such as —3x x € § over a ‘domain’
containing absolutely all sets, and problematic sentences, such as Vx(x € y <> x ¢ x)
over restricted domains only.

Let me now develop the bicontextualist approach to set theory, beginning with a
first informal presentation of the main ideas, before providing the technical details.

3.1. Heuristics. The key idea of bicontextualism for sets is to decide sentence by
sentence between an absolutistic and a relativistic interpretation: inherently relativistic
sentences are interpreted relativistically, in order to avoid paradoxes; in contrast,
inherently absolutistic sentences are allowed to be interpreted over an all-inclusive
‘domain’ containing absolutely every set.

Bicontextualism’s characteristic feauture is the abandonment of the principle of
unified interpretation, according to which all sentences of the relevant object language

12 This rejection of the Argument from Paradox is implicit in Rossi [42] and is further developed
in Murzi & Rossi [35].

https://doi.org/10.1017/51755020325100774 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020325100774

SET-THEORETIC BICONTEXTUALISM 833

receive the same interpretation.'? In contrast, (set-theoretic) bicontextualism allows
for a bipartite interpretation of the language (of set theory), on which some sentences
can be interpreted over an all-inclusive ‘domain’, while others can only be interpreted
over restricted domains. Ontologically speaking, bicontexualism postulates a non-
objectual ‘domain’ containing absolutely everything, and several objectual restricted
and hierarchically organized domains living inside the big ‘domain’. Unproblematic
sentences can then be interpreted with the widest of all domains, while problematic and
paradoxical sentences will always be restricted to one of the smaller domains inside
the big ‘domain’.

I should stress that I don’t interpret talk of an all-inclusive ‘domain’ at face value;
I rather understand it in a broadly Fregean sense (Williamson [49]). More precisely,
although I take the paradoxes to show that all-inclusive domains cannot exist as
entities, I also maintain, in line with Rossi’s original presentation of bicontextualism,
that we can nevertheless understand ‘domains’ through plurals: they are not reified
objects. but rather pluralities of things.'*

As for the restricted domains, I take them to be the strongly inaccessible rank-
initial segments of the cumulative hierarchy, that is, domains of the form V, for
inaccessible x.'° This choice is not arbitrary. As argued above, the cumulative-iterative
conception captures the hierarchical and open-ended character of the set-concept, and
ZFC is widely understood as its formal counterpart. By working with V-domains,
the framework retains the structural features that make the relativist approach to
the paradoxes both philosophically attractive and technically robust. The restricted
domains, then, are not just any set-sized models of set theory, but precisely those that
arise from the iterative conception, as axiomatized by ZFC.!°

It is important not to presuppose the distinction between inherently absolutistic
and relativistic sentences, but to construct a semantic theory for the language of set
theory in such a way that the distinction actually drops out of the theory. In order to
do so, I work with a generalization of standard model theory that is compatible with
generality absolutism. According to this approach, there is a plural ‘domain’ containing
absolutely all sets.!” And since the ranks of the cumulative hierarchy are sets, they are

all contained in the universal ‘domain’.!$

13" See Rossi [42, sec. 4].

14 For general background on plural logic, see Florio & Linnebo [15] and Oliver & Smiley [36].
15 When I say that k must be inaccessible, this also covers stronger notions of infinity. So if &
is Mahlo, measurable, or supercompact, then & is also inaccessible, and so these ranks are
taken into account.

In addition to its conceptual and axiomatic virtues, ZFC is also the most widely accepted
foundational theory among working set theorists. As such, focusing on ZFC aligns not only
with philosophical considerations about the nature of sets, but also with the naturalistic
observation that it serves as the de facto standard in contemporary set-theoretic research.
Thanks to an anonymous referee for pressing me to clarify this point.

More on the generalization of standard model theory and plural ‘domains’ in §3.2.
Depending on the ambient set theory 7, there are more or less V-ranks that are set-sized
(i.e., T-provably exist). For instance, if T = ZFC — Inf (the axiom of infinity), then only finite
ranks exist. If, alternatively, T = ZFC + 3!k MC(k) (there exists exactly one measurable
cardinal k), than all V-ranks below & exist. Either way, whatever provably exists according
to the ambient theory T is contained as a set in the absolute ‘domain’.

16

17
18
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Formally, I use a language that has a name for every set—let £ be such a language.
When we interpret £ over the ‘domain’ containing all sets, the resulting ‘interpretation’
is a total function. When we interpret £ over a restricted domain, say some Vj in V,
the resulting interpretation is a partial function instead. The reason is that, since £ has
a name for every set. there are many more names in £ than sets in V,, (for any x)."”
Names that do not correspond to sets in V. simply do not denote.”’

I use a three-valued semantics with truth values {0, 1/2,1}. If the interpretation
function is a partial function, the semantics will be such that every sentence with
denotationless terms has value 1/2, and sentences which only contain denoting names
have classical truth values. The main thought is that according to the restricted models,
sentences referring objects outside the current domain are nonsensical or off-topic.”!

In the next step, I interpret all £-sentences over and over again, over all the restricted
domains (V,.’s) and over the all-inclusive, maximal plural ‘domain’. This yields classes
of sentences validated by all the different models, which allow me to define the
inherently absolutistic and relativistic sentences of £. More specifically, notice that
an inherently absolutistic sentence cannot just be taken to be a sentence that is true
according to the universal ‘domain’.”> Think of the sentence 3x1C(k), saying that there
is an inaccessible cardinal. This sentence is false in all V-ranks below & (assuming
k to be the first inaccessible). Hence, 1 will not count this sentence as inherently
absolutistic, since it has at least one countermodel. I therefore take the inherently
absolutistic sentences to be those that are true in the universal ‘domain’, and have no
countermodel.

The inherently relativistic sentences are then defined via the inherently absolutistic
sentences. To see this, consider, for some Vi, the collection of all and only those
sentences true in V., and then subtract from it the sentences that are also true over
the universal ‘domain’. The resulting collection contains all and only those sentences
true in V; due to their relativistic nature. My main claim, then, is that all the sentences
of L that are classified as inherently absolutistic by the above semantics are to be
interpreted over the all-inclusive ‘domain’, whereas all the sentences that are classified
as inherently relativistic are to be interpreted over restricted domains. The upshot is a
semantic theory that allows us to reconstruct the elegant relativistic approach to the set-
theoretic paradoxes within a framework that also contains an all-inclusive ‘domain’,
over which, in spite of the paradoxes, absolutistic sentences can be interpreted.

Using the three-valued semantics and the ability of £ to name every set, we can also
consider sentences such as the £-formalization of “for every V., thereisa Vg, such that

19 The use of large languages can be understood as a practical heuristic which does not require
deep philosophical justification. If we extend the language of set theory L¢ to a larger
language £ by adding x-many names, every L¢-structure has a unique Le-reduct. This
means the semantic framework for such huge languages can always recover the £¢-fragment
if required. However, the names serve a technical purpose, and so I include them in the
semantics.

Note the slight abuse of notation here: since £ has a name for every set, it cannot be a set
itself. Hence. an interpretation of £ can also not be a set. The reader should bear in mind
that all these notions are pluralities. For this reason, I use ‘interpretation’ (with quotation
marks), and interpretation (without quotation marks), as in the case of ‘domain’ and domain.
See fn. 6.

2l See Beall [2].

22 For simplicity, I often identify domains with models.

20
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o < fand V, € Vp”. Such a sentence cannot be formalized in the standard language
of set theory—at least not with its standard, absolutist meaning. The point is this:
from within a given model V,;, one can define an internal version of the cumulative
hierarchy, with internal ordinals c, #, and internal ranks V,, V. satisfying V, € V.>
The sentence is thus expressible and even provable in the internal language of V. But
this is a relativist interpretation: what the sentence expresses is a fact about how a
given model internally simulates its own hierarchy. From an absolutist point of view, in
contrast, the vocabulary of set theory refers not to what is definable inside some model,
but to the actual cumulative hierarchy. In the bicontextualist semantics, the sentence is
an example that requires the all-inclusive plural ‘domain’ containing all sets to express
its intended meaning.

Both large cardinal axioms and Russell-style sentences are classified as inherently
relativistic in the present framework. The reason is straightforward: their truth is not
preserved across all domains. A sentence asserting the existence of a large cardinal
k 1s false in all ¥, with a < k, and becomes true only in sufficiently large domains.
Similarly, the sentence asserting the existence of the Russell set of V, is false in V,,
but true in V.. In both cases, the sentence fails in some domain and is verified in a
strictly larger one. According to the classification criterion developed here, this makes
them inherently relativistic.

Note that what I call inherently absolutistic and inherently relativistic sentences
is inspired by, though not identical with, the distinction between problematic and
unproblematic sentences in Rossi [42]. While Rossi’s approach primarily focuses on
the distinction between paradoxical and non-paradoxical sentences, the set-theoretic
case takes into account that any sentence that transcends some ranks of the cumulative
hierarchy due to size-restrictions gives rise to wider, more-encompassing ranks. This
is particularly important for the case of large cardinal axioms mentioned above. It
is important that, even though paradoxical sentences and large cardinal axioms are
classified as inherently relativistic by the semantics to be developed below, this does
not mean that they are equally problematic in all respects. Nevertheless, from the
relativist point of view, they exhibit a crucial structural similarity: both require an act
of domain expansion. Working within a given V,,, the sentence asserting the existence
of the Russell set of V,,, and the sentence asserting the existence of a set of size k > «,
are both false in V,, and become true only in some ¥ with > «. In this sense. both
statements demand that we step outside the current set-theoretic universe in order to
interpret them as true. The mechanism at work—failure at one level, truth at a higher
one—is structurally the same.

Furthermore, what we classify as a paradox often depends on the background
context. Russell’s paradox is typically regarded as a paradox, but in standard axiomatic
contexts (such as ZFC), it is treated as a theorem stating that a universal set cannot
exist. The contradiction arises only when one assumes such a set exists. From this
perspective, even paradigmatic paradoxes like Russell’s share more with large cardinal
principles than might initially be assumed: both are sentences whose evaluation
highlights the limits of a given domain and the need for extension beyond it. In
that respect, the semantic framework developed here justifies grouping them under

23 As emphasized by an anonymous referee, this would just be formalized in the standard way
as Va(Ord(a) — 3(0rd(B) Na < f A Va € Vp)).
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the same formal category of inherently relativistic sentences—while still allowing for
important conceptual distinctions between them.

It is also important to clarify why the meta-theoretic assumption of large cardinals
is unproblematic. Although sentences asserting the existence of large cardinals are
classified as inherently relativistic within the object language, this only highlights
that some models fail to accommodate them. It does not mean that such sentences
are problematic in any stronger epistemic or metaphysical sense. From an absolutist
standpoint, which bicontextualism partially retains, there is nothing puzzling about
assuming the existence of inaccessible cardinals at the meta level, while simultaneously
classifying them as non-absolutist truths about the set concept.>*

3.2. The RU approach. Rayo and Uzquiano [40] develop a generalization of
standard model theory based on higher-order logic that is compatible with generality
absolutism.””. The main idea of their proposal (the RU approach, as I call it) is
to rephrase key principles from standard model theory (model, variable assignment,
satisfaction) for a first-order object language in a second-order metalanguage. For that
purpose, a free monadic second-order variable X is taken to code the notion of a model
for a first-order object theory.

Rayo and Uzquiano [40] combine their higher-order semantics with the plural
interpretation for higher-order expressions also developed by Boolos.”® On the plural
interpretation, monadic second-order variables do not denote sets or set-like entities,
as in standard semantics for second-order logic.27 Rather, second-order variables
introduce a new kind of denotation, so that they plurally denote first-order entities.”® On
the plural-interpreted RU approach, then, a ‘model’ for a first-order language is given
by the values that the second-order variable X takes according to the second-order
definition they give.

One key advantage of the plural-interpreted RU approach is that it allows us to
dispense with what Cartwright [9] famously called the all-in-one principle. According
to this principle, the domain of a model must always constitute a set or some other
collection-like entity. In contrast, the RU approach avoids reifying ‘domains’ and
‘models’, as ‘domains’ are not treated as entities themselves but rather as the first-
order entities plurally denoted by higher-order variables. As a result, the all-inclusive
domain is not a ‘thing’ in the strict sense, making it immune to the relativistic argument
from paradox, which only applies to reified domains, such as sets. This flexibility is
pivotal: by rejecting the all-in-one principle and adopting a plural interpretation of
higher-order variables, the RU approach circumvents set-theoretic size restrictions
and aligns with generality absolutism.

One final note on the object theory: ontologically speaking, the relativistic solution
to the paradoxes is based on the cumulative hierarchy. However, this is just a special
class of models of set theory, since, after all, it doesn’t include the nonstandard models
of (first-order) ZFC whose existence follows from the compactness and Lowenheim—
Skolem theorems. Following Zermelo, I want to rule out all these nonstandard models

24 I am especially grateful to Deborah Kant and an anonymous referee whose constructive

suggestions have significantly improved this section.

22 Their paper is based on ideas developed by George Boolos in the 1980s (see Boolos [6. 7])
Ibid.

27 See Bacon [1], Bell [3], and Shapiro [44].

28 See Florio & Linnebo [13—15] for general plural logic, and Rayo [39] for plural denotation.
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and focus only on structurally nice models in the form of V. Consequently, I need
to work with a theory strong enough to yield (quasi-)categorical axiomatizations.
There are at least two options available: either work with a second-order version of
ZFC, or with an infinitary one. Both give the desired results, and single out only the
structurally nice models from the cumulative hierarchy. In what follows, I’ll use the
infinitary approach.”” The choice made here is primarily technical, and ZFC, would
work just as well. Nevertheless, the infinitary approach allows us to work with a form of
first-order logic which requires just a modicum of modifications to the RU approach.*’
This means that I have to take an infinitary language as object languages and adjust
the definition of satisfaction accordingly. This leads to the following definition.

DEerFINITION 3.1. Let L be afirst-order language which satisfies the following requirements:

1. L has € as its only relation symbol, and has no function symbols;

2. L has a name for each set;

3. for every every ordinal o, L(v) is the restriction of L to Vy:

4. for ordinals K, A, L, is the infinitary language resulting from L by allowing
disjunctions of length k and quantifier sequences of length A.

By requirement 1, the only relation constant is €, and the language has no function
constants. This simplifies the definitions and comes at no cost since functions can
always be defined by relations that are univocal to the right. By requirement 2, the
object language has a name for every set. which makes the language huge.’' By
requirement 3, the restricted languages £(c) have names for every set in V,,, where o
is the ath inaccessible rank and ¥V, is the ath inaccessible rank. By regularity of «,
|L(a)| = | V4| = |H ()] = a. By requirement 4, we have infinitary languages of the
form L,,;, which allow disjunctions of length < k and quantifier sequences of length
< 4. Requirements 3 and 4 can be combined. so £L,; () is the first-order language with
aname for each set in V,,, allowing disjunctions of length < x and quantifier sequences
of length < A. In practice, however, I will only consider cases where 4 = &, so I will
use L, as short for L., (and accordingly £, (c)) to simplify notation.

3.3. An absolutist-fiiend semantics for set theory. The definition of a higher-order
model for £, (k) is identical to the definition of a higher-order model for £, so the
difference between standard and infinitary first-order languages will only be important
for the definition of the satisfaction predicate. The model predicate will be defined in
such a way that it captures the case for £ and for £(x), the restriction of £ to V.

2 For the second-order version ZFC,, the important theorem is the famous quasi-categoricity
theorem from Zermelo [50] (see also Button & Walsh [8. chap. 8.A]). according to which
models of ZFC, are exactly the strongly inaccessible rank-initials segments of the cumulative
hierarchy. Regarding the infinitary version, a version of ZFC developed in an infinitary
language is strong enough to characterize the sets, hereditarily of cardinality less than k,
H (k) (see Karp [25]). Moreover, whenever k& is inaccessible, V,; = H(x), which yields the
desired result. See Appendix B for a detailed presentation of the object theory together with
the characterization theorem.

Using a second-order object theory instead, the definition of the RU model for the second-
order language would have to be given in a third-order metalanguage. Then, I'd have to give
an interpretation of the third-order variables used in the definitions. And. if I stick with the
use of plurals in the metatheory, this would then require superplurals in the metametatheory.
However, superplural resources are controversial (see Florio & Linnebo [15, chap. 9]).
Note that we cannot talk about the cardinality of £ since £ is not a set-theoretic object.

30
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This will correspond to the intuition given in §3.1 that the interpretation function,
when used to interpret £ over all sets, is a total function, and when restricted to a
smaller model, is only a partial function. However, this makes it necessary to adapt the
classical higher-order semantics in some way: the definitions given in the literature don’t
consider partial interpretation functions.?> Formally, the restriction is implemented by
requiring that only those constants in £(x) have denotation, and those in £ \ £(x) have
no denotation. For the limit case, where £(k) = £, £\ L(x) = 0.>* The definition of
a model for a first-order language is given in monadic second-order logic.

DEFINITION 3.2 (First-Order RU-model). For every unary second-order variable X, the
second-order formula “X is an RU-Model for L(k)”, in symbols M(X), is defined as:

M(X) ¢ IxX(("V7, x)) /\Vx[X(x) = (Fy(x = (VLy)Vv
JuIv(x = (u.v)) vV IwIz(x = ("€, <wz>>))]/\
Vx[Con,.i(x) V Var,(x) = 3y (X ((x. ) A X(("V",y)))]/\

Vx[Con[;\K(x) V Vargy . (x) — —Sy(X((x,y)))]/\
VwVZ[X(<"e", (w.2))) = X (V7 w)) A X (7Y, z))].
REMARK 3.3.

o An RU-model for L(k) contains ordered pairs of three different kinds. There are
pairs of the form ("V7, x), encoding that X can be quantified on; ("€, (x,y)).
coding that the pair (x,y) is in the extension of the €-relation; and (x,y).
where X is either an L(k)-constant or an L(k)-variable, which encodes that y
interprets X.

e According to the above definition, X is a ‘model’ for the language L(k) if and
only if X is non-empty, and X contains interpretations for all L(k)-constants,
-variables, and for all the n-ary L(k) relation constants. Moreover, X does not
interpret the constants (i.e., nhames) that are contained in the big language L but
not in the smaller L(k). This is due to the already mentioned intuition that when
we talk about objects outside V,, with L(k), this is off-topic.

e Recall that I use the plural interpretation for the higher-order variables, so when
1 speak about X as a model, this is actually misleading. Rather, the objects
that collectively satisfy the above definition, when combined, interpret the object
language L(k). I will nevertheless often fall back to standard model-talk for
simplicity. However, the reader should bear in mind that this can always be
translated back into more complicated plural-talk. Consequently, expressions
such as the model should not falsely be read as reifications of pluralities into
collection-like entities.>*

32 See, e.g.. Rayo & Uzquiano [40], Rayo & Williamson [41], Button & Walsh [8, sec. 12.A].
Trueman [47, sec. 7.A], and Rossi [42].
This is again a slight abuse of notation, since £ is not a set-theoretic object, and so set-
theoretic operations are not defined for £. However, the intuition should be clear enough.
41 will, again, use ‘model’ and model (with and without quotation marks). as in the case of
‘domain’ and domain. See fn. 6.
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e Note that unlike the standard approach (in model theory but also the approach
presented in Rayo & Uzquiano [40)), in the above definition, the ‘model’ already
contains the variable assignment. This follows the approach developed by Rossi
[42] and is only to simplify definitions. It is important for the definition of
variations because I have to define them to be variations of ‘models’ and not
Jjust of assignments, which I do next.

3.3.1. RU-domains and RU-variations. Next I will define the domain component
and the variations of variable assignments in the higher-order framework. These
definitions will be crucial for the definition of the satisfaction predicate. I start with the
domain component.

DEFINITION 3.4 (RU-domain). For all second-order variables Y and X, the second-order
Sformula “Y is the RU-domain of the RU-model X", in symbols D(X. Y), is defined as:

D(X. ¥) 15 M(X) A vX(m) &I XG) Ay = (Y, x>))

The domain component Y of an RU-model X contains all and only those objects
(sets), which the RU-model can quantify on.

Next I will formalize the notion of a variation of a variable assignment. As already
anticipated in Remark 3.3, variable assignments are part of the definition of an RU-
model, and thus a variation of an assignment is a variation of an RU-model. Since
the focus is on infinitary object languages, a variation is always defined for a sequence
of variables. Let the object language be L. Here is the definition of a variation for a
sequence of variables X, of length o for a < «.

DEerINITION 3.5 (RU-Variant). For any sequence of first-order variable X, and any
second-order variables X, Y. the second-order formula “the RU-model Y is an x,-
variation of X", where X, is a variable sequence of length a < k. in symbols V(X. Y, X,,).
is defined as:

V(X, W, x,) 1> M(X)AM(Y)AIZ(D(X, Z) AD(Y, Z))A
Vy(y #x1 A ANy # xq = V2(X((r.2)) & Y((.2)))).

According to Definition 3.5, Y is an RU-x,-variant of X if and only if both X and Y
are RU-models with the same domain Z, and if they both agree on the interpretation
of all variables, expect possibly those in x,.

3.4. The satisfaction predicate. Recall that I want to have a semantics that allows
me to assign every sentence that has denotationless terms the intermediate truth value
1/2. All other sentences, i.e., all those in which each term denotes, shall receive a
classical truth value. For that purpose, I use a weak Kleene satisfaction predicate. In the
literature on weak Kleene, the third truth value is sometimes called infectious, because
as soon as a sentence ¢ has this truth value, any complex sentence that you build with ¢
also has this truth value. There might be different intuitions on that point. For instance,
one might argue that even though ¢ is meaningless in this sense, a sentence, such as
© V 0 = 0, should still come out true. However, I stick with the off-topic interpretation.
The resulting picture is that of a sequence of relativistic models V71, ..., V. ... (where V;
is the first inaccessible, V,, is the ath inaccessible and so on) and additionally a plural
‘domain’, to be denoted by V. which contains all sets. Moreover, I use the languages
Li.... Ly, ... as well as the big language £ containing names for every set. However, the
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language I’'m ultimately interested in is the big language £. When we interpret £ over
the sequence of V,’s, i.e., as we move up in the cumulative hierarchy, more and more
L-sentences receive a classical evaluation. The limit case is when we look at £ and the
all-inclusive ‘domain’ V, where all terms denote, and where satisfaction is fully classical.
Here is the higher-order definition of the weak Kleene satisfaction predicate Sat,, for
the object language L, that allows for k-sequences of quantifiers and disjunctions.

DEFINITION 3.6 (Weak Kleene Satisfaction). Let X and Y be second-order variables. The
second-order formula “the RU-model X with RU-domain Y satisfies the L-sentence ¢,
in symbols Sat, (¢, X, Y), is defined as follows: Sat, (o, X, Y ):iff

1. M(X)andD(X,Y) and
o =v; = vj, thereare y;. y; s.t. X ((vi. yi)). X (v, y;)) and y; = y;. or
). X

2.
3. @ =wv #vj, thereare y;. y; s.t. X ((vi. yi). X((v;. ;) and y; # y;. or
4. o =v; € v, thereare y;. y; s.t. X ((v ,y>),X((v_,,y_/>)andX(<re_‘,(vi,v‘,’>>),

H

or
5. ¢ =wv; ¢ v, there are yi.y; s.t. X((vi.yi)). X((v;.y;)) and —~X(("€™
(vi,vj))). or

6. ¢ =-yandSat.(y.X,Y), or

7. o=/ D, ®={p,:a<k} C For,, there is some p, € ® s.t. Sat,(pq. X. Y),
and for all g € @, Sat,(pp. X. Y) or Sat,(—pp. X. Y), or

8. p=-\/D, ®={p,:a<k}CFor,, and for all p, € ®, Sat,(—~w,. X. Y),
or

9. ¢ =Vx.w(0). and for every Ws.t. V(X, Wx,.;) Sat,(w(x.), W.Y). 0

10. ¢ = —Vx,w(x,), and for some W s.t. V(X, W, x,.). Sat,.(—y(Xy). WY)

where For, is a set of L.-formulae.>

The second-order formula Sat, (., X, Y) generates the set of £.-sentences that are
true in the RU-model X with RU-domain Y. Let us adopt the following convention.

REMARK 3.7 (Convention on the enumeration of inaccessible ranks). The enumer-
ation of V-ranks is from now on restricted to inaccessible ranks, i.e., by Vi, I mean the
first inaccessible rank, by V5, I mean the second inaccessible rank, ..., by V. I mean
the ath inaccessible rank of the cumulative hierarchy, and so on.

With Remark 3.7 in place, fix a standard model V,, i.e., the ath inaccessible rank of
the cumulative hierarchy. This generates the set of sentences that are true in V.

DEeFINITION 3.8. Let V,, be the acth inaccessible rank of the cumulative hierarchy. The set
of L (a)-truths of V., in symbols SatS, is the extension of Sat, over V,. defined for the
restricted language L,.(a):

aty :={p € L,(a) | Satx(p, X, Va)}.
3 To adapt Definition 3.6 to the strong Kleene satisfaction scheme, replace clause 7 by
T p=\/ D, O©={p,:a<kr} C For, and for some ¢, € @, Satx(yy. X. Y).

The requirement of 7* for a disjunction to be satisfied by a model is that one disjunct
is satisfied regardless of whether the other disjuncts have a classical truth value. Clause 7
requires instead that all disjuncts have a classical truth value.
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The set of all £,-truths over the plurality of all sets is just the extension of Sat relative
to the RU-model which has V as its domain. i.e., the extension of Sat" (¢. X. V). I also
use the overline notation for complements, i.e.,

Sat)i/ ={p|pe Sat,\!},

and Sat is the complement of Sat;,, respectively.
Fixing £, and assuming an unbounded sequence of inaccessible models, the above
definitions produce the following sequence:

Satz, Sat,lw Sati, ...,Sat?

PEETE

where Sat) corresponds to the model with domain V. and Sat® corresponds to the
model with domain V.

3.5. Combining absolutism and realismin the RU approach. Armed with the higher-
order semantics and the weak Kleene satisfaction predicate, let me now define the
notions of inherently absolutistic and inherently relativistic sentences of the language
L. 1.e., the language of set theory that has a name for every set and that allows for
disjunctions and quantifier sequences of length «.

I start with the definition of the inherently absolutistic sentences. 1 first give the
definition and unpack it afterwards.

DErFINITION 3.9. The absolutely general truths of L, in symbols Abs,, are defined as
follows:

Abs,, := Sat? \ (Sat¥ N U Saty).
acQ

The absolutely general L, -truths are certainly evaluated by the ‘model’ with ‘domain’
V, as it can be seen in the first part of the definition. However, we cannot just take these
L-truths, because the plurality of all sets, under certain large cardinal assumptions,
validates sentences, such as ‘“There are 36 inaccessible cardinals’, which are not validated
by all ranks smaller than the 37th inaccessible rank of V. We need to subtract all
the £,-sentences on which the ‘model’ with ‘domain’ V and all the smaller models
disagree. This is done in the second part of the definition: ., Satj is the union of
all complements of collections of L,-sentences that are true in some standard model.
In effect, I subtract all sentences that are true in V. but false in one of the V,,’s.

One might ask why not just take as the absolutely general truths just those sentences
on which all models agree, i.e., why not define them as follows:

Abs? := SatY N ﬂ Saty;.
acQ

The answer is that this leaves open the possibility that there are sentences which are
true according to V, but which are left undecided by all the V,’s. One may have
different intuitions about whether or not to count such cases as absolutely general
truths. However, I take Abs, and not Abs; as the official definition.

According to the bicontextualist semantics, sentences like the examples ‘Nothingis a
member of the empty set’ or ‘Everything is self-identical’ are contained in the collection
Abs,. These sentences are true according to a model that has V as its domain. Moreover,
no standard model falsifies any of these sentences.
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Let me now define the inherently relativistic truths. In this case, we cannot simply
identify the inherently relativistic sentences with the relativistic truths of some standard
model, since this would only give us a subcollection of the inherently relativistic
sentences. Thus, I start with the relativistic truths of some V. i.e., the sentences that
are true in a standard model by virtue of their inherently relativistic character, and give
the generalization to the whole collection of inherently relativistic truths afterwards.

DEFINITION 3.10. The relativistic £, (a)-truths of V,, in symbols Rel?, are defined as
follows:

Rely; := Sat;, \ Abs,.

Rel? contains sentences of £, which are true in the standard model V,, (the ath
inaccessible rank of the cumulative hierarchy). but which are not inherently absolutistic.
Consider, for example, the sentence “There are 36 inaccessible cardinals’. This sentence
is true according to the ‘model’ that has V as its ‘domain’ (under appropriate large
cardinal assumptions), and hence it is in Sat? . However. it is not contained in any Sat”

for 1 < n < 36, and so it is in, say, Sat,lﬁ5 . Consequently, by the definition of inherently
absolutistic truths, it is not in Abs,,.. But from V37 on, the sentence becomes true, and
so it is in Sat;, and also in Rel}; for & > 36. So we have, for every V. the inherently
relativistic truths of V,,. To get the inherently relativistic truths simpliciter, we take the
union of all the relativizations to standard models.

DEFINITION 3.11. The inherently relativistic truths of L, in symbols Rel,, are the union
of all relativizations of inherently relativistic truths to standard models of the form V:

Rel,, == U Rely;.
acQ

For example, Rel,; contains all large cardinal sentences of the form ‘There are «
inaccessible cardinals’ as discussed above, since they all have countermodels and enter
Relf for f > a. On this approach, then, large cardinal sentences of this form are
considered to be relativistic sentences.

REMARK 3.12 (Bicontextualist classification of inherently absolutistic and inherently
relativistic truths). The bicontextualist semantics for the language of set theory classifies
sentences as inherently absolutistic and inherently relativistic as follows:

e the inherently absolutistic truths are just the absolutely general truths of L.
given by Abs,,

e theinherently relativistic truths of L, are defined as the union of all relativizations
to standard models V., given by Rel.

The above classification distinguishes two kinds of truths of the language of set
theory: we have the inherently absolutistic truths, which express facts about sets that
have no countermodels, neither in the cumulative hierarchy nor in the form of the
plurality of all sets, and we have the inherently relativistic truths, which express facts
about sets that can be true relative to some models and false relative to others.

My proposal is that we think of this distinction as giving each £,-sentence its
intended interpretation. So, for example, the sentence Vx(x = x) contained in Abs,.
which is taken to be inherently absolutistic, has as its intended interpretation the
plurality of all sets. On the other hand, all sentences contained in one of the collections
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Rel? always have only restricted quantifier ranges and are therefore to be inherently
relativistic. We can approach inherently relativistic sentences in a coarse-grained way,
and say that all sentences in Rel, are inherently relativistic, or we can approach them
in a finer-grained way and consider the relativizations of relativistic truths to standard
models as given by the Rel;,’s. On this approach, the natural relativisation of a relativistic
truth is given by the first model that makes it true. So the natural relativisation of ‘there
are 36 inaccessible cardinals’ is given by the 37th standard model V3;. In any case,
the intended interpretation for inherently relativistic sentences is not given by a model
whose domain is the plurality of all sets.

3.6. A bicontextualist notion of logical consequence. Having defined the sequence
of Rel and Abs,, we can define a bicontextualist notion of consequence that respects
intended interpretations. Note that here, we focus on standard models and consider
the sequence of Rel?’s rather than Rel,.

DEFINITION 3.13. Let V, and L(a) be as above (for a < k), and let {T', ¢} be a set
of L, (k)-sentences. The fact that the RU-model with RU-domain V,, is a model of . in
symbols V,, =2 @, is defined as follows:

Vo ES ¢ if and only if ¢ € Rel? U Abs,.

The fact that the argument from T to o is bicontextually valid, in symbols T |E2 ¢, is
defined as follows:

' =8 o if and only if. if all sentences in T are in Rel, U Abs,, so is .

It is important that the |=2-relation is defined for £, (), i.e., the restriction of £,
to V,. The reason for this is that otherwise, sentences from larger languages could get
into Rel? U Abs,, via Abs,. For example, if ¢ is a sentence in £,, but not in £, () that is
in Abs,—i.e., an absolutely unrestricted truth that is validated by some Vg for > a,
remains true from there on, but was undecided by all ranks below }V'3—we would end
up in the absurd situation where V,, validates sentences about objects outside V. To get
a bicontextualist notion of logical consequence that respects intended interpretations
and is not restricted only to some standard model but considers the plurality of all
sets, just replace Rel? by Rel, in Definition 3.13.

§4. Set-theoretic bicontextualist treatment of the paradoxes. Let me now explain
how the bicontextualist semantics treats set-theoretic paradoxes. I will focus on
Russell’s paradox because other paradoxes, such as the Burali-Forti paradox, are
treated in a similar way. Consider some rank V,, of the cumulative hierarchy and the
sentence

IxVy(y ex <y ¢ ).

Since there is no such set x in ¥/, this sentence is false in the sense of both |= and of |=2.
This is true for any model in the cumulative hierarchy, and also for the absolutist model.
However, such a sentence corresponds to an application of the naive comprehension
scheme, and not, as it is now standard, to an application of the separation scheme.
Nevertheless, it shows that there is no universal Russell set, i.e., there is no set containing
all and only the non-self-membered sets. This is also true according to set-theoretic
bicontextualism, i.e., according to =%. So we get the following lemma.

https://doi.org/10.1017/51755020325100774 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020325100774

844 SIMON SCHMITT

LEMMA 4.1. There is no universal Russell set, i.e., no set R such that
Vx(x € R+ x ¢ x).

Proof. If there were an R such that Vx(x € R <> x ¢ x), then R€ R+ R ¢ R.
Contradiction. O

Now consider the case of separation. Instead of considering a sentence postulating
the existence of a universal Russell set as above, let’s consider the case where the
universal quantifier is syntactically restricted to the model V,:*°

pr, =3xVy(yex o yeVoahy ¢ y).

There is no set of all non-self-membered sets of V,, inside V. so in the classical sense
Vo - pv, . However, since R, is a subset of V,,, and thus an element of the powerset
of V. Ry isin Vo4 and 8o Vayy = py, . Again, if we ask for a Russell set of V.,
we get similar results: Vi1 [~= py, L but Voo =, .1» and so on, all the way up the
hierarchy.

Now consider the bicontextualist notion of logical consequence 2. Since L, ()
has no term for V,,, the sentence py, remains undecided over V. In the bicontextualist
semantics, this is implemented by the fact that the truth value of py, in ¥, is 1/2. At
the next stage, V1. the sentence becomes true, and so V41 =5 py, . Butagain, py, "
has truth value 1/2 and becomes true only from ¥, on, in the sense described in §2.

Note, however, that there is a slight difference between the relativistic treatment of
the paradoxes in the standard setting and the one presented here: while according to =,
the existence of a Russell set relative to ¥, is strictly false in V. according to =2, the
corresponding sentence is undecided in V. All Russell sentences of this form remain
undecided until a point is reached where they are declared true, and then they remain
true from that point on. As a consequence of that, the fact that every set has a Russell
set is true in the absolute sense. This allows me to prove the following claim.

LeEMMA 4.2. It is an absolutely general truth that every set has a Russell set, i.e., for
every set A, there is a Russell sentence

pai=3IVy(yEx =y cdny¢y)
such that p4 € Abs,.

Proof. Let A be a set, a be the smallest ordinal such that 4 € V,,, and k¥ > «
be inaccessible. Then, V,, = ZFC, and so by the axiom of separation, there is a set
Ry={x € R, |x ¢ x}. Since Ry C A, and since V,, is transitive, R4 € V,,s0 V, E
p4. Since only languages of the form £(x) have names for 4. the truth value of p4
is 1/2 in all ¥, for A inaccessible < x, and from ¥V, on, the truth value of p4 is 1.
Moreover, R is a set, and hence it is among the sets, i.e., R4 < V. Hence. p4 € Satx.
This implies that p4 € Abs,. O

Note that the lemma could also be formulated without making use of the constants
A and quantifying over all sets. The sentence would then be

VzaxVy(y ex+yezAydy).

36 Note that this is not the standard notion of a syntactic restriction of the universal quantifier
that is in place here, as this would be of the form Vy(y € Vo — ...). However. the right-hand
side of the biconditional ensures that y € V4, which is enough.
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This sentence also comes out true in all strongly inaccessible ranks, as well as in the
universal ‘domain’. The reason to work with constants is that, from the absolutist point
of view, this is a stronger claim. It says that for every set 4, the sentence “The Russell
set of A exists” is an inherently absolutistic truth of bicontextualism.’’

What the treatment of the paradoxes in the bicontextualist semantics shows is that
sentences of the form py,, must always carry the restriction to a previously given set.
But this does not rule out absolutism in general. As the semantics of the previous
section suggests, unproblematic or inherently absolutistic sentences can be interpreted
over a domain containing all sets without any problems whatsoever. Moreover, the
relativistic treatment of the paradox is compatible with absolutism.

§5. Extracting core properties. Bicontextualism for sets addresses a fundamental
shortcoming of the standard semantics for set theory, namely, it allows for a truly
absolutistic interpretation of the inherently absolutistic sentences of the language
of set theory. In my view, an adequate set theory must be about all sets—not just
some. My framework captures this requirement through the absolutistic aspect of the
semantics, which ensures that, under my interpretation, set theory is truly concerned
with its subject matter—the entire universe of sets. As we’ve seen, this is achieved by
allowing the quantifiers of inherently absolutistic sentences to range over absolutely
all sets.

The distinction between absolutistic and relativistic sentences is crucial. The
bicontextualist semantics allows for an absolutely unrestricted interpretation of
those sentences that are intuitively about all sets. In particular, sentences like the
axiom of extensionality, which provides an identity criterion for sets, are inherently
absolutistic. Such sentences cannot have a countermodel, neither in the sense of
an initial segment of the cumulative hierarchy, nor in the all-inclusive ‘model’.
Consequently, I suggest, inherently absolutistic claims express fundamental core
properties about the set concept. In contrast, the paradoxes can be seen as placing
limitations on the possible interpretation of some of the sentences in the language of
set theory. More precisely, the quantifiers of the sentences occurring in the paradoxes
cannot have an unrestricted quantifier range, on pain of inconsistency. Set-theoretic
bicontextualism respects these limitations by restricting the quantifiers of problematic
sentences.

The class Abs, contains absolutely general truths of the language of set theory.
These sentences are characterized by two features. First, every sentence ¢ € Abs, is
true according to the RU model that has all sets in its ‘domain’. Second, no sentence
@ € Abs, has a counter-model in the cumulative hierarchy. Examples are the axiom
of extensionality, self-identity claims, and the like. A sentence ¢ which has these two
features expresses fundamental properties of the set concept. Not only is it true in the
all-inclusive RU model—i.e., ¢ € Saty—but also any level in the cumulative hierarchy
large enough to decide ¢ makes it true—i.e., ¢ ¢ Sat, for each a.

The question which sentences go into Abs, can be answered, at least partly, via
absoluteness results. More precisely, X; upwards absoluteness and IT; downwards
absoluteness generalize to the absolutist case: whenever a X;-sentence is validated by
some V,, it remains true not only throughout the hierarchy of V,’s, but also in the

37 Thanks to an anonymous referee for highlighting this point.

https://doi.org/10.1017/51755020325100774 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020325100774

846 SIMON SCHMITT

limit case where the model has as its ‘domain’ the universe V. Similarly, whenever a
I1;-sentence is validated by the absolutist model V, it remains true in every rank of the
cumulative hierarchy. Note, however, that in the case of I1; downwards absoluteness,
we cannot use the language £, which has a name for every set. The reason is that if ¢
is a IT;-sentence of £ of the form Vxw (x), where y contains a term that some smaller
language £(a) does not contain, then ¢ has truth value 1/2 in ¥, even though it has
truth value 1 according to V.

The situation is somewhat different for Ag-sentences, since their absoluteness
depends crucially on the transitivity of the sets, and the universe of sets, taken
to be a plurality, is not transitive because pluralities are flat. To see this, consider
Vi ={0,{0}, {{0}}{0.{0}}}. which is transitive. However, if we only look at {{0}}. it
is not transitive because it has an element, {()}, which is not a subset of {{()}}, because
(¢ {{0}}. But of course {{0}} is a set, and so it is in the universe of sets. This means
that we cannot argue downwards from V by A absoluteness. What we can do, however,
is to argue upwards, because whenever a Ag-sentence is true in some V. the set to
which the quantifiers are restricted is also in V, and so the sentence remains true. The
other direction does not hold. All of the following theorems are generalization of the
Ao-, 21-, and I1;-absoluteness theorems.>®

THEOREM 5.1. Let ¢ be a Ao-formula of L. ¢ € Sat;, for some o if and only if ¢ € Saty.

Proof. 1If ¢ contains no quantifiers (i.e., is atomic, or of ¢ is of the form y A y,
w vV y, =y, or w — y where both y and y contain no quantifiers), then ¢ € Sat? if
and only if p € Satz.

Let ¢ be (3x € y)y(x),and y € V,,. Assume for induction that y(x) € Sat? if and
only if y(x) € Sat.

=: If ¢ € Sat?, then (3x € y)y(x) € Sat? for some x € V, such that x € y. But
thel\1/, since V,, <V, x and y are in V. Hence, by induction hypothesis, (Ix € y)w(x) €
Sat,..

«<: Assume (Ix € y)w(x) € Sat! for some y in V. Then, for some x € y. w(x) €
SatY. Since V, is transitive. x € V,.and so by induction hypothesis. we get y(x) € Sat®
for x € V,, and hence (3x € y)y(x) € Sat?. O

COROLLARY 5.2. Let ¢ be a Ag-formula of L. If v € Sat;, for some a, then ¢ € Sat):.
Proof. Immediate from Theorem 5.1. O

THEOREM 5.3. Let ¢ be of the form Ixy(x), where w(x) is a Ag-formula of L with all
free variables displayed. Then ¢ € Sat implies p € Satffor all > o, and ¢ € Sat,\:.

Proof. Let ¢ be Ixw(x). where w(x) is a Ap-formula with all free variables displayed
and assume that ¢ € Sat?, i.e., Sat,(Ixy(x), X, V,,). Then, there is some y € V, such
that Sat, (w(y). X, V). Then, since w(y) is Ag. by Theorem 5.1, Sat, (w(y). X, V), and
since y is a set and therefore in V. Sat, (Ixy(x). X. V). i.e.. ¢ € Sat). O

THEOREM 5.4. Let ¢ be of the form Vxy(x), where y(x) is a Ao-formula of L(c) with
all free variables displayed. Then ¢ € Sat;, implies ¢ € Satﬁfor all p < a,and ¢ € Satx
implies ¢ € Sat;, for all a.

38 See Devlin [10, sec. 1.8].
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Proof. Let ¢ be Vxw(x), where w(x) is a Ap-formula with all free variables
displayed and assume that ¢ € Sat” . i.e.. Sat,(Vxy(x). X.V). Then, for each y < V.,
Sat,(w(y). X.V). Fix any V,. Since V, <V and since w(y) is Ag, by Theorem 5.1,
Sat.(w(y). X. V,) for all y € V,,. But then, Sat, (Vxw(x). X, V,).1.e., ¢ € Saty. O

The above results can be used to get a clearer picture of which sentences are in
Abs,: since we have X upwards absoluteness, all £;-sentences that are true in the first
inaccessible segment will remain true throughout the whole bicontextualist framework.
Consequently, all Z;-truths of V| are in Abs,. Moreover, since all I1;-sentences that
are true in the universe remain true no matter how far down the hierarchy we go, they
also have no counter-models. Consequently, all IT;-truths of V are in Abs,. Finally, all
Ao-sentences that are true in any V, remain true in all other Vs and in V, so they’re
also contained in Abs,. So, if

A Cs, Satﬁ, B C, Sat\H/, C Cay U Satg
a€eQ

are the sets of X;-sentences in Sat;,, of IT;-sentences in Satx, and of Ag-sentences from
all the Sat;’s, then

AU BUC C Abs,.

Moreover, the ZFC-axioms are absolutely general truths of the language of set theory.
This is a corollary of the following theorem.

THEOREM 5.5. The universal domain satisfies the ZFC axioms, i.e., for all ¢ € ZFC,
Sat, (¢, X, V).

The proof consists of verifying that all ZFC-axioms hold in V. I write V |= ¢ for
Sat, (. X, V). Most cases can be adopted from the proof of that inaccessible ranks
are models of ZFC. However, it is crucial to know that V, the universe of sets, is
closed under set-of operations as encoded by ZFC by assumption. This follows from
the definition of the cumulative hierarchy V.

There is another important aspect: many steps in the proof that inaccessible ranks
are models of ZFC start by showing that if a particular set or sets are contained in
some V., then other sets are contained in V¥, as well. For instance, if x € V. then so is
the powerset of x, its unionset, etc. Then, the proof proceeds by using Aj-absoluteness
to show that not only is the particular set contained in V,, but V, also thinks that
it contains the particular set, and therefore satisfies the axiom in question. This last
step is crucial. It relies on the background assumption that the particular set we'’re
looking for is contained in the background universe which, by assumption, has all the
sets, is a cumulative hierarchy, and therefore is always right about what sets there are
and how they are structured. Then, since the definition of these sets is Ay, it follows
that the truth of the particular axioms in the background universe carries over to
the V. Theorem 5.5 operates directly on the background universe. This just makes
explicit what is usually taken to be implicit in the proof. However, this has the direct
implication that the second step—using Ag-absoluteness to show that the V, satisfies
the respective axiom—is not needed anymore. Therefore, most steps of the proof aim
to show that if some set is given, then its powerset, unionset, etc. is also a set. This
implies that they are contained in the background universe, and so the background
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universe, which is always right about what sets there are and how they are structured,
satisfies the respective axioms. Here is the proof.

Proof.

Extensionality Let x,y <V be distinct. Then, there is a set z € x Az ¢ y (or vice
versa), and since z is a set, z < V. Then,

VEWYy(x#y = Vuluecxcucy)),

which is equivalent to the axiom of extensionality.

Separation Let () be a first-order formula such that F = {y | ¢(»)}. Let x be a
set. Then the intersection F Nx = {y € x | ¢(y)} exists by first-order
Separation. Hence, F' N x is a set and therefore F N x < V.

Pairing Let x, y be sets. Since V is closed under set-of operations, a = {x, y}
is a set and therefore in V.

Union Let x be a set. Then, all y € x aresetsaswell,andz = {y | y € x} =
Ux is also a set and therefore contained in V.

Powerset If x is a set, then each subset y C x is a set, and so is their collection
P(x).

Infinity V, < V.

Foundation The set-theoretic universe is well-founded by assumption.

Replacement  Let y/(u,v) be a first-order formula such that G = {(u.v) | y(u,v)}
and suppose that y defines a functional relation on x, i.e., for every
u € x, there exists a unique v such that w(u,v). Then, by the first-
order Replacement schema, the image set y = {v | Ju € x w(u,v)}
exists and is therefore a set. Hence, G[x] X V.

Choice The universe of sets is well-orderable by assumption. 0

COROLLARY 5.6. The ZFC axioms are absolutely general truths of the language of set
theory.

Proof. Each inaccessible rank of V is a ZFC-model. Moreover, by Theorem 5.5,
the ZFC-axioms are in Sat)i/. Consequently, by Definition 3.9, the ZFC-axioms are
in Abs,. O

§6. Objections and replies. Let me now consider two potential objections against
the semantics for set theory developed above. The first one is based on the observation
that forms of absolutism can be recovered in ZFC via reflection principles or via inner
models. The second is that set-theoretic bicontextualism is too revisionary and might
therefore be anti-naturalistic.

6.1. Reflection principles and inner models. A first objection to bicontextualism for
sets is that absolutism in set theory can be achieved via reflection principles or via inner
models. Therefore, an extra absolutist interpretation is redundant, since truths about
all sets can be extracted from reflection or inner models.

The main idea of reflection principles is the following: the cumulative hierarchy is so
complex that it cannot be characterized by any formula ¢ of the language of set theory.
The reason is that any such formula that is true in the universe of all sets is already
true in some initial segment V. And so any attempt to characterize the cumulative
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hierarchy as the collection of all things that satisfy ¢ fails, because there is always a V7,
such that ¢ characterizes V.

For example, V is closed under replacement and powerset, but there is some V, for k
an inaccessible cardinal, which is already closed under replacement and powerset, and
hence, closure under replacement and powerset is not a unique characterization of V.
Godel therefore concludes that “[t]he universe of all sets is structurally indefinable”.*
The truth of any such description is already reflected by some rank.

Since reflection principles are usually presented as biconditionals, they work both
ways:*) not only are truths about all sets reflected by initial segments, but also facts
about the initial segments hold in the whole hierarchy. In this way, we can extract
facts about the cumulative hierarchy, i.e., facts where the quantifiers can be taken to be
unrestricted, from facts about initial segments.

Similarly, one could argue that absolutism can be mimicked by an inner model.
Starting from the language of set theory ZFC, and a standard model V,, of ZFC, an
inner model is a definable transitive class A in V. such that eV =e"*] dom(N)2.
N E ZFC, and where NV contains all the ordinals of V. This last fact is crucial: Since
inner models contain all ordinals, it is—depending on which inner model exactly we
consider—at least close to absolutism. But if this is the case, then inner models at least
allow us to mimic absolutism.

However, reflection principles and inner models do not quite provide what the
bicontextualist wants, i.e., a maximally general interpretation of the set-theoretic
quantifiers in the case of unproblematic sentences. Moreover, neither reflection
principles nor inner models show that paradoxes do not force us into relativism.
So even if absolutism can be achieved by such techniques, this does not mean that
bicontextualism can be achieved by reflection or inner models.*!

6.2. Anti-naturalism. Another line of criticism might arise from a naturalistically
minded philosopher, and might look roughly as follows: Mathematicians work with
ZFC (or some extensions thereof with large cardinal or forcing axioms), but they do
not use bicontextualist semantics, and so neither should the philosopher.

I believe that. in the end, such criticism is misguided. There is no doubt that ZFC is
the widely accepted canonical axiomatization of set theory, and I neither intend nor
have the ability to change this. However, it is important to clarify what my proposal is,
and what it is not.

Bicontextualism, at its core, classifies sentences in the language of set theory as
either inherently absolutistic or inherently relativistic. The debate between absolutists
and relativists is primarily a philosophical one, and my main goal is to contribute to
this discussion. My use of languages with names for every set and the RU approach
should be seen as methodological tools in pursuit of this philosophical aim.

Since the standard first-order language of set theory L, which includes only € as a
non-logical constant, is a sublanguage of my all-inclusive language £, which contains
a name to every set, we can easily recover the inherently absolutistic £c-sentences from
the inherently absolutistic £-sentences. In essence, I am using a distinct methodological

39 Wang [48. p. 280].
40 See, e.g.. Devlin [10, pp. 25-26].
! Thanks to Leon Horsten and Giorgio Venturi for emphasizing this point.
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tool to achieve a philosophical goal, rather than challenging the mathematical canon.
There is nothing anti-naturalistic about this approach.

What I explicitly do not intend is to settle inherently mathematical and set-theoretical
questions such as “What sets are there?’. This question can be reformulated as “What
is the ultimate large cardinal axiom to adopt?’. Answering this question is a task
for set theorists. If, however, set theorists settle on a particular axiomatization, say
ZFC 4+ V = UltL, then my approach can still be applied to identify the inherently
absolutistic and the inherently relativistic sentences.

6.3. Isn’t that just generality absolutism? The main claim of absolutism is that for a
given language £, there is an interpretation according to which the £-quantifiers range
over absolutely everything. Absolutists do not claim, however, that the £-quantifiers
always range over absolutely everything, but only that they sometimes range over
absolutely everything. Since bicontextualism also sometimes allows unrestricted
quantification, a natural objection to bicontextualism is that it is, after all, just a
version of generality absolutism. This, however, is not correct.

Even though one might paraphrase absolutism and bicontextualism as the claim
that quantifiers sometimes have an all-inclusive quantifier domain, the interpretation
of sometimes is a different one: according to absolutism, sometimes means, that there
is one L-interpretation according to which all £-quantifiers range over an unrestricted
domain. According to bicontextualism, sometimes means that only a special class of
L-sentences is adequate for an absolutistic interpretation.

This explains why bicontextualism really is an intermediate position: according
to relativism, no sentence can ever achieve absolute generality, and according to
absolutism, all sentences can sometimes achieve absolute generality. According to
bicontextualism, however, some sentences can never achieve absolute generality
(relativistic aspect), while other sentences can sometimes achieve absolute generality
(absolutistic aspect). In this sense, bicontextualism is neither fully absolutistic, nor
fully relativistic.

§7. Conclusion. As noted above, relativism is a strategy for avoiding set-theoretic
paradoxes. Dummett has argued that paradoxes prove absolutism wrong. But the
main lesson of this paper is that paradoxes do not force us into strict relativism,
since absolutism can be combined with a relativistic treatment of paradoxes. A more
cautious assessment shows that paradoxes only force us into relativism only with
respect to sentences that are crucial to the paradoxes. Unproblematic sentences can be
interpreted absolutistically even in the light of the paradoxes.

The development of a semantic framework that implements such an intermediate
position between absolutism and relativism provides us with a semantic criterion for
distinguishing between inherently absolutistic and inherently relativistic sentences. This
shows that some sentences of the language of set theory are most naturally interpreted
as expressing facts about only some sets, while other sentences are most naturally
interpreted as expressing facts about all sets.

Moreover, a partly absolutist, partly relativist semantics such as bicontextualism for
sets can be used to extract core properties of the set concept. The semantics can be
used to isolate a class of sentences of the language of set theory with the special status
of being true by the model containing all sets in its domain, and that are not satisfied
by any standard model in the cumulative hierarchy.
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§A. Infinitary logic. This brief summary of infinitary logic is not intended to be a
complete presentation.*” I start with a first-order language £ and show how to extend
its syntax and semantics to get an infinitary language L,;, which allows disjunctions
of length < k and quantifier sequences of length < A.

The first step is the syntax: we extend £ by a set of variables, Var,, of cardinality &,
and a logical operator \/ for infinite disjunction. The atomic formulae of £, are just
the atomic formulae of L.

As for complex formulas, we add an extra clause to the recursive definition, saying
that whenever @ is a set of £,;-formulas such that |®| < &, then \/ ® is a L,;-formula.
\/ @ hastheforme; V pa V... V @, V ... forall g, € ®, and we can also write \/aeﬁ Pa
(assuming that |®| = f.)

We add a similar clause for the quantifier case: for X a set of £L,;-variables such
that | X'| < A, 3Xp is a formula. We can also write (3xa)a<p¢. provided that | X| = f.
Infinite conjunctions and infinite universal quantification are defined according to the
usual conventions:

o NO:=-V{~p:pecd}
o VXyp:=-JX—p.

In this characterization, standard first-order logic is just the language that allows only
finite disjunctions and finite sequences of quantifiers. In the above terminology, we can
write £ as L.

Now for the semantics. An L;-structure is just an £ structure, and we just need to
add the following clauses corresponding to infinite disjunction and infinite existential
quantification to the standard first-order definition of satisfaction, where M is an
L-structure and ¢ is a variable assignment relative to M:

e M,og =\ @iff |®| < k and for some ¢, € P, M, 0 = ¢4,
e M.o | IXp(X) iff there is an X-variant g such that M, g = ¢(X).

Validity and logical truths are defined as usual.
However, there are some restrictions on the cardinals x and A:

e < k:ifl > k,there would be L, ;-formulas with at most k-many free variables,
but with A-many quantifiers, most of which would have no free variables to bind.

e x must be a regular cardinal. If & is singular, the languages £,;; and £, +; have
the same expressive power in the sense that an £, +;-sentence ¢ can always be
converted into an £, ;-sentence ¢* with the same meaning. However, this is not
a requirement for A because there is a difference in meaning between ‘there are
at least A-many’, and ‘there are at least A*-many’, even if A is singular.*?

To give just a very brief idea of the power of infinitary languages, consider how such
languages can uniquely characterize important mathematical notions such as finiteness.
This can be done by a single £,,, ,,-sentence. the language allowing countably infinite
disjunctions and only finite sequences of quantifiers:

\/ Axg, . 3Vy(y =XV VY = x,).

n<w

42 For a more detailed presentation, the reader is referred to Bell [4], Karp [25], and Marker
[32].
43 See Dickmann [11, p. 85 and p. 139] for details.
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We can use them to uniquely characterize important mathematical structures such
as the natural numbers. The first-order models isomorphic to N are just the class of
models of the £, .,-sentence

PA™ A Vx \/ x = succ"(0),

n<w

where PA™ is PA without the induction scheme, and succ™(0) is the result of applying
the successor operations n-times to 0.%*

§B. Characterizationof H(x)in L, +,+. Wecan uniquely characterize the structure
H(k). the class of sets hereditarily of power < k, in £,+.+. To do this, I will first
define the H(k)’s. Then, I will show how to properly characterise the notion of well-
foundedness in £, . Finally, I show that any structure M on which € is well-founded
(i.e.. which satisfies the £,,, ,,, -characterization of well-foundedness) and which satisfies
the L, +,+-sentences, which intuitively says that all sets are at most of power « and that
the domain consists of transitive sets only, is isomorphic to H (k).

Let’s start with the definition of the H.(k)’s: recall that a set X is transitive if x € X
implies x C X . The transitive closure of a set X, TC(X), is defined as the intersection
of the set of all transitive supersets of X i.e.,

TC(X) = ﬂ{Y : X C Y and Y is transitive}.

DerFINITION B.1 (Sets Hereditarily of Power < k). For any cardinal k. the set of all sets
hereditarily of cardinality less than k. H (k). is defined as follows:

H(r) = {X : |TC(X)| < k}.

If GCH holds, then for all ordinals o, H (o) = V,,. However, if GCH does not hold,
for k > w, the cardinality of H (k) is 2<%, while the cardinality of V. = J.. However,
H (k) =V, whenever 3, = k. i.e., for all fixed points of the J-function.*> But the
-function has arbitrarily large fixed points: if & is strongly inaccessible, & = 3,..4° So,
after all, H (k) = V,, whenever & is strongly inaccessible, independent of GCH.

The above definition gives the class of sets hereditarily of power < k. We can now
define the corresponding structure.

DEFINITION B.2. Let H (k) be the set of all sets hereditarily of cardinality less than k.
H(k) is defined as the structure having H (k) as its domain and restricting € to H (k).
Sformally

H(k) = (H(k). € N(H (k) x H(k))).

Next we define the notion of well-foundedness in £, , . Recall that a relation £ on
W is well-founded iff every non-empty subset W, C W has an E-least element. More
precisely, we say that E is well-founded on E, i.e., for every () £ Wy C W, there exists
an x € Wy such that for all y € Wy : myEx. Alternatively, well-foundedness can be
characterized by the absence of infinite descending chains.

4 For more on both, see Keisler [26] or Marker [32].
45 See Kunen [27. p. 78, lemma 1.13.29].
46 Ibid. Lemma 1.13.31.
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LemMmA B.3. Let W be a set and E be a relation of W. Then, E is well-founded on W if
and only if there is no infinite descending E-chain of elements of W.

Proof. =: Let E be well-founded on W and suppose, for reductio, that (wy),ecq, 1S
an infinite descending E-chain in W, i.e., that all tuples of the form w, Ew, | are in
the extension of E. Let S = {wy, w;, wy, ...} and assume that w; is the E-least element
in S, ie., there are no w; € § such that w;Ew;. This element exists because E is
well-founded. But then, there is w; | such that w;,; Ew;. Contradiction.

<: We prove the contrapositive. Suppose E is not well-founded in W. Then, there
exists ) £ S C W with no E-minimal element. By a weak form of the axiom of choice,
we can construct a sequence (w, ),ecq, such that Vn € N : w,, 11 Ew,. This is an infinitely
descending E-chain. O

In ZFC, the axiom of foundation expresses as much of the well-foundedness of € as
is possible in first-order logic. However, due to the compactness of first-order logic,
there are ZFC-models in which € is not well-founded. This is mainly due to the inability
of first-order logic to exclude infinitely descending €-chains. All first-order logic can
do is to rule out first-order definable infinite descending €-chains such as x € x (which
givesrisetox € x € x € x...) and x,, € X1 ... € Xo € x,,.%

By the above lemma, it suffices to exclude infinitely descending €-chains in order to
make € well-founded. This can be done in £, by the following sentence:

©1 = ﬁ(Hxn)nqu(/\ Xnt1 € xn)~

n<mw

LemMA B.4. M = ¢ iff € is well-founded on M.

Proof. If M |= ¢y, then it does not have infinitely descending €-chains. Thus, by
Lemma B.3, € is well-founded on M. If € is well-founded on M, thenevery () # R C M
has a €-least element. Hence, by Lemma B.3, there are no infinitely descending €-chains
on M, and so M = ¢. O

Next we add L, +,+-sentences which express that the elements of the domain are
subsets of the domain and give an upper bound on the cardinality of the subsets of the
domain, as well as the axiom of extensionality.

Let’s start with extensionality, which is a first-order sentence:

Ext:=VxVy(Vz(z €x <z €p) = x=yp).

Next are the £,+,.+-sentences, first the sentence expressing that the elements of the
domain are subsets of the domain:

2 = (an)a<n3yVZ(Z ey < \/(Z = xoz))v

a<k

and the upper bound on cardinality:

o3 :=Vy[Fz(z € y) > xa)ack¥z(z € y & \/ (z = xa))].

a<k

Now I can give the axiomatization of set theory in infinitary logic.

47 See Shapiro [44, p. 113 ff.] for more details.
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DErFINITION B.5 (ZFC,). The theory ZFC, consists of the axioms of extensionality,
pairing, union, infinity, power set, and choice, the axiom schemata of separation and
replacement, | (the infinitary version of foundation), as well as the axioms @, and @3
characterizing the size of ZFC,-models.

Finally, here is the characterization of H (k) in £+ ..

THeorREM B.6 Hanf & Scott [20]. Let Ext A 1 A 3 A w3 be a L, +,.+-sentence, and
M = (M. E) be an L+, +-structure, where E interprets € in Ext A o1 A @2 A 3. Then

M = Ext A @1 A pa A s if and only if M = H(k).

Proof. We follow Karp [25].

«: It suffices to show that H(k) = Ext A 1 A g2 A 3. H(k) is transitive, so Ext
and ¢, hold in H(k); it is well-founded, so ¢; holds in H(k); and all elements are of
power < k. S0 3 holds in H (k).

=-: The proof is done in two steps.

1. If M |= Ext A ). then M is isomorphic to a structure N' = (N, €), where N is
a transitive set.*®

2. If N is a transitive model in which ¢, and ¢; hold, then N C H(x) and
H(k) CN.

1.: Since M = ¢y, E is well-founded on M, and so there exists an E-minimal element
mgy € M. Since M = Ext, myg is unique. Call it 0¥. We need the following lemma.

LeMMA B.7. Induction holds for E in M = (M., E), i.e.. for any property v, if

1. w(0F) and.
2. if x € M and w(y) for all yEx, then y(x),

then¥x € M, w(x). O

Proof of Lemma B.7. Let S := {x € M : =y (x)} C M, and suppose S # (). By ¢,
S has an E-minimal element so. By (1), xo # 0F. Then, x is the E-least element in M
such that ~w (xg). Then, w(y) for all yEx,. and hence, by (2). w(x¢). which contradicts
—w(xg). So S = (. This concludes the proof of Lemma B.7. O

Now we can use E-induction to define the transitive collapse w of E. For x € M, let
n(x):={n(z) : zEx}. (1)

Then, 7 : M — n(M). Obviously, 7(M) is transitive and = is surjective. Now we show
that 7 is injective.
Define a rank function relative to £ and M:

0. if Vy(~yEx).

kE(x) =
rank” (x) sup({rankE(y) +1:yEx}), otherwise.

Injectivity follows by induction on rank”(x): for the base case. let x.y € M be
such that rank” (x) = rank®(y) = 0. Then. n(x) = {x' e M : x'Ex} =0 ={y' € M :
y'Ey} = n(y). Now assume that if max(rank® (x). rank?(y)) < a. then 7(x) = n(y).

8 This is essentially an application of Mostowski’s collapsing theorem (see Jech [22, theorem
6.15, p. 69].
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Let a.b € M be such that rank® (¢) = rank? (b) = o and assume 7(a) = z(b). If dEa.
then(d) € n(a) = n(b),soforsomee € M,eEbandn(d) = n(e),and byIH, d = e,
so dEb. The same holds for the other direction. So Vx € M (xEa ++ xEb). Since E is
extensional on M, a = b.

Finally, 7 preserves structure, i.e.,

aEb < n(a) € n(b).

For if bEa, then, by 1, n(a) € n(b). On the other hand. if n(a) € =(b), again by 1,
n(c) = n(b) for some ¢ € M such that cEa. But then ¢ = b since = is injective, and
sobEa.

This shows that if M |= Ext A ¢, then M is isomorphic to the structure

(n(M),{(n(a).7(b)) € r(M) x n(M) : aEb}),

the transitive collapse (or Mostowski collapse) of E and M. Call this structure
N = (N.¢€).

2.: Now suppose that N = ¢, A 3. We show that N = H (k): since N = 2 A 3.
the elements of N are transitive subsets of N with power at most < k. so N C H (k).
We now show H(a) C N by induction on @ < k. Fora = 0, H(a) = () C S. Assume
that for all 0 < f <k, H(B) C S. Let x € H(BT). Then |TC(x)| < B+ < k. Then,
since H (") is transitive, so is x. So x = TC(x), and so |x| < 7. Since N = s,
there is some y € N such that for all x, € x (forall y < %), x, € y. and nothing else
isin y. So by Ext, x = y € N. Since x was arbitrary, H(") C N. This concludes the
proof of Theorem B.6.
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