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Small Flag Complexes with Torsion
Michał Adamaszek

Abstract. We classify flag complexes on at most 12 vertices with torsion in the first homology group.
The result is moderately computer-aided.

As a consequence we confirm a folklore conjecture that the smallest poset whose order complex is
homotopy equivalent to the real projective plane (and also the smallest poset with torsion in the first
homology group) has exactly 13 elements.

1 Introduction

There is a well-known 6-vertex simplicial triangulation of the real projective space
RP2. It is smallest in terms of the number of vertices, and it is also the minimal sim-
plicial complex with torsion in the first homology group. In this note we consider
analogous minimization questions in the classes of flag complexes and order com-
plexes, both of which are widely used combinatorial models of topological spaces.

If G is a simple, undirected graph, then the clique complex Cl(G) of G is the sim-
plicial complex whose vertices are the vertices of G and whose faces correspond to
the cliques in G. Clique complexes are also known as flag complexes. We will show
the following fact.

Theorem 1.1 We have the following classification:

(i) If G is a graph with at most 10 vertices, then H1(Cl(G); Z) is torsion-free.
(ii) There are exactly four graphs, K1, K2, K3, K4, with 11 vertices for which

H1(Cl(G); Z) has torsion.
(iii) There exist 363 graphs, L1, . . . , L363, with 12 vertices and with the following prop-

erty. If G is any 12-vertex graph for which H1(Cl(G); Z) has torsion, then either G
is one of the Li or G \ v is one of the Ki for some vertex v of G.

Parts (i) and (ii) of the above theorem were also proved in [8]. Our main effort is
in proving part (iii), but the method we use also verifies (i) and (ii). For a list of the
graphs Ki , Li , see Section 4.

Next, if P is a poset, then the order complex ∆(P) of P is the simplicial complex
whose vertices are the elements of P and whose faces correspond to chains in P. This
is the standard construction of the classifying space of P.

Note that ∆(P) is the clique complex of the comparability graph of P (this graph
has vertex set P and an edge between every two comparable elements). Hence every
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order complex is a flag complex, and using the classification given by Theorem 1.1
we will obtain the following.

Theorem 1.2 If P is a poset with at most 12 elements, then the group H1(∆(P); Z) is
torsion-free.

This confirms a conjecture stated in [7, Sect.4], [2, Ex.7.1.1], or [12, Conj.5.4] that
any poset whose order complex is homotopy equivalent to RP2 (or indeed any poset
with torsion in first homology) must have at least 13 elements. There is a known
poset P with exactly 13 elements, for which ∆(P) is actually homeomorphic to RP2

(see the same references). Our result also determines that it is the minimal model of
RP2 in finite T0-spaces, in the sense of [3, 9].

The obvious way to prove Theorem 1.1 would be to compute H1(Cl(G); Z) for
all graphs G on at most 12 vertices. However, there are approximately 1.6 · 1011

such graphs [11, A000088], which makes a direct check infeasible. An alternative
approach to Theorem 1.2 is to go through all posets with at most 12 elements. There
are approximately 109 of them [11, A000112], but this time the problem lies in the
non-availability of good software for the generation of posets (at least to the author’s
knowledge). Our approach is to reduce the search space of graphs so that in the end
homology only needs to be computed for fewer than 108 cases.

2 Enumeration of Graphs with Torsion

We will use some standard notation. If v is a vertex of a graph G, then NG(v) is the
set of neighbors of v in G. We write lkGv = G[NG(v)] for the subgraph of G induced
by the neighborhood of v. Observe that this notation coincides with the usual notion
of link for simplicial complexes; i.e., we have lkCl(G)v = Cl(lkGv), where lkCl(G)v is
understood in the simplicial sense. The degree of a vertex v is degG(v) = |NG(v)|.
The complement G is the graph with vertex set V (G) whose edges are the non-edges
of G. The independence complex Ind(G) of G is defined as Ind(G) = Cl(G). By Km

we denote the clique (complete graph) on m vertices. Then Km is the graph with m
vertices and no edges.

In order to prove Theorem 1.1 it suffices to characterize those graphs with torsion
in first homology for which the removal of any vertex yields a graph without torsion.
This motivates the next few definitions.

Let G be a graph with n vertices. We say that G is an H1-torsion graph if the group
H1(Cl(G); Z) has torsion. We will say that G has cyclic links if for every vertex v of
G the group H1(Cl(lkGv); Z) is nontrivial. If G is H1-torsion, then we will say G is
irreducible if for every vertex v of G the graph G \ v is not H1-torsion. Finally, we say
G is tame if every vertex v satisfies 4 ≤ degG(v) ≤ n− 4.

The next lemma is a straightforward compilation of the statements of [5, Lemma
2.5] and [1, Theorem 3.4].

Lemma 2.1 If a graph H has a vertex v such that lkHv is either Km or Km for m ≥ 1,
then Ind(H) is homotopy equivalent to the suspension of some space.

It has the following direct consequence.
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Lemma 2.2 If G is a graph with n vertices and v is a vertex with degG(v) ≥ n − 3,
then Cl(G) is homotopy equivalent to the suspension of some space.

Proof Let H = G. We have degH(v) ≤ 2 and Cl(G) = Ind(H).
If degH(v) = 0, then Ind(H) is a cone with apex v, hence a contractible space.

If degH(v) = 1 or degH(v) = 2, then lkHv is one of the graphs K1, K2, or K2, and
Lemma 2.1 applies.

The key to (fairly) efficient enumeration of irreducible H1-torsion graphs is the
following observation.

Lemma 2.3 If G is an irreducible H1-torsion graph, then G is connected, tame, and
has cyclic links.

Proof It is clear that G is connected. We start by proving that G has cyclic links. Let
v be any vertex of G. We have a cofibre sequence

Cl(lkGv)→ Cl(G \ v)→ Cl(G)

and hence a long exact sequence of homology groups (with Z coefficients):

· · · → H1(Cl(lkGv))→ H1(Cl(G \ v))→ H1(Cl(G))→ H0(Cl(lkGv))→ · · · .

The conclusion H1(Cl(lkGv)) 6= 0 follows by a standard exact sequence argument
from the fact that H1(Cl(G)) has torsion, while H1(Cl(G \ v)) and H0(Cl(lkGv)) are
torsion-free.

Next we prove that G is tame. Since H1(Cl(H); Z) = 0 for all graphs H with at
most 3 vertices, the condition H1(Cl(lkGv)) 6= 0 means that for every vertex v of G
we have |NG(v)| ≥ 4, i.e., degG(v) ≥ 4. The inequality degG(v) ≤ n − 4, where n is
the number of vertices of G, follows from Lemma 2.2, since the first homology group
of a suspension is torsion-free.

The next lemma records the computer-assisted part of the argument.

Lemma 2.4 If G is an irreducible H1-torsion graph with at most 12 vertices, then G is
one of the graphs K1, . . . ,K4, L1, . . . , L363 appearing in Theorem 1.1.

Proof By Lemma 2.3 all irreducible H1-torsion graphs can be found among con-
nected tame graphs with cyclic links. Let n ≤ 12 be the number of vertices we are
considering. If n ≤ 7, then there are no tame graphs. For each 8 ≤ n ≤ 12 we
generate all n-vertex connected graphs, pick the tame ones and among those pick the
ones with cyclic links. In the resulting set of graphs we then check for torsion in the
first homology of the clique complex, and finally, in the case n = 12, we eliminate
the graphs that are reducible.

The numbers of graphs that arise at the consecutive steps of this reduction are
shown in Table 1. More specific implementation details are given in Section 3.

Lemma 2.4 clearly implies Theorem 1.1. We now proceed with the proof of The-
orem 1.2.

Lemma 2.5 Each of the graphs Ki , Li of Theorem 1.1 contains an induced 5-cycle.
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n
connected graphs
[11, A001349]

connected, tame
connected, tame
with cyclic links

connected, tame
with cyclic links
and H1-torsion

irreducible
H1-torsion

8 11 117 6 0 0 0
9 261 080 634 2 0 0
10 11 716 571 194 917 492 0 0
11 1 006 700 565 64 434 518 207 839 4 4
12 164 059 830 476 26 169 627 695 93 453 159 394 363

Table 1: Various graph classes appearing in the consecutive steps of the computation.

Proof This is an immediate brute-force computer check.

Proof of Theorem 1.2 Suppose, on the contrary, that P is a poset with at most 12
vertices and with torsion in H1(∆(P); Z). Let G be the comparability graph of P so
that ∆(P) = Cl(G). By Theorem 1.1 the graph G contains, as an induced subgraph,
one of Ki or Li , and therefore, by Lemma 2.5, it also contains an induced 5-cycle.
However, the comparability graph of a poset cannot have an induced cycle of odd
length greater than three, and this contradiction ends the proof.

3 Implementation Outline

There are some implementation tricks that speed up the computation (which, other-
wise, is a straightforward translation of the proof of Lemma 2.4). For the interested
readers we give an outline for the most time-consuming case of 12-vertex graphs.

Let C8 be the set of all graphs H with exactly 8 vertices (not necessarily connected)
and with H1(Cl(H); Z) 6= 0. This set can be computed by a brute-force algorithm
that checks all 12346 of the 8-vertex graphs. We have |C8| = 7702.

If G is a graph and k is an integer, let G + k denote G with additional k isolated
vertices. If C is a class of graphs, then C + k = {G + k : G ∈ C}. When G is a graph,
and v is its vertex, let Gv denote the graph with the same vertices as G and with the
edge set {xy : x, y ∈ NG(v), xy ∈ E(G)}. Using our previous notation,

Gv = lkGv +
(
|V (G)| − degG(v)

)
.

In the first phase we use the program geng from the nauty package [10] to gen-
erate all connected, tame 12-vertex graphs (geng -c -d4 -D8). From this set we
need to choose graphs with cyclic links. This condition is easily verified as follows. If
G is a graph and v is its vertex, then the graph Gv is easily computable in the internal
representation of nauty using quick bit operations. We have that H1(Cl(Gv); Z) 6= 0
if and only if H1(Cl(lkGv); Z) 6= 0. Since G is tame, we have Gv = H + 4 for some
8-vertex graph H. From this we conclude that to verify H1(Cl(lkGv); Z) 6= 0 it suffices
to check that Gv ∈ C8 + 4. We now use the capability of nauty to compute canonical
representations of graphs with the property that two graphs are isomorphic if and
only if their canonical representations are equal. We precompute the canonical rep-
resentations of graphs in C8 + 4, sort them, and for every vertex v of a graph G under
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consideration we perform a binary search for the canonical representation of Gv in
that list.

The first phase required in total approximately 184 hours of processor time and
yielded approximately 9 · 107 graphs (Table 1). This quantity is surprisingly close
to what is predicted by the appealing (but not correct) heuristic that assumes that
all vertex links in G are independent random graphs, with each isomorphism class
equally likely. Then the probability of G having cyclic links would be ( 7702

12346 )12 ≈
0.003474, giving the expected number of such graphs (among tame graphs) as ap-
proximately 26 · 109 · 0.003474 ≈ 9 · 107.

In the second phase we used the chomp program [4] to compute H1(Cl(G); Z) for
all the graphs obtained in the first phase. In fact, it is faster to check H1 of the two-
dimensional simplicial complex whose maximal faces are the triangles in G. This
does not influence the existence of torsion in H1. This phase required approximately
30 hours and produced 394 graphs. At the end we eliminated the graphs that still
contained one of the Ki as an induced subgraph and this left the final 363 graphs Li .

Note that at the same speed the brute-force check by chomp of the homology of
all tame, connected, 12-vertex graphs would take approximately 350 days. This illus-
trates the power of the test for cyclic links.

4 Conclusion

It seems natural to expect that the minimal simplicial complex (flag complex / order
complex) with torsion in homology would be somehow related to the two-dimen-
sional real projective space RP2. Indeed, the complexes Cl(Ki), Cl(Li) are obtained
from a small number of triangulations of RP2 by various extensions. One checks
directly with tools such as polymake [6] and chomp [4] that

• two of the complexes Cl(Ki) are homeomorphic to RP2, and the remaining two
collapse to RP2;

• among the complexes Cl(Li) there are

– 14 spaces homeomorphic to RP2,
– 344 complexes that simplicially collapse to RP2,
– 5 spaces homotopy equivalent to RP2 ∨ S1.

A full list of the graphs Ki and Li in nauty [10] format is available from the au-
thor’s website, www.mimuw.edu.pl/∼aszek/ or from the source file of this paper at
the arXiv repository, arxiv:1208.3892.

Acknowledgement Thanks to Jonathan Barmak for discussions on this topic. The
first run of this computation was performed in parallel by the machines of the com-
puter labs in the University of Warwick Mathematics Institute.
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