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Abstract

For an operator on a Hilbert space, points in the closure of its numerical range are characterized as
either extreme, non-extreme boundary, or interior in terms of various associated sets of bounded
sequences of vectors. These generalize similar results due to Embry, for points in the numerical range.
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1. Introduction

Let T be an operator (that is, a bounded linear transformation) on a complex
Hilbert space H with inner product ( , ) and associated norm || ||. It is well known
that the numerical range

W(T) = {(Tx,x): \\x\\= \,X<£H)

is a convex subset of the complex plane. Denote the closure of W(T) by W(T)~.
Theorem 1 of M. R. Embry (1970) characterizes every point z of W(T) as either
an extreme point, a non-extreme boundary point or an interior point in terms of
the subset MZ(T) and its linear span, where

M,(T) = {x^H: (Tx, x) - z\\xf = o} (z e W(T)).

This theorem, though very interesting, does not characterize the unattained
boundary points of the numerical range. In this note we attempt to fill this gap by
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a generalization which can be applied to every point of W{T)~. For any
z e W{TY, let

2

(

= {(*„) e U # ) : (rxn, *„> - z||xj2 - o},

(Txn, xn)/\\xn( -> z},

and
i i . . •)

>0

where lx(H) is the set of all bounded sequences of vectors from // and L is a line
of support for W(Ty. Let yNz(T) be the linear span of NZ(T). Since JVr(r) is
homogeneous, yNz(T) = JVz(r) + NZ(T). It is readily seen that NL(T) is a
subspace (Majumdar and Sims (to appear)).

2. Basic lemmas

In order to establish our characterization for points of W(T)~ we need the
following two lemmas. The first, stated without proof, is an easy corollary to
Lemma 3 of Majumdar and Sims (to appear).

LEMMA 1. If b is an extreme point of W(T)~ and L is a line of support for W(T)
passing though b, then lim((r - b)xn, yn) = 0 a«^lim((T - b)yn, xn) = 0 for all
(xn)<=Nb(T)and(yn)^NL(T).

LEMMA 2. Let z be in the interior of a line segment lying in W(T)~ with end points
a andb. Then Nj(T) c yNz(T).

PROOF. Without loss of generality we may take a = 1, b = 0 and (xn) e N{(T)
to have \\xn\\ = 1. Let (yn) e N0(T) be such that \\yj = 1 and Re<Im Txn, yn) =
0. For any bounded sequence (/•„), let hn = rnxn + y; then we have (Im Thn, hn)
-» 0. We show the existence of two such distinct sequences (rn) for which

(1) ( R e ^ n , ^ > - z | | A j 2 = 0
for all sufficiently large n. The equations in rn given by (1) are equivalent to

rn
2(l - z + e j + 2rnRe((Re T - z)xn, yn) +(e'n-z) = 0

where en = (Re Txn, xn) — 1 and e'n = (Re Tyn, yn), both of which tend to zero.
Thus the equations in (1) are of the form Anrf + Bnrn + Cn = 0 where An, Bn, Cn

are real numbers independent of rn.
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Let Dn = B2
n - 4AnCn, then

Dn = 4[Re(Rer - z)xn, yn)]
2 + 4z(l - z) + 8n

where 8n -* 0. Hence there are positive constants a, /? such that for all sufficiently
large n, a < An, Dn < /? and \Bn\ < /?. This shows the existence of two distinct
sequences solving (1) both of which are bounded and whose differences dn

= ^Dn/An are eventually bounded away from zero. Thus we have for both these
sequences that hn e NZ(T). Subtraction and the fact that dn is uniformly bounded
away from zero gives (xn) e yNz(T).

REMARK. A simplified version of the above argument applied to a pair of points
a, b lying in a line segment in W(T) shows the existence of a real number r and a
vector >> such that a = (Tx, x), b = (Ty, y), \\x\\ = \\y\\ = 1 and (T(rx + y), rx
+ y)A\rx + y\\2 = ta + (1 - t)b, 0 < t < 1, yielding the convexity of W(T). In
contrast with the proof of convexity given by Halmos (1967), this argument gives
two explicit values of r.

3. Characterization of W(T)

THEOREM 3. Every element z of W{T)~ can be characterized as follows.
(i) z is an extreme point of W(T)~ if and only if NZ(T) is a subspace.
(ii) If z is a nonextreme boundary point of W(T)~ and L the line of support for

W(T) passing through z, then (a) yNz(T) = NL(T) + N2(T) and (b) NL(T) =
lx(H) if and only if W{T)-^ L.

(iii) IfW(T)~ is not a straight line segment, then z is an interior point ofW{T)~if
and only if N^T) c yNz(T)for all z e W(T)~.

PROOF, (i) See Das and Craven (1983) and also Majumdar and Sims (to
appear). Also note that the result NZ(T) is a subspace when z is an extreme point
of W(T)~ can be deduced as a corollary to Lemma 1. Homogeneity being
obvious, we prove linearity. Let (x*1'), (x<2)) e N2(T). Thus (x^), (x<2)) e NL(T)
where L is a line of support for W(T) passing through z. But NL(T) is a
subspace. So (x<1J + x<2>) e NL(T). Now since (x*1)) e NZ(T), i = 1,2 and (x<1}

+ x<2)) G NL(T), by Lemma 1 we have ]im((T - z)x^\ *<*> + x<2)> = 0 for
/ = 1,2 and hence lim<(r - z\x^ + x<2)), x<X) + x<2)> = 0 as required.

(ii) (a) We first show Na(T) c yNz(T) for each a e L n W(r)~. Without loss
of generality we may take L as the real axis and Im W(T) > 0. Let (xn)eAfa(r)
and (>>„) G Nb(T), \\yn\\ = 1 where b e L is the extreme point of W(r)~ such that
(a — z)/(z — b) > 0. Then (_vn) can be chosen so that Re(yn, xn) = 0 and
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Lemma 1 gives Re<7>n, xn) -» 0. Also lmW(T) > 0 implies Im Tyn -* 0. Let
rn = [(a — z)/(z — />)p||xn||. Then easy calculations show that with our assump-
tions (T(xn±rnyn),xn±rnyn) - z\\xn ± rny\\2 ^ 0. That is (xn ± rnyn) e
NZ(T). As in the proof of Lemma 2, adding these two sequences and using the
homogeneity of N2(T) we have (xn) <= yNz(T). Thus Na(T) c yN2(T) for all
a e LC\ W{TY and so we have NL(T) c yNz(T). Since A^T) c JVL(r) c
yNz(T), by taking the vector sum of NZ(T) with each of these subsets we obtain
yNz(T) = NL(T) +NZ(T).

(b) As before, if we take L as the real axis, we have NL(T) = {(xn)G/0O(//):
Im<7x,,, *„> -» 0}. Now if W(7Tc L, (*„) e /„( / /) impUes \m(Txn, xn) = 0
and so (*„) e A^L(r). Hence NL(T) = /M(i/). Conversely if W(Ty is not a
subset of L, there exists (jcn) e l^H), \\xn\\ = 1 such that Im(7x,,, xn> does not
tend to zero, or equivalently, (xn) <£ NL(T). Hence NL(T) # lx(H).

(iii) If z is an interior point of W(T)~, by Lemma 2, N^(T) c yNz(T) whenever
a e Pf(J)". On the other hand, if z is a boundary point of W{T)~, without loss
of generality we may take L, the line of support for W(T) passing through z, as
the real axis, in which case, NL(T) = {(*„) e lx(H): lm(Txn, xn) -> 0}. Thus
yNz(T) c NL(T) since A^CT) is a subspace, but as W{T)~ does not lie in L, there
exists an a e W(r) such that Im a # 0. Hence A '̂CH is not a subset of yNz(T).
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