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Abstract

‘We consider the Kéhler-Ricci flow on compact Kéhler manifolds with semiample canonical bundle and intermediate
Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the litaka fibration in
the locally smooth topology and with bounded Ricci curvature away from the singular fibers. This follows from an
asymptotic expansion for the evolving metrics, in the spirit of recent work of the first and third-named authors on
collapsing Calabi-Yau metrics, and proves two conjectures of Song and Tian.
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1. Introduction
1.1. Background and motivation

Let (X, wp) be a compact Kéhler manifold, and let w*®(¢),t € [0, T) be a family of Kihler metrics on X
which solve the Kihler-Ricci flow

0,w* (1) = —Ric(w® (1)) — w* (1), w*(0) = wy (1.1)

for some 0 < T < +oo. In this paper, we are interested in the case when w*®(¢) is an immortal solution
(i.e., when T = +00). Thanks to a result of Tian-Zhang [37] (see also [45]), we know that the solution
w*(t) is immortal if and only if the canonical bundle Kx is nef, which means that ¢{(Kx) lies in
the closure of the cone of Kihler classes in H'!(X,R). This condition does not depend on wq, and
manifolds with Kx nef are also known as smooth minimal models.

The Abundance Conjecture in birational geometry, and its natural extension to Kihler manifolds,
predicts that if the canonical bundle of a compact Kihler manifold is nef, then it must be semiample,
which means that K )‘; is base-point-free for some p > 1. This conjecture is known when dim X < 3 by
[1, 6, 7]

Throughout the rest of the paper, we will assume that Ky is semiample. It is then known (see, for
example, [25, Theorem 2.1.27]) that global sections of K)’; for p > 1 sufficiently divisible define a
surjective holomorphic map f : X — B c CPY (the Iitaka fibration of X) with connected fibers onto a
normal projective variety B (known as the canonical model of X), of dimension m equal to the Kodaira
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dimension of X (in particular, we have 0 < m < dim X). The smooth fibers of f are then Calabi-Yau
manifolds, of dimension n := dim X — m, which are pairwise diffeomorphic but in general are not
pairwise biholomorphic.

In the two extreme cases when m = 0 or m = dim X, the behavior of the flow is completely understood
thanks to the work of many people (see, for example, the recent survey [42] and references therein), so
we will furthermore assume from now on that 0 < m < dim X, which is known as ‘intermediate Kodaira
dimension’. Thus, we have dim X = m +n, and both the fibers and the base of f are positive-dimensional.

The simplest examples of this setup arise when m = n = 1, where X is a minimal properly elliptic
surface, B is a compact Riemann surface, and f : X — B is an elliptic fibration. In this case, the
behavior of the Kihler-Ricci flow (1.1) was first studied by Song-Tian [3 1], who shortly afterwards also
considered the case of general m,n in [32]. A major difficulty in this setting is that the total volume
of (X,w*(t)) is easily seen to converge to zero as t — +oo, and this ‘collapsing’ behavior makes it
extremely hard to analyze the flow. As we will now explain, in [31, 32], it was shown that the metrics
w* (1) collapse in the weak topology to the pullback of a canonical metric on B, and our main goal is to
obtain higher order regularity and a uniform Ricci curvature bound for w*®(¢) (away from the singular
fibers of f) and thus prove two conjectures of Song-Tian.

When X is projective, the condition that Kx be nef means that X is a smooth minimal model.
The connection between the Minimal Model Program in birational geometry and the behavior of the
Kihler-Ricci flow was first discovered independently by Cascini-La Nave [3] and Song-Tian [31], and
remains an area of current research. These works outlined a conjectural picture for the behavior of the
Kihler-Ricci flow on any projective (or more generally compact Kédhler) manifold. When K is not nef,
singularities must develop in finite time, and the flow should implement the corresponding birational
contractions or collapse the fibers of a Mori fiber space. The case when Kx is nef (so the manifold is a
smooth minimal model) is the topic of our paper.

1.2. Setup

We now describe our setup in more detail. As mentioned above, we have a compact Kihler manifold
(X™*" wo) with semiample canonical bundle and intermediate Kodaira dimension m (so m,n > 0),
and w* () denotes the immortal solution of the Kéhler-Ricci flow (1.1). Let f : X — B be the Iitaka
fibration of X, and let S € X be the preimage of the union of the set of singular values of f and the
singular set of B. Thus, by construction, f : X\S — B\ f(S) is a proper holomorphic submersion with
n-dimensional connected Calabi-Yau fibers X, = f~'(z),z € B\f(S). By Ehresmann’s Lemma (and
the connectedness of B\ f(5)), the fibers X, are pairwise diffeomorphic, but, in general, their complex
structure varies with z, and this variation can be encoded in a smooth semipositive Weil-Petersson form
wwp = 0on B\ f(S), defined in [31] (see also [39, §5.6]).

By [32], there exists a smooth Kédhler metric wc,, on B\ f(S) satisfying the twisted Kihler-Einstein
equation

Ric(wean) = ~Wean + Wwp. (1.2)

The pullback of wc,, to X\ S will also be denoted by the same symbol, for convenience. The metric wcay
extends to a closed positive current on B, and in [31, 32] it is shown that as t — +oo, we have

w* (1) = Wean, (1.3)

weakly as currents on X as well as in the C]?) .(X\S) topology of Kihler potentials. Motivated by this, in
[31, p.612], [32, p.306], [35, Conjecture 4.5.7], [36, p.258], Song-Tian posed the following:

Conjecture 1.1. Let (X, wg) be a compact Kdhler manifold with Kx semiample and intermediate
Kodaira dimension 0 < m < dim X, and let w*(t) solve (1.1). Then the convergence (1.3) happens in
the locally smooth topology as tensors on X\S.
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Explicitly, Conjecture 1.1 asks to show that given any K € X\S and k € N, we have
|0 (1) = weanllck (kg = O- (1.4)

There have been a number of partial results towards Conjecture 1.1, often using techniques that were
first developed for a family of elliptic PDEs that describe the collapsing of families of Ricci-flat Kéhler
metrics on a Calabi-Yau manifold with a fibration structure, and which share some of the features of
(1.1) (see, for example, the survey [40]). Indeed, Fong-Zhang [12] adapted work of the third-named
author [38] to prove that (1.3) holds in the CIL’C(’(X \S) topology of Kéhler potentials (¢ < 1), and the
works [12, 19, 44] proved Conjecture 1.1 when the smooth fibers of f are tori or finite quotients of
tori (see also [13] and [39, §5.14]), using and improving a method of Gross-Tosatti-Zhang [14]. Later,
Tosatti-Weinkove-Yang proved that (1.3) holds in Cl(z) .(X\S), and this was improved to C? (X\S),a <1
by Chu-Lee [4] adapting the techniques of Hein-Tosatti [20], which also allowed Fong-Lee [1 1] to prove
Conjecture 1.1 when all smooth fibers are pairwise biholomorphic.

In a later work [33], Song-Tian proved that the scalar curvature of w*®(#) remains uniformly bounded
on X, independent of ¢+ > 0. They then conjectured a similar statement for the Ricci curvature, away
from the singular fibers of f (see [36, Conjecture 4.7]):

Conjecture 1.2. Let (X, wg) be a compact Kdhler manifold with Kx semiample and intermediate
Kodaira dimension 0 < m < dim X, and let w*®(t) solve (1.1). Then the Ricci curvature of w*(t) remains
uniformly bounded on compact subsets of X\S, independent of t.

This is only known when the smooth fibers of f are tori, or finite quotients of tori [11] (hence,
in particular, it holds on minimal properly elliptic surfaces), or when the smooth fibers are pairwise
biholomorphic [4]. It is known that, in general, the conjectural Ricci bound cannot be improved to a full
Riemann curvature bound (on compact subsets of X\S): by [44], this holds if and only if the smooth
fibers are tori or finite quotients.

It is well known that the Kéhler-Ricci flow (1.1) reduces to a scalar PDE, of parabolic complex
Monge-Ampere type, for a family of evolving Kéhler potentials. Following [32], we construct a closed
real (1, 1)-form wr on X\S, which is of the form wr = wy +iddp, such that for every z € B\ f(S), we
have that wr|x, is the unique Ricci-flat Kdhler metric on X, cohomologous to wy|x,. While wF is not
semipositive definite in general (see [2] for a counterexample), given any compact set K € X\ S, we can
find 7¢ such that for all > 1,

W1(1) := (1 = e Nwean + € wF (1.5)
is a Kéhler metric on K, with fibers of size ~ ¢~/? and base of size ~ 1. On X \'S, we can then write
w* (1) = Wi () +i8dp(r), where the potentials ¢(7) satisfy

0 e (Wb (1) +i0dp(1))"
E‘p(t) = 10g (m+n -

n

p” - @(1),
)a)can AN F (16)
¢(0) = —p, '
w* (1) = (1) +idde(1) > 0,
for t > 0 (see, for example, [39, §5.7] and [43, §3.1]. Then, since we know the weak convergence in
(1.3), Conjecture 1.1 is equivalent to the a priori estimates

lw* (Dllck (kg < Ck .k 1.7)

for all k € N and all # > 0. Furthermore, since ¢(¢) is uniformly bounded in L*(X) by [32] (which uses
[8, 9] — see also [17] for a new proof), these estimates are also equivalent to

leDllck (k ,g0) < Ck k> (1.8)

forall k € Nandall ¢ > 0.
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1.3. Main result
The main result of this paper gives a complete solution of Conjectures 1.1 and 1.2:
Theorem 1.3. Conjectures 1.1 and 1.2 are true.

In fact, in both conjectures, we prove much more precise statements. The higher order estimates for
w* (1) are derived as consequences of a very detailed asymptotic expansion for w®(¢), which is in the
same spirit as the expansion recently obtained in [21] by Hein-Tosatti for collapsing Ricci-flat metrics
on Calabi-Yau manifolds. As for the Ricci curvature bound, we show that on X\S we have

Ric(w® (1)) = —wean + Err, (1.9)

where on any fixed compact subset of X\S we have |Err|ge(;) — 0, as ¢ — +o0. Thus, in a strong sense,
the Ricci curvature of the evolving metrics w*®(¢) is asymptotic to —wcyy. Furthermore, our bound on
the Ricci curvature (and on all of the pieces of the asymptotic expansion of the metric) is an a priori
bound: it only depends on the uniform constants in Lemma 4.1, which are due to [12, 33, 43].

The starting point of our analysis, which was proved in [12] by adapting [38] in the elliptic setting,
is the following estimate: given K € X\S, there is C > 0 such that on K we have

Cl Wb (1) < (1) < CWb(1) (1.10)

for all ¢ > (. In other words, w*®(¢) is shrinking in the fiber directions and remains of bounded size in
the base directions. Since the linearized operator of (1.6) is the time-dependent heat operator of w*(t),
we see from (1.10) that the ellipticity is degenerating in the fiber directions as t — +oo, and so there
is no clear way to approach the a priori estimates (1.8). Indeed, the local analog of such estimates are
false; see the discussion in [20] in the elliptic case.

However, it turns out that we can work locally on the base (but using crucially that the fibers are
compact without boundary), and since f is differentiably a locally trivial fiber bundle over B\ f(S), we
may without loss assume that our base B is now simply the Euclidean unit ball in C"*, and f : BXY — B
is just the projection onto the first factor, where Y is a closed manifold and B X Y is equipped with
a complex structure J (not necessarily a product) such that f is (J, Jom) holomorphic. The fibers
{z} X Y,z € B are then compact n-dimensional Calabi-Yau manifolds diffeomorphic to Y. Under this
trivialization, the Ricci-flat Kihler metric wr [x, defines a Riemannian metric gy  on {z} XY, which we
extend trivially to B X Y, and we use these to define a family of shrinking Riemannian product metrics

g-(1) = gom +e gy, (1.11)

on BxY, which are uniformly equivalent to w?(r) and hence to w* (). We will also denote by g(7) := go(¢)
the shrinking product metrics with z equal to the origin in B.

1.4. Overview of the proof

As in [20, 21], the first attempt to overcome the issue of degenerating ellipticity is to try to prove much
more — namely, try to prove uniform bounds for ¢(¢) or w*(¢) in the shrinking norms C* (K, g(t)), since
g°(¢) is uniformly equivalent to g(¢). This, however, cannot be proved in general since we know from
[43] that e’w*(#)|x. converge smoothly to wr|x_, and since gy . and gy .- are not in general parallel
with respect to each other, the shrinking CX norms of g, () and g (¢) are not uniformly equivalent as
t — +oo. To address this issue, the first and third-named authors defined in [21] a connection D on B XY
which on each fiber {z} XY acts like the Levi-Civita connection of g, (), and using its parallel transport
operator, they defined new shrinking CX-® norms, 0 < @ < 1. We will consider the natural parabolic
extension of these norms to space-time derivatives in Section 2 below. Since parabolic Holder seminorms
behave differently according to the parity of k, we will only work with k = 2 even (cf. Remark 2.5).
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The hope would then be to show that w*(r) — w(r) = idd¢(1) is uniformly bounded in these
shrinking C>/*@-/+@/2 norms. This turns out to be true when j = 0, but false starting from j = 1. This
phenomenon, which was discovered in [21] in the elliptic setting, manifests itself only when the complex
structure J is not a product and the fibers are not tori or quotients. In a nutshell, the variation of complex
structures, and the non-flatness of g, (z), destroy these desired shrinking norm bounds. However, with
much work, we are able to construct a collection of ‘obstruction functions’ on B X Y (up to shrinking B)
and decompose the solution idd¢(t) into a sum of finitely many terms y;(z), ...,y () (constructed

roughly speaking using the fiberwise L> projections of A& ) ©(¢) onto the space of obstructions), and
a remainder 77, (¢). We then show via a contradiction and blowup argument that the remainder 7; (¢) is
bounded in the shrinking C?/*@/+@/2 norm, while the terms v, (), ...,y (1) are not, but they satisfy
strong enough estimates which guarantee that they are bounded in the C%/+®/+@/2 norm of a fixed
metric wx on X. As mentioned earlier, the higher order estimates on all these pieces depend only on
the constant in the C” estimate (1.10), and on the other constants that appear in Lemma 4.1 (including
the uniform bound on the scalar curvature of w®(¢) from [33]), and thus ultimately, they depend only
on the geometry of X and on the initial metric wy.

This procedure is iterated by replacing j with j + 1, and new obstruction functions are constructed
by measuring the failure of the remainder 1, (#) to be bounded in the shrinking C2U*D+@-/+1+a/2 norm,
This way, we can split 17, () = y;+1(f) +17;4+1(¢) and obtain the next order in the expansion. As in [21],
there is an extra technical difficulty, which arises from the fact that the terms y;(¢) are constructed by
plugging in 77;_1(¢) and the obstruction functions into an approximate elliptic Green operator, which
has an extra parameter k € N that measures the quality of the approximation. Thus, all the terms in the
expansion also end up depending on k, which is large and chosen a priori, and the procedure works for
Jj<k.

The resulting asymptotic expansion of w*® () is described in detail in Theorem 4.2 below, which is the
main technical result of the paper. It is the parabolic analog of [21, Theorem 4.1], and its proof follows
the same overall method via blowup and contradiction, but there are some new key difficulties. First,
as mentioned earlier, the (shrinking) parabolic Holder norms that we use are better behaved when the
order of derivatives is even, which compels us to use C*/*®J/*@/2 norms instead of C/*®U+®)/2 (see, for
example, Lemma 2.4 and Remark 2.5). More importantly, since the approximate Green operator that we
use in this paper is the same as in [21], it provides an approximate parametrix for the Laplacian of w(r)
(in a rough sense) but not for the heat operator (it seems far from clear that a similar strategy could be
implemented with an approximate heat kernel construction). Because of this, to obtain a contradiction
at the end of the blowup argument (which is divided into 3 cases, with the last case itself divided into
3 subcases A, B and C), we now have to deal with new terms that come from taking time derivatives
of the solution, which are not taken care of by construction, unlike [21]. To make matters worse, in the
blowup argument, the evolving Kéhler potential has L* norm that is blowing up, so it cannot be passed
to a limit to obtain a contradiction. Dealing with these issues requires substantial work.

Another new difficulty, compared to [21], is that the case j = 0 (i.e., where we prove C a.a/2 estimates)
does not behave in the same way as the cases j > 1 because the parabolic complex Monge-Ampére
equation also involves ¢(t) without derivatives landing on it, unlike the elliptic complex Monge-Ampere
equation where only idd¢ enters. To deal with this issue, we employ a different blowup quantity for
j =0, which is closer in spirit to our earlier works [20, 11]. As a result, different ideas will be required
to close the blowup argument, according to whether j = 0 or j > 1. Furthermore, when j > 1, we are
forced to add one new term to the main blowup quantity (when compared to [21]), to gain better control
on the fiber average of the Kihler potential and its time derivative, and we later have to show that this
new term can be dealt with in the blowup argument. Next, in subcase A, dealing with these terms forces
us to refine the Selection Theorem 3.1 where the obstruction functions are chosen, and when j = 0, we
need a whole new argument. In subcase B, we employ an energy argument inspired by [1 1, Claim 3.2],
and in subcase C a different energy argument has to be applied fiber by fiber.

Once the asymptotic expansion is established, the smooth convergence of Conjecture 1.1 follows
easily. However, proving the Ricci curvature bound for w*(#) in Conjecture 1.2 requires substantial work
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by plugging in the expansion with j = 1 into the formula for the Ricci curvature (as two derivatives of
the logarithm of the volume form) and using our explicit a priori estimates for the terms of the expansion
to deduce boundedness of Ricci. Here again, we encounter a new difficulty compared to [21], which
arises from the fact that one of the estimates in Theorem 4.2 is weaker than the corresponding one in the
elliptic setting, because of the fact that we can only work with even order norms. During the course of
the proof of the Ricci bound, we also prove a fact of independent interest in Proposition 5.1, by showing
that ¢ + ¢ minus its fiberwise average decays to zero (away from the singular fibers) faster than e~
(see (5.33)). This improves on earlier work of Fong-Zhang [12, p.110] (see also [39, Lemma 5.13]) and
Tosatti-Weinkove-Yang [43, Lemma 3.1 (iv)].

Remark 1.4. We conjecture that the Ricci curvature of w®(¢) remains uniformly bounded also near the
singular fibers of f. One could imagine settling this for some minimal elliptic surfaces by developing a
parabolic version of the Gross-Wilson gluing result in [15] (thanks to J. Lott for this suggestion), and
for some Lefschetz fibered 3-folds by developing a parabolic version of Li’s gluing result in [27].

Remark 1.5. It is natural to ask whether we really need to assume that our compact Kéhler manifold X
with Kx nef satisfies the Abundance Conjecture (thanks to S. Karigiannis and J. Cheng for raising this
point). The reader can verify that the results in [12, 32, 33, 43] on which we rely, as well as our main
theorems, are also valid under the a priori weaker assumption that ¢ (Kx) is a semiample (1, 1)-class
[41, Def.3.4]: there is a surjective holomorphic map f : X — B with connected fibers onto a normal
compact Kihler analytic space B such that ¢|(Kx) = f*[w] for some Kihler class [w] on B. However,
a very recent result of Das-Hacon [5, Theorem 4.4], which was prompted by our questions to C. Hacon
as well as the related [41, Question 3.5], shows that under this hypothesis Kx is already semiample,
and it is elementary to deduce from this that f is the litaka fibration of Kx. We thank also M. Paun for
discussions about this point.

1.5. Organization of the paper

In Section 2 we introduce our parabolic shrinking norms and seminorms and prove an interpolation
inequality, the crucial Proposition 2.6 and a Schauder estimate. Section 3 contains the proof of the
Selection Theorem 3.1 where the obstruction functions are selected. Section 4 is the main part of
the paper and is where the asymptotic expansion is proved in Theorem 4.2. Lastly, in Section 5, we
give the proof of our main Theorem 1.3.

2. Parabolic Holder norms and interpolation

The setup where we are working in was described in the Introduction.

2.1. D-derivatives

Recall that our main goal is to establish higher order estimates for the metrics w®(¢) on B X Y which
evolve by the normalized Kihler-Ricci flow (1.1). We know from Lemma 4.1 (i) below that w* () is
uniformly equivalent to wf(¢) = (1 — ¢™")wean + € ‘wp, Which is shrinking in the fiber directions as
t — +oo. As mentioned above in the overview of proof, the fiberwise Ricci-flat metrics gy , are in
general quite different from each other as z € B varies, and this forces us to define a new connection D
which along each fiber {z} XY acts like the Levi-Civita connection of g, () = gom +e ™' gy . This is what
was achieved by the first and third-named authors in [21, §2.1], and we now recall their construction.

Definition 2.1. For z € B c C™, we let V* be the Levi-Civita connection of the product metric
g.(t) = gom + e "gy , on B XY, which is independent of ¢ > 0. Let D be the connection on the tangent
bundle of B X Y and on all of its tensor bundles defined by

(D) (x) = (VP2 ) (), @1
for all tensors pon BxY andx € BXY.
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For the detailed discussion of the properties of D, we refer readers to [21, §2.1]. Given a curve y in
B XY which contains the points a, b, we let PZ ,, denote the D-parallel transport from a to b along the y.
A curve v is called a P-geodesic if y is D-parallel along y. Two examples of P-geodesics are horizontal
paths (z(1), yo) where z(¢) is an affine segment in C”, and vertical paths (zo, y(¢)) where y(7) is a
8y,z-geodesic in {zo} X Y. These are the only P-geodesics that we will use in the paper, as every two
points in B X Y can be connected by concatenating two of these P-geodesics, where the vertical one is
minimal. We may also write P, instead of sz if the P-geodesic vy joining a and b is not emphasized.

2.2. D-derivatives

D-derivatives that we just defined are spatial derivatives. It will be very convenient to use a similar
shorthand notation when we also allow time derivatives. Thus, given a time-dependent contravariant
tensor i and k € N, we define

Dy = Z DP§n, (2.2)
p+2q=k
which is a sum of tensors of different types. We will also use the notation
Dk = Z D M (2.3)
p+2q=k

when we only take spatial base derivatives, as well as time derivatives. Observe also that if g is any
Riemannian product metric on B X Y, then we have the pointwise equality

2= > IDPonl2, 2.4)
p+2q=k

which we will use implicitly many times.
In our setting, {gy_;};eB, is a smooth family of Riemannian metrics on Y, so (up to shrinking B
slightly) we can find A > 1 so that

Al < < Agy 0,
{ 8v,0 < 8r,z <Agrpo (2.5)

A2 < inj(Y, gy ;) < diam(Y, gy ;) < AL,

In particular, the norm measured with respect to gy o is uniformly comparable to that of gy , for z € B.

2.3. Holder seminorms

We now use the connection D to define a parabolic Holder norm on B X Y X [0, +c0). For p = (z,y) €
BxY,t > 0,0 <R < Viand (shrinking) product metrics 8s(1) = gom + e " gy r, we define the
parabolic domain

Qgg (T),R(p’ t) = BC'” (Z’ R) X Be—Tgy,g (y9 R) X [t - Rz’ t] . (26)

The parabolic domain with respect to any other product metric is defined analogously. We will very
often simply take { =0 € B.

Definition 2.2. Forany0 < & < 1,R > 0, p € BxY,t > 0 and smooth tensor field 7 on BXY x [t—R?, 1],
given a product metric g (such as g = g, (7) for some z € B and 7 > 0), we define

In(x. 5) = Baan (', s’)lg} @7

[7]a.a/2.04x (p.1).g = SUP
e (d (x.x) + |5 = 57| 1)
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where the supremum is taken among all (x, s) and (x’,s’) in Qg r(p,t) in which x and x’ are either
horizontally or vertically joined by a P-geodesic.

In the case when we use g = g.(7) and 7 is allowed to go to +co, we will refer to these as shrinking
parabolic Holder seminorms. Nevertheless, for each fixed R > 0, we will have

BC"’ (Z, R) X Be—'rgy’z (y, R) = ch (Z, R) xY (28)

for all T > 79(R,Y). This will be the setting where the parabolic Holder seminorm are applied in the
whole paper. In this case, we will simply denote it by

Or(z,t) = Bom(z, R) XY X [t — R, 1] (2.9)

when the metric g and the shrinking rate 7 play no role.

Lastly, as in [21, (4.101)], it will also be useful to consider (shrinking) parabolic Holder seminorms
[Tl]a,a/lbase,Q& & (p.1),¢ Which are defined as in (2.7) but where the supremum is taken only among (x, s)
and (x’, s”) in Q¢ r(p,t) such that x and x” are horizontally joined by a P-geodesic.

2.4. Parabolic interpolation

We need an interpolation inequality between the highest order (i.e., Ck*® (%+@)/2) and the lowest order
(i.e., L) norms of a tensor. In the parabolic framework, it will be more convenient to interpolate with
the top even order (cf. Remark 2.5). This can be viewed as a parabolic version of [21, Proposition 2.8],
and as in there it is crucial that the constants in the interpolation inequality are independent of the
shrinking size parameter 7 > 0.

Proposition 2.3. For any k € N.g and a € (0, 1), there exists Cy, = Cr(a,A) > 0 (where A is given
in (2.5)) such that the following holds. Let n be a smooth contravariant p-tensor on B X Y. Then for all
(x0,20) € BXY XR, 0 < p < Randt > 0such that Qg (7),r(X0,0) € BXY XR, we have

2k

PR =Y 1D lle, 0, 01 0008000 < Co((R = 0V D™l .0, 00t 210
j=1 (2.10)

1l 00 007 )-

Moreover, for any j € Nand 8 € (0,1) with j + B < 2k + «, we have

(R = p)Y P [D 05,812,041 p (0-10),80(0) < Ck((R = ) D N 0,012,041 1 (30,10 0 (7) o1

+ ||77||0<>,Qg0(7),R(X(),to),go(T))'

Proof. We first show (2.10). Fix a pair of (p, g) such that 0 < j = p +2q < 2k, and assume first that
p > 0. Since d20(7) (x, xo) < p for (x,1) € Qg (1).p (X0, 10), We can treat 87| (x,,) as a smooth tensor on
Bem (2o, p) X Y by freezing ¢ so that [21, Proposition 2.8] applies to conclude

(R - P)p”Dpazq’]||°0,Qg0(r),p(Xo,l‘o),go(T)
(2.12)
2k-2 2k
<C <(R -p) D n]d,af/Z,ng(r),R(Xo,to),go(‘r) + ”atqn”w,ng(-r),R(XOJO),gO(T)) :

Thus, it remains to show the interpolation on time derivatives (i.e., we assume in the rest that p = 0,
so g > 0). For each (x,1) € Qg (7).p(x0,%0), fix s = (R - p)? > 0sothat (x,f—s) € Qg (1).R (X0, 10).
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Then there exists ¢, € [t — s, ] so that

G | =

(6:1_177()6, 1) —8;1_17](x,t—s)) = dn(x,15), (2.13)
which allows us to estimate

1 _ -
95 (x, 0] < [3nCe,0) = = (08 nx0) = 0 (e r = 9)

1
+ —
N

99 n(x,1) — 89 (et — s)| (2.14)
<107 0) = 3nCe, )]+ 2007 Dl 0000
If g = k, we arrive at
185 o, 01, (01000 (7)< (R = 0) 10 1 r,0/2,0, 1.1 (01080 ()
+ m||3zk_l77||oo,Qg0<T),R(xo,ro),go(r)~
Otherwise, g < k, and we have

2 +1
107 1Mlc0,04 21, (x0,10).80(7) < (R = 0N 1lloo, 0, ) 1 Cx0rt0) 20 (1)
— -1
+ Z(R - ,0) 2”61(] nllm,QgO(T)’R(xo,to),go(‘r)'

Applying this dichotomy inductively, with suitable replacements of p and R at each step, we conclude
that there exists C > 0 so that foreach 1 < g < %,

2
(R = p)* 107 llo0,04, (r) p (x0010),20 (1)
2k+a qk (215)
<C ((R -p) [0y Tl]a,d/Q,Qg()(r),R(Xo,to),go(‘r) + “77”°°,Qg0(r),k(Xo,to),go(T)) :

By combining this with (2.12), we see that (2.10) follows.
It remains to prove (2.11). Fix (x,1), (x",s) € Qg(r),p(¥0,%0) such that x and x” are joined either

horizontally or vertically by a P-geodesic. Denote d = d%(?) (x,x’) + |t — slé. We want to estimate
|D/n(x, 1) = Pyx®/n(x’, 5)|gy (7). Fix a pair of (p,q) such that 0 < p+2g = j < 2k and 8 € (0, 1)
with j + 8 < 2k + a.

Ifd > ﬁ(R — p) where A is the constant in (2.5), then using the triangle inequality and the
boundedness of the operator norm of P from [21, §2.1.1], we deduce that

IDP 30 (x, 1) = Py DP O 1(x’, 5) gy (1) < ¢ 1D77]|
< (R=p)P Mleo, 0 ()0 (X0,10) .80 (7) > (2.16)

1\B
(500 () + 12 = 51

so that the conclusion follows from (2.10).
Ifd < 41—A(R—p),j=2kand,8 < a, then

|]D”6tqr](x, ) — erxDpatqn(x’, 5)|go (1) B ID”E?,qr](x, t) — erx]Dpétqn(x’, 5)|go (1) e

] B - 1 a
(dgo(f) (6, x) + |t — s|7) (dg()“) (x, x7) + |t = 5] 2) 2.17)

< (R - p)a_ﬁ[EZkTI]ﬂ/,a’/Z,QgO(T)VR(xo,to),go(T)7
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which is acceptable. It remains to consider the case when d < ﬁ(R —p)and j = p+2q < 2k. Here,
using again the boundedness of P, we can estimate

IDP 85 (x, 1) — Py xDP O (x’, 5) gy (1)
< [DP3!n(x, 1) — Px’xDpatqn(xl,tﬂgo(‘r) + [PoxDP O (x", 1) — PX’xDpatqn(xl’s)lgo(T) (2.18)
< CdP[DP 0] 1(1)]g Bem (. xByy o (v.d).g0() + CIDP O (x,1) = DP 3 (x, ) gy (1)

where the first term is the spatial Holder seminorm of the tensor 8,/5(¢) with ¢ frozen, and x = (z,y) €
C™ x Y. Applying [21, Lemma 2.5] to the first term in the last line of (2.18) gives

[DP 3 1(1) ). B (2. o (vs).so(e) < CA' P IDP A0 (0) o, B 2.y (.t).0(0) 019
1- j+1 :
<Cd BIIQ” )7||°°,Qg0(‘r),R(-XOsIO)ng(T).

As for the second term in the last line of (2.18), assume first that j +2 = p +2(g + 1) < 2k. In this case,
we can argue similarly by estimating the difference in term of time derivatives

|Dpazq77(X, 1) - Dp@fin(x, s)|go(r) < d2”®j+277”00,Qg0(7),R(xo-to),go(T)' (2.20)

Hence, under the assumption that j +2 = p + 2(q + 1) < 2k, we can combine (2.18), (2.19) and (2.20)
to get

IDP 30 (x, 1) — Py DPOIN(X’, 5)lgy(r)

B
(dgo(T) (x,x") + i s|%) (2.21)

1- i+1 2, j+2
<C (d BII©’+ Tl”oo,ng(r),R(xo,fo),go(‘r) +d ﬁ”fbﬂ— n”‘x”ng(T)vR(x‘)’t")’gO(T)) ’

The conclusion then follows by combining with (2.10) since d < %A(R -p).

It remains to consider the case when p +2¢q < 2k < p+2q +2 (i.e., p + 2q = 2k — 1). This implies
that p is odd, and hence, p > 1. Let v run over a go(7)-orthonormal basis of tangent vectors which
are either horizontal or vertical. Let y(u) be the unique P-geodesic with y(0) = x and y(0) = v with
u € (0,R - p). Denote o (u, ) = ]P’;;O)’y(u)DP’lﬁfn(y(u), -) so that D, DP9 n(x, -) = dylu=oo (u, ).
By the mean value theorem, there exists 8 € [0, 1] such that

ID, DP9 (x, 1) = DyDP ' 3Tn(x, 5) gy ()

1
< [D, DP9 n(x, 1) — E(O’(d, 1) — o (0,1))

8o(7)

+[D, DP9 n(x, s) - é(o-(d, s) — o0 (0,5))

go(7)
1
+ 1@, 0) = 0 (d, ) = (@(0,0) = (0, ) (2.22)
< |o’(0,1) — o’ (0d,1)| + |0’ (0, s) — o’ (0d, 5)]|
1 1
+ lo(d, 1) = o (d, $)|gy(r) + y lo(0,7) — (0, 5) |4y (7)
< CdDDP ™ 0l 0 oy 1 (oot 0 (7) + CAIDP T O llow. 0 oy G0t 20()

2k
< Cd||D 77||oo,Qg0<T),R(xo,to),go(T)’
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where o’ denotes the u-derivative. Since v is arbitrary, we conclude that

IDP 3 n(x,1) = Py DP 3 n(x", 5) gy (x)

5 < Cd" PN 0.0y 1y w0t go(m)- (2:23)
(dgo(f) (6, x7) + | — s|§)

The result then follows using (2.10) again. This completes the proof. O

We end this subsection by showing that a function on R” X (—o0, 0] with bounded (2k + ) parabolic

Holder seminorm and vanishing parabolic 2k jet at (x, ¢) = (0,0) will be bounded in C120 ]zm’km/ 2,

Lemma 2.4. Let u be a smooth function on R"™ X (—o0, 0] such that
[D** Uy /2. Bon (RYx[-R2.0] < Ao (2.24)

for some R,Ag > 0,k € N and bful(o,o) =0 forall 0 < € < 2k. Then for all 0 < r < R and
0 < m < 2k, there exists Co(n,m) > 0 such that

||®ml/t”oo’BRn (r)x[-r2,0] < CQAOVZk‘HY?m. (225)
Moreover, for all B € (0, @), there exists Ci(n, Ao, 8) > 0 such that
[D"u)g,5/2,Bn (r)x[ 2,0 < CrArH <+ F, (2.26)

Remark 2.5. This Lemma is false as stated if we replace 2k with an odd integer, and this is the
main reason why in our main Theorem 4.2, we will restrict to even order derivatives. The simplest
counterexample is the function u(x,t) = ¢ in R X R, which satisfies u(0,0) = 0, Dul,0) = 0 and
[Du]q,a/2,rxr = 0 but (2.25) fails for m = 0.

To fix this, one has to redefine the parabolic Holder seminorms of odd order by adding an additional
term; see [29, p.46]. If one were to do this, then the statement of Lemma 2.4 would also hold when
2k is replaced by an odd integer. However, the additional term that one would need to add would not
be compatible with our blowup arguments in section 4, especially with the ‘non-escaping property’ in
Section 4.5.

Proof. Write Q, = Bgn (r) x [—r2, 0] for notational convenience. We only prove the bound for || D" u]|w
in (2.25) since the bound for Holder seminorm in (2.26) is similar.

By considering ii(x,t) = AalR_Zk_"u(Rx, R?t) for (x,t) € Bgrn(1) x [-1,0], we can assume
Ap=1=R=1and0 < r < 1. We prove the result by induction on k. In case k = 0, the jet assumption
is equivalent to u(0,0) = 0, and hence forall 0 < r < 1,

l#lloo,0, <7, (2.27)

so that the conclusion holds.

Next, we consider the induction step, so we assume that the conclusion holds for all 0 < ¢ < k and
prove it for k + 1 > 1. Given a smooth function u with [D”‘*zu]a,a/z’gl < 1, givenany 0 < m < 2k,
every derivative D"*?u can be written as D"v where v = d;u or v = D?u (evaluated at some pair of
tangent vectors). The function v satisfies [D*Vv]4.a/2.0, < 1 and Dv|(g,0) = 0 for all 0 < ¢ < 2k. The
induction hypothesis then implies || D" ?ul|w,0, < Ckr**** ™ forall 0 < m < 2kand 0 <7 < 1.1t
remains to extend it to m = —1, -2 (i.e., to bound u and Du). Let (x,¢) € Q, and fix a unit vector e,
and estimate
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u(x+rep,t) —u(x,r)

Dyu(x, )| < |Dyu(x, 1) -

7

N u(x+rey,t) —u(x,r) _ u(x+rep,0) —u(x,0)

r r
B (2.28)
. u(x+req,0) —u(x,0) —Dlu(x,O)'
r
+ |D1u(x,0) —D]M(0,0)|
=I+II+I1+1V,

and we bound each of the numbered terms as follows. By the mean value theorem, there exists 6 € [0, 1]
such that

I=|Dju(x,t) —Dyu(x + 0rey, 1), (2.29)
and using [21, Lemma 2.5], we can bound this by r||Dzu||m,Qr < Cr¥*++1 For the second term, the

mean value theorem again shows that there is 6" € [0, 1] so that

_
d

II |0;u(x +rey, 0't) — du(x, 0'1)] < r||0sullco.0, < rl|D%ullw.o, < Crek+art, (2.30)

For the third term, using the mean value theorem and [21, Lemma 2.5], we can find 6" € [0, 1] so that
III = |Dju(x + 70" ey, 0) — Dyu(x,0)| < rl|D?*ullw.0, < rl|D*ullw.0, < Cri<+at! (2.31)
and for the fourth term, we again use [21, Lemma 2.5] to bound

IV < 7[|D?%u]|w.0, < 7l|D%Ulw.0, < Crok+atl (2.32)

and putting these all together proves that [Dju(x, )| < Cr2k*@*! "and hence, || Dullw,0, < Crr +a*!
since e is arbitrary. The upper bound for || is now straightforward using the bounds on Du and 0, u.
This completes the proof of the inductive step. O

2.5. Bounds on Holder seminorms imply decay

In this section, we establish a generalization of [21, Theorem 2.11] to our setting. Recall that at each point
x =(z,y) € BXY, wr ; is the unique Kahler-Ricci flat metric on each fiber X, which is cohomologous
to wo|x, . We can assume that ./{z}XY w’}’z = 1 for all z € B. For any function f in space-time B XY X R,
we will use f(z,t) to denote its fiberwise average:

fz1) = / f(zt) W . (2.33)
- {z}xY

The following result will be crucial for us:

Proposition 2.6. Suppose g = gcm + 628y o is a metric on B x Y, where 0 < § < 1 is arbitrary. For
anyk e Nya € (0,1) and 0 < p < R < 1 with p > A9, there exists C(k,a, p, R) > 0 such that for all
smooth function ¢ on B XY X Rwith ¢ =0, xo = (0, y0),t0 € Rand for all 0 < j < 2k, we have

1D @llco.0, (x0rt0).8 < COFF T [D 610 /2.0, 1 (000 (2.34)
Moreover, for all B € (0, 1) such that j + 8 < 2k + a,
(D7 ¢l5.8/2.00p (xost0).g < CS TP (D% 0]0,0/2,0, 1 (0t0) .- (2.35)

Moreover, the same estimates hold if ¢ is replaced by n = i00¢ where ¢ = 0.
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Remark 2.7. We require p > A¢ here so as to ensure that

Qg.p(x0,70) = (Bom(p) X Y) X [t — p*, 10] = Qp(x0, 10), (2.36)
which is needed in order to apply [21, Theorem 2.11].

Proof. Suppose we can show that

||‘10||00’Qg,p (x0510),8 S cotre [:DZk(p]Q,a/Z,Qg,R (x0,10),8* (2.37)

Then (2.34) and (2.35) would follow from this and the interpolation Proposition 2.3, as in [21, (2.61)-
(2.62)]. To prove (2.37), given (x,t) € Q4 (x0, o), write as usual x = (z, y) and freeze the time variable
in ¢(+, 7). Assuming first that k > 1, similarly to [21, (2.81)], we can use ¢(¢) = 0 to estimate

sup (1) < C sup |Ve@(t)lizyxr ley.. < CLVE* 40Dl izyxr lca((e3xr gy -)
{z}xY {z}xY

< C* DR o (D)l epxrIca iy ) < COF DR @(D]caprnr g @Y

< Co*re [DZk ] @,@/2,Q0¢ R (X0,10),8>

where in the second inequality, we used [21, Lemma 2.10], and (2.37) follows when k > 1. Lastly, when
k = 0, the argument is straightforward: using again that ¢(¢) = 0, we bound

sup ()] < Clo(t)|izyxy lce((zyxv.gy ) < COM[@(O)|(zyxy Ica((z)xv.g)
{z}xY (2.39)

< Co[e(D)]ca(Brxr.g) < COY[Pla.a/2.00.k (x0.10).85

which completes the proof of (2.34) and (2.35) for ¢. Lastly, the analogous estimates for = idd¢
follow in a similar fashion, by first using interpolation Proposition 2.3 to reduce ourselves to proving

||77”°°-Qg,p(x0,l())»g < core [QZkU]Q’Q/Q,Qg,R(Xosto),g’ (2.40)

and then proving (2.40) by freezing the time variable # and applying [21, (2.61)] to (-, ¢) and getting

”n(t)”oo BRrXY, g C62k+a [D2k ]C“(BRXY,g) < C62k+a [:DZkT]](t,a/Z,Qg‘R(xo,to),g7 (241)

which concludes the proof. O

2.6. Parabolic Schauder estimates

In the course of the proof of our main Theorem, we also need two parabolic Schauder estimates on
cylinders, which will be used when linearizing the Kihler-Ricci flow equation, and which are analogs
of [21, Proposition 2.15]. Let (z¢, y¢) — (Zeo, Yoo) be a convergent family of points in Bx Y. For £ >
consider the diffeomorphism A; : (2,5) — (z¢ + e7%/?%,¥), and let J; be the pullback of the complex
structure J via A, which converges to Jo, = Jom + Jy . locally smoothly. Similarly, we let D, denote
the pullback of the connection D so that D; — Dy = VE" + V&2 Jocally smoothly in spacetime.
By the translation, we may assume that our new base point is pe = (Z¢, ¢) = (0,¥¢) — (0, Vo).
We rescale the geometric quantities in a parabolic way centered at 7z, such as, for example, g,(7) =
e'“ Ay g(t¢ + e7"1), where recall that we denote by g (1) = gcm + e/ gy 0, so that §,(0) = gcm + gy 0.
The first Schauder estimate is for scalar functions:

Proposition 2.8. Let U ¢ C™ X Y be an open set containing (0, yo). Let g¢, ﬁ be Riemannian resp.

J¢-Kiihler metrics on U that converge locally smoothly to a Riemannian resp. Jm-Kahler metric o, 0 ffo
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on U. Then for all a € N5, @ € (0,1) and R > 0, there exists £y > 0 and C > 0 such that for all
0 < p <R, € > {y and all smooth function u defined on U X R, we have that

2a . 2a-2 _ .
(D%t a.0/2.08, 0 (501500 < 1D = A )t 02,64, 0) 1 (50.0).200)

o (2.42)
+C(R=p) ™" lull

N,Qvg[(O),R(ﬁz,O) ’

whenever Qvg/,(())’R(ﬁ[,O) cUXxR

Proof. We let o be small enough so that with respect to oo = gcm + gy .z, the ge-geodesic ball of
size o is geodesically convex and admits a normal coordinate chart centered at any (z,y) € C™ X Y.
This is possible since Y is compact and C™ is flat with respect to g. Since g¢(f) — gcm + gy .z, as
¢ — +00 and Dy — Dy, locally smoothly, for any large R > 0, there exists £ such that for all £ > ¢, and

(p.0)eQ 3:0).2rR(Pe,0), Bg, 0y (P, o) is geodesically convex and is compactly contained in a Euclidean

#

ball of radius 20-. Moreover, we can assume that the Kihler structure 7 fg is smoothly close to the

product structure w!i,, J+ in the parabolic domain 0 3.0 2r(Pe,0).

The product metric g,(0) is uniformly comparable to the Euclidean metric on 0 400, (P, T) for all
(p,i) € Qvg,l(o),R(ﬁg,O). By the standard Euclidean parabolic Schauder estimates (see, for example,
[29, Theorem 4.9 and p.84]), there exists C > 0 such that for all 0 < p; < p» < o, and functions u on
03,(0).0 (P 1) where (p.1) € Qz,(0).r (Pe.0), we have

pAad . . _ —2a-a+p+2q || qp A4 . .
Z (976, M]m“/ngf(om po T Z (p2=p1) 107 ; u||°°ng5<0>,m (p,)
p+2g=2a p+2g<2a

0
<C E [5p6,q (__AJ,”) u]
or ¢ @, /2,04, (0).0, (P:F)

BT (ﬁ - A vn) u

—2a-a
il + C(p2 — p]) ||u||DO’Qg€(()),p2 (p.H)
p+ig=ia—

—-2a—-a+p+2qg+2
+C Z (p2 — pr) 7P
p+2q<2a-2

s

) . y
ot ¢ 00,03, (0).p (BT)

(2.43)

where the derivatives, Holder norms are computed using the standard Euclidean metric and A _; denotes

4
the Laplacian of the metric a’)g.

We first use interpolation to eliminate the terms in the last line of (2.43). For 0 < p; < p2 < o, we
let p} = %(pl + p2) so that (2.43) holds with p; replaced by p] and C replaced by a slightly larger C.
Hence, the standard Euclidean interpolation (or Proposition 2.3) yields

Z (p2 _ p1)72afa+p+2q+2
p+2g<2a-2

ar o] (g - Aa)“) u

4

mstﬁ[(O),p'z (p.0)

0
— —A 4|u

5 ) ] )72a7(r+2
o @ @, /2,05, (0).0, (1)

<c > [apaﬁ( +C(p2 - pi

p+2qg=2a-2

0
——A.
(6t w?)”

,
0,04, (0).p (P)

(2.44)

where we have used p) — p2 = %(pz - p1)-
We now want to estimate the L® norm of (% - Ad)ﬁ) u in terms of the L* norm of u and of the
4

Holder seminorm of top order derivatives of u. To do this, we interpolate again. Let £ € (0,1) be a
small constant to be determined, and given 0 < p; < py < o, denote p) = p1 + (1 = &)(p2 = p1).
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We consider (2.44) with p; replaced by p}’. Since J)g is uniformly bounded in C*, the standard Euclidean

interpolation (or Proposition 2.3) yields

0
05~ ((Za )
0t %) o0, ), (30
L0045 (P>
& 2a+a-2 D 0
= (1—8) (Pz—sz) za-a+d (E—Ad)g)u

M,Qvgf(()),pé'(ﬁ,lv)

P> 2a+a-2
P a4 . _ 2a-«a . .
¢ (1 - 5) Z [6 o M]Q’Q/Z’ler(o),pz(ﬁj) +(p2—p3) ||u||°°,Qgp(0),p2(ﬁ,t)
p+2qg=2a

(2.45)

Therefore, inserting (2.44) and (2.45) into (2.43), we can choose ¢ sufficiently small so that

P a4 . _ —2a-a+p+2q P Aad .
D 10700 0y st D, 02— PD) 1670 ullg, o), (50

p2g=2a p+2q<2a
0
paa (0 _ -2a-a . .
<C Z [a o (6l Ad)g) u] 5 . +Clo2=p1) ”u”"o’Qé((O),ﬂz (.0
129202 a,n/Z,ng(o),%(PJ)
1
= P A4 . Y
+ 2 Z [0 at M]Q,Q/Z,Q({)F(O),pz (p.0)’
p+2qg=2a

(2.46)

for all 0 < p; < pp < 0. We can then apply the iteration lemma in [21, Lemma 2.9] to obtain

pAaq . . _ —2a-a+p+2q || qp A4 . .
Z (979, M]ma/Z,Qgr(om (5T Z (p2=p1) 11676, “”oo,Qg(e«»,p] (p,1)
p+2g=2a p+2g<2a

a —za—qa
<C ), [5'70:1(—[—A0n +Clp2 = p) Nl g, o iy

p+2g=2a-2 ¢ @,a@/2,0g,(0).p, (P>

(2.47)

We now claim that one can interchange the Euclidean derivatives d and Euclidean parallel transport
P in the definition of Holder norms with D, and P,. Although in our definition of Holder norms we only
consider horizontal and vertical P-geodesics while the standard Euclidean Holder norms consider all
possible segments, it is immediate to see from [21, (2.31)] that the difference is harmless. To compare
9 with Dy, we note that on each Qvgvf(o),(r( D, ), we can write 9 = D¢ + Iy (indeed independent of ) so
that I'; — I"., where ', (5%) = 0 by our choice of normal coordinate centered at . In particular, the
local smooth convergence implies that I'; — 0 in C¥ for fixed k uniformly as £ — +co and o — 0, and
then ODE estimates show that P — P, — 0 in C¥. In particular, switching from 9” to Ilf))? will generate
an error of the form (ignoring combinatorial constants):

(D? _aa)u — Z alu®aJ1f‘[®®GJQf‘€ (248)

i+j1++jgtq=a,qg>0

Since 0 < p; < p» < o < 1, and since all terms in (2.48) with I'; are o(1), the right-hand side in (2.48)
can be absorbed in the second term in the left-hand side of (2.43). Thus, going back to (2.47), we can
change the 8, P with D, P, and using interpolation again, we obtain
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2 —2a-a+b b
(DUl 02,00, (12000 + D, (P2 = P DPu]

b<2a

00,04, (0).p; (B-),8¢(0)

<c 3 [apaﬁ (2 ~A

] FCpr - ) ulle o s
. . 00,Q45,(0),p (B>1)
ot f) @,@/2,04,(0),p, (P>1) se(Ore2

p+2g=2a-2 (249)

el e R e Clpa = )l
¢ a,a/2,04,0).0, (P50).8¢(0)

1 —2a—a+b b
*3 2, (2= p1) 1D ulleo, 6, 0y, (15:1).200)
b<2a

00,03, (0).py (P-1)

where the coefficient % in the last term is achieved by choosing o sufficiently small thanks to the local
smooth convergence of I',. We fix o~ from now on. It now follows from [21, Lemma 2.9] again that we
have

2. —2a—a+b b
(DU 012,85, 00 (pire ) + D, (02 = P2 D u]

b<2a

00,04, (0).p (P-1):8¢(0)
(2.50)

2a-2 _ _ -2a-a . .
<C| D223 - A yyul +Cp2 = p) Nl g, o 50

@, /2,04, (0).0, (P:1),8(0)

forall 0 < p; < p» < . This in particular shows the desired conclusion for all small 0 < p; < py < o
with arbitrary center (5, 7) in the compact set Qg, (0),r (7, 0).
Now we prove the Holder control on Qg,(0),(P¢,0) for 0 < p < R. We can assume R > o.
Ifp < %o- < %R sothato —p > %0' > C™'(R - p), then (2.50) implies
[D%u] < C |28, - A ypu|
l

@,@(2,04,(0).,0(P>1),8¢(0) @,0/2,04,0).0- (5:5),8¢ (0)

+C(@ =) Nl .0 5

251)
<C| D220, - A yuf

dsﬂ/Z,Qvg[(O),R(ﬁ-f)sgf(o)
Da-

+C(R-p)y™ a||u||oo,Q“§[(0)’(,(ﬁ,f)~

Hence, it remains to consider the case p > %o’. Given any two points (p,7) and (¢,5) in
Oz, (0).0(Pe,0) with r = d¥ O (5, ) + |7 - 5|2, we choose a sequence of points {(pi, 1)}, inside
O, (0).p(Pe,0) such that (§1,71) = (§,7) and (Pn,in) = (§,5). We can choose them in a way so that
ri = d3O (B, Pian) + | — Fa|? < 1o is uniformly comparable to r and N < Co-~2. Here, the square
comes from the time direction. Moreover, we can assume Q (0.1 o (PisTi) C Qg, 0),0(De,0) for all
i=2,...,N—1(.e. except (§,) and (¢, 5)). Foreachi = 1,..., N — 1, we can apply (2.50) again to
obtain

D2 u(Prsrs i) = BeD*u(pin 1) 13, 0)

a
T

<C| D20 - A yuf

@, G/Z’Qg[ 0), % o+min(R—p, % o

)—2“-“ (2.52)

>(13i»ii)’§f (0)

lull,, 5

£,(0), 4l o+min(R-p, % o) (Pi,ti)

4
<C| D20 - A yuf

+Cmin(R—p,—0'

G,G/Z,Qvg((o),R (Pi fi).8e(0)

+C(R - p)_za_a||u||oo,Qvg[(0)yR(1§[’O)’
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foralli =1,..., N — 1. Here, we have used the fact that o > C™'R » C"!(R - p). Since

|®2a”(ﬁ, f) - Pl’bza”(‘j’ §)|é€(0) = |®2au(ﬁi+l, tvi+l) - beza”(ﬁi’ tvl')lér(o)
<€ Z ra ’
1

(2.53)

ra

using (2.52) completes the proof after taking supremum over all (5, ) and (¢, §) in O 3:0).p(Pe,0). O

The second Schauder estimate is for real (1, 1)-forms:

Proposition 2.9. Let U ¢ C™ X Y be an open set containing (0, y). Let g¢, d)g be Riemannian resp.

Jo-Kéihler metrics on U that converges locally smoothly to a Riemannian resp. Jo-Kéihler metric $oo, F,
on U. Then for all a € Nsg, @ € (0,1) and R > 0, there exists {y > 0 and C > 0 such that for all
0< p <R, €3> andall real J;-(1,1) form n defined on U x R, we have that

2a . 2a-2 _ .
(%N 0,012,040, (500800 < CIO00 = A y0ng 0/2.6,, 10,0 (500020 0)

o (2.54)
+C(R—p) " “IInl

00,0z,(0).r (P2,0)°

whenever Qvg,g ©),r(Pe,0) € U xR, and where A .1 denotes the Hodge Laplacian of J)g acting on
4

differential forms.

Proof. The proof shares some similarities with the proof of Proposition 2.8. After the same preliminary

remarks as there, we first work in the Euclidean setting, with the Hodge Laplacian A vm We can then

apply standard parabolic Schauder estimate to the uniformly parabolic system given by (0 — ﬁ)

acting on real (1, 1)-forms [24, Chapter 7], which shows that there exists C > 0 such that for all
0 < p < p2 < o, and n lives in Qg‘,(o) (P, f) where (p,1) € ng(o) r(Pr,0), we have

P a4 . _ —2a—-a+p+2q P a9 .
D 1070 iy st D, (P2 PD) 167016, 0, (51

p+2q=2a p+2q<2a
<C [apaq ([) _ vﬁ)n] ) +C(p2_pl)—2a—a”n”oo . .
p+2qz;a ) A @,@/2,.03,(0).,p, (B.) Q00,0 (P51)  (2.55)
+C Z (,02 _pl) -2a—-a+p+2qg+2 |apaq (8t A ﬂ) T]“ § o
p+2g<2a-2 00,04, (0),0 (PF)

where the derivatives and Holder norms are computed using standard Euclidean metric.
We first eliminate the terms in the last line of (2.55) by interpolation: given 0 < p; < ps < o, we let
= %(pl + p2), so that (2.55) holds with p, replaced by p], and so standard interpolation gives

Z (Pé _pl)—Za—(y+p+2q+2

ey
| ! e 009Qg[(()),p/2 (p.§)

p+2g<2a-2
< (0707 (0 -8 ys)n| 2.56
p+2qz_;a_2 r\7 Wy @,@/2,04,(0),p, (P-1) ( )
+C(py — p1) 247" (8, - A(;,ﬁ) ’7” 5 sh’
¢ 00,Q45,(0),p (B>1)

using that p} — pp = %(pz — p1). We now want to estimate the L* norm of (6, - A‘bﬁ) n.Lete € (0,1)
l

be a constant to be determined, and denote by p)’ = p> + &(p2 — p1). By interpolation and the C*

#

7> We have

boundedness of ¢
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C(pz — p1) 27+

0 —A vu) 77“ .
|( g 00,04, (0),p (P.1)

— C82a+af2(pé/ _ p2)72a7(1+2 ‘(at _ Ad)g) n

|°°,Qvg((o),p2 (p.§)

) N (2.57)
< Cgata 2(p£/_p2) 2a-a+2 Z ||Bp‘9;1’7||oo,é,;,p<0),p2(ﬁ,f)
p+q=2
< Cglara-? Z [67897] . 50+ Calp2 = p1) 2 0l o 5.0)"
1 Ma,a/2.04,0) 05 (5.0 & ©,Q¢,(0).04 (P:1)

p+2qg=2a

Since a > 1, we can choose & small enough so that Cg?¢+@~2 < % Inserting this in (2.56) (replacing
P4 by p2), and plugging into (2.55) gives

P a4 . _ —2a—-a+p+2q P A4 .
D 1070 apngy st Dy 2= PD) 167016, 0, (5.0

p+2q=2a p+29<2a
<C Z [aPa," (ﬁr - Aav)n) n] . A C(o2 =) Ml i, o (50
p+2g=2a-2 ¢ @, @/2,04,(0).0, (P1) e 0215
1
— P H4 M
+3 00, 1070 ap o, 0 i
p+2qg=2a

(2.58)

and the iteration lemma in [21, Lemma 2.9] then gives

pAd . . _ —2a-a+p+2q || qp A4 . .
D 1070 a0 s ¥ Dy P2 PD) 167015, 0, (5.1
p+2g=2a p+2g<2a

<c Y |oraf (o=

+C _ —2a-a . .
f) ]0,0/2,Qvge(0),pz(ﬁ,f) (p2=p1) l|n|lw’Qg”(°)’p2(p’t)

p+2g=2a-2
(2.59)

This is the direct analog of (2.47). After this, the rest of the proof of (2.54) proceeds exactly as in the
proof of Proposition 2.8. O

3. The Selection Theorem

In our main theorem, we will need the analog of the Selection Theorem [21, Theorem 3.11], adapted
to our parabolic setting, and to the specific structure of the parabolic complex Monge-Ampere equation
that we are dealing with. As in [21], to state this, we will need some preparatory notation. First, we fix
two natural numbers 0 < j < k and a Euclidean ball B centered at the origin, and as usual, we have
fixed the fiberwise Calabi-Yau volume forms on the fibers {z} X Y. Given ¢, k and two smooth functions
A € C*(B,R) and G € C*(B x Y,R) with fiberwise average zero and fiberwise L> norm 1, we
constructed in [21, §3.2] a function ®; x (A, G) € C* (B xY,R) also with fiberwise average zero, which

is in some appropriate sense an approximate right inverse of A@: applied to AG; see [21, Lemma 3.7]
for a precise statement. We will need the following quasi-explicit formula from [21, Lemma 3.8]: given
any A, G as above, there are r-independent smooth functions @, (G) on B x Y such that for all ¢ > 0,

we have
2k k
G k(4,G) =" > e (®,,(G) © D A), 3.1
=0 r=[41]
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where here and in the rest, ® denotes some tensorial contraction, and we have
®g0(G) = (A“Flr)~1G, (3.2)

For all i < j, we suppose that we have smooth functions G; , x € C*(BXY,R),1 < p < N,
which have fiberwise average zero and are fiberwise L? orthonormal, with G;, p.k =0 wheni=0.The
main goal is to find smooth functions G , x which satisfy a certain property that we now describe.

We are also given sequences of real numbers 7, — +oco and 6, > 0 with 6, — 0 and

Ap == 5[6% — +o0. Consider the diffeomorphisms
t
2By XY X [—etftg,O] — BxY x[0,t/], (z,y,1) = Z[(Z,)V),tv) = (e_%f,y,lg +e_"f), 3.3)
2

where Bg := Bem (0, R), and for any function u on B X Y x [0, ,], we will write i, = Z;u, and

for a time-dependent 2-form « (with ¢ € [0,7,]) we will write ¢, = e Z;‘,a. In particular, note that

Of can = €" 2 Wean is a (time-independent) Kéhler metric on B «, uniformly equivalent to Euclidean
e?2

(independent of £).
We will also need to factor X, = ¥, o E,, where

B Be%, XY X [—€"t,0] = Ba, XY X [=A31,,0], (2,9,7) = E¢(%,3,0) = (5¢%,5,020), (3.4
W By, XY X [<2%1,,0] = BxY x [0,¢), (z,,0) = ¥e(2,9,0) = (4,8, 9,10 + 472D, (3.5)

and given a function u on B XY X [0, t¢], we will write i = ‘P;‘,u, and given a time-dependent 2-form «,
we will write @ = /l%,‘{‘;a. We will also use the notation

Or = BR XY x [-R*,0] 3 (4,9,7), Ogr:=BrxY x[-R%0] > (%,3,7), (3.6)

so that for example 5 (Qg) = QAR(S;] .
Let also nf, be an arbitrary sequence of (1, 1)-forms on B X [0, 7,] with coefficients (spacetime)
polynomials of degree at most 2j which satisfy rﬁ — 0 locally smoothly in spacetime (which implies

that ﬁ; — 0 locally smoothly as well), let Bg be an arbitrary sequence of smooth functions on B X [0, #,]

such that éﬂ — 0 locally smoothly, and for 1 < i < j, let A?’p’ , be arbitrary (spacetime) polynomials
of degree at most 2; on B such that A’j = A%‘P;A? satisfy that there is some 0 < ap < 1 such
that given any R > 0, there is C > 0 w1th
A 2 —ap'%
DAL i p iMoo, 0) < COre™™ (.7
for all 0 < ¢ < 2j, or equivalently that Aﬂ’i’p’k = e”Z;A?’ ok = 6%”;Ag , satisfy
L A
[|D A tip. oo, Ors 1.20(0) < Cope” ™7, (3.8)
With these, we define for 1 <i < j
Ni
Yf,i,k = Z iaﬁ(ﬁr,k(Af,,,,k, Gip.i)s (3.9)

p=1

N yf’j’ « depends on how we choose the functions G, «. It is proved by the argument in (4.200) below

that our assumption (3.7) on Aﬁ»i’p’ . implies that for any R > 0, there is C > 0 with

N ., —anlt
I ﬁ il 0r.ge0) S COpfe™ 7, (3.10)
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or equivalently

74

”DL?V’e,i,k”oo,QvRa;l (o) S €T, G.1)

for all ¢t > O and all 1 < i < j (these can be just taken as assumptions for now). Observe that the
constants C in (3.10) and (3.1 1) depend on the choice of the functions G , x, but the exponent o does
not. We also define

j
= e (3.12)
i=1
and
wf =(1-eNwen + e wp +1) +1, (3.13)

ﬁ is a Kihler metric on Qg for all R > 0, and ¢ sufficiently large, using

Wthh has the property that &
that 1s pulled back from B and goes to zero locally uniformly, and the estimate (3.10) with ¢ = O for
n e Passmg to the check picture, we obtain

B = (1= e N dp e + € TS i +17) + 775 (3.14)

The key quantity we are interested in is then

m+n\ vm S w )n Jj Nik

-2j-a ( n )wé’,can/\( r % 't 1 X4 * ph

5,77 1og oy + DGk (G:AL, e AL, Cripa) +25BE,
4 i=1 p=1

(3.15)
which can be compared to the corresponding quantity [21, (3.47)] in the elliptic setting. Observe that
by definition, we have E;B? = E;Ef,.

To clarify, when we will apply the Selection Theorem later, the functions B?, will be defined by

By = e o0} - nah, (3.16)

where 0; )2? is a spacetime polynomial of degree at most 2. The fact that l§§ — 0 locally smoothly will
follow from (4.158). We will also later define

=575 (D). (3.17)

Hence, we will have
;B = 5B} = e 1o} —ne . (3.18)

Given these preliminaries, the following is then the key result:

Theorem 3.1 (Selection Theorem) Suppose we are given 0 < j < k and when j > 1, we are also given
smooth function G; px,1 <i < j—-1,1<p <N, onB >< Y which are fiberwise L? orthonormal
and have fiberwise average zero. Then there are a concentric ball B" = Bem(0,r) C B and smooth
Sfunctions G p k,1 < p < Nj i on B’ XY (identically zero if j = 0), with fiberwise average zero so
that Gi px, 1 < p < Nix,1 <1< jare all fiberwise L? orthonormal with the following property: if

. e .
O¢,te > 0 are any sequences with ty — +0o, 6 — 0 and §¢e> — +o0, and lfA?’p,k, Bg, n;, nzr;, w(ﬂ, are
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as above, and if (3.15) converges locally uniformly on C™ XY X (—o0, 0] to some limiting function F as
€ — oo, then on 3;' (B’ x Y x [-r?,0]), we can write (3.15) as

J Nik

5,770y fro+ D\ D fripGipk |+o(1), (3.19)

i=1 p=1

where fr 0, fe,i,p are functions pulled back from B’ x (=72, 0] such that fg,o =¥ fe.0, fg,i,p =Y, fe.ip
converge locally smoothly to zero, and o(1) is a term that converges locally smoothly to zero. Lastly,
(3.15) converges to F locally smoothly.

Remark 3.2. The argument follows closely the proof of the Selection Theorem 3.11 in [21], but apart
from the obvious change from space to space-time, there are some other differences that we now briefly
discuss, which arise from the different structure of the parabolic complex Monge-Ampere equation that
we have compared to its elliptic counterpart in [21]. The first term in (3.15) is reminescent of [21,
(3.47)], but it now has a logarithm. This change will be quite immaterial, since log(x) = x — 1 forx ~ 1.
Next, compared to [21, (3.47)], the quantity in (3.15) also contains two more pieces. The last term with
Bg is trivially acceptable since it can be absorbed into f7 ¢, while the term involving @3;’ x will have to
be dealt with, and it will turn out to be ‘lower order’ compared to the first term in (3.15). Putting these
all together will allow us to follow the proof of [21, Theorem 3.11] very closely.

Proof. The proof is by induction on j. First, we treat the base case j = 0. In this case, by definition,
there are no obstruction functions and the quantity in (3.15) reduces to

(" A (Swr)"

57 [1og —2 f’Ca; +3;BY). (3.20)
(wg)m+n
As in [21], we introduce the notation
* * * * - v —1 v v
Yiwr = (Zpwr)bb + (Zpwrp)et + (Zpwr)g = ¢ “OF pb + € 2 OF bt + OF 1 (3.21)

where the functions @ pp, @F pf, OF & SO defined are uniformly bounded on B 1, X Y X [—et,,0].
e 2

Following [21, (3.50)], we then compute

(@)™ = (1= e N an + €™ jwp +175)™"

= (W¢,can + OF & + Tﬁ)mm +0(e™) (3.22)

m+n o o ¥ _
=( X )(wg,can+n§)m(zé,w)g+0(e iy,

where the O(e7%) is in the locally smooth topology, and so

((Dﬁ)m+n (av) ’ + vi)m
log e = log o I 4 ()
( n )wf,can A (Z[wF)n w[,can (323)

=X, fr+0(e™),

where f; is some sequence of smooth functions pulled back from B. Passing to the hat picture (i.e.,
letting fr = ¥, f¢), our assumption that ﬁf) — 0 locally smoothly implies that f — 0 locally smoothly.
It thus follows that

(™M A (Zywr)"

n £,can

(d’)i)mﬂt

log +3B =51 (BE - fr) +0(e7), (3.24)
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and recalling that f; — 0 and Bﬂ — 0 locally smoothly, as well as 6,%e™" = o(1), we see that
(3.19) holds. Lastly, since by assumptlon (3.20) converges locally umformly to F, the same is true for
6;“2;(3? — fr), and the same argument as in [21, (3.52)—(3.54)] shows that this convergence is locally
smooth. This concludes the proof of Theorem 3.1 in the case j = 0.

We then treat the inductive step, and assume j > 1. By assumption, the obstruction functions G; p x
with 1 < i < j have already been selected on B’ X Y (recall that B’ = B,), and we need to select the
G p.k’s. Asin[21], this will be done via an iterative procedure, with iteration parameter «, initially set at

k = 0, and at each step assuming we have already selected some obstruction functions G [qI]J & I<g<«k
(this being the empty list when « = 0), and with the iterative step consisting of selecting some new
obstruction functions G [K; l,! to add to these. After this will be achieved, we will then show that if we
perform this iterative stef) E times (for some uniform x) and define the obstruction function G , x by

putting together all the G S obtained at all iterations 1 < g < k + 1, then the desired conclusion
(3.19) holds.

To start the proof, we give a couple of definitions following [21]. We will say that a sequence of
functions on ;! (B, x Y X (—r?,0]) satisfies condition (%) if it equals

5,77 (feo+2fm l)+o(1) (3.25)

for some N € N, where the functions f7,q, f;.; are smooth and pulled back from B, x (—r2,0] and
fg,o = ‘I‘Z fe.0, ﬁ»,i = ‘I‘; Je.i converge locally smoothly to zero, the time-independent functions 4; are
smooth on B, X Y with fiberwise average zero, and the o(1) is a term that converges locally smoothly
to zero. This definition is tailored to our desired conclusion in (3.19). As in [21, Remark 3.13], we see
that if a sequence of functions satisfies (x) and converges locally uniformly to some limit, then this
convergence is actually smooth.

For k > 0, given also arbitrary spacetime polynomials A% qu, 1 < g < «, of degree at most 2 such

that Af,’jq)) P = e“’Zt,A]ﬁ.’Lq}c satisfy (3.8), we construct as in (3.9)

lq]

N!
J.k
= > 1086, 1 (AR G 0, (3.26)
p=1
for 1 < g < « (setting y =0) and let
Jj-1 K
‘Dtﬁ’,[K] =(1- efee “)(Df,can +e ¢ ”Z;"UF + Z ‘}V/g,r,k + Z}/? o + nf" (3.27)
r=1 gq=1

This is a Kéhler metric on B, x ¥ x (—r2, 0], and we can then consider the function

mny mm >*w )" Jj=1 Nik
Y B G e » 4 o
B, =96, (log (av,ﬁ»lkl)mm + Z ®f,k(afA£,i,p pte CAy " k,G[,i,p,k)
l i=1 p=1
o N - .
i i 1(5”(6’145 P e AL k’G“pk))
g=1 p=

(3.28)

The following is the analog of [2], Lemma 3.14]:
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Lemma 3.3. Suppose either k = 0 or k > 1 and we have selected the functions Gﬁqg « as above for
1 < g < k. Then the sequence of functions B {[)K] satisfies (x). Furthermore, we have
2j+a (k] _ —aol
o, B(z =0(e”"?) + 0(Dfrom base (3.29)

t
where the term 0(6“’07[) is in Ly, , while the last term is a function from the base which goes to zero
locally smoothly.

Proof. For ease of notation, define

‘UID = (1 - e wean + €' wp + U-;t, (3.30)

which have the property that @ are Kéhler metrics on Ok for all R > 0 and ¢ large, and which in the
check picture become

AF=(1—e" " Ndpcan+ e Tiwp +17h (3.31)
We first consider (in the original undecorated picture)

(wtlj)m+n = ((1 - e_t)wcan + E_IU)F + Tl;)m_m

m+n\ _ _ - k3
( n )e m((l —-e [)wcan"'e th,bb+77;r)m/\w’}17,fr

m
_ m+n _ _ P (3.32)
+ Z e (n”m( )((1 — ¢ wean + € WE b + 1) A (WF i+ @F pe) "
n+q
q=1
m+n\ _ _ _ + _
= ( \ )e nt (((1 — e Nwean + e wppp + 7)™ A Wpgte ’D,) ,
and so
(wlj)m+n
t
("MWl A (eTTwp)"
((1=ewean + e_th,bb + Uf)m A w;’ﬂ‘ +e7'D,
= 3.33
Whn A W ( )
(I—e)ms m! Wene O ()" P o,
= e + + .
0< e P1at(m = p —q)! Wean Wean A W
Note that the functions
P ,—-qt, d i\m-p-gq
wcane w (n )
Fbb (3.34)

m
(")Cal’l

with ¢ = 0 are o(1) and pulled back from B, while when ¢ > 0 they are not pulled back from B, but they
are visibly of the form f; o + Zf\i , Jt,ih; with the same notation as above, where the f,,o, f,,,- converge
smoothly to zero at least as O (e~9"), and the functions &; have fiberwise average zero and do not depend
on the choice of nf . An analogous statement holds for

e_tD[

wlin AW

(3.35)
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and if we take the logarithm and use the Taylor expansion of log(1 + x), this shows that

(wt )m+n

(m+n)wcan A (e th)n

N
= foo+ Y frihi+0(e” U0 (3.36)

i=1

log

for some possibly different functions f; o, f7,;, and where the term O(e~U*D1) s in Cf; . forall p > 0.
Passing to the check picture, we have

wD m+n 1 - + + phymtn
log — = —ne i + 3] log (1= )dom + &~ f"tF ’Zj) . (3D
( n ) £,can A (waF) ( n )‘Ucan A (e cUF)
and so
5,771 (@)™ sy 0(67% =D 3.38
4 (m+n) . /\(Z;CL)F)" = g ffO"‘fol i+ ( y e ), (3.38)
n ,can

and 6, 2@ =+t = o(1) by assumption, namely the LHS of (3.38) satisfies (%), as well as

(w\])m+n
log ——— = 0(e™) + 0(1trom base- (3.39)
(my—:—n) Z’Can /\ (Zf F)n rom base
The next step is to show that the quantity
B [K]ym+n B [k]ym+n
50 (@pH)ym 5 g (@)™ + 62 og (@)™
‘ (") A (Fpp)™ (") e A (Zpwp)™ (@g)m
(3.40)
also satisfies (x). We have just discussed the first piece, and the second piece equals
2/ @ & (m+n (7l1k +7’§, ]k+y§1k+ +7V’g[Kk)l/\(‘I’D)m+nl
log| 1+ Z ( ) Gy , (341
¢
and for the terms with yg,l,k -+ yﬁ otk t 7251,]( +- 4 yg j[ g, we recall from (3.9) and (3.26) that
we have
Nz k Nj[(;\]
i 3¢ it.lq]
Viiw= 2086 (AL L Gipn), FEM =086 (AR G5, 0, (3.42)
p=1 p=1
with the bounds (3.11), where the approximate Green operator Gf”),v, x is given schematically by
Jo ok e
Gr(A.C) =) D (D™, ,(6) @D A) (3.43)

=0 r=[31]

by (3.1). Plugging this into (3.41) and arguing as we did above reveals that the quantity in (3.40) satisfies
(%) and that, furthermore,

(av)ﬁ,[K])mm

log ——* - = 0(e=™%) + 0(Dtrom base. (3.44)
("D N (Zpwr)" e
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Lastly, to prove that Bt[)'(] satisfies (x), it remains to consider the piece

la]
Jj—1 Nix K Nj‘i
2j-a —t, XH# . & . xtlal ~t¢ X#[q] .
67 20 D Gra G AL s+ AL e G ) + O i (G A 7 i+ € AL 1o Gl |-
i=1 p=1 g=1 p=1

(3.45)

The fact that this term satisfies (x) again follows immediately from (3.43) together with (3.8), which
also give that

Gr (DAL, o+ e AL Gripa)+ Gr (AL w e AL Gy )

= O(e_aoif) + 0(1)from bases
(3.46)

and this completes the proof that Bf[)'(] satisfies (%) and that (3.29) holds. m]

Now that Lemma 3.3 is established, we can start the first step of the iteration, when k = 0 and we need
to select the obstruction functions G[ - To do this, we consider B , which by Lemma 3.3 satisfies
(%), and let {h;} be the correspondlng functlons in its expansion (3 25). Applying the approxnnate
fiberwise Gram-Schmidt [21 Proposition 3.1] to the functions A; together with the G; , x,1 <i < j,

produces our desired list G bk (on B, XY, up to shrinking r), so that we may assume that the functions

h; in (3.25) lie in the ﬁberw1se linear span of the G; , r,1 < i < j together with the G][‘,p,k' This
completes the first step (k = 0).

Next, we consider a subsequent step k > 1 of the iteration, so we assume we are given the lists
Gipk 1 <i<jand G][q;k 1 < ¢ < «; hence, we have the function B{EK] in (3.28), and we want to

[

construct the obstruction functions GJ.K;IIE. In order to do this, we must compare B ([,K] and B {E“‘”. We

have

2jvar glel _ pgle-t] (@ N ol b1

Jjta K K— _ 14 - K]

6{] (Be =B ) =loe (J)ﬁ,[K—ﬂ)mm * Z 6’ (O AL pate ZKA k’G" J.p k)
¢

mAn (7? Ekll)l/\(vﬁ[l( 1] )m+n—i
= —log 1+Z .

3.47
(d’)gv [k-1] )m+n ( )

+Z(§,k(8 Aﬂ ”Att [K] k,G[’jpk)

Asin [21, (3.75)-(3.76)], for 1 < i < m + n, we have

o, . 4, -1 - o, . o « .
Feya)' A @ hymn s (DA (@ecan + (Swp)n) ™"

m+ny v
n ) £,can A (Z;wF)g

—_anlt
(1 + 0(8 02 ) + O(l)from base)s

((D?’[K_ll)m+n h (
(3.48)
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where the O(-), o(-) are in the locally smooth topology. Using (3.43), we can write (for any 1 < g < )

A
Js

al .
kK J

= 3,30 5, e o Gl 00 a6
p=1 =0 r=[%]

Asin [21, (3.80)], we decompose (3.49) schematically as the sum of 6 pieces

[q

Js
vg J[q]g Z Z Z e (r—i)t(%e—re Z’t{(iaaq)L’r(Gj[_q )) ®DLAg]pk
p=1 =0 r=
C[] L u 61 xhIq]
+ (i00d,, r(G Ot @DAT L 4 (100D, ,(G Oy @DHARL 550)
+ (100, (G}, )) ® oD Ay [“ +(16<I>”(G )) @ oD Al
J
+ (i)t,r(Gj[i],’k) ® zaéD‘Ag q; k} Z ( + VIEqr]) ,

=0 r=

M51

N\~

(which depend on ¢, j, k, but we omit this from the notation for simplicity). Observe here that for all
(z, y,f) S QR(S;I’ we have

~R*e7"5,2 < e <0, (3.51)

where, by assumption, e"fégz — 0, so the term e ¢ T in (3.50)is 1 + o(1). Now, as in [21, (3.85)—

(3.91)], we see that I([)qo] is the dominant term, in the sense that

lg]
| o% ll“’QRa-l LGe(0) S C5€||I ”oo .0 Ro71 FAOR (3.52)
4
whenever @ # L or (¢,7) # (0,0). This together with (3.11) implies that
mz+il (m +n) ,)v/g ][llk)z A ( v, [g-1] )m+n—i
¢ I V(a1 man
i=1 ol (w[ ) (3.53)
q v * m+n—1
(m+n)I()0/\(wé’can"'(Z WF ) oty [q]
= - P (1+0(€ a[)2)+0(1)frombase)+F[q s
(m;n) w(’ can (Z wF )ff
where given any R > 0, there is a C > 0 such that for all £,
[q] a
1 g, < COP NG 0 (3.54)
Relation (3.2) shows that
. . b N[q]
(m + I’l) I([)(,IO] A (wt’,can + (Zng)ff) -l 3 é[q] vﬂ lq] (3.55)
(m:l"l) (Z)ercan A (E;(")F)g' P J.p-k f} p.k’ .
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while from the definition of I(gqol and (3.8), we have

N[q]
[q] #.lq]
16910, gﬂ@)\CleA{»,pkllw,gw < s, (3.56)
pP=

while the argument in [21, (3.83)] gives the reverse bound

N[q]
Z IAGY gy < GG (3.57)
l,j,p.k OO’QRéf] < 0,0 OOQR(; 1,8¢(0)° '

and (3.53), (3.54), (3.55), (3.56) imply in particular that

m+n i #.la—-11\m+n—i
m+n (yt’ s k) A (w ) lq] @)
2 ( i ) AR — S CMog N6 .20 < €07 B38)
i=1 (U)g ) . ¢
00,0 -1

¢

From (3.53), (3.54), (3.55), (3.58) and the Taylor expansion of log(1 + x), we see that

min N () YA ( Vﬂ,[K—]])m+n—i NMJ
ik ' lq] x#.lq 4]
log 1+ Zl ( ; ) (d)ﬂs["—l])mwz Z G j.ps kAé’j p.k (1 +0(1)frombase) +F[ s
i= ¢

(3.59)

where Fé,[qJ satisfies (3.54).
This deals with the term on the second line of (3.47). As for the last line, we can use (3.43) to expand

@i’k(aiA"ﬂ L[x] +e I[Aﬁ [«] Gf,j,p,k)

j.p.k t.J.p.k>
j k . (3.60)
= Z Z e (r 2)t€ e “((DL r(ij P, k) ® D’ (a Aﬁ [K _t{)Ag ]K[]7 k))’
=0 r=[4]

and applying the obvious parabolic extension of [21, Lemma 3.10] to balls of radius Régl givesfor¢ > 0,

s, (k] i«
1A% ] k||m’QR5 < CSHIAY S, kllm,QRégl, (3.61)
and so
D@ AR e AB LD ) 6, < COID! Al g,y < cop?Al] oo,

(3.62)

—tpy

Inserting (3.62) into (3.60), and using also (3.57) and the fact that ¢="¢
see that
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and combining this with (3.47) and (3.59), we finally obtain

N[“
K K— —2 K =27 K
B =B 5,20 Z GI AR 11+ 0(Dirom base) + 6,7 L), (3.64)
where E[[K] satisfies
[«] . o7}
IE, ”00’QR < Co, ||I ||<x, QR& 1.30(0)- (3.65)

Now, from Lemma 3.3, we know that both 3 ;K] and B ;Kil] satisfy (%), and from (3.64), we see that so
does 6;2j E {EK], and so it has an expansion of the form (3.25). As in [21], we apply the approximate
fiberwise Gram-Schmidt [21, Proposition 3.1] to the functions h; together with the G; , x,1 < i < j and
G [q] 1 < g < «; this produces our desired list G [K+lk (on B, X Y, up to shrinking r), so that we may
assume that the functions %; in (3.25) lie in the fiberwise linear span of the G; p.k»1 < i < jtogether

with the G9! w1 < ¢ < «+ 1. This completes the step from « to « + 1 in our iterative procedure.
Iterating G. 64) shows that for every « > 1, we have

B[K] _2] @ Z Z G[qll kAg Jq] (1 + 0(1)trom base) + 6;2j_a Z E[[q]’ (3.66)
g=1 p=I g=I
with
lq] «
16 N0, < €765 0,100 (367)

for 1 < g < k, and also

[0] -2j-a
18, IIW,QMZI <Cs, 77, (3.68)

which follows immediately from (3.29).

We can now repeat the iterative step k := [ =L 2ta

] and then we stop, so the last set of functions which

are added to the list are the G}F;IIE. Our choice of k is made so that

el g, (3.69)
The resulting qu] with 1 < g < k + 1 are then renamed simply G p, . These, together with the
Gipr1<i< ], are the obstructlon functions that we seek. It remains to show that the statement of
the Selection Theorem 3.1 holds with this choice of obstruction functions. By definition, the quantity in

(3.15) equals B [kt (up to the term with Z(,Bg, which we can ignore since it can be absorbed into f7 o

in (3.19)). We know that ZS'[[K+1 satisfies (x) thanks to Lemma 3.3. As mentioned earlier, because of
this we know that if it converges locally uniformly, then it converges locally smoothly, which is the last
claim in the Selection Theorem 3.1. The last thing to prove is that if B {[}K+1] converges locally uniformly,
then (3.19) holds, and thanks to (3.66) (with k = k + 1) and to our choice of obstruction functions, it
suffices to show that 6_2j _"E L] g o(1) in the locally smooth topology. Since this term satisfies (x)

(as mentioned earlier), 1t sufﬁces to show thatitis o(1) in the L}7 topology, and this follows from (3.66),

(3.67), (3.68), (3.69) and our main assumption that 3 l,KH] = O(1) in L;5, by using the same iteration
argument as [21, (3.101)—(3.112)]. This completes the proof of Theorem 3.1. ]
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4. Asymptotic expansion

In this section, we will prove our main technical result, Theorem 4.2, which gives an asymptotic
expansion for the metrics w*(¢) which evolve under the Kéhler-Ricci flow (1.1). Recall that w*(7) =
Wb (1) +iddp(1), where the potentials ¢(7) solve the parabolic complex Monge-Ampére equation (1.6),
which we can write as

can
n

(W ()™ = (WO (1) +i8dp(1))™" = e#D+e(D)—n1 (’" * ”)wm AW, (4.1)

4.1. Known estimates

First, let us recall a few of the known estimates for the Kéhler-Ricci flow (1.1) and its equivalent
formulation (1.6). There are many other facts that are known about this flow (see, for example, [39, §5]
or [42, §7] for overviews), but the following are the only ones that we will need:

Lemma 4.1. Assume the setup in Section 1.2. Then there exists C > 0 such that on B XY X [0, +c0), we
have

() C'wh(r) < w* (1) < Cwh(2),

(iD) le()|+ ()] — 0 ast — +eo,
(iii) |w*(?) - wcan|g'(t) — 0ast — +oo,
(iv) |R(g* (1)l < C,

W le() + @) < C,
(i) [V(e(2) + (1) lgor) < C.
Proof. Ttem (i) is proved in [12] (and is an adaptation of [38]; see also [31] for the case m = n = 1).
Item (ii) is proved in [43, Lemma 3.1], and item (iii) in [43, Theorem 1.2] (see especially the very end
of its proof on p.685). Item (iv) is the main theorem of [33], and this implies (v) thanks to the relation
[39, p.345]

¢(1) +¢(1) = -R(g* (1)) —m. (4.2)
To prove (vi), we use [33, Proposition 3.1] which gives

ent (0.). (t))m+n

Vi
og 0

<C, “4.3)
g* (1)

where € is a smooth positive volume form on X such that —i_65 log Q = —wp is the pullback of a Kdhler
form on B. However, by [39, Proposition 5.9], we have —idd log(w, A w;) = —Wean, SOON B XY, we
have

i00log ~—"—T F — _p + wWean, 4.4)

which is a (1, 1)-form pulled back from B; hence, the logarithm of the ratio of these two volume forms
restricted to the fibers {z} X Y is pluriharmonic, hence constant. Thus,

(m;— ")wggn Al =e%Q 4.5)

for some smooth function G on B, and so using (4.1) and (4.3), we get

ent (wo(t))m+n B G)

R < C+|VGlgy <G, (4.6)

g* (1)

IV(e(®) +¢(0)lger) = ‘V (10g

as desired. O
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4.2. Statement of the asymptotic expansion

Given any j € N,0 < 2j < k and z € B, during the course of the proof of Theorem 4.2 below, we will
work by induction on j. By applying repeatedly the Selection Theorem 3.1, and consequently shrinking
our ball at each step, we will obtain in particular a collection G; p x,1 < i < j,1 < p < N; . of smooth
function on B X Y with fiberwise average zero, which are fiberwise L? orthonormal. For each such

G;prandt >0, asin 21, (3.6)], we define P; ; , x = Pt,Gi,p,kv where

P; g (a) =n(prg).(Ha A a)}_l) + e try,,, (prg)(Ha A W), 4.7

for any (1, 1) form @ on B XY and H with /{z}XY HwY, =0 for all z € C™. Throughout the proof, we

will fix a reference shrinking product metric g(¢) = gom + €' gy 4. It will only be used to measure
the norms and distance but not the connection, and thus the exact choice of z( is unimportant thanks to
(2.5) (we will usually take zo = 0). We will also need the #-dependent approximate Green operator &, x
defined in [21, §3.2], to which we refer for its basic properties.

Theorem 4.2. For all j,k € N,0 < 2j < k, z € B, there exists B" = Bcm(z, R) € B and functions
Gipx1<i<j,1<p<N;yasabove, suchthat on B’ XY, we have a decomposition

w* (1) = (1) +yo (1) +y1k(0) + -+ ¥ 1 (1) + 1, (D), (4.8)

with the following properties. For all @ € (0,1) and r < R, there is C > 0 such that for all t > 0,
(—2j-a .
1N kllo,0, (z.0).2() <Ce 2" forall 0<¢<2j, 4.9)

(D% 1) 1la.a/2.0, ().2(1) < C, (4.10)

where Q,(z,t) = (Bem (z,7) X Y) X [t — r?, t]. Furthermore, we have

Ni ke

Yo(t) = iaéf, Yik(t) = Z 1006, 1 (Aip.k(1),Gipk) 4.11)
p=1

for 1 <i < jwhere A; ik (t) = Py i p k(1i-1,k(t)) are functions from the base, and we have

1070l .o = 0(1) forall 0<1<2j, @12
[D*Y0laa/2.0, (z.1).g0m < C (4.13)
1010 + @)l (z.1.g0m = 0(1) forall 0< <2, 19
[Dzj(alf+f)]a,a/2,Qr(z,t),gcm <C, (4.15)
1D Aip ks, (z.0.50m < Ce™CFOUTTEDE forall 0<1<2j+2,1<i<j,1<p <N,
(4.16)
' _aQite) (_ 22\ 2\
1D+ Ai p klloo. 0, (2.0).g0m < ColHHFEI ) pran 0< <2k, i<, 1<p< Nik,
4.17)
. N, . N 1 ’ 7
sup Z]: TS et [D2F2HA; p o (x,5) = Poa (DA k(0 5) g (1) <C

(o)) e0r (o) S (dg(t) (x.x7) +]s — s/|%)a

(4.18)
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Remark 4.3. Key differences between Theorem 4.2 and [21, Theorem 4.1] are the estimates in (4.14),
(4.15). These will be crucial for us in the proof, to deal with the term ;¢ + ¢ in the complex
Monge-Ampere equation (4.1). Another difference is that the bounds in (4.16) are worse than those in
[21, (4.12)], due to the fact that in this paper, we can only consider even order Holder norms.

4.3. Setup of induction scheme

We start with a given z € B. For any given k € N, we prove the Theorem by induction on j. We treat
both the base case and induction case together, although they will have to be considered separately at
certain steps of the proof. Given k with 0 < 2j < k, if j > 0, we assume Theorem 4.2 holds at the
(j — 1)-th step, so there exists Bem (z,r) C B such that we already have the decomposition of w*(r) at
the (j — 1)-th step satisfying the desired estimates on Bem(z,r) X Y X [0, +00). We aim to refine the
decomposition at the j-th step as well as define it for j = 0.

As mentioned in the Introduction, we can write w® = wf +iddp. When j = 0, we take yo = idd¢ and

0.k =i03(¢ — ) so that w* = w9 +yg +nox. If j > 1, suppose we already have the decomposition

w* zwu+70+71,k+"'+')’j—1,k+77j—1,k 4.19)

on (Bgm(z,r) X Y) X [0, +00). We further decompose 77;_1 x into y; x + 77j x as follows. When j > 1,
up to shrinking r > 0, we can assume that we already have selected smooth functions G; , ,1 < i <
j—=1,1 < p < N;yonBem(z,r) XY, which are fiberwise L? orthonormal and have fiberwise average
zero. When j > 1, we then apply the Selection Theorem 3.1 which up to shrinking r further, gives us
a list of functions G; p x,1 < p < Nj i on Bem(z,r) x Y, which are fiberwise L? orthonormal and
have fiberwise average zero, so that the conclusion of the Selection Theorem 3.1 holds for the collection
Gipk,1 <p<Nig,1<i< j Withthis collection of function, we define

Ajpi(t) =Py pr@mi—1,k(t)), (4.20)
where P is given by (4.7) and
NJ,k B
Yik = Y1006, k(Aj p i Gp ), 4.21)
p=1

where ®, i is defined in [21, §3.2]. Finally, we define ; x := 1;-1,x — ¥k so that
W =0T Yo F Ykt Yk Tk (4.22)

on Bem(z,r) XY X [0, +00). For ease of notation, by scaling and translation of our coordinates, we may
assume without loss that we have this decomposition Bem (z,r) = Bem (1) = B.

4.3.1. The base case of the induction j =0
The base case of the induction, where j = 0, needs to be treated separately, and although the overall
scheme of proof is the same as when j > 1, there will be some crucial differences.

First of all, let us examine the estimates that we need to prove in order to establish Theorem 4.2
for j = 0. The estimates (4.16), (4.17), (4.18) are vacuous by definition. By Lemma 4.1 (iii), we have
that ||i8§go||oo,gxyx[t,1J],g(,) = 0(1) as t — 400, and the fiber integration argument in [38, p. 436]
then gives ||vollco, Bx[1-1,¢],gcm = 0(1) as well, which implies (4.12). Similarly, Lemma 4.1 (ii) implies
that [[0;¢ + @lleo,Bxyx[i-1,;] = 0(1), and taking fiberwise average, this easily implies that ||0;¢ +
@lloo, Bx[1-1,1] = 0(1) too, which implies (4.14).
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Next, using the bounds ||0,2¢+(9,<p||w,3xyx[,_1,,] < Cand ||[V(8;¢0+ @)oo, Bxy x[i-1,1],2() < C from
Lemma 4.1 (v), (vi), which together with the L™ bound for ;¢ + ¢ imply the same bounds for the fiber
average

1076 + 0:llco.Bxii-1.01 < Cs 1V(0:¢ + @) lloo.Bx[1-1.41.80m < C (4.23)
we can bound for any x,x” € Bandt > O and s € [t — 1,1],
1(0rp + @) (x,1) = (6t£+£)(x', I <C(x=x"|+t=s]) <C(x—x"|+]t - s|%)", (4.24)
which gives
[6,2+£]a,a/2,gx[,_1,,],gcm <C, (4.25)
which implies (4.15).

Thus, when j = 0, it suffices to establish (4.9), (4.10) and (4.13). The final claim we will need is that
if we suppose we have proved that for all # > 0 we have

[i00¢]a,a/2.0, (z).8() < C, (4.26)

where Q,(z,1) is as in the statement of Theorem 4.2, then the estimates (4.9), (4.10) and (4.13) will all
hold. To prove this claim, we use the following ‘non-cancellation’ inequality

[100¢] 0,12, Bom (z.)x(1-r2.11.gem < Cli0I@laaj2base.0, (z0).gx + ClliBIPllo.0, (21).gx>  427)

which is straightforward to prove using [21, (4.215)], except that here there is no stretching involved.
Plugging (4.26) and Lemma 4.1 (iii) into (4.27) gives

[iaaf]a,a/Z,ch (z,r)x[t-r2,t],gcm <C, (4.28)

which is exactly (4.13), and recalling that 79 x = i@égo - iaéf, we can use (4.26), (4.28), the triangle
inequality and the boundedness of P to estimate

[nO,k]a,a/Z,Qr(z,I),g(Z) <C, 4.29)
which proves (4.10). Lastly, (4.9) follows from this and Proposition 2.6, using that the potential ¢ — ¢
of 1o.x has fiberwise average zero. This completes the proof of the claim and shows that in order to
establish Theorem 4.2 for j = 0, it suffices to prove the single estimate (4.26).

4.3.2. Estimates from induction hypothesis

Suppose j > 1 and the conclusion holds at the (j — 1)-th step. We first observe that by [21, (4.16)], the
operator P; ; , i satisfies

1Ptk (@)oo, < Ce™ ll@lloo, Bxy (1) (4.30)

for any (1, 1) form @ on the total space and 7 > 0. In particular, we can put @ = 7;_1 ¢ (¢) for r > 0 and
1 <i < j and use also (4.9) to see that

Az poillooBxir—1.0] < Ce™ M-tk llco.Bx[r-1.4] < Cge™ P12 (4.31)

forallBe (0,1),1<i<j,1<p<N;jrandt>0.
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4.3.3. Reduction to estimating the Holder seminorms, when j > 1

Suppose again that j > 1 and fix a real number a € (0, 1). We first show that (4.9), (4.12), (4.14), (4.16)
and (4.17) on Bem (p) X Y X [0, +00) (for some p < 1) would follow immediately once we establish the
Holder seminorm bounds (4.10), (4.13), (4.15) and (4.18) on a slightly larger domain.

We first address (4.9) and (4.12). Since the potential of 7; x has fiberwise average zero, (4.9)
follows directly from Proposition 2.6 and (4.10). Next, as in Section 4.3.1, we observe that the estimate
in Lemma 4.1 (iii) implies that ||yolleo, Bx[r1,¢],gcm = ©(1). Then, (4.12) follows by interpolating
between this and (4.13) using Proposition 2.3. Similarly, the estimate in Lemma 4.1 (ii) implies that
10:¢ + @llo, Bx[z-1,:] = 0(1), and interpolating between this and (4.15) via Proposition 2.3, we obtain
(4.14). The remaining task is to show (4.16) and (4.17). By (4.18), (4.31), we can interpolate from
0,(0,1) to Qr(0,1) (p < R < 1) using Proposition 2.3 and get

2742
Z(R _ p)t”bLAi,p,k||00,Qp(0,t),g(t) < Ck(R _ p)2]+2+a + Ce_(”‘”/z)t_ (4.32)

=1
By choosing
R—p~e Tt (4.33)
(which is small), we see that for each 1 < ¢ < 2j + 2,

”DtAi,p,k”oo,Qp(O,t),g(t) < Ce_(2i+a)(1_72j+2+a)§’ (4.34)

which is (4.16). Finally for (4.17), by interpolating (4.16) (with ¢ = 2j + 2) with (4.18) using
Proposition 2.3, we obtain

(R =) 1D A p ko0, 00.8(0) < C(R = p)*etE + Ce” POl (4.35)
By choosing
R-p= e_<(2i+a)(1_2f*7l2*“)ﬂ)z“tf‘”, (4.36)

we arrive at

(1/(21+(l) (l— 2j+2 2 )L
z

D24, o, 0050y < Cel ™5 17 25 (4.37)

This shows (4.17). Thus, to prove Theorem 4.2, it suffices to prove (4.26) when j = 0, and to prove
(4.10), (4.13), (4.15) and (4.18) when j > 1.

4.4. Setup of primary blowup quantity

To this end, we denote

Ni,k

Uik =9=¢= > > Gi(AipiGipk) (4.38)

i=1 p=1

~.

which by definition satisfies n7; x = i@é(ﬂj,k. Of course, when j = 0, we have by definition Yo = ¢ —¢.
For x = (z,v),x’ = (z/,y’) € B XY which are either horizontally or vertically joined and 0 < ¢’ < ¢, we
consider the quantities
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i00¢(x,1) = Pyxiddp(x',1")|g(s)
(8@ (x,x") +Vt —t')@

Ho(x7x/’ t? t/) =

(4.39)

and for j > 1,
|szfi(95f(x, 1) — Px/xbzfiﬁéf(x’, ) g(r)
(d8® (x,x") + vVt —1")@

(D2 (dhp + ¢) (x,1) = Pas D (910 + ) (', g1
* (dgD (x,x") + V1 —1")

D220 1 (o, 1) = P D420 1 (1) g (1)

(d8D (x,x") + V1 —t)@

. i (RS | D2 Ak (6, 1) = Pron (DA ik (1)) g (1)

Hj(x,x',1,t) =

(4.40)

L
tz

P (dgW (x,x") + Nt —1")

as well as

Dj(x,x",t)= sup H;(x,x',t,t'), j>0. (4.41)

t'elt—1,1]
For each x = (z,¥) € BXx Y and t > 0, we define the blowup quantity
py(x,t) = 1= |2+ sup D (x, x', 1), (4.42)

where the sup is taken over all x’ = (z’,y’) € BXY with |7/ —z]| < % [|z| = 1| and x” is either horizontally
or vertically joined with x. We want to show that there is C > 0 such that for all ¢ > 0,

sup p;(x,1) < C. (4.43)
BxY

Since g(¢) is uniformly comparable to g(s) if | — s| < 1, abound on y; implies (4.26) when j = 0, and
implies (4.10), (4.13), (4.15) and (4.18) when j > 1, and would thus conclude the proof of Theorem 4.2.

Observe that the quantity H is closer in spirit to the one used in our earlier works [20, (5.7)] and
[4, (3.10)] (which dealt only with the case j = 0), rather than the one used in [21, (4.29)] (which dealt
with all j > O at once).

We now setup the contradiction argument, so suppose that (4.43) fails. We can then find a sequence
t¢ > 0 such that supg,y 0,1 Hj(x,1) — +00 as £ — +oo. Since the solution of the flow is smooth
on any compact time interval, we must have f, — +co. Moreover, there exists s, € [0, f,] such that
SUPpyy Hj(X,8¢) = SUPpyyx(o.,,] Hj(%,1). Without loss of generality, we can assume s¢ = t; — +co
and

sup uj(x,tp) — +0o. (4.44)
BXxY

For each ¢, we choose x¢ = (z¢,y¢) € B XY such that u;(x¢,t7) = supgyy u;(x, 7). We also define

Ae by
/lijm := sup D (xe, X', 1¢), (4.45)
p
so that
wi(xeste) = Izl = 1P A — oo, (4.46)
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and hence, 4y — +oc0. Let x;, € B X Y be the point realizing sup,, D;(x¢,x’,t¢) and t; € [t, — 1,1¢]

realizing sup, H;(x¢, xz,, te,t’). Without loss of generality, we can also assume x; — xo € B X Y.
Consider the diffeomorphisms

Wi Ba, XY X [<231,,0] = BXY X [0,1¢], (2,9,0) =P (2,9,0) = (4;'2, 9,1 + 12D, (4.47)
Let X, := (Z¢, J¢), where
(2e. 0. 1) =97 (20, ye. 1), (4.48)

so that 7y = 0,, = A3(1, —t;), and = A3(t — 1) € [-A3t,,0]. Given a (time-dependent) contravariant
2-tensor « (such as w*(?), g(1), etc.), we define &, := /l?‘P;Aa. Thus, for example, 3 () = A%‘P’;w' (te +
Aff). The pullback complex structure will be denoted by J,. Given a (time-dependent) scalar function
F, we will also denote by Fp = ‘PZF, so that, for example, GAg,i,p,k = ‘{‘;Gi,p,k. However, for the two
functions A; , r and ¢, we will define instead

Apip () = 3¥A; pic(te + 20, (D) = 3P0t + 2,°0), (4.49)
where 7 € [-1,42,0]. We define also
S50 = e ¥ (4.50)
Observe that from (4.31), we have that

—2i+2-a

A 2 2
||Al’,i,P,k(t)||Loo(B/l€) < C(5€e o

2ita 327
_ 2 32

4.51)

forall ] <i < jand 1 < p < N; and —t[/l% < f < 0. For notational convenience, we will still

use D and P to denote their pullbacks via ;. In particular, ©; = L?)?, +100@, satisfies the following
Kihler-Ricci flow

3% = —Ric(d}) — 1,263, (4.52)

and we can equivalently write the complex Monge-Ampere equation (4.1) as
5 A2 Gp—na22f [+
@37 = s Mo o @53)

where (following the above convention) @¢ can = /If,‘I’;wcan. It is then straightforward to see that for all
¢ > 0, we have for j =0,

- i00¢¢(%¢,0) = Py ,i00@e (), 17) g, 0)

2 () (e orn o 1o (L
(d3 O (%¢, %)) + |F]2) @

(4.54)

and for j > 1,
1Didd$e(Re,0) — Py 2, DHiddPc (£, 17) 12, (0)
(d2eO) (&, %)) + |£]2)
1D (8pe + A7 Pe) (Re, 0) = Poy 5, DX (35 fc + 4,2 @0) (R 1)), (0)

(d&cO) (£, %)) +|15]2)@

+
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.\ |D2* 2 ; k(%¢,0) — Px;xfszﬂzlﬁe,j,k(ﬁ}, i)
(d8O) (3¢, %)) + |15 2)@
DAL pk(Res o) = Py, (DAL 1 (£, 1) 12, (0)

(déeO) (50, 8)) + |1)]2)@

8¢(0)

j NLk

2k |
+ Z Z 5,
=2

i=1 p=1.

. (455

and £, was chosen to maximize the difference quotients in (4.54) and (4.55) (which we can call
f)j()?g,)?’,fg)) among all points £’ = (2", ") € Bem(Ae) X Y, with |2" = 2| < i [|Z¢] — A¢| which are
horizontally or vertically joined to £,. Moreover, the points £, and 7, themselves maximize the quantity

2 2j+a AN (o ar p
12| = 2| sup Dj(%,%,1) (4.56)
&=(2.9) st |2-2]<g 12 -]
%’ and % horizontally or vertically joined

among all £ = (2,9) € Bom(dy) XY and 7 € [—tg/l%, 0]; hence, for all such £, £/, 7, we have

A 2j+a
R X -2
?,%.7) < (M) (4.57)

Di(x,%,1) < =
! 12 = ¢l
Using ||Z¢] — A¢| = A¢ ||z¢] — 1] = +o0 (hence the pointed limit centered at £, will be complete) and

IZe] = Ae| — +oo, (4.58)

W

12e] = el >

together with the triangle inequality, we see from (4.57) that there exists C > 0 such that for any fixed
R > 0, there exists {g € N such that for all £ > (g and Z; = Z, or Z,, we have

sup D;(%,%,1) < C, (4.59)
%,%'€Bom (23, R)XY, f€[—1,42,0]
%’ and X horizontally or vertically joined

where here and in the following, the hat decoration over Bcm is just to remind the reader that we are in
the hat picture. This in particular implies there exists C > 0 so that for all fixed R, f € [~t,42, 0] and all
sufficiently large £, we have for j = 0,

[100%e) o a/2.0r2.206) < € (4.60)
and for j > 1,
2j:00 A 2j ~ -2 A
[DVi00¢e] o 02,0k 20,00(5) + [PV (i@t + 700 0 02,0 (2.0),0 )

Jj Nik 2k

2j+2. 7 . . L 2j42+0 § .
DYk 02,0k (20200 T Z Z Z 5; [D Aripk] o a0 eign <C
i=1 p=1(=-2

(4.61)

where O (2,7) = (Bem (2, R) X Y) X [-R? + 7, 7] with 2 being either 2, or 2.
When j = 0 we will need the following ‘non-cancellation’ inequality

1-a
caE A cn oA R CaF
[100%e) 0,020k 2.0).20() < CLiOIDe] o )2 base.Or (2.).0x + € (,TL,) 100G ellco, 0 (2.).0x°
(4.62)
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which is again straightforward to prove using [21, (4.215)], and plugging in the H6lder bound in (4.60)
and the L™ bound ||i88<ﬁg||m,QAR(2,f)’§€(f) = 0(1) which comes from Lemma 4.1 (iii), we see that
[i00¢]a.0/2.0r 2.0).06) < C> (4.63)

and combining this with (4.60), using that jo x = id0P, 0. = i00$e — id0P, and using the triangle
inequality and the boundedness of P, we get T

[1000e) 02,01 20,200 * 00T 0.k 0 2,02, 0 < C- (4.64)

After passing to subsequence, we will split the rest of the proof into three cases, according to the
behavior of 6, = A,e7"¢/2: Case 1: §; — +o0, Case 2: §; — oo > 0 and Case 3: 5, — 0.

4.5. Non-escaping property

In this subsection, we will show that in Cases 2 and 3, the distance between the two blowup points £,
and £, will not go to infinity. This proof does not apply to Case 1 (at least when j > 1), but we will
nevertheless establish the same result in that case in (4.97) below.

Proposition 4.4. Suppose 6y < C for some C > 0. Then there exists C’ > 0 such that for all £ > 0,
d% O (2., %)) + |12 < C". (4.65)

Proof. First, we can easily deal with the case j = 0. By Lemma 4.1 (iii), we know that

sup  |idd¢lg(r) = o(1), (4.66)
BxXY x[t-1,t]
which implies
1i00%ellus, g, 2.0).¢. ) = ©(1) (4.67)

as { — oo, for fixed 2,7, p, and applying this to Z = Z, or 22, and 7 =0or ft,” we see that the numerator
on the RHS of (4.54) is going to zero, which gives us the even stronger statement that

d% O (£, %) + ] = o(1), (4.68)

and for j = 0, we do not even need the assumption that 6, < C.

Next, we assume j > 1. The argument is a modification of [21, Proposition 4.5], and the goal is
to estimate each of the terms in the blowup quantity in (4.55). In the following, we denote O (2,7) =
(Bcm (2, R) X Y) x [-R? + 1, 7] with Z being either %, or 2, and 7 is either 7, = 0 or 7.

We first handle the terms involving A¢ ; p «. Recall from (4.61) that for all -2 < ¢ < 2k and each
given R > 0,

(DY Ap i poi| < C634, (4.69)

@,@/2,0r (2,1),8(F)
while from (4.51),

2i

=2i+2-a te+

A 2 “itd-a,
Acipklle.op ey < COpe™ 2

B RN o5l E 0 (4.70)

since f = 0 or fz, satisfies 7 > —/l%. By Proposition 2.3, for all 1 < r < 2j,

—2i+2-a

(R=p) D" Acipokll, 200,005y < C(R=p)/*767 + Coge ™21, 4.71)
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We choose
i+2—a ﬁ
R-p~ (e7800) 77, 4.72)

which is small for any given R. We get for all 0 < r < 2j that

21+2 a

r A 1- 2j+a +n
1" Ac.ip.klloo,0, (2.8).80() S Céz( t[) " =0(1), (4.73)

where 7 is either 7y = 0 or t
Ifweletr =¢+2 >0, then for 0 < r < 2k + 2, we can interpolate again, using (4.69), and get

- A _ —2i+2—a 2A‘(-t(y
(R _p)r||:DZJ+VA€,i,p,k”‘X,’QAp(z’;)’gA[(f) < C(R- p)r+(¥6{)r+2 + Cég (942 *te) = (4.74)

By taking

1
R-p~ (5; (37‘2"?“%) 21‘“') , (4.75)

which is small thanks to our assumption that 5, < C, we conclude that for all 0 < r < 2k + 2,

B e A ;[ =2iv2-a P o
Sy NP A pille,0, (2.0 800) <c(55 (e 3 ) ) =o(1). (4.76)

Applying (4.73) and (4.76) to balls centered at (Z¢,7¢) and (2}, 7;) (of any radius — for example, 1),
together with the boundedness of operator norm of P from [21, §2.1.1], this gives

j Ntk

2
Z Z | D2 A i (Re,0) = Pa g, (DY Ap i ()7, ))|gz(0)) =o(l). (477
i=1l p=1 (=—

We now treat g, j.k which has fiberwise average zero. By Proposition 2.6 (in case 6, does not
converge to 0, we choose p to be sufficiently large) and (4.61), we have

2j+2.7
1DV Yt ko, 5.0),80 (1) < €O - (4.78)

Applying this to balls centered at Z, and Z; and invoking [21, §2.1.1] again, we have
1Dk (Be,0) = Py, D g j 4 (87, 1) g, 0) < €O (4.79)

It remains to consider the fiberwise average of the potential (i.e., ¢,). Recalling (4.66) and taking
fiber average (using the fiber integration argument in [38, p.436]) gives in particular

1i00¢lloo,Bx[1-1.11.50m = 0(1), (4.80)

as t — +oo, which implies
1100¢ell,0, (2.0, ) = 0 () (4.81)
as £ — oo, for fixed 2, 7, p, and interpolating between this and (4.61) gives

||:sziaa‘ﬂllw,ép(z,;),gm =o(1) (4.82)
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for Z = 2, or Z, and f=0or ft’,. Using again the boundedness of the operator norm of P, this implies that
D08 ¢ (8¢, 0) = Psy 5, DViddge (£, 1)), 0) = 0(1). (4.83)

Similarly, from Lemma 4.1 (ii) and taking fiber average, we know that

sup  |drp + | =0o(1), (4.84)
BXY X[t—1,t] - =
as t — +oco, which implies
10: e + 47" Pl 0, 2.0y = O (4.85)

as { — oo, for fixed Z, 7, p, and again interpolating between this and (4.61) gives
1D (@1 8e + 4500 o0, 2.1ty = (D)5 (4-86)
for 2 = Z¢ or 2, and 7 = 0 or 7}, and hence,
1D (0ppe +A,°0e) (¢,0) = Pay o, D (858 + A,°80) (£, 1)) |, 0) = 0(1). (4.87)
Combining (4.55) with (4.77), (4.79), (4.83) and (4.87), we obtain the desired bound (4.65). ]
We are now in position to study the flows obtained as complete pointed limits of
(Bom (26,40) X Y, 80(D), %¢) (4.88)

as { — +co, where as usual 7 € [—/l%,tg, 0]. By translation, we can assume £, = (Z¢, V¢) = (0, 9¢) €
C™ xY and $, — Y € Y by compactness of Y after passing to a subsequence.

4.6. Blowup analysis in Case 1: 6y — +oo

In this case, the metrics g, (0) are blowing up in the fiber directions, so that their pointed blowup limit
(modulo local diffeomorphisms that stretch the fibers) would be C™*". While this is the approach taken
in our earlier works [4, 11, 20], it turns out that we need a different approach instead (at least when
Jj = 1). So, following [21], we consider the diffeomorphisms

[1]

g:B

e

XY X [—e"t,0] — Ba, XY X [=A51¢,0], (2,9,7) = E¢(,3,7) = (6%, 7, 670),  (4.89)

NS

pull back time-dependent 2-tensors via =, rescale them by ¢ 22 and denote the new tensors with a check,

D=k A

so, for example, &} (7) = 6,°E,® [(6§f). We also apply the same pullback and rescaling procedure to
the scalar functions A[’i‘ p.k and Qp.

In this case, g (7) is locally uniformly Euclidean in space-time and @} satisfies the Kéhler-Ricci flow
equation
dw; = -Ric(@}) — e a7, (4.90)

and the Monge-Ampere equation (4.53) becomes

v e\t B prret gp—neiei (M 1) =
() = e pene (m O can N (EWjwr)". (4.91)
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Thanks to Lemma 4.1 (i), we know that &} (7) is uniformly equivalent to

D) = (1= e N can + e TENW 0, (4.92)

which in turn is locally uniformly equivalent to the Euclidean metric. The pullback of the complex
structure also converges locally uniformly smoothly to the Euclidean product complex structure due to
the stretching. We want to apply the local higher order estimates in [4, Proposition 2.1] on O (%, 0) and
0 (Z,, [) but we do not know whether B, (%,), B (Z}) are contained in B iy as we do not have any

relation between d, and ||Z¢| — A¢|. However, these are compactly contamed in the slightly larger ball

B(l : Y for any fixed o~ > 0 and all ¢ sufficiently large, and we may assume without loss that &} (7)
+0)e 2

is uniformly equivalent to Euclidean on B v XY x [=(1 + o)%e't,,0]. Thus, the local higher

(1+o)e2

order estimates give us uniform C* estimates for @} on 01(%¢,0) and O, (Z},1,). Thus, on these sets,
we have uniform C* bounds for i[)ggb, hence on i65¢ (by fiber averaging), hence on Am, p.k (from its
definition), hence on y, 1 x (also from its definition), hence on 1j¢.1,x (from its definition), and so forth
until Ag’j,p’k, Ye.j.ks1ie,j,k- From the PDE (4.91), we also get uniform C* bounds for O:pe+e gy, and
so by fiber averaging also on 8y, + e~ ¢;. Also, since 7j¢ j x = id0Y ¢, k is locally smoothly bounded,
and Y ; i has fiberwise average zero, then fiberwise Moser iteration gives us a uniform L* bound for
Ve, j k» and elliptic estimates show that ¢ ;  has uniform C* bounds. Putting these all together, we get
in particular

191006l 6, 00 + 10 "@5@'«) G100 + D7 (08 + e G0l 6,00

Lk 2k (4.93)

J
27+2 7, 2j+2+¢ X
1D koo, 00 + Z DD A p il ze0) < C
p=11=-2

2j+a9 % 2j+q9 % 2j ¥ —tr ¥
[DVi00c) 0 0/2.01.200) + D7 i008c) 0 0/2.01.500) + 1D (DeBe + € D) a/2.65,.200)

22y L, S s v (4.94)
L
+[®Y lﬁfvf’k]a,a/Z,QI,éz(O) + Z Z Z [b ! Af»i’P’k]a,a/z,Ql,gg(O) <C,

i=1 p=1.=-2

where 0 is either O (%¢,0) or O, (%, 7»1,). Transferring these back to the hat picture gives

1Di00¢ellw g, ., (0) * 1D 5@”00 60,00 T I (B8 + 47200 6, 00

Jj Nik 2k
+ 1D e, ko 6 +Z Z SHID > A p il s, @
t.J-klleo,05,,8¢(0) Cipklloo,05,,80(0) S

i= =11
2jia7n 2j:a7n 2 (8.5 4 120
[DVid0Gcl0,0/2,05,.800) ¥ D700 4.012,64,.2,0) + BT BiPe + 4" 000 012,64,.800)
Jj Nik 2k

242,75 . N 13 2j424L § R -2j-a
DV kg ar2.05, 800 +Z | Zz‘sf DY Aip k] 42,05y 0000 < €O
i=1 p=1 (=—

(4.96)

where QA(;f is either QA&,(f[, 0) or QA(;,;(Z 7 5) Using (4.95) and the triangle inequality (and the usual
bound on the operator norm of P), we obtain a uniform upper bound for the numerators of (4.54) and
(4.55), and so for j > 1, we conclude that

a8 O (1, 8,) + |17 < C5,Y, 4.97)
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so that the two points (Z¢, 7¢) and (2}, ;) are approaching each other (we already know this when j = 0

A

thanks to (4.68)). Thus, (£},7;) € QA(‘j{, (Z¢,0) for all ¢ large, and so applying (4.96) shows that the

quantities in (4.54) and (4.55), which both equal 1, are also bounded above by C 52

¢ — 0, which is
a contradiction.

4.7. Blowup analysis in Case 2: 6; = 0 € (0,+00)

Without loss of generality, we can assume 6, = 1. In this case, the blowup model is C'" X Y and

25(F) = geanle=o + 8¥ 20 = 2P, (4.98)

as £ — +o0in C> (C™ X Y X (—00,0]). Moreover, the complex structure also converges to a product.
As in Case 1, Lemma 4.1 (i) implies that 3 (7) is locally uniformly equivalent to product metric on
C™ x Y. Moreover, since c?); satisfies the Kéhler-Ricci flow equation

3% = —Ric(d}) — 1,263, (4.99)

we can again apply [4, Proposition 2.1] on Qg (2¢,0) for R sufficiently large to obtain Cy,,. regularity
of @}. Arguing as in Case 1, we obtain C* bounds for all the pieces in the decomposition, and using
Proposition 4.4, we can assume (£}, ;) — (%4, %) € (C™xY) X (~00, 0]. Estimating the C¢ difference
quotients in (4.55) by C# ones for any B > @, we see that d%¢(0) (£,, %)) + |f;,|% > C~! for all ¢, which
when j = 0 is already a contradiction to (4.68).

Assuming then that j > 1, we see that the limit (£, 0) of (£¢,0) is different from (£/,, 7% ). By the
local uniform higher order regularity, the geometric quantities smoothly subconverge as £ — +co. In
particular, the limit @2, (7) is an ancient solution on C"™ X Y x (—o0, 0] of the Kihler-Ricci flow

8;0%, = —Ric(0%). (4.100)

Smooth convergence also implies that (4.55) still holds in the limit.

By (4.51), we have that A[’i’ p.k — 0 locally uniformly, hence locally smoothly, so its contributions
to (4.55) vanish in the limit as £ — +oco. However, Lemma 4.1 (ii),(iii) also implies that the limits of
iaéﬂ and 0;¢p + /lgztﬁg (and hence also of 0;@¢ + /lgzﬂ) vanish so that their contributions in (4.55)
also vanish in the limit.

We are left with killing the limit of the contribution of ¢ ; x. For this, recall that from Lemma 4.1
(iv) we have |R(g*(#))| < C,andso |R(2* ()| < C/I[T2 — 0, thus the limiting metrics &2, () are scalar-
flat, and hence Ricci-flat and static (using the well-known evolution equation of the scalar curvature
under the Kiahler-Ricci flow (4.100)). Also, since AAg,i’ p.k — 0 locally smoothly, this implies that
Veix — 0,1 <i < j,andso @Y, = wp + e, j k, and in particular, fje_j  is also static. The Liouville
Theorem from [18] shows that V877 ; x = V2@, = 0. Thus fiee j k= i00e. j i is parallel, with
bounded gp norm (from Lemma 4.1 (i)), so by [20, Proposition 3.12], we have id0y/«, j x = i0dp for
some quadratic polynomial p on C™. This means that /e, i,k — p is pluriharmonic on C™ X Y, and hence
it is also pulled back from C™ (since Y is compact). This clearly implies that i/, .k is pulled back from
C™, and since it also has fiberwise average zero, it must vanish identically. Thus, the contribution of
l,/;[’ j.k to (4.55) also vanishes in the limit, and this gives a contradiction to (4.55).

4.8. Blowup analysis in Case 3: 6y — 0

In this case, the blowup model is C"™ which is still collapsed. This is the most difficult case and will
occupy most of the rest of the paper.
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By Proposition 4.4, we know that (£, fé,) remains at bounded distance from (%, 0). The key claim
is the following non-colliding estimate, whose proof will take substantial work:

Claim 4.5. There exists gy > 0 such that for all £ > 1, we have
d% O (£, %) + |52 > 9 > 0. (4.101)

First, we show how to quickly complete the proof of Theorem 4.2 assuming Claim 4.5 holds. When
Jj =0, itis clear that (4.101) is incompatible with (4.68), while if j > 1 then (4.55) implies

&g < |DYi00¢e(%¢,0) = Pa s, DYid0@e (£). 1)) 3, 0)
+ D (G0 + A,2P0) (50, 0) = Pir 5, D (830 + A,200) (37. 1)) 2. (0)

+ DY ;i (Re,0) = ]P’x'fcﬁgzﬁzlﬁf 5k (E0Tp) g0 0) (4.102)
Jj Nik 2k

+ D000 D S 1D AL (R be) = By, (DI A p k(57,7 a0 |-
i=1 p=11=-2

while the right-hand side is of o(1) thanks to (4.77), (4.79), (4.83) and (4.87) as £ — +o0, since 6, — O.
This is a contradiction. Therefore, to complete the proof of Theorem 4.2, it remains to prove Claim 4.5.

4.9. Setup of secondary blowup in proving Claim 4.5
Foreach ¢ > 1, let

dp = d® O (3, %)) + 7|7 > 0. (4.103)
If Claim 4.5 fails to be true, then we may assume that dp — 0 as £ — +oo. Define a new parameter
er=d; "o, =d; ' Ae™ T, (4.104)
and consider the diffeomorphism

O : By, XY X [=d;?A31e,01 = Ba, XY X [=251¢,01, (2,9,0) = ©¢(Z,3.7) = (d¢Z. 3. dih),
(4.105)
As usual, we pull back time-dependent 2-tensors via ©,, rescale them by d;z and denote the new
tensors with a tilde, so, for example, @3 (7) = dng){*,aA);(d?f). We also apply the same pullback and

rescaling procedure to the scalar functions A{;,i,p,k and @;, so Ag,i,p,k (H) = d;zG);AAg’i,p,k (d?i), @e(7) =

g‘pf (dzf)
The decomposition (4.22) becomes

@y = 655 +Ve0+ Ve k + Ve ok e,k (4.106)

and the parabolic complex Monge-Ampere equation (4.53) becomes

~ + O: Gr+d2 A2 Gr—nd2 2327 m+n
(@)™ = elreeracds sendidy ( . w;"can/\ (st,@t,‘l’;wp)" (4.107)

From (4.64) (when j = 0) and (4.61) (when j > 1), we immediately see that for any fixed R > 0 and
e[- /lzd 21‘[, 0], we have

[1006¢)a.a/2.0,0y1 (1.200) + 1000006 00/2.0, 1 .20 < € (4.108)
l 4
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if j =0, and

2:ad 2~ 2,-2

[@ jlaaﬂ]d,d/ZQRd—l (7),8¢(F) + [:D j(@fﬂﬁ' dg/lg ﬂ)]a,a/Z,QRd—l ()8 (D)
4 4

| Nik

J
2427 -
DYV ka0, 0200t D
¢ i=l p=1 .=

[l

2j+a
~ o - S
/2,01 (0.8 = di

(4.109)

K
82 ®2]+2+LA€ ip k]
)
when j > 1, where Qg (7) = Bom(Zg, R) X Y X [-R? + 7, 7]. Moreover, (4.54) and (4.55) become,
respectively,
iddFe(%¢,0) — Pryx,i00G¢ (X, T))15, 0
1=d;” — it idad il d) (4.110)
(dg{( )(XZ,)C[) + |t[|2)a

for j =0 and
D00 @ (%, 0) = Py, 5, DHidIGe (%, 7,) g, (0)
(d% O (3¢, %)) + 7y 7)
1D (0r@e + di A7 Fe) (%o, 0) = Py s, D (8 @e + djaA;> 8e) (X, 1) g, (0)
(d8O) (%, %)) + |lg|§)"
D¢ j 1 (%e, 0) = Pry 5, D200 1 (%7, 7)) g, 0)
(d% O (%, %,) + |7, 2)
I Rk 2k D A i p ok (Fe, 0) = Py, (D2 Ar i, 1(%,, 7)) g0 (0)

-2j-a
+d,
ZZ Z (d3eO (%, %)) + |T5] )@

i=1 p=11=-2

e
l1=d,

-2j-a
+d,

@.111)

-2j-a
+d,

for j > 1, and by definition, we also have
d% O (%, %) + |52 =1, (4.112)

forall £ > 0.

For convenience, from now on, O, will always denote Bem (0,r) X Y X [—rz, 0], where recall that
we have translated the first blowup point (%, 7) in the C™ directions so that (Z¢, ) = (0,0) € C™ x R.
As long as r > 1, the cylinder O, always contains the other blowup point (%}, 1) because of (4.112).
Following [21, §4.8], our goal is to obtain a contradiction by passing to the limit as £ — +oo the
various pieces of the decomposition, after scaling them by d;zj ~?_To do this, we need to perform a jet
subtraction centered at (0, 0) € C™ X (—o0, 0] for functions pulled back from the base. Given r € N, the
parabolic r-jet at (0, 0) of a function u in C™ X (—oc0, 0] is given by

tq
ut = Z Dpﬁqul(oo)z——, (4.113)
q.

|pl+2g<r

using standard multiindex notation, where here we treat 7 as real variables. The parabolic degree of such
a polynomial is defined by letting the 7 variables have degree 1 and the 7 variable degree 2. Thus, the
degree of u is at most r. We will also write u* := u — u®, whose r-jet at (0, 0) thus vanishes.

With this notation, we define Ag»i as the parabolic 2-jet of A ; ,p.k at (0,0), and define A¥ T

A[’i’p’k - Ag,i%k so that DP&?A;,i,p,k (0,0 = 0 for any p +2¢ < 2. As for the potential g, since the
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PDE (4.107) and the blowup quantity in (4.109) (for j > 1) both contain the term d; @, + dg/lzz@, it
will be more convenient to consider instead

W= el gy, (4.114)
so that
0o = e T (B; 50 + d2A72G0). (4.115)

We claim that the fiber average y, satisfies estimates similar to those satisfied by @, in (4.108) and
(4.109): o o

Claim 4.6. For any fixed R > 0, we have

-2j-a
d{’

2jq = 2j ~ 2412 ~
[D Jaf/ﬁ]“,ﬂ’/lQRd;l,g’z(O) -[® ! (afﬂ+ d[/lf ﬂ)]Q,Q/ZsQNRd;bgl(O) =o(1), (4.116)

d—Zj—(l

; =o(1), 4.117)

2i.ad ~ 2iina ~
(DVid0xe)a,a12.0, 1.800) ~ [DV100Fe 0,012,612 0)
4 l

as { — +oo,

Proof of Claim 4.6. We first treat 0; y¢, and since this will only be used when j > 1, we only prove it
here in this case (but see (4.137) and (4.147) below for a stronger statement when j = 0). Observe first
that for any r € N, we have

0,0

27127
a;’ (ed(‘/l(‘ t)

= (1+0(1))(ded;")>. (4.118)

~1
Rdf

Using this, we bound

2j .~ 27 ~ 23-2 ~
’[79 01Xt 00120, 0.800) ~ [V (5t‘ﬂ+ did ﬂ)]a,a/z,Q’Rdfl,gm)
(4 (4

2327
< le@iA7T

2j ~ 29-2 ~ 2j ~ 241-2 ~
[~ (3fW +dpd; W)]a,a/z,ém,_l,gz(m - [Y (@”W +dgd; W)]a,a/z,QR‘,_l,gm)
(4 (4

q
)
p+2q=2j r=1

q

+ ar (ede)] DP I (a~~ +d2 22 ) .
Z Z [ ! @, /2,0, ,-1.8¢(0) I 4 Py aete HOO’QRd(;"gf(O)
p+2q=2j r=0 7

r o d2A%TF
0; (e e )

- ~ 2,-2 ~
N (af‘»"t’ +dyd, W)]a,a/z,QRd_l,gf(O)
W,QRd;1 ¢

<o(l)

2j (.~ 2,-2 ~
[0 (3r6e +dja; ﬂ)]a,a/z,Q‘Rdgl £0(0)
j .
+C Y (A (DX (3560 + 360 o, 00
r=1 ¢

J
—1\2r 2j-2r (.= 2,-2 ~
+C20(dt’/lg ) DY (3fﬂ+dﬂf ﬂ) lo.0 1200
7=
(4.119)

Thanks to (4.109), the third line from the bottom is o(d?j ). As for the last two lines, we interpolate
between (4.109) and the estimate ||0; @, + d?/lzztf),gnm 0., = o(l) which comes from Lemma 4.1 (ii),
— — T¥Rdy
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and we get for each 1 <t < 2j,
474 (R - p)'|| D" (a@+ d?,gzﬂ) o6, 120 < C(R=p)** +0(1). 4.120)
4

By choosing R — p = 1 (which is clearly allowed) and replacing R by a slightly smaller one, we see that
forall I <t <2y,

1D (6t~ﬂ+ d%lzzﬂ) ”°°,Q~R ~1,8¢(0) < Cdy. 4.121)
“e

‘We can then estimate

J

Z(dgl;1)2r+a/”®2j—2r (3l~ﬂ+ d?J;Z@) ||oo,Q~Rd_1,g[(O)
— 4

r=0 (4.122)

j
< C Y (dedg)Vrredy™ = Cpd ™t = o(dft ),
r=0
j
—1\2r ;n2j-2r .~ 2,-2 ~
2 (e D (afﬂ”f/lf ﬂ)]a,a/z,QRd;l,gfw)

r=1

) (4.123)
<C Y (deahd ™ = CAdP = 0(d] ).

r=1

Putting these together proves (4.116).
Next, we treat {00 y¢ in a similar fashion (allowing now also j = 0),

2iiag ~ 2iiaz ~
‘[D 100Xl 0,012,001 200) T 1PT1008t) 00201 2000)

2327
< ed[/l[ t[

2i.nF ~ 2i.af ~
BYi00%cl 0,012,604, 1,800 = 197 10080]0,012,0, 1.2 (0)
4 (4

D)

p+2qg=2j r=1

q
2327 —
+ o7 (7). D769 i08c N 5.\ 2000

P+2qu=2j; t LA

2327 -t .0n ~
0;’ (ed(/l( f) 3 []Dpatf] ’laﬁﬂ]a,a/z,gw_l ,8¢(0)
Oo,QRd;1 ¢

(4.124)

J
< 0(1) +C Z(df/l{_”l)zr [sz_zriaaﬂ]a/,a/Z,QRd,l ,8¢0(0)
€

r=1

2iean ~
[DVi00¢c) o 02,6, 1,200
4

J
+ CZ(df/lzl)zrﬂl||®2j_2ri(95ﬂ||

00,0p ,-1,80(0)
r=0 ¢

and then we continue the argument exactly as above, using the bound (4.108) when j = 0. This proves
4.117). m]

#

» be the (parabolic) jet of f¢ = ed%ﬁ@ at (Z,7) = (0,0) of

With this modification in mind, we let ¥

order 2j + 2, and define y; := y¢ — )2?. Define also

it = e Ti0g g, = e N Tiad ), (4.125)
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so that by definition, we have

i00¢; = 17, +17;. (4.126)
Recall that for 1 < i < j, we had defined
Ni k
Feik= . 096 1 (Aripr,Geipr) (4.127)
p=1

(see also (4.347) below for an explicit formula). We shall further denote

J_ Nik J_ Nik
iy = 0 > 10381 (Ay o Gripa)s Ty = ) > 1006 (AL, Gripi),  (4128)
i=1 p=1 i=l p=1
so that
— J Ni’k -~
@;:J)?+165¢5+ZZ 006k (Ac.ipe: Geipdc) + 1000,
T = pel (4.129)

and we will write J)lﬁ, = LDE, + ﬁ; + ﬁf,.

Thanks to these jet subtractions, and to Claim 4.6, from (4.108), (4.109), (4.111) and (4.112), we
obtain

190K ) 020 -1.2000) * 1109000k 012,01 20(0) < € (4.130)
when j = 0, and

2j:q0 ~% 27 ~%
(D¥100%a.02.0,0 1200 + 70Xt aa/2.0,0,1.200

] le 2k

2j+2.7 2j42+40 f* 2j+a
+ (DY, 4] —_ +§ E [:of i ) <Cd
Ver ko af2.0p 800 e Lorklaangp e 07
i= 4

(4.131)
when j > 1, as well as

(1+0(1)) = d; = |DYidd ¢} (%¢,0) — Py 5, DVidd0; (%, 7)) g, 0)
+d DYy (%e, 0) = Py, DY 001 (%57 g, 0) + ™ 1D e,k (%, 0)

—Prr s, D0 11 (%), 1) |3, 0)
Jj Nikx 2k
—2ji-«a / A% X . A ' ¢
+d, " Z Z Z ep[I1DHHAG (R 0) = Pas, (DAL (7,10, 0) |»
i=1 p:l ==2
(4.132)

while on the other hand (4.110), remains the same for j = 0.
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4.10. Estimates on each component

Our next task is then to obtain precise estimates on all the pieces of the decomposition (4.129), which
will allow us to later expand and linearize the Monge-Ampere equation (4.107). In the following, the
radii R and S will be any fixed radii, unless otherwise specified. Some of the estimates are analogous to
those in [21, §4.9], replacing balls B, by parabolic cylinders Q, = Bcm (0,r) X Y x [—r2, 0]. We follow
closely the arguments there.

4.10.1. Estimates for i, Jok _
First, we assume that j = 0. Then from the Holder seminorm bound for iaa(@g,o,k in (4.64), together
with Proposition 2.6, we obtain

1600 £,0,k o 0 20 0) < COF (4.133)
and since ¢ o, has fiberwise average zero, we can apply fiberwise Moser iteration to this, and get
12,0kl 0,20 (0) < 77 (4.134)

Using the bounds [|07¢ + 8;¢lle Bxyx(r-1,,] < C and [[D(8;¢ + @)llco Bxyx[i-1.1],6() < C from
Lemma 4.1 (v), (vi), we can bound for any x,x" € Bt X Y and 1, s € (17 — A2R%, 1],

[(Brp + @) (x, 1) = (B + @) (x> )| < C(d8D (x,x") + |t = 5]) < 0(1)(d® (x,x") + |t — 5]),
(4.135)

which gives
N N _
[0:@e + A, "Gl o 02,0020 0) < AT [0 + so]a,a/z,gwXyX(,[,AEsz,,[],g(,[) =o(l).  (4.136)

Repeating the argument with ¢ gives

[0:¢c + A;zﬁ]a’d/zg&ﬁf(o) =o(1), (4.137)

and combining these, we see that
[0:re 0.1 + /122!/75,0,k]a,a/2,QR,gA[(0) =o(1), (4.138)

so from this, the bound [ié)gtf/g,o,k] < C from (4.64), and the bounds (4.133) and (4.209)

@,@/2,0r,8c(0)
below (on tbg), we see that

[(a; - Awg) zﬁf,o,k] < CA 100k g.a2.0p.000) + C- (4.139)

@,a/2,0r.8¢(0)

We wish to use the Schauder estimates in Proposition 2.8, and for this, we need to pass to the check
picture via the diffeomorphism E, in (3.4), pulling back all geometric quantities and scaling 2-forms
(as well as &g,o,k) by 6;2. We can then apply Proposition 2.8 to Lﬂg,o,k and then transfer the result back
to the hat picture. This shows that for every p < R (where R is fixed), we have

(220004 la.a/2.0,.00) < C | (3 = A 52) b +CR =) W0kl o

a,a/Z,QAy ,8¢(0)
(4.140)
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and employing the interpolation inequality in (2.11), and (4.134), (4.139), we can bound the RHS of
(4.140) by

CAZ 1.0,k 0 0/2,0 5oy 200) T C + C(R = p) 755+

2

<CAZ(R=p)’[D%00.4) g.0p2.00.2:0 + CU (R =) Ne.0.kllw o,

4.141)
+C+C(R-p) ok (

1 A _ _ 2-
< S [DWe0klaapope 0+ C+CA7(R=p) "6 + C(R = p) 27765,

and after combining (4.140) and (4.141), we can apply the iteration lemma in [21, Lemma 2.9] and
deduce that for every p < R, we have

[bzlﬁf,o,k]a’a/z,ng[(O) < C+CAA(R-p) 657+ C(R - p) 2252+, (4.142)
so in particular, for any fixed R, we deduce that

-
[DYe.0.k)a,a/2.08.200) < C> (4.143)

and finally applying Proposition 2.6 and translating to the tilde picture, we get
— ~ 2va— — ~ 2—
Az 1D T kllog, 200 < €& i Dkl 0z S CoL (414

forany 0 < ¢ < 2.

Next, when j > 1, from the Holder seminorm bound for D%*%j, ; ; in (4.61), together with
Proposition 2.6, we obtain bounds for the lower-order derivatives of 1@5’ j.k» which in the tilde picture
translate to

-2j-a L7 - 2j+2+a—t -2j-a L7 - 2j+2—1¢
d” DY a6, 1200 < CEr o A DYk ae,0,, 1,800 SCECT
4 4

(4.145)

for any 0 < ¢ < 2j + 2. Observe that these are formally the same as (4.144) when j = 0.

4.10.2. Estimates for y,
By Lemma 4.1 (ii),(iii),

ia A~ 207 2F.qa ~

100 %N, 1.0 00) = N Ti008c N, 1 2000 = 0(1),
N ‘ AT~ il (4.146)

10 Xelleo.0,, 1 200) = €7 T (OrPe + dp A" P o6 1 e = 0(D)-

When j =0, we have

- ~ - A2 ~ 29-2 ~
dga[ain]a,(z/Z,Q'Rdzl,gr[(O) =d;“ [e (@ + di A Ge) a2 1200
a = —aai2.0p,1,

<d;” [edg’lzzi] KGr+ 200l 5 s
t a,a/z,QRdzl,gz(O) I Pe T dete ﬂ”""’QRd{—ugf(m

2327
+ d;(l ‘|ed€/l€ t

. 0:@p + 2272 D¢ 3 5
By 0 96+ did; "Gt a.a12.6 1200

< o(1)Cd;(de ;)™ +0(1) = o(1),
(4.147)
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where we used d, " [0; ¢, + d?ﬂ;zgﬁg]a @20, 1.30(0) = o(1), which follows from (4.137). Similarly,
h Zla.al2.0p,1.8¢

711008 a0, 1 o) = 42 | #1008
li00%a.012.0, 1200 = e P o a2 Gy

<d>@ [edﬁaff] ) 1000 ¢llc0.5. .2
¢ a,(z/Z,QRdEI,f;’f(O) - ’QRle’g[(O) (4.148)

2727
+d;(l edf/lf t

- i00@, -
”’QRd;l’g’F(O) [ ﬂ]“’“/Z'QRdg"gf(O)
<o(1)Cd;*(ded;)* +C < C,

where we used d;“[idd¢¢],, @/2.0,1:80(0) S C, which follows from (4.108). Thus, when j = 0, we
Tlla.a/2.0p,1-80

have
[iaa&]ﬂ/,a/z,QRd;l,g[(o) < cdy, [6;&]a’a/2,Q~Rd2]’g€(o) =o(dy). (4.149)
When j > 1, from (4.109), (4.116) and (4.117), we obtain the analogous seminorm bounds

o0 A~ 2j fq. ~ 2j
(Y1003 a,02.04, 18000 < CA " D0 fe) 000, 1200 < CE7™0 (4150)
t (4

and we can interpolate between these and (4.146) to conclude that

~

a7 12008 g, e = 0, 0< <2,

0
dgtublaf&”oo’QRle’gf(o) = 0(1), 0<t< 2],

d;““[fb‘i@é&]ma/z’é}w;l’g[(o) =o(l), 0<:t<2j, 4.151)
d;“”[%‘ﬁg&]a,a/zgkd?7g[(0) =o(l), 0<it<2j
We now treat j;. From (4.149), (4.150) and the definition of j; we see that for all j > 0,
[mfié‘c?)?_?]a,a/z,gwg.,gy(m < cdy*e, [132135);_;](,,“,2’Q~M;],g[(o) <cdy*. (4.152)
Using these and Lemma 2.4, we get
d;zj_a||D‘i65)2_;||m,gs’g((o) < CS¥Hray
dgz‘i_“||D‘3f)?_§||w,gs,g((0) o (4.153)

—-2j-a LA o 2j—t
d( / [b laa)ﬂ]a’a/z’és,g(,(o) < (ony 5

-2j-a LA o* —t
Ay D 0 ) 002, 05.800) < CS

forall0<:<2jand0< S < Rd;l.
We will also need a bound for the L* norm of derivatives of d22j e X, of order up to 2j + 2, which

in general may blow up, but which will nevertheless be useful later. To start, from Lemma 4.1 (ii), we
have ”&”oo,QR = 0(1)A2, while from (4.152), we see in particular that

2/ (9 — A ¥ ]
[3) (6; wem ) Xe @,a/2,0r.gcm

N

(4.154)
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Standard Euclidean Schauder estimates then imply that

[szﬂ%eg] . <C+o(DA (4.155)
—la,a/2,0r.gcm

and since we may assume without loss that o(l)/l% > C, passing to the tilde picture, we get

4,2 [DZJ”X;] =42 [:921+2~ ] <o), (4.156)

a,af2, QRI 1,8cm a,af2, QRd;‘ ,gcm

and we can then apply Lemma 2.4 to Qg and get

a7 D

Filloo, 6. gem = (D7, (4.157)

forO<:¢<2j+2.

Since )2? is a jet of y, it inherits from (4.146) and (4.151) the bounds

d; 1903 g, s =0,
d,'[| D az)(g”ooQ i LBe(0) = o(1),
dEH’[D"aaﬁ]a,a/z,éml,gm» =o(l),

e r _
4 D0 0020, 1200 = 01

(4.158)

for all 0 < ¢ < 2j and R fixed. Moreover, since )Zﬂ

7 is a polynomial of degree at most 2 + 2, it vanishes

when differentiated more than 2; + 2 times.
Furthermore, recalling the definitions of 77 77 ; and 77 m (4.125), from (4.153) and (4.158), we quickly
deduce

2 a . 2 o1 ¢ —t
T 0520 0) < €SV AT D g 2,050 < €S (4.159)
for0<:1<2j,0<S8< Rd;l,and

G 0,00 = 0D A7 IO a0, e =00 (4160)
l

also for 0 < ¢ < 2, R fixed (and derivatives of ﬁf, of order higher than 2 vanish, of course).

4.10.3. Estimates for “I;,i,p,k

From (4.131), we have
(DY A7 pidasar.or.g00) < COF (4.161)
and hence, Lemma 2.4 implies
19447 ; i llo.o.00) < COTRT ™ DAy i laa/nomze < COTRY ™ (4.162)
for all 0 < ¢ < 2j and fixed R > 0. Taking R = Sd, and transferring to the tilde picture, we have

A7 1D AL e 0s.200) < Cel(dgS)H+e, d; DAL i aa)2.0s.800) < Cel(deS)™
(4.163)

forall0 < ¢ <2jand § < Rd;l.
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For higher order derivatives of A
of degree at most 2, (4.131) 1mphes

. . . 4 . . .
&> weuse interpolation. Since A Cipkisa parabolic polynomial

DUTA; ) <CoF 4.164
CLPK] g, a)2.0.80(0) ‘ 1oy
forall0 < ¢ < 2k+2.Forany 1 < ¢ < 2k+2, Proposition 2.3 in the hat picture gives for0 < p; < ps < R,
27+ g%
(P2 = p1)'ID JHA[,[ P, k”oo Op, .8¢(0)
+a 27+ 4% 2] px

C ((Pz - p) e [DH A[ ip. k]a,a/Z,sz,g[(O) +||D JA[,i,p,k||oo’sz’gA((0)) (4.165)

<C(p2— Pl)t+a52 ‘+ Cdfpz

We can follow closely the choice of p; in the interpolation in [21, §4.9.3] (with j replaced by 2; here)
to conclude that

1D+ 4, il < Cso2+et, (4.166)

00,05s5,-8¢(0)

This will play an important role in case &, > C~!. For later purposes, we will need to estimate the

o2
dependence of Cg on S as § — +o0. In fact, Cs in [21, (4.127)] is given by C(AS) e where A > 1 is
given as a function of § > 1 by solving the equation (A — 1)"'A%a = S=a. Since e <lfort>1,A
stays bounded as S — +co. Hence, we can estimate Cs from above by

o2
s < C(AS)wa < CS? (4.167)
for § > 1. Therefore, in the tilde picture we obtain
f+1 7 — 2j+a
||3321“A£’[’p’k||OO,Q~SW§€(O) < CS%e;rd,te, (4.168)

where 1 <t <2k +2and S > 1 fixed (which is the analog of [21, (4.129)]).
Similarly, in the case when &, — 0, following the derivation of [21, (4.132)], we obtain

o2
||DZ]+LA€ i, k”oo QSd 20O < C52 Ld(l’ L+(1/Sl+a (4169)
which in the tilde picture becomes
+0 7 1 & 2 C
D], ) il 0s.200) < CEF(S7ep) Bad, (4.170)
for]1 <t <2k+2and S > 1 fixed.
4.10.4. Estimates for Ag ik
By (4.73), we have for all 0 < ¢ < 2 that
~ divr—a, \ 17 77g
1D Akl .0 0) < €O (e 550) 7 4.171)

for all given R > 0 (with C independent of R > 0). Since Ag ipk is the 2j-jet of Ag i.p.k at (0,0), we

see that all the coefficients of the polynomial Ag ipk A€ bounded by C 5%@ S it , and so

IDAF el 6. gei0) < € max(1, 8277550 =5 7,
RS (4.172)

[D* A < Cmax(1, Szf“—ﬁ)(s%e_%?z_“ Srate

tiop K B.BI2.0s.80(0) S

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.10

Forum of Mathematics, Pi 53
forall § > 0,0 <¢<2jand 0 < S < 1. Transferring to the tilde picture yields
~ . 22—, _«
d; DAY, e g2 < Cmax(l, (Sdg)2)o2e™ 2w,
+2-8 ~ 21+2 @ t (4173)
—t 2j-1t— 2 +(y

d; TPIDA L g s < Cmax(L (Sd)» = F)sge™ 2w,
forall0 < S < d ,0<e<2jand0 < B < 1,cf. [21, (4.135)—(4.136)]
4.10.5. Estimates for 7j; and its potential
First, we recall that

J Nik
Ay = > > i006; 1 (A7, 1o Gripi) (4.174)
i=1 p=1

Here, ®; ; and Ag; ,, i are f-dependent while (A;g,i, p.k is independent of time
By applying (3.1) for each fixed 7, we can write

2%k
kAo Geipi) =
=0 g

1

[STEN

D et (Gripi) @DUAT, (4.175)
=[

where @, ,(Gy.i,p.x) is independent of time. Note also that Jpis independent of time and hence [21

(4.141), (4.144)] can be directly carried over, so that

1DVelleo,6.80(0) < €O

[@L{da @/2,0R.80(0) S C‘_S I (4.176)
D@ glleo, 05,2, (0) < €I
[tDL(ADt»q]a/ @/2,0R.8e(0) = C5
foreacht > 0,[4] <

< 2k and fixed R > 0.
Schematlcally, we have

A A~

r *
D (ﬁf,k(Af,i,p,k’

k r d
- 22 il 4 A i+t g% 4.177
= E E E q} F~la-p)te (q/lfz) ’ 5{D lcbt,q(G[ i,p k) ® D2 Af i,p.k ( )
d=0 ij+ir=r—d
de2N
To estimate this, we will need (4.162), (4.164) and (4.168)

A 2j4+2+a—1t 1
DA il 050, 0 (0) €S, " max(1, 8%7) wi7s)
* 2j+2—1 2j— .
[D* At, ip. k]a,a/2,Q55,,gp(0) < Co, max(1, $%7Y),
forall0 < ¢ <
5( = /1[6 7(

2k +2+2j and S > 1 fixed. Now using (4.176) and (4.178) in (4.177), and recalling that
, yields

2k 1
[e4 2j—t d =11 +2j+2+a—ir—t
1D 6t (A s Gip i g o) SCST D, Do >, max(1,8779:%
=0 d=0 i;+ir=r-d
de2N

i —r+2j+2+
< CSHrag e

s
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forall 0 < r < 2j + 2. Similarly,

—r+2j42
[D" ®t k(Aflpk’Gl’lpk)]a, @/2.055,,8¢(0) S CSZJJ"’(S 2L (4.180)
for all 0 < r < 2j + 2. Transferring to the tilde picture gives
. 4 fra s—TH2j+2
dy 2D (5’ k(At’ i,p, k’Gf,i,P,k)||oo,Q‘Sgl,g[(o) < CS¥+ 6, rerera

A2 D G (A2 Grip i)l and < C§piragT (4.181)
4 LENA i p ko Lk 0, a)2,055,,80(0) S ¢ ’

forall0 <7 <2j+2and S > 1 fixed.

Next, we consider the case when g, < C, and we take only derivatives and difference quotients in the
base and time directions. The argument is similar to [21, (4.159)]. We start by noting that if a certain
derivative D* contains precisely u fiber derivatives (0 < u < ¢), then we will denote it schematically by

Dy _,,- We then have the easy bounds from [21, (4.153)—(4.154)]

”:D#f— J{”w OR.80(0) S C/l_ 6_u’
[DL_](] C/l — a+u6—
#1= a,a/2,base, QR ge(0) o (4.182)
”:D#f_ L q”oo LORr.8¢(0) < C/l 6 s
[b# f=u ¢ q]cx a/2,base,OR, g0(0) C/l_L (Hud_
We use (4.162), (4.164) and (4.169) to obtain
< CS2(Sdp)+a,
< C2(Sdp) ¥,

(o) AF i.p. k||°°,QASd[>»§('(O)
(D A:’ i,p, k]a,a/Z,QAsapgf(O)
(4.183)

2 2-0 e
I® s Af i,p, k||°° QSd ,8¢(0) < Céf ‘ (ng)“aL, >

[fbt l’ i.p, k]d al2, Qsa ,8¢(0) < C‘S?_L ’
forall0 < ¢ <2j,1 <t <2k+2and S > 1 fixed. Then (4.177), (4.182) and (4.183) imply

{5§(Sd€)21+“—iz—t, if iy +1<2),

—d-i
”:Dbt(ﬁt k(A€ i,p, k’Gf i,p, k)” QSdg 80(0) < CZ Z Z /1 16[ 6§+2j*i27t(Sd[)a, if iz > 2],

=0 d20 i1+iy=r—d
< Cd?}‘*'z*‘ﬂ/ rS2]+a’
(4.184)

for 0 <r < 2j+2,and fixed § > 1. Arguing similarly for the Holder seminorms, and transferring to
the tilde picture yields

— 2 % Ty =~ ~ 2j+2+a-r 2
{df” 120, (A 2 Gt Ol gy < OS2 (@185

o r 2 2 r
de a+2[® (St k(Af i.p, k’Gf’ Lp, k)]a a/2,base,0s,8¢(0) S Cd R,

Observe that when r = 2j + 2, the leading term arises when d = i1 =g =t =0and i, = 2j + 2,
which in the tilde picture is given by

| Nik

J
2 2 -1~ 42 7% 2
D6y 1 (A, o Glipk) = E Aoy Wi wrlyey) Graipk - DA, +o(d,™™).
i=1 p=1
(4.186)
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We now bound 7j; and its derivatives. Using [21, (4.139)], paying extra attention to the time
derivatives, we have

ol

Drﬁ; — Z e—q(tp+/l;2f)+%tg (qAEZ)

where

S (D) @ D14 (Gripi) @ DA, (418T)

Z#ﬁZZi I (4.188)

Using (4.176) with (4.178), we can estimate D"7j; by

”br ”oo Qsé g(,(()) CS2]+(1/1 d6L —r+d—-1+s—i|+2j+2+a—ir—t < CSZJ+(Z(S_r+2]+a, (4189)

where we have used the fact that 6, = Age~%/2. Similarly,
i
(D071 /2,0, 0 10) < OS50, (4.190)

In particular in the tilde picture,

i —r+2j+
<Cs2j+cx§[r Jra

)

—-r rx
NP T llo, 6., 20 (0) e @.190)
d r— a[brnf @, a/2, QSsp Be(0) S CSZJ+06[ ],
for all 0 < r < 2j (which is the analog of [21, (4.151)]).
These estimates are only useful when &, > C~!. In the case when £, — 0, we shall only take
derivatives and difference quotients in the base and time directions. We can follow the argument to
derive [21, (4.159)], using (4.162), (4.164),(4.166) and (4.167) instead of [21, (4.123), (4.125), (4.130)],

and using D instead of D, and taking also time derivatives of ¢4 7D jn (4.187), we obtain

. 27 _
r“®btnt’“ ,0s.8¢(0) < CSZ]+dd e
Diver 2 (4.192)
A" Byl a,a2.base.05.3(0) < €577,
forall 0 < r < 2j and S fixed. Also, it is important to note that in the L™ bound in (4.192) with r = 2j,

which nommally is O(d}’), the only term which is not actually o(d;") comes from the terms in the sum
in (4.187) withd = 0. To see this, we follow verbatim the d1scus510n in[21, (4.161)], which gives us that

,2

] ik

—2j—@ 2] ~o —2j—-a .q 3 14 P T

& o = d Y, (zaa(A@;\y;M,{,}xy) lcg,,-,p,k)ﬂ:ozfAmp,k+o(1), (4.193)
i=l p

1]
—

locally uniformly.
Similarly, following the derivation of [21, (4.162)], in the case when &, — 0, we have

rllgr ”oo CS2j+ad2j+a_r,
{ Os-8x ¢ (4.194)

-r—a r iva 2j-r
dg [® 77[](1 @/2,0s.8x S < Cs¥ dfj ’

forall 0 < r < 2j, fixed S > 0 and a fixed metric gx.
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4.10.6. Estimates for 7} and its potential
Recall that by deﬁmtlon we have

s
A . a — =2 L L
7=i06 3 3 S S eaten gy (b, (Grapn) 9L, ).

where we have applied (3.1). From (4.172), we have

[T < Cmax(1, %462~ 2
L,i,p,kl1e0,0s,8¢(0) = ’ ¢ ’

/\ﬂ N
(D As i ilB.812.05.200)

2i+2-a  _«

< Cmax(l,Szf—l—ﬂ)(sge_ T Tealt

(4.195)

(4.196)

forall § > 0,0 <¢<2jand 0 < B < 1, while the derivatives of (parabolic) order > 2;j vanish since

Ag ipok is a (parabolic) polynomial of degree at most 2;. By applying D" to ﬁz,, we have

Qrﬁz =Z =q(te+2, t)+ tp(q/l 2)265(®r —d+1- ‘J)®®lq)tq(Gt’lpk)@QlTHAglpk’

where

so that (4.176) and (4.196) imply
1D} o 05.200) < CZA;%sé,*’*d*‘”*“*ze%”'szia’f < Cs; e Tl

The Holder seminorm is similar, and hence,

{ (I T 05000
P10 1p.512.05.200

sa._a 4,
77

6 e 2 2+a s
*(7

r ﬁ . & 174
6 ‘2j+a s

<C
<C

(4.197)

(4.198)

(4.199)

(4.200)

forallr >0,8€ (0,1)and S < Rd;1 with R fixed (as in [21, (4.172)]). Likewise, if we take at most 2

fiber derivatives landing on ® and J;, then we use (4.196) and (4.182) to get

_ i )
{ d[rubrtnf”oo 0s,8¢(0) < Cez

a
2j+a te S

—a
dﬁriﬁ > 2J+at[

¢ [Dbtnf]ﬁ p/2.base.0s.2:(0) S Ce?

(4.201)

forallr >0,8€ (0,1)and S < Rd;,1 with R fixed (as in [21, (4.173)]). In particular, they converge to

zero. If instead we use fixed metric gy, then the derivatives of ® and j[ are bounded, and thus,

D77

2 —a (3 t[)
2 2j+
|| Os, < C(S[e Jratt

—a._a 4
2j+alt
>

2
[D nf]ﬁ,ﬁ/ZQAs,gx < C6€e ’

(4.202)

forallr > 0,8 € (0, 1) and fixed S > 0 (as in [21, (4.174)]). Similarly to the discussion of [21, (4.175)],

we also have

a

2 =t ’+(zt
[brnf]ﬁﬁ/Z Os.ex S Csfe 2t

(g < Celed ohat
00,05,8x = ¢ >

forallr > 0,8 € (0,1) and fixed S > 0 (as in [21, (4.175)]).
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Next, we estimate the potential of ﬁ; when &, < C. Given r > 0, by applying Dy, to
@f,k(Ag,i,p,k’ ég’i,p,k) with (3.1)

[l

=~

~

<
(NI

L1 G A bt § (4.204)
5L’®blt¢)t,q(G€,i,p,k) ® D= Ag,i,p,k’

SINDWSWETEE S

=0 g=[3] ddEZZQN i1+i=r—d

which can be estimated using (4.196) and (4.182) to get

r

2k
r AA Aﬁ N ) . —d—iy c142 —2i-;2—a.2_a 7
[bbt(ﬁt’k(Af,i,p,k’ Gl’,l,[’,k)]a,a/z’base’QSdC’g[(o) < CZ Z Z /l[ 6€ e J+a = 0(1)
=0 d=0 ij+ir=r-d

de2N
(4.205)
The L* norm is similar, and hence in the tilde picture we have
—r+2—a r (% it ~ _
d, * [:Dbt(ﬁf»k(Af,i,p,k’vaivpvk)]d,(l/lbase,és,gf(o) =o(1),
—r+2 r it ~ (4.206)
d" D55k (A i Otiiopi)lleo,05.5,0) = (1)
forall r > 0 and S fixed.
4.10.7. Estimates for (Dg
Recall that
Oh(D) = (1= NN Gy un + 826 UNTOW s wp +17) + 77 (4.207)

We can follow exactly the same discussion in [21, §4.9.7] to conclude the following. Since @¢ can =
d 2205 wean and (Vg 0 O7) (2, 5) = (ded; 'z, y) where dpA;" — 0, the spatial stretching implies

—tr—d2 125N ~ _
19 (1= e T3y can) e 5.0 < Cig"

. ot —d2A=2F ~ BB
[® ((1 — e lemded, t)wf,can)]ﬁ,ﬁ/Z,Qs,éf(O) < Cd€+ D (4.208)
o F RN, Ls—t
1D (76 M O, wF) o o520 (0) < CiS,"

—d2 2 e+ 5 B 1B
[D(g7e " 'O, ¥iwF) g g12.65.2.0) < Cdy 6,

forall ¢ > 0,8 € (0,1) and S < Ra’z,1 with R fixed (which is the analog [21, (4.181)—(4.182)]).
Therefore,

;D B}, 0.2, (0) < CO7°
Z,L,ﬁ ¢ u,Qs,gf(O) 14 s (4.209)
dy VD' 0lg p12,6s.ze0) S €O T

forallt > 0,8 € (0,1) and § < Rd{jl with R fixed. Likewise, if we only differentiate in the base and
time directions, then we have the following improvement:

47 104} o, 05200 = (1),
¢ 1+pt%elleo,05.80(0) (4.210)

By _
dy, Dy @p g g 2base. 0530 0) = 0 (1)
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forall¢: > 0,8 € (0,1) witht+8>0and S < Cd;l(which is the analog of [21, (4.183)]) as well as

{d;‘||fDl‘)t(8%®j,‘P;wF)||OO’Q~S,g,€(O) < Ca,t, @21
-—B L * O\ * ——B :
d, P70, ¥ ;0r)]g g2 05,80 0) < CA T
forallt > 0,8€ (0,1)and S < Cd;l(which is the analog of [21, (4.184)—(4.185)])
4.11. Expansion of the Monge-Ampére flow
We rewrite the complex Monge-Ampere equation (4.107) as
el T g,
_ ~0 ~&O ~
=gy (7 +1ig +17c..x)
(@ + 175 + 735 +770,1,6)™" .
+[log ~ —tr ¢ (7 +17p +7je.j.k)
(@y)m*n ¢ (4.212)
~f‘ m+n
@
+ log (@) + ndg/lng

+n) ~ 2
(mmn)w?fcan A (8666\11;('01:)”

=: tra.)g (ﬁ; + ﬁz + ﬁt’,j,k) +& + &,

where the terms £; and &, are given respectively by the third and second line from the bottom in (4.212).
Recall also that

J Nik J Nik
- 2327 ~ ~ ~ ~ 2327 ~ ~ ~ o »
Xe = edi’lz? 4 (l//é’,j,k + Z ®f,k(A[,i,p,k’ Gt’,i,p,k) + edf’lf ! Z (ﬁfsk(Aﬁ,i,p,k’ G[,i,p,k) +)£+Xn
i=1 p=1 i=1 p=1 —
(4.213)
so that if we define
2127 J Nk ~
pri=e Ty 3N Gra Ay o Gripk) + e, ks (4.214)
T =1 p=l
then by definition, we have
i00p¢ =1y + 1 +7ic,j ks (4.215)
and we can further rewrite the (4.212) as
Oife +dpA;pe = g (1T +7ie. .k +17) +E1 + &
2927 2027 U ~ 2 27
= e ATy | TN N Gy (AF L Gripa) |- e gt (4216)
i=1 p=1 -
=: trd)g (ﬁ? + 7,k + ﬁg) +&+&E+ &3,
where we defined
2927 29-27 J Rk ~
&y = —e T | o | BT Z Z @;,k(Aﬁ’i,p’k,Gf,i,,,,k) +o0t|. 4.217)
i=1 p=1 _

The next Proposition gives us control on the error terms &;:
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Proposition 4.7. For any fixed R > 0 and i = 1,2, 3, we have

—-2j-a 2j
a7 | vye] = o(1).
4 bt ™! a,a/2,base,ORr,g¢ (0) 0()
In particular,
YN DY 8:5, + 22325, -t T SN —o(1
p ot \OiPe + dAg™Pe = (7; + 177 +ie,j k) =o(1).
a,a/2,base,Or,g¢ (0)

Furthermore, if ep > C™, then for any fixed R > 1 and 0 < a < 2j, we have

2j-a ~ 2j+a 2j+a-a
d; I, Gy o) S €O 8,

14

2j-a a ~ 2j+a 2j-a
d, " D% 012,080 .8000 S €O

-2j-a a . 2j+a—a
d, 1D4(& + 53)||m,QR8,,gf(0) < Cg; ,

dfj_a[@a(gz +E)la,a/2.080,.2:0) S Cgij_a-

Proof. The estimate (4.218) for &3 follows easily from (4.158) and (4.206).
As for &, recall that

((Dg)m+n
& =log - — + nd%ﬂzzf.
(mr:;n)w?fcan A (8§®€\P€LUF)"

The term ndg/lng is killed by [D§{~](l,a/2,base if j > 0, while if j = 0, we have

— 2,2 2—-a -2
d; ¥ [nd; A1) o a2.base.0r.20(0) < Cdp~ ¥ A,7 = 0(1).

Estimate (4.218) for & then follows from this together with (4.208), (4.210) and (4.211).
For £, we write

(@ + 70+ 70 + 71 1

(‘Dg)m+n

)m+n

log =: log (1 g (77 + 1y +1ic.j k) + 54) ’

where we defined

£ ’”Z(mm) (73 + 7+ 770..0)" A (@
4 = .
P ((Dg)m+n

p=2

Thanks to (4.145), (4.159), (4.192) and (4.210), for every O < ¢ < 2j and fixed R > 0, we have

dy*[1D€alloo, 0., 0) = (1),
—2j— 27
™Dy Eal o apa base. 0.0 0) = 0 (1)
d; 1D, tru.)g (775 + 1 +7je.j.x) loo, 0.2, (0) = O (1),
d—2j—a

2j ~0 =~ g
Dtr +1, +1¢,j ] =0().
L [ bt w? (775 e m)’j’k) a,a/2,base,Or.&¢ (0) M
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If we write schematically A = tr o (72 o+ 17, + 1, k), B = &4, which are both o(1) locally uniformly,

then we have & = log(1 + A + B) A. For any a > 0, we can then write schematically

A+B N DB

1+A+B 1+A+B

. Z 22: Z D(1+A+B)D1(1+A+B) DI(1+A+B) (4229
1+A+B 1+A+B 1+A+B ’

D€ =D (log(1+A +B) —A) = -DA

i1+ir=a—1 (=1 ji+-+j,=is
ir>0
and then (4.218) for &; follows from (4.228).
Now that (4.218) is established, (4.219) follows immediately from this and (4.216).
When g, > C~!, estimates (4.220) and (4.221) follow from (4.145), (4.159), (4.191), (4.209) together
with (4.229). Lastly, to prove (4.222) and (4.223), using (4.216), (4.220) and (4.221), it suffices to show
that

d—2j—a

A e < Celt e, (4.230)

OO,QRE(J ,8c(0)

Oipe +djA; pr — g (5 + e,k +177) )

d—2j—a

t ol

~ -2 ~ 5° n 7 o=
edipe + d?/lgzpf - trd,g (777 +71e,j.k +177) )l S CS"] R (4.231)
a,a/Z,QRg[ ,&¢(0)

for fixed R > 0 and 0 < a < 2j, which is a direct consequence of (4.145), (4.153), (4.181), (4.191)
together with (4.209) and (4.229). |

The goal is then to kill the RHS of (4.110) when j = 0, and to kill the contributions of d,, Ay X

"k and d, 2= YA, i.px 10 (4.132) when j > 1. We will split the discussion into three cases
(Wlthout loss of generahty) ‘Subcase A: &, — +0o, Subcase B: £, — & > 0, Subcase C: &, — 0 as
¢ — +oco where & = d, I, = d, Lige e/,

4.12. Subcase A: gy — +oco

In this subcase, the background geometry is diverging in the fiber directions, and similarly to the
analogous case in [21, §4.10], we will kill all contributions to (4.132) using parabolic Schauder estimates
for the linear heat equation. The Selection Theorem 3.1 will also be used crucially. The argument is
quite long and involved because of the complexity of the quantitative estimates satisfied by all the pieces
in the decomposition of the solution &;. We start with the direct analog of the non-cancellation result
in [21, Proposition 4.7].

Proposition 4.8. The following inequalities hold for all0 < @ <1, a € N, 1 <i < j, 1 < p < Nix
and all R > 0:

R l-a a
—a beaana
Z) ;)Ag I1Di08% o -

(4.232)

[gaiaéﬂ]a,a/Z,QAR < C[:Dl;ltiaé‘ﬁ(]a,(t/2,base,QR,gx +C (

l-a a

. _ R .
2 . ~ - b A%
[D“At,ispicla,ar2,00 < CO| [Dpi00@c] o 012 pase,6r.20(0) + (/l_[) Z/lg"(H:D M lloo, 0.2 0)
b=0
+ 1D (5 + 15 + 101 o002, 0) * 6;2||Dbﬁ}||w,QR,gX))
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i-1 Nik a+2k+2 R l-a .
2k+2 2k+2 —(2k+2) £ yb-a— b4
+C ST DAy i aiort D (7) el (1L VR I
=1 g=1 b=0 \'t

(4.233)

Proof. The proof is very similar to that of [21, Proposition 4.7], so we only highlight the differences.
The starting point of the proof (Claim 1 in [21, Proof of Proposition 4.7]) is to express id0¢@, and

A¢ i p.x as pushforwards of quantities on the total space. This step is essentially identical here, with the

only difference being that in the formula for AAg,i’ p.k» the term e‘<2k+2)% in [21, (4.204)] now becomes

2
e~ kD) e+ 4" /2 The extra time-dependent constant e~ k275 will then also need to be differentiated

in the analog of [21, (4.234)], which gives us extra cross terms in the analog of [21, (4.247)], but which
can be estimated in a similar way resulting in the same upper bound as stated.

The next step is to try to commute the derivative D¢ with the pushforward, and make the commutation
error terms explicit. Recalling that D¢ is a sum of terms of the form D?” 6;’ , we observe that (9;1 trivially
commutes with pushforwards (with no error terms), while the commutation of D” gives exactly the
same result as in Claim 2 [21, Proof of Proposition 4.7]; cf. [21, (4.223), (4. 240)]

The last step is to estimate the Holder difference quotient of D“zc’)@gag and D¢ A[ i,p.k- This is now a
space-time Holder difference quotient, which we can split with the triangle inequality into a space-only
difference quotient (which is estimated following the method of Claim 3 in [2 1, Proof of Proposition 4.7]
verbatim), and a time-only difference quotient, which again commutes with pushforward and so can be
estimated trivially without any further error terms. This completes the outline of the proof. O

For notation convenience, we will denote 7, = idd@, = ﬁ} + ﬁj; + ’72 +0y +1e.j k-

4.12.1. The case j =0

Unlike [21], the case j = O requires a separate treatment. This is due to the fact that the Monge-Ampere

equation (4.216) is naturally a parabolic PDE for the scalar potential g, which, however, does not have

a uniform bound on its L* norm, which is an issue when applying Schauder estimates. This is remedied

in two different ways according to whether j = 0 or j > 0. In this subsection, we treat the case j = 0.
The first crucial claim is that for any fixed R > 0, we have

d;”[(& +&E + 83)](1,0/2,QR,§(%(0) =o0(1). (4.234)

For the term &, we have already proved an even strong result in (4.221), so we consider &, + £3, which
when j = 0 equals

“ﬁ m+n
(@)™

log +ndiA; 2f i ’at)({,, (4.235)

(0" can 1 (8707 F0F)"

and since 0 ,\?g is a constant (in space and time), it is clear that

_ i, 2 —d*132F A4 ~
d; [nd2 2,27 — e~ fa;)(_ﬁ]m .6mze© =0, (4.236)

and we are left with showing that

ﬁ m+n
d;a’ IOg m+n\ ~m (w) 2 @ P+ :0(1). (4237)
( m )w[,can A (8{’®[‘P€wF)n a,a/Z,QR,gP(O)

For this, we pass to the check picture using the diffeomorphisms I, in (4.285) below, scaling geometric
quantities by 5{72, so that the quantity in (4.237) equals
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ﬂm+n
w
6, |log ) o) NS . (4.238)
L R O PR X I ()
K
and using (3.23), together with the facts that [ﬁf,]d @20, g0 = 0, and
2@/2.0p 1,

0, [‘Df,can]a,(x/LQ“RE?l 30(0) S CA,% = o(1), we see that (4.237) holds.

The next issue we face is that (4.144) does not provide us with uniform bounds on
“||Dzng 0.k oo Or.3e(0) for any fixed R, so we are unable to pass d, “d; Aok OF d,” 1661&5 0k toa
hmlt To fix this, we use the method of [20, Subclaim 1.3], by replacmg the whole fiber Y with a coordi-
nate chart and performing a jet subtraction to d, ”d/g 0.k so that the remainder is locally C? convergent.

d /l 2F 2m+1

To fix this, recall that ¢ (7) = gom + &3 gy.0- Let x , X221 e normal coordinates
for gy o centered at y,. Viewed as a map from Y to R?", these depend on ¢, but we prefer to instead pull
back our setup to R>* under the inverse map. In this sense, we may then assume without loss that

0" 1 .
'BX‘ (gy,0(X)ap —0ap)| < m|x|2 for |x] <2 and ¢=0,1. (4.239)
This is possible thanks to the compactness of Y. Define &/ = SgX] so that ¥¥*+1, .., %*"*2" are normal
coordinates for [gy’() centered at y,. Formally also write %', ..., %% for the standard real coordinates
on C™. Then X', ..., %*™*2" are normal coordinates for g,(0) centered at X, with
0 ~ s 8_2 2—t
@(gz((l X)ab = 0ab)| < mlxl for |%| < 2e, and (=0, 1. (4.240)

We then define a function xﬂg 0.k O Q~28F to be the parabolic 2nd order Taylor polynomial of ¥ o x
at the space-time origin (0, 0), using the spatial coordinates X', 1 < i < 2m + 2n, and we define also
'vl’f 0k * = ok - "b[,O,k'

Since all Euclidean derivatives of Jr;’o‘ X of order at most 2 vanish at (0, 0), using the formula in [21,
Lemma 2.3] relating D-derivatives and ordinary derivatives, we see that CD‘&; 0 k|(0 0= 0,0<t<2.

Next, we prove the following bounds for d, "l// 2.0k :forallt > 0,0 < B < 1,and 0 < R < &,

l+a—1pl- ;
(DT} 12,0020 0) < {gigm Rfﬁ i’c(;;;;ﬁo: — (4.241)
AN DVE o oo < CEF (4.242)
To prove this claim, note that for any z € By, the metric gy, is at bounded distance to gy o in C*(Y),
and thus,
|V"g’(0)g5(f) la,0) < C.e7* on Ok, (4.243)
forall¢ > 1,R <

Let us also note the following bounds for the Euclidean derivatives lﬂ[’o’ k>
d7 1090 0 04| (Re. Fe) < Cepr V17, (4.244)
for all multiindices y with |y| + 2¢g < 2. To see this, we first apply the diffeomorphism

Ar: 02— 0Qogpy (XL K20 D) = Ap (X, X200 = (0%, L X2 E3),
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and pull back metrics and 2-forms, as well as ¢k, via Ay, multiply them by s‘ and denote the
resulting objects with a check, so, for example, the metrics g,(0) = e€2A* 3¢(0) on O, are smoothly
convergent to a fixed metric (smoothly comparable to Euclidean), and the pulled back complex structure
is approaching the Euclidean one (without loss). The bounds (4.144) transform to

4 NP0kl g, 000 < CEL 5 dp (D0 k] aapngi0) < €8

for 0 < ¢ < 2. Since g,(0) is approximately Euclidean, [21, Lemma 2.6] gives us that the Euclidean
C*?/? norm of d;al/;[,(]’ x is also bounded by Cs%“’, and translating these back to the tilde picture
proves (4.244).

First, we prove (4.241). Given (%,7), (§,7) € Og, call d = 48 ()?,)Z’)+|f—f’|%, and given p,q > 0
with p +2¢g = ¢, we can bound

d;IDP oYY (%1 = Pes(DPOIGE L (%, 7))z 0
;7 DPOIGE (5.1 ~ Pos(DPOTGY | (. ))g0)
+d;ODPOYGE | (F.D) ~ Pz (DPOIIE L (F.T))lg, 0 (4.245)
~ ~/ 17
dg[(o)( )d a”DpHaq'J’f 0, k” Oor.ge(0) T IF-7 |d a“Dpanr W 0, k||°° Orr.8¢(0)

. J-amptl 54 ~ 2, apP gt 5
<d-dg D 6fwff,0,k”°°,Q2R,§f(0)+d dg ID 8:” Wf,o,k”oo,QzR,gz(O)'

Since lZ? o.x is the sum of a polynomial of degree at most 2 in the X variables (constant in time), and of

a polynomial of degree at most 1 in the 7 variable (constant in space), it follows that DP*! 6‘11,0 ro0k = =0

g+l 7

unless ¢ = 0 (hence, ¢ = p), and that D 9; w(, 0k = 0 unless p = g = 0 (and hence, ¢ = 0).

We consider these two cases separately, so we first bound the term with D‘“zﬁ ¢ 0. (Which is equal

to D“*! applied to the spatial Taylor polynomial only), by converting D**! into V**! using [21, Lemma
2.3] (which involves a certain tensor A), and estimating

d7 N0} 4 oG 0 (4.246)
Pl o o+ r
< |7 ((& +18:(D) (i)) + Z Vii7Ae (— + 180 (f()) ) (4.247)
1o Weon o oo
( Z T Rei)®- Xt’)y) . (4.248)
yenm+n v X 00,02r,8¢(0)
lvl<2
and estimating the big L™ norm by C 8““ ¢, as follows.

(1) We have 8°T = O(&,%") by (4040) and (4.243).

(2) The A-tensor in the tilde picture is bounded by 0(8;2), since it is schematically of the same type
as OT'. By the same reason, V7 . AisO(g,"™ 2).
(3) Writing df "W,o,k =, we can then estimate

@+ 1) ((0Y9) (%o, 1) (R = %0)7) = (W) (Re, B7) D\ 9T - 0T - 0P (R=%)?,  (4.249)

where in the sum, a; + - - - + a¢ + € + b = r by counting the total number of ds and I's in each term, and
b < |y|. Now recall that R < &, so that 8 (X —%,)” = 0(s|[7|_b). Since (811y)(%¢) = 0(.9?“_'7') by
(4.244) and using Step (1), the quantity in (4.249) can be estimated by 0(5?*“").
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(4) From Steps (2) and (3), we can bound

(Vé SiA®@+T) ) Z(alyl'lf)(xt’, i) (X —%)Y =0(g, ), (4.250)

and so using Step (3) again, we obtain the desired bound of C sél,“’“ for the big L* norm. This gives us
the desired bound

QHDHIW 0.1 loo, 0o, (0) < < Cegtrt (4.251)

for the first term in the last line of (4.245). As for the other term in that line, it is only nontrivial
when ¢ = p = ¢ = 0, and in that case, we want to bound dg“ll@;aﬁg 0 k||oo,QzR,ge(0)' Since we have

B;Iﬁg’o’k = (a;(pg,(),k)(i[, fr), we obtain from (4.244)

d;a”aﬂl;g,o,k||°°,Q2R,§/?(0) < ng, (4.252)

and combining (4.245) with (4.251) and (4.252) proves (4.241).

To prove (4.242), given p, g > 0 with p+2q = ¢, to bound d, “D” (9"1// 7.0.c> We again need to consider
only two cases. The first case (g = 0, p = ¢) is the one with only spat1a1 ‘derivatives that land on the
spatial Taylor polynomial (writing again ¢ = d, “Weo.k)

(@+1)" + Z VETTA® (9 +D)| ) (0" (Re, Fr) (R - %¢)7, (4.253)
r= Y

whose L® norm on QQR is bounded by C s%*"“ thanks to the estimates in Step (3) (with r = ¢) and Step
(4) (with ¢ there replaced by ¢ — 1). The second case only happens when ¢ = 2 and we have only 1 time
derivative that lands on the 7-variable Taylor polynomial, which gives simply dg"([);z/;g,o, x) (X, T¢), and
this is bounded by Ce;’ by (4.244). Putting these observations together proves (4.242).

Combining (4.241) for ¢ = 2 with the bound d,“ [:Dlet’,O,k]g,a/z,Q‘R,g[(o) < C from (4.144), we see
that

dza[bzﬁz,o,k]a,a/Z,QR,gg(o) < CR, (4254)

and so we can apply Lemma 2.4 and get
d;a”DLl/;Z,O,k||00,QR,g[(0) < CR, d[_a [bLl/;z,O,k](l,(Y/lQR,gg(o) < CR, 0 < L < 2 (4255)

However, from (4.153), we also get uniform local parabolic C® %/ bounds on d;"e‘dﬁﬂ?zf O Xy and

d;*idd ( ;A ’X*) and so if we define

~k Tk —dP 32T ~x
Pri=dpop+e Ty, (4.256)
then from (4.214), we have g, = p; + J/g 0.z and
— o~k —2 ~% — —-d2 227 ~% — T * =2 7
a7 (0r; + BAP57) = dy e T op iy + dy (007 4+ 20 ) (4.257)

which by these estimates has uniform local parabolic C @@/2 hounds. The same estimates also give us
uniform local parabolic C*-%/? bounds on d,"id0py, so passing to a subsequence, we have that
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a7 (0p; + BPB}) = e, d;i055; > e, (4.258)

in Clz;y/z forall0 < y < a, forafunction u., € Cl‘;;aﬂ anda (1, 1)-formn € Cl‘;;d/z on C"™x (—c0, 0].
Moreover, thanks to (4.157) and (4.255), we have

d; 24215} lw.0, < CrA;AF: +0(1)d; = 0(1), (4.259)

and hence, d,"0;p, — u« locally uniformly.
Next, we observe that by definition, for any fixed R > 0, we have

—a,~d2% T g o - ~ 29-2 ~ A -2 A
e 0% o 2,02 0) = e 1P + Ay Be) a2, 620 0) = 10160 + A7 Bl 0 02,084, 2000 = 0D

(4.260)
thanks to (4.136), and similarly from (4.137),
A7 1 TR g .o o) = 1068+ AP 0 a6y e = O (4.261)
and since
T — e G = Ol ok + ARG 0k (4.262)
we see that
d; " [0pbe.0.x + diA7 0001 02005000 = 01 (4.263)
and using (4.144), this gives
dEa[aiﬁf,o,k]a,a/z,gk,gf(o) =o(1), (4.264)
which combined with (4.241) implies
dr " (07 0.4 0. )2.08.20 0) = (D) (4.265)
Also, (4.255) implies that
d; A7 05 0 i) a2 0m.500) = 0(1)- (4.266)
However, from (4.158), we see that
d; (e 07 a2, 0m800) = 01 (4.267)
and which combined with (4.261) gives
d; % [e~ Ty, Waap.omgo = o). (4.268)
Plugging (4.265), (4.266) and (4.268) into (4.257) gives
d;[0:p; + 247" B . p2.0m.20(0) = (1), (4.269)

which implies that u, is constant in space-time, and since its value at (0, 0) vanishes, we conclude that
U =0 on C"™™ X (~00,0]. Thus, d,“9;p; — 0 locally uniformly.
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Given any (%, 1), (%,7') € Og, we have

i
d;%id0p,(%,1) — d,*i00p,(x,7') = i0d / (d,“8:p;) (%,3)d5, (4.270)

i’l

and since we know that ft ! (d,*3:p;) (%,5)d5 — 0locally uniformly (as a function of %), it follows that
the RHS of (4.270) converges to zero weakly as currents. Since the LHS of (4.270) converges in C” to

loc
Noo(X,7) — Neo (X, "), we conclude that this Holder continuous (1, 1)-form (with X varying) is zero as a

current, and hence, it is identically zero. This shows that 7., is time-independent.
From (4.216), we have

(0 - A@g) P+ B =61+ &+ & — (05 - Adg) Y 4.271)

and from (4.234) and (4.241), we see that applying d,“ [~]a’a/2,Q~R’g[(o) to the RHS of (4.271), we get

o(1) as £ — +oo. We can then multiply (4.271) by d,?, and since the LHS converges in CIT)’CY/Z, we can
pass to the limit (recalling that u,, = 0) and get

g cmin Moo = Cs 4.272)

on C"™" x (—o0, 0], for some time-independent constant c. Since the value of the LHS of (4.272) at
(0, 0) is zero, this forces ¢ = 0; that is,

g oo = 0. 4.273)

Since the Cf(') . form 7, is time-independent and weakly closed, it can be written as 7« = id0ve, for
some time-independent function v, € Clzo ?(C’”J’"). From (4.273), we see that Ag .., Voo = 0, 80 1o iS
smooth by elliptic regularity, and passing to the limit (4.153) and (4.254), we see that |iddve| = O(|z|?).
Thus, each component 9 dgve Of id0ve satisfies Agemin 0a0gveo = 0 and [0,05ve| = O([2]), so by
the standard Liouville Theorem for harmonic functions, we have that 7., has constant coefficients, and
hence, it vanishes identically since its value at (0, 0) is zero.

This implies that

d;%iddp, — 0, (4.274)
locally uniformly on C"™*"* x (—o0, 0] in the coordinates (X, 7). Recall that, by definition, we have

. A2~
Fo =Py + ik, +e TR (4.275)

and that )Eg is a polynomial on C' of degree at most 2, while zﬁﬁ o.x is @ polynomial on C™*" (in the

(i,_f) coordinates) of degree at most 2. To convert i0d into D-derivatives, schematically we have
idd = J, ® D? + (DJ;) ® D, with the bounds (cf. [21, (4.304)])

||Dljg||m’Q~Rd;]’g€(0) < Cgjt, [D‘fg]m/mm?hg[(o) < Cgpt™v. (4.276)

Since j[ and D are independent of 7, it follows that

iddgt = Je @ D200t + (DJy) @Dt ), =0, 4.277)
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S0, as in the proof of (4.245), we can bound

—ar;a574 l-a ;- o5 h
dt’a[’aa'ﬁf,o,k]a,a/Z,QR,gz(O) < CR adt’a”D’aa'/’f,o,k||oo,QzR,gp(0)
l-a - 378 _ “1pm2.7 .
<CR adfa(”D ¢€,O,k||°°,Q2R,§£(O) té ID lpé’,O,k“‘X’,QZR,gé’(O)

21, 78
T & ”DwZ,O,kHOO,QZR,g((O))
< CRI_“&:?_Z =o(1),
(4.278)

using (4.276) for the second inequality and (4.242) for the third one. Also, from the bounds (4.158), it
follows easily that

47 el Tig5 5t =o(1), 4.279
¢ 2] a0/2.00.:0 M ( )

and so using (4.274), (4.275), (4.278) and (4.279), and recalling also (4.112), we see that
d; 1100 (%¢.0) = P, ,i000 (¥).7,)|3,0) = 0(1), (4.280)
a contradiction to (4.110).

4.12.2. The case j > 1. Killing the contribution of A,; ik
In the rest of this section, we will assume that j > 1. The goal of this subsection is to prove a precise
estimate on Az ; p r: foralla > 2j,a € 2N and @ < 8 < 1, there is C > 0 such that

Ntk

J

_21 [e4 a-2j-2 y a-p
Z & (DA hpk]ﬁ,ﬁ/z,QO(sﬂ,g(e(m <Ceg 7, (4.281)
i=1 p=1

where here and in the rest of this section, we use the notation O(g,) for a radius R such that Ae; < R <
A%gp, where A > 1 is the fixed constant from (2.5) (so that the &¢(0)-geodesic ball centered at X, with
radius R contains a Euclidean ball of radius R/2 times the whole Y fiber). Note that since j > 1, we
have a > 2.

Observe that once (4.281) is established for all even a > 2j, the same estimate will also hold for all
a > 2j by interpolation: indeed, if @ > 2j + 1 is odd, then for any 0 < p < R,

-2j-a _a-2j-2 * —2j-a u 2j-2 +1 7% -
eI TIDNAL e, S CR =), el T TIDMAY L L g g12.6r.e0)

27 -2j
+C(R - p) e DNAY s s 0mae O)

< C(R-p)es™~ 1+C(R p) el P,
(4.282)

and taking p, R = O (&) gives the claim.

Thus, once (4.281) is established, taking a = 2j +2 + ¢ (with =2 < ¢ < 2k), and 8 > a gives an o(1)
bound for the CP-8/2 seminorm on the cylinder centered at (X¢, fp) of radius 2, which contains the other
blowup point (&, 7;) which lies at distance 1, and hence an o(1) bound for the C @@/2 seminorm on the
same cylinder, which kills the contribution of D +2+‘A* i pk ¢ in (4.132).

Apart from the fact that in our parabolic setting we only work with derivatives of even order (as was
explained earlier), the overall argument to prove (4.281) will be similar to the one to prove [21, (4.252)],
replacing D by D, j by 2j and ¢ by t,. As in [21, (4.254)], we use (4.145), (4.153), (4.158), (4.191),
(4.202) and Proposition 4.8 to conclude that foralla > 2j, 1 <i < j,1 < p < N;, a € 2N and
a < B < 1, there is C > 0 so that
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—2j-—a _a-2j-2r~a § .
dt’ & [® Afvi’P’k]B,ﬁ/Z,QO(E(),gf(0)
a8 a-2j ;-2j-«a ~
<ole, ") +Cep 7d, ™ T DRelg g2, base, 0o ey 0 (0)
a
—(1-p) ¢ —B ca=-2j ;=b+B-a b 0 , =0 , ~
+Ce P73 Z 4,76, ~d, 1D (77, + 1, +T]€,j,k)||oo,Q~O(£€),gg(O)

b=2j+1 (4.283)

b4

i— p.k
—2j—a 2k+a-2jra\a+2k+2 § -

+C (de € (D At .a.kp.612.00( 00 20 (0)

r=1 1

a+2k+2 .
-2j-a a-2j-2 ;a-b+B _(2k+2+1_'3)7£ b-a-B b3 _

+ Z d, & dg ¢ A [k Af:rvfivk||oo,Qo<g[>,§e(0) :
b=0

)
I

Our goal is to show that each term on the right-hand side of (4.283) is of O(s;’*ﬁ ) which implies
(4.281).
We first treat the second term, Dy 7] 5.5/2,base,00 s8¢ (0)° We start with noting that we can inter-

change 77, with 7j; + ﬁ; + ¢, j .k thanks to (4.160) and (4.201): forall a > 2j, a € 2N,

a-2j ;-2j-«a -, a-2j ;—2j-«a ~ ~0 , ~o0 a8
g0 d D g prabase. oy ae @ S Ee A IR ek AT+ g 12,6y ae0) FOEL )
(4.284)

To bound the RHS of (4.284) using the parabolic Schauder estimates in Proposition 2.9, we need to pass
to the check picture via the diffeomorphism

M i B o XY X [="10,0] > By, XY x [=d? 250,01, (2.5.0) =T (2. 3.1) = (ecZ. 3. £30).
e
(4.285)

pulling back all geometric quantities and scaling 2-forms by s;z. We can then apply Proposition 2.9 to
e jk + 77; +1j, and then transfer the result back to the tilde picture. This shows that given any radius

R=0(g;)and 0 < p < R, and letting R = p + %(R — p), we have

a-2j ;-2j-a . ~0 . ~0
g, d, D ek + T + 1)) 512.6,.800)

< Cg?fz'/'d;sza I:Da—z (6; —A ) (fif,j,k + 77; + ﬁ;):l

o -
¢ B.B/2,0.8¢(0)
—2j -2 4B~ o
+Cel AR = p) P e + T+ T lo6,20 0 (4.286)
< Ced Y 2 [D“‘z (6~ —A_ ) SRR R ]
£ P Bap) ekt e+ ) B.BI2.05.20(0)

+Cef™ (R~ p) P,

using (4.145), (4.159) and (4.191), where here Aa)“ denotes the Hodge Laplacian acting on forms. This
4

is the parabolic analog of [21, (4.259)]. Recalling that fie,j k +ﬁ§ +7; = id0p, and using that the Hodge
Laplacian of a Kédhler metric commutes with i 94, we have

= [:D“‘Ziaa_ (6; -A ,:,g) ﬁf]ﬁ,ﬁ/z,gﬁ,g, o
(4.287)

DU (0= A gy ) Glejok +77; +7)
[ b)) R T g1, (0)

and using the PDE (4.216), the triangle inequality and the boundedness of P-parallel transport, this can
be bounded by
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Cdi A [D ek + 11, )| g gy 0 200y + C [DT100E + E2+E3)| g 51 60 20y (4288)
and inserting these into (4.286) and interpolating again with Proposition 2.3, we get

=27 =2j- ~ ~ ~0 — =27 —2j- ~ ~ ~0
er 7 d D ek + T AT 100,500 < CdiAT el A (D Gesk + 10 + 1) g gj.6mze 00
+ Ca?’zjd(jzj*" [D92i00(E) + & + &3)] +CeS (R - p)™P

1 _
< a2]d2]a

4 [ Gie.jok + 71 + 70| g 2.6 0)
+CeS a7 [DI2AH(E + & + &)

B.BI2,05.8c(0)

N at+a u—ﬁ
5.5/2.0m.00) T CEC T (R=p)”

(4.289)

The main claim is then the following:

Claim 4.9. For alla > 2j,a € 2N, R = 0(g/),0 < p < R,a < B8 < 1,ifweletﬁ=p+%(R—p),
then we have

1 a 2j ;2j-a
88120520 S 75 A,

+CZ FPT(R = p)” ’+CZ (R = )P
(4.290)

=27 ;-2j—c —2.q73 ~ ~0
Cey ™ d,; ™" [DU%i00(E + & + &) ] (Dt jok + 7T +TD)) 5 g 12,60 00

Before giving the proof of Claim 4.9, we establish some of its consequences. Suppose Claim 4.9 has
been proved for some a > 2. Then plugging it into (4.289) we get for all R = O(g¢) and 0 < p < R,

) 2j- . o | o 1 42j 2j
8? Jdg ! a[ba(nﬂj,k +772 +77[)],B,ﬁ/2,Q~p,§[(O) 2 ? jd e [b (nfj k +77[ +n[)]ﬁﬁ/2 Or.3¢(0)

+CZ PR p)” ’+CZ (R p) B,
(4.291)

and then the iteration lemma in [21, Lemma 2.9] gives

a
-2j 4-2j- r r r r
g, 7 d, D ek + T + T 5512.6,.8(0) S CE £, ¢ (R - p)” +C§ 2T (R-p)" P,
r=0

(4.292)
and choosing now p = O(&¢) gives
s?_zjdgzj_“ (D (e, jx +17p + ﬁ;)]ﬁ,ﬁ/Z,QO(E(),gf(O) < C‘S;_ﬁ’ (4.293)
and this can be inserted back into (4.284) to finally give
g™ d;zf‘“[bgtﬁg]ﬁ,ﬁ,z,base@ow,gw) <Ccel P, (4.294)

which would show that the second term on the RHS of (4.283) is 0(8?7'8 ).
Furthermore, we can interpolate between (4.293) and the L* norm bound for fj¢ ; x + 172 + 17, that
comes from (4.145), (4.159) and (4.191), using Proposition 2.3 on cylinders of radius O (&¢) to see that
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2]+a bd2j+(1

”Q (77(’ .k +7][ + 77[)”00 Q()(Fg) 8e(0) <Ce ¢ s
C 2j+cx b—,Bd2j+cx (4.295)
& ¢

[3 (e, jx + 7][ + n,f)]ﬁ,ﬁ/z,QO<£[),g[(0) S

for all 0 < b < a, and so following the dlscussmn in [21, (4.280)—(4.283)], this implies that the third
term on the RHS of (4.283) is of 0(5 ).

To summarize, we have shown thzit if Claim 4.9 holds, then for all @ > 2j,a € 2N, a < B8 < 1,
I <i<jand1 < p < N, there is C > 0 such that

-2j-a _a-2j-2 ayx 5
d,™ ey 7D Al p kg 12,001, 20 0)

i-1 Np,k
a—f3 —2j-a 2k+a-2j +2k+2 ¥ -
< Cst, +C Z (d(, & [D“ Aé’,r,q,k]ﬁ,ﬁ/z,Qo(8{,),;;'[(0) (4.296)
r=1 g=1 :
a+2k+2 . . ,
+ Z d;ZJ—08?—2]—Zd?—b+ﬁe—(2k+2+l—ﬁ)7’)?‘(1—.3||DbA,g,r,q,k||00’Q~O(£{))’g[(o)),
b=0 '

which is the parabolic analog of [21, (4.283)]. The remaining argument follows closely that of [21,
§4.10.5]. We use induction on 1 < i < j to show that for all @ > 2j and a € 2N, we have

Nik

-2j-«a a-2j-2

Y D A p kg, Oonyy e < Cef " (4.297)
p=1

The base case i = 1 follows directly from (4.296). Suppose (4.297) holds up to iy — 1 for some iy > 2.
Then the first term inside the summation on (4.296) can be estimated by Cag_'g since a + 2k +2 € 2N.
We now treat the second term inside the summation — namely, the last line of (4.296). First, we treat the
terms with 0 < b < 2, by using (4.73) and transferring it to the tilde picture which gives

AP 1D Aeip il Gooyy e 0) = OED): (4.298)

and using these, we can bound these terms by o(e;’_ﬁ ) exactly as in [21, (4.286)]. As for the terms
with 2j < b < a + 2k + 2, we apply interpolation (i.e., Proposition 2.3) using (4. 298) and (4.297) for
i <ip— 1 from the induction hypothesis to show that for2j < b < a+2k +2andi <ip—-1,

||DbA[,i,p,k|| < C82+2j+a—bd2j+a + C8?+2j—bd2j

OO,QO(E,),ge(O) < 14 14 A (4.299)
so that the terms in the last line of (4.296) with 2j < b < a + 2k + 2 are also of 0(82’_5) by the same
argument as [21, (4.290)]. This completes the inductive proof of (4.297), and hence of (4.281), modulo
the proof of Claim 4.9, which we now turn to.

4.12.3. Proof of Claim 4.9

The proof of Claim 4.9 goes along similar lines to [21, (4.261)], but with some differences. We will
prove the claim by induction on a > 2j, following the discussion in [21, §4.10.3—4.10.4]. Recall that
the terms &;,i = 1,2, 3, are defined in (4.212) and (4.217). First, we consider the term &, + &3, which by
definition equals

Nix
log (wﬁ)m‘*’” +nd2;%T - Ej k 7.k ( +d2 AR G k) — it Z’Bt,\(
1y ~ 2@* P e £,i,p.k e 2eipke LD, Xes
(mmn) ¢,can N (8,0, ¥;0r)" i=1 p=1 hp hp

(4.300)
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and we claim that for all » > 0 and @ < 8 < 1, and all fixed R > 1, there is C > 0 such that

b-2j ~2j-
g, d,” QHEb(EZ+E3)||oo,Q~R£€,g'((0) < Cg/,

i i (4.301)
eV a2 ok

a—p
(& + 53)]ﬁ,,3/2,Q“R£[ a0 S Ceg

Observe that (4.301) fora < 2j and B = « is exactly given by (4.222) and (4.223). To prove itfora > 2j
and 8 > @, we apply the diffeomorphism Il in (4.285) so that IT; (&> + £3) equals

(df)ﬂ)m+n J Nik i i
4 —try _ —tr . e € i~
Sor) +ne "f ZZ(Y),k( {,lpk+e A[’lpk’Gf”vp»k) O x Xeo

i=1 p=
(4.302)

log

(m+n) v
m £,can

and for any b > 0, we have

&7, D (&4 Ell g, g0 = O D T (E + EN o o0 (4303)

ef "er T D Et E)g g o0 =00 IRV MHE+EN g s g oo (4309

So thanks to (4.301), we see that 6;2j _QH;(EZ + &) is locally uniformly bounded in C2/*@/+@/2 with
respect to the (essentially fixed) metric g,(0), so by Ascoli-Arzela, up to passing to a subsequence,
it converges locally uniformly on C” X Y X (—o0,0] to some limiting function JF. Since the quantity

6_2’ I 7(&2 + &) is exactly (3.15), we would like to apply the Selection Theorem 3.1, so we check

thanks to (4.172),

that its hypotheses are satisfied. The functions A[,l, p.k satisfy (3.7) with ag = 2} =

while the function —e ™47 ; /\?n - n/l_zf converges to 0 locally smoothly thanks to (4.158). We can thus

apply the Selection Theorem and conclude that 6_21 “H*(Ez + &3) converges to F locally smoothly,

and hence, its derivatives of all orders are unlformly bounded on Q. Thanks to (4.303), (4.304), this
proves that (4.301) holds for all » > 0 and @ < 8 < 1. Recalling then that idd = J, ® D*> +DJ, ® D, and
using the bounds in (4.176) for J; and its derivatives, these imply directly that foralla > 2, < 8 < 1,

Ced ™ d " [D972i03 (& + &) B.812.0r0,.80(0) S Cey P (4.305)

Next, we consider the term &;. Recall that
#
¢

(@ + 1, + 7y + 70,460

& =log —tr .y (17 + 11y +11¢,.)

(@fymn ‘ (4.306)

= log (1 + tr(bg (ﬁz + ﬁ; + ﬁé’,j,k) + 54) - tr‘:)? (ﬁ; + ﬁ; + ﬁé’,j,k) s

where &4 was defined in (4.227). Taking D¢ derivatives, for a > 2j > 2,a € 2N, we again expand
it schematically as in (4.229). The first step is to prove estimates for &, and for this, we observe that

a_zj d, 2 ~“ &4 is identical to the term N\ in [21, (4.268)], and we will bound it following the discussion
there To do this, we need some basic estimates first. Using (4.209), we have for all ¢ > O that

T - S .
(D' 0)s.52.00 002000 S €& DGl 0, 2000 < CE (4.307)
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Next, we observe that forall @ < 8 < 1 and 0 < ¢ < max(a — 1,2j), we have
~0 2 - ~0 - ~ 2 —t—
1D (77 + 1 + 6.0 oG, e 0 < €O 67t D WG+ + 716,100 g g 12,600y e0) < €8, e, 7P
(4.308)

Indeed, these estimates are already known to hold for ¢ < 2j and 8 = a thanks to (4.145), (4.153) and
(4.181); hence, using interpolation, they alsohold for¢ < 2jand@ < 8 < 1, whileift < a—-1,a < f < 1,
these also hold thanks to the estimates (4.295) which hold by the induction hypothesis. Recalling that
in this section we have j > 1, it follows that max(a — 1,2j) > 2.

From (4.308) and the definition of & in (4.227), it follows immediately that for 0 < ¢ < max(a—1,2j)
and @ < B < 1, we have

a-2j ;-2j-a a+ 2j+a a-2j ;-2j-a ~ ata—1-f 2j+a
g d I e Gy 2o 0) S CECTIOTT & AT D g i 60,y 2000 S CEF 6"
(4.309)

However, we do not have the estimates (4.308) when a — 1 < ¢ < a and ¢ > 2j, since our induction
argument is only on even values of a > 2, and this is different from the discussion in [21, §4.10.3]. To
accommodate for the missing term with derivatives of order between a — 1 and a, we apply Proposition
2.3 with (4.308) so that

—1/~o0 ~ ~ 1 ~o ~ . —
1D 1(’75 + 77; + 77(’,j,k)||oo,Q”R,g£(o) < C<9€+ﬁ[©a (77, + 77; + Uf,j,k)]/g,/g/z,Q”R,g[(o) +C6, o “(R-p)~ ! a+2»
(4.310)

[D” l(’l[ +77€ +17e.j, k)]ﬂﬁ/z 0p.3c(0) S < Cegp[D (7]5 +7]f +7e, ], k)]ﬁﬁ/z Or,5¢(0) +C6 2j+ (R p) -p-1 *u+2
(4.311)

) 2 —a+2

(4.312)

1D + 17y +7e..0) oo Op.g0(0) S C-‘Jj; DG + 177y + e, g 12,0000+ COy o “(R-p

Given these, we can use the same method as in [21, (4.272)—(4.275)] and see that for every ¢ with
max(a—1,2j) <t <aand @ < B < 1, we have
-2 -2j- L -t _a-2j ;~2j- /=0 | =0 | ~
ef d, D Eulle g 00 < ODEG e AT D G 1y + 00 ) 2, G 0
+C(R-p)t6/  gra, (4.313)
and for max(a — 1,2j) <t <a,a < B < 1,
—2j -2j- -2j ;-2j- o o
&r A D g g o 0 < 0(DEFT e d TN (g + 1y + 710500 g 2,0 e 0)
+C(R—p) P+ gara, 4.314)
while for ¢ = a,
—2j ,-2j 2 -2j Apmo L =0 =
&0 A D g g g < 0(DEL AT DA + 1y + 7100 p g2, Gpge) (4315)
One important observation that we used here is that whenever we need to use (4.310), (4.311) or (4.312)
for some term in &4, the remaining part of this summand in &, is hit by at most 1 + 8 derivatives, and

since 1 + 8 < 2 < max(a — 1,2j), for these other terms, we are allowed to apply (4.308).
Now that we have our estimates for £, we need estimates on derivatives of tr _ ﬁ('l ot s 7+ 7).k

For this, from (4.307) and (4.308), we see that for 0 < ¢ < max(a — 1,2j),a < 8 < 1,
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-2j 4-2j- o | ~ ~ —
s? Jd[ J a||$Ltrd)§ (777 + 1y +77f,j,k)||o<,,Q~R,g((0) < Cedra, (4.316)

VAN D, ot e 70 + 716105 572,620 0) < < Celt P, (4.317)

while for derivatives of order a — 1 < ¢ < a and ¢ > 2j, we can argue as above and estimate crudely

—2j ,-2j 2j -2
s? deja u+ﬁta Jd Ja[:Da

1D tr ﬂ(ﬁ; +77y + 7100 o Op.gc(0) S Ce, (7 +1i; +77(?,j,k)]/3,/5/2,QR,g,(o)

+C(R - p)ted*e, 4.318)

-2j ;-2j- ~o ~ ~ - =27 ;-2j- ~o ~ ~
g d D g e + e + 710 g 20z < CEF T er AT ID W 41 + 16500 ) g 2.G e 0)
+C(R - p) " Peira, (4.319)

Equipped with (4.309), (4.313), (4.314), (4.315), (4.316), (4.317), (4.318) and (4.319), we proceed to
estimate derivatives of £;. We first consider the first line of (4.229), which we can write as

tr~ﬂ(ﬁ;+ﬁ§+ﬁ[jk)+g4 DéE,

i~ - - @, o 4

=D tr s (7 + 17y + e, j k) —— + T . (4.320)
ap it 4 J ]+tr@{u(n;+n§+ng,j,k)+54 ]+tra~)[ﬂ(77;+77§+77€,j,k)+54

and we take &}~ 2 dﬁZ/ I

]ﬁ B/2.05.8¢(0) of this. Since | tr _ g(]](, + nl, +1¢,j k) + &4 = o(1), when the
difference quotlent lands on D%tr, we can estimate this by 0(1) times (4.319) (with ¢ = a@). Similarly,

[tr _ ﬂ(n(, + ;75 +17je.j.k) + Exles = o(g, ) so when the difference quotient lands on lf:;f‘,‘g , We can
DUE,

T+r+&y

estimate this by o(g, pd ) times (4.318) (with ¢ = a). And when the difference quotient lands on ;

we argue similarly with (4.313) and (4.315). So all together when we apply &, 2 dl,2 - [16.8/2.04.5:(0)
to (4.320), we can bound it by

(e d = DG + 7 + 716,105 g 2.0r.200) + C(R = p) P + C(R = p) sy
(4.321)
Lastly, we need to consider what happens when we take 8?_21 d; [lg.g/2, Ope(0) of the large sum
in the second line of (4. 279) If all the derivatives that appear there are of order < max(a — 1,2j), then
this is bounded by o(e ) while if there is at least one derivative of order at least max(a — 1,2j) (to
which we apply (4.31 3) (4.315), (4.318)—(4.319)), then all other derivatives in total are of order at most
1 (and to these we can instead apply (4.309), (4.316)—(4.317)). Putting all these together proves that

a=-2j ;-2j-a 1 £% 2j 2j-a ~0 |, ~ ~
g dy D g ppgggi0 < g8 AT IR W+ + 7000 )g 2.0 200
(4.322)

a
+ng AR - p)r+CZ o (R p) P,
r=0

and combining this with (4.305) completes the proof of Claim 4.9.
For later use, observe also that the same argument gives an analogous bound for the L® norm of
derivatives of £ — namely,

—2j-B ;-2j- U a2j 2 ~o | ~ ~
g A I Bl g ge0) < gEe AT IO + e #1600V 0.0 0 0)

a (4.323)
+C Z SPTR-p)T +C Z s (R-p) P,
r=0
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4.12.4. Killing the contributions from {;
The starting point is (4.232) with a = 2 and radius C6,. For 0 < b < 2, we first bound the term

b:q7a byao | At | o, A boa
1D7100¢¢llcs 5., .0x < ClIP (U;‘Hﬁ+77[+7]£’,j,k)||oo,Q”C6€,g€(o) +[|D n}llw,Qcéf,gX <C,
(4.324)

using (4.145), (4.159), (4.160), (4.189), (4.190) and (4.202). Using this, we transfer (4.232) to the tilde
picture and multiply it by df ~ and get

-2j-a 2j =6 - _ 2j-a 2j:qa~ -
do ™ DY g 12,60 00 = A [DVi00Pels p12 62000

< Cd{:2j—a'[®2j~

B-a —(1-B)L ,-B
btng]ﬁ,ﬁ/lbase,Qo(E”,g((o) +Cdt’ e~ (1-B) 2/15

22 o o -
< Cd, DY (Fig, ok + 1y +’7€)]ﬁ,ﬁ/2,Q"ow),§p(0) +o(s? )

< Csz_'g,
(4.325)

where we used (4.284) and (4.293). Taking 8 > a gives us an o(1) bound for the parabolic C#-#/?
seminorm of d;zj D ﬁ; on the cylinder of radius 2 centered at X, (which contains the other blowup
point £;), and hence an o(1) bound for the parabolic C @@/2 seminorm on this same cylinder. Thanks
to the bounds (4.159), the same conclusion holds for the parabolic C @.@/2 geminorm of

d;2j—a®2j (ed?’lgziﬁﬁ) _ d;2j—ab2jiag)?;, (4.326)

on the same cylinder, which kills one contribution of ¥, to (4.132).

Next, using (4.295) and the bounds (4.307) for (Z)g, we see that for any a > 0, there is C > 0 such that

-2j- 6, o | = 2j+a-
d, "D tr (7% + 175 + e, j k) <Cg,/m, (4.327)
00,00 (e4)-&¢(0)
—2j-a a ~6 | ~0 | =~ 2j+a—a—-
d, D trd)g (77[+71[+77{;,j,k)l < Ce, , (4.328)
B:B12,00(<,)-8¢(0)
while from (4.301), (4.322), (4.323) and (4.293), we have
—2j— a Dita—
df T"NDYE + & +53)”°°,Q~0(s,»),§£(0) < Cg[J"'a a (4.329)
~2j-a [qpya 2j+a-a-p
d, 77T [DY(E + &2+ E3))p 512,000 .20(0) < Ce,/m 7, (4.330)
and so using these in the PDE (4.216), we get
—2j—«a a ~ 212 ~ 2j+a—a
d, 7| DG pe + dj A7 pg)“m,Q-O(g[)’gg(o) <Cg/T (4.331)

< Cg2iraa b, (4.332)

-2j-a = 29-2 ~
d " [DU e+ dpd PO g g, o) < €L

At this point, we want to deduce from this bounds for the fiber average of d;p, + d?/lffzp}, and this
can be done using the following ‘non-cancellation’ estimate, stated in the hat picture, for a smooth
time-dependent function f on Qg (where the fiber average is f = (prp).(f'¥;w'}.)) which states
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a

1-5
a a R - b
(D% flg 2.0k < [Poeflp p/2.005¢.0r.6x T € (/l_[) P DD Fll g
b=0 (4.333)

a

1-p
R
-8 b
< [Daf]ﬁ,ﬁ/z,QR,§f<0>+C(Z) P 2 10" fll o 000
b=0

and which is proved exactly as [21, (4.199)], using Claims 2 and 3 there. We apply this in the tilde picture
with a = 2 to the function 079, +d§/122p~g, whose fiber average is by definition e—d?ﬂ?’a; X;»and we get

i A P
d J Q[DZJ(e d"/l[laf *

5 —2j=a [N2] (a. = 21-2 ~
_ <d DY (0:pe +d;A,°pr)
t X—g)]ﬁ,ﬁ/Z,QO(g[) Y b didi o)

B:BI2,00 4)-8(0)

2j
B-a —(1-B)L B —bb(a ~ 2,-2 ~
+CdP e P ) de 1D @he + 472770k, 0,, 20(0)
b=0

1, 2 .
<CefPacd e PT PN syt
b=0
< Cs?iﬁ,
(4.334)

using (4.331) and (4.332). Thus, if we take 8 > «, then the LHS of (4.334) is o(1), and so we get an
0(1) bound for the same C#-#/2 seminorm on O (R > 1 fixed), and hence,

J [;Dzj (e—dzazzfan*)] ) =o(1), 4.335
¢ X)) .a2.08.200 ) (4333)
which thanks to the bounds in (4.153) implies that
27— i ~k
d,” ”[32’3iﬁ]a,a/z,QR,gf(o> =o(l), (4.336)

which kills the other contribution of j, to (4.132).

4.12.5. Killing the contribution of ¢, ok
It remains to kill the contribution from nﬁg, 7.k to (4.132). In contrast with [21, §4.10.7] where they had

to kill the contribution from d;zj “"D%i0Y¢. ; 1, here we need to kill d;zj DUy ke
From the definition of g, in (4.214), we have

z

ik

J
pe—pe =i+ ), > Grild;, 1 Gripn), (4.337)
i=1

<
ﬂ‘

and so using (4.332) and (4.334), together with the triangle inequality and the boundedness of P-parallel
transport, gives

J Nik
—27— : ~ ~ ~ ~
d, 77| DY (35 Yejk+ Z Z Oi k (Ay i p o Gloipic)
i=1 p=1
4.338
J Nik ¢ )
+d A2 e+ D0 D 6iilAr, o Grip k) )l <Cet P
i=1 p=1 BoBI2.00 s)-3¢ (0)
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Now thanks to (4.145) and (4.181), we can bound

_j le
dz/lfzd_zl @ |n2j (‘l’f Kt Z Z 6, k(A[ ip k,G[ i.p, k)) < Cd?/lzzg?ﬂr—ﬁ - o(g;"ﬁ)’
=1 p= BoBI2.00(ep) 8¢ (0)
(4.339)
and so (4.338) implies
J Nik
_Di— . ~ ~ ~ ~ _
dt’ Im 92]6; Ve gkt Z ®f,k(A€,i,p,k’ G[,i’p’k) l < CS? ﬁ. (4.340)
i=1 p=1 BB12.00=,)-8¢(0)

Next, from the bound (4.325), as well as the analogous bounds for lower derivatives of ﬁ? which come
from (4.159), and the bounds (4.307) for tf)f,, we see that

-2j-a 2j o - a-B
1DV i g 12,00y 8 0) < CEC T (4.341)
and this together with (4.328) gives
d72jfar

2j ~0 | o~ . a—f
DY g (4 16500V 1260y e 0) < CEF (4.342)

which together with (4.340) gives

-2j-a
d(

j
@21 (65—A‘D§) I;Z[,j,k+z (ﬁ k(Aflpk5G€lpk) l ) <C8?7'B
' BoBI2.00 e8¢ (0)
(4.343)

This estimate can be inserted in the Schauder estimates in Proposition 2.8 (as usual by first going to the
check picture, and then changing the result back to the tilde picture), with radii both O (&¢),

i Nik

J
D ek + Z Z ®r k(A7 i Geip)

i=1 p=1

-2j-a
d(’

ﬁ‘ﬁ/szO(El)’gf(O)

J Nik
a-p —2j-2-8 ~2j-a || 7 = < ~
< CS{, + ng dg Wf,j,k + ®i,k(Ag,i,p,k, Gé’,i,p,k)

i=1 p=1 - _
=ip 00,00 (&;)-8¢(0)

<C 8?7[)) ,
(4.344)

where we used the bounds (4.145) and (4. 181) for the L™ norm. As usual, taking S > «, this implies
an o(1) bound for the C#-#/2 seminorm on Qo(m, hence on Q», and hence also an o(1) bound for the
C* /2 geminorm on Q2, that is,

Ni ik

J
dsza D2 i+ Z Gf,k(A;,i,p,k’ Geripk) =o(1). (4.345)
i=1 p=1 @,@/2,0,,30(0)
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Next, we claim that

>

i=1 p=1

N;

i,k
4 [®2j+2(~5_ A Gy =o(1). 4.346
Z:: P ik (Ap i p i Gloipk) v/2.00.20 (0 o(1) ( )

The argument is identical to the deduction of (4.181) except we now use the improved parabolic Holder
seminorm from (4.281) instead of that from blowup argument. By applying (3.1), we have

2k
_ 27 ~ *
G i (A;; s Gripi) =Y. Z ATl B, (Gipa) ®D'A;, . (4347)
=0 g=T41

so that
2j+2 (%
DA ®; k(A[ ip, k,Gf,i,p,k)

2742

_Z Z Z Z dz,lflt (g— 2)[[)(qd2 2)28€ blld’iq(thk)@@lﬁLA[lpk
=0 g=[351 d011+12 2]+2d

(4.348)
To estimate it, we need the following simple bounds from [21, (4.302)—(4.303)]
L& ~ - ~ < —t
{ 12®P1q(Gip s g0 00 Cgf_’ Sl e (4.349)
[:DL®L,q(Gi,p,k)]a,a/z,Q”S,gp(o) <CS§ aggt = 0(‘95[ ),
forall: > 0, € (0,1) and fixed S > 1.
Transferring (4.178) to the tilde picture,
_ ~x 2+2j—t 242j7—t
d; L+2||33LAMP,,<||w,Q~O(E[),g(<O) <6 = 0(67 7Y, (4.350)
for all 0 < ¢ < 2k + 2+ 2j. Putting 8 > « in (4.281) yields
—u+2— * a—f 2j-1+2 _ 242~
d; DAL L s Ooep.2e(0) < Cef 70, T = 05,7, (4.351)
for all ¢ > 2 and thus implies
di DA idaapongio < € T8 =06, (4352)
forall 2j < ¢ < 2j+2+2k while for 0 < ¢ < 2j, we have from (4.163) that
—- T 2j- 242j-
A7 D A pidaasnonge < COpdy ™ = 0(5,77"), (4.353)
since g, — +o0o0.
We now estimate (4.348) using the above estimates of each terms:
“2j-a [ \2j+2F T ~
4 D26 (A 4G |
£ R N
< 0(1) Z ((d[/lzl)d+a/82—i16§+2j—1—i2d22+t—2 + (dg/lgl)d(‘;‘é_il_a6§+2j_L_i2d22+t_2
Litid (4.354)
+(d /1—1)d8¢—i.62+2j—z—i2d12+¢+a—2)
2474 ¢ Y ¢
=o(1),
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which proves (4.346). Combining it with (4.345), and using the triangle inequality gives
_Di— 2742
AT k) 2. ag00) = (1) (4.355)

which kills the contribution of ¢, ; x in (4.132). In conclusion, all terms that appear on the right-hand
side of (4.132) converge to zero, which gives a contradiction and finally concludes Subcase A.

4.13. Subcase B: €y = €., > 0

Without loss of generality, we will assume that £, = 1. By (4.144), (4.145) and [21, Lemma 2.6], we

2j-azy . 2j+2+3,j+1+6/2 . 7 2j+2+a, j+1+a/2
see that d,, Ye,jk converges in Cp . to a function Yo j x € C,. defined on

CM XY x (—00,0], forall 0 < 8 < a, while (4.153) gives us that d;zf‘“a;);; and d;zf‘“iaa')g; converge

in Clzd?ﬁ’ﬁﬁ/z andtoa (1, 1) form 5 € CHF®J*al?

. djta,jra)2
forall 0 < 8 < a to a function u,, € C.2° Jjral o ,

loc
respectively, on C™ x (—oo,0]. Using again (4.153), we also have that d;zj_ae‘d§’122’a,~/\7; — U in

2j+B,j+B/2 2j—@ —dPA2F 07 ~x . 2j+B,j+B/2 .
CloC and df e %t l(’)(’)ﬁ e/ CloC . Moreover, when j > 1, we have

00U = ONco. (4.356)

From (4.144), (4.145), (4.153), (4.191), we see that Yo jx = O(r¥ ) Uy = O(r¥*9), ne =
O(r¥*®), and 773, = O (r¥*®) where r = |z| + /|-
By (4.164), (4.163) and (4.168), the functions d;zj YA converge to limiting functions A*

C,i,p,k 00,i,p,k
L 2jH242k4B, j+142k+B/2 o .
from the base C™ in ClojC FRAALHIIABIL i any 0 < B < a while G; p x converge locally uni-

formly smoothly to functions G, x pulled back from Y. Using (4.181), we see that the functions

d_zj_”(ﬁ,-,k(ﬁj,’i’p’k, G(’[’P’k) converge in CHAHBIHBIL ) 4 function which, thanks to [21, (4.310)],

¢ loc
is given by
k
Geok (Al s i Cooipt) = D (=D (AT AL, (A TG i (4.357)
=0

By (4.158) and (4.200), the metrics gg(t) — gp = gom + 8y z..=0 locally smoothly where gcm equals

8can |z:zm=0~

Recall from (4.216) that
2j-a ~ 212~ \ _ ;2j-a
d ((af - Ad)g) e+ d2A; pg) = dTNE + & + &), (4.358)
where ¢ is given by (4.214). From (4.144), (4.145), (4.157) and (4.179), it follows that
4, d227 e — 0, (4.359)

in Cl(z)c, so as £ — +oo the LHS of (4.358) converges to
~ J ~ ~ ~
(0~ Aop) [t + D D B (A;,,.,p, . Gm,,-,p,k) oo = g oo (4.360)

while at the same time, thanks to (4.219), the LHS of (4.358) is forced to be a polynomial F in the (z, t)
variables, of (spacetime) degree at most 2, with coefficients that are functions on Y, namely

Flayty= D, Hpg(»te, (4.361)
Ip1+2g<2j
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for some smooth functions H, , pullback from the fiber ¥, where here again we treat z as real variables.
Plugging (4.361) into (4.360), and taking the fiberwise average, gives

where Q is a polynomial in the (z, ¢) variables of degree at most 2. But thanks to the jet subtractions,
U and 1o have vanishing 2 parabolic jet at (z, 1) = (0,0), so

MOO - trwcm 7700 = 05 (4.363)

on C" X (=0, 0].

We now claim that u., and 7., are both identically zero. First, we assume that j = 0. In this case, we
can use (4.268) and see that u., is a constant in space-time, and hence identically zero. At this point, we
can argue similarly as in subcase A to show that 7., also vanishes identically: first, we show that 7., is
time-independent, by arguing similarly to (4.270), noting that for any Z € C™ and 7,7 < 0,

d, Rt li)% (z N —d, 16(9 )—166/ "c")t (z,s)ds (4.364)

and since [ (d;“a;)z;) (3,5)d5 — 0 locally uniformly (from e = 0), it follows that the RHS of

(4.364) goes to 0 weakly, and since the LHS converges in Cﬁc t0 Noo(Z,7) — Noo(Z, '), this must be
identically zero as claimed.

We can then write e = i00Veo, Where vo, € CEL¥(C™) is time-independent and A 4, Voo = 0, 50 Voo
is smooth and [id0ve| = O(]z|%). The Liouville Theorem applied to each component of iddv., then
implies that 7., has constant coefficients; hence, it vanishes identically since its value at (0, 0) vanishes.

Next, we assume j > 1. We can then differentiate (4.363) and use (4.356) to see that

Btum = trem (9[7]00 = trgm laéum = A@mum, (4365)

SO 1o Solves the heat equation on (—co0,0] X C”, and |D‘us| = O(r>***) where r = |x| + V¢ for
0 < ¢ < 2j by (4.153). By applying Liouville Theorem for ancient heat equation to D>/ u.,, we see that
U must be a space-time polynomial of degree at most 2, and hence, u., = 0 since its parabolic 2j-jet
at (0, 0) vanishes. Going back to (4.356), it then follows that 7, is time-independent, and it is clearly
of the form 77, = id0Vv for some time-independent function v, € C120 ’C +2+“((C”’). From (4.363), we see
that v, is harmonic. Since |D*/ 1| = O(|z|?), the Liouville Theorem in [20, Proposition 3.12] then
shows that the coefficients of 1, are polynomials of degree at most 2j, and since these coefficients have
vanishing 2 j-jet at the origin, this implies that 7., vanishes identically.
Now that we know that u., = 0,17, = 0, we can return to (4.360), (4.361) and get

J Nzk

(0 = Aoy w,HZZ@M( i Goniop) | = 7 (4.366)

i=1 p=1

2j-a

Recall from (4.358) and the discussion after it that d,, (&1 + & + &) — F locally uniformly. From
-2j-a

(4.220), we see that d;zf ~“&1 — 0locally uniformly, while the term —d,, (&2 + &) is exactly equal
to (3.15) (in this subcase, the check picture equal the tilde picture since &, — 1), so the Selection
Theorem 3.1 shows that F is also equal to the limit of

i Nik

j
dﬁz’ | feo+ Z Z feipGipk | (4.367)

i=1 p=1
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where X, was defined in (3.3), and where f7 o, f¢ i, are time-dependent functions pulled back from
the base, such that fe o =Y 2.0, f[ ip =Y, o Je.i.p converge locally smoothly to zero. This implies
that for any function G on C’” x Y which is fiberwise L? orthogonal to the span of the functions
{G‘voo,[’p’k}]gigj’lgpgj\/i’k together with the constants, and for any z € C"™ and ¢ € (—o0, 0], we have

[ Fernceyem =o, (4.368)
{z}xY
which implies that we can write
. Nl k
F(z,3,1) = go(z.1) + Z D i k(3G i p i (), (4.369)
i=1 p=1

for some functions go, gi,p,x on C™ X (—00,0]. Since F is a polynomial in (z, t) of degree at most 2,
by fiberwise L? projecting F onto each Gw,i’ p.k and onto the constants, we see that the coefficients
g0(z,1), &i,p,k(z, t) are also polynomials of degree at most 2 j. This shows that F is a linear combination
of the functions G ;, p.x together with the constant 1, with coefficients that are polynomials in (z, ) of
degree at most 2, that is,

Flz,y,1) = Ko(z,0) + ) Kq(z.))Hy (), (4.370)
q

where Ko(z,t), K,(z,t) are polynomials of degree at most 2, and H,(y) are functions pulled back
from the fiber Y that lie in H, the fiberwise span of the functions G i p.k,1 <7< j,1 < p < Nyi.

Following the argument in deriving [21, (4.330)] (which holds verbatim here), for each fixed ¢ < 0,
we obtain

Jj
i ,pk(f)—/{} Gooip kDo [Foo i+ D > ek (A;,pk,Gm,i,,,,k) Wl
j4294 -

4.371
i—1 Nq k ( )
Z ®2112.ip k (Goog.pi) ® DAY ke
g=1 p=1
where each quantity is evaluated at ¢ < 0. For notational convenience, we denote
J Nik
w23, 0) = oo+ ) 3 B (AL p s Goniop) (4.372)
i=1 p=1

which thanks to (4.366) satisfies (9, — A, ) u = F, and so given any p,q > 0 with p +2q = 2j +2,
and given vy, ..., v, tangent vectors to C™, from (4.369), we see that

(0 = Aeop) DYy, 0 = 0, (4.373)

while, thanks to (4.144), (4.145) and (4.185), we also have that DY, vy dlu=0(r),wherer = |z|+\/m.
Since wp is of Ricci-flat, we can apply the Liouville Theorem in [ 1, Proposition 2.1] for ancient
solutions of the heat equation, and conclude that D‘v’l Vp 8;lu is a constant in space and time. Since this
is true for arbitrary p, g with p +2¢ = 2j + 2, and for arbitrary vy, ..., v, this means that for every
given y € Y, the function u(z, y, t) is a (parabolic) polynomial in (z,#) of degree at most 2j + 2. Thus,
(0:u)(z,y,t) is a polynomial in (z, t) of degree at most 2; hence, the fiber integration

/ Geortpt (Br10) (207, D2 () (4.374)
{z}xY
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is also polynomial of degree at most 2. Thus, if we insert (4.366) into (4.371), we obtain

z

Aipi®) =~ Pots2,ipk(Googp ) ® DAL+ 00y, (4.375)
1 1

q.k

Q
]
B
1]

where Q; ;, is a (parabolic) polynomial on C™ x (—o0, 0] of degree at most 2. We can then use this to
show by induction on 0 < i < j that A;’i’p’ K= 0 for all i, p. Indeed, in the base case of the induction
i = 1, the last term in (4.375) is not present, and so A;,l’p’k is a polynomial of degree at most 2, but
since it also has vanishing 2 j-jet at (0, 0), it must be identically zero. The induction step is then exactly
the same.

Next, since we have shown that A;J,p’k = 0 for all 7, p, from (4.357) and (4.372), we see that

U = Yo, j k» Which by (4.371) satisfies

/ Gw,i,p,kAwpuw; =0, 4.376)
{z}xY

for all z, i, p i.e., we have
Appu € H*, (4.377)
the fiberwise L?(wy )-orthogonal space to . Thanks to (4.366) and (4.369), we also have
(O —App)u=FeH. (4.378)

We then claim that we have u = 0. To show this, we apply a trick from [11, Claim 3.2]. We define
a function v on C" X ¥ X (—00,0] as the fiberwise L?(wy )-orthogonal projection of u onto H*.
Recalling that |u| = O (r?>/*2*®), where r = |z| + \/H , we claim that v satisfies the same growth bound
[v| = O(r¥***). To see this, it suffices to prove this bound for the fiberwise L?(wy )-orthogonal
projection of u onto , which equals

j le

Z (/ M(Z’ "t)éoo,i,p,kw;l/ Goo,i,p,k(y)’ (4379)
{z}xY

i=1 p=1

and whose supremum on B,.(0) X (=r2,0] is clearly bounded by C SUPp (0)x(-r2,0] Ul < Cr2i+2*a a5
claimed.
Projecting (4.378) onto H=*, and using (4.377), we see that

Ov—Aupu=0. (4.380)

Given R > 1, which later will be taken sufficiently large, we define a function on C™ X Y X (—c0, 0] by

Izl

¢R(Z’ Yy, t) =e¢ R

+

=~

(4.381)

and consider the weighted L? energy
Eg(t) = / VpRrwmth, (4.382)
Cmxy

which is finite since |[v| = O(r****®) and ¢ decays fast at spatial and time infinity. Differentiating Eg
in time and using (4.380), we get
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1
Ep(1) = / (2v¢RAwPu + =’ ¢R) WPt (4.383)
Cmxy

Since v is a fiberwise L-projection of u, we have [, vw! < [, u>w}. Using this, together with (4.377),
we can estimate

1
Er(t) < (m +n)!/ DR / 2vA ,pu + —u? wy | WEm
m {Z}XY R2
1
= (m+n)!/ PR (/ (ZquPu+—2u2) w;) wgm
cm {2}xy R

:/ (2u¢RAwPu+ —u’Pr ) e (4.384)
Cmxy

N

1
/ (—2|vu|§P¢R +2u|Vuulg, |VoRgp + Fu2¢R) W't
Cmxy

C
< —|Vul? +—u W',
Lo (o on s uton) o

where the integration by part is justified by the growth bound of u and the fast decay of ¢g. Since u has
fiberwise average zero, the Poincaré inequality on (Y, wy ) implies

/ uWPr w’{,”"—(m+n)!/ R (/ uzu)ﬁ)w(’gm
Cmxy cm {z}xY

(4.385)
< C/ ¢R (/ |VYM|§yw;l,) Lt)glm < C/ |Vu|gP¢RwVF')‘+n,
m {z}xY Cmxy
where the constant C is independent of R; hence, for all r < 0, we have
’ < 1 C v 2 m+n 4
ER(1) < 1% | u|gP¢ wp "t <0, (4.386)
Cmxy

provided we choose R sufficiently large. Thus, for any s < r < 0, we have Er(t) < Eg(s), but if we
let s — —oo, then since u grows at most polynomially while ¢g has exponential decay, we see that
limg_,_« Eg(s) =0, and so Er(¢) = 0 for all ¢+ < 0, which implies that v = 0. From (4.378), we then
see that A, u = 0, so u is harmonic on C" X Y and |u| = O(r21+2+"), so [20, Proposition 3.12] implies
that for any fixed ¢ < 0, the function u(-,7) is the pullback of a polynomial on C™ of degree at most
2j + 2, and since it also has fiberwise average zero, it vanishes identically

To summarize, we have thus proved that d_zj_”&g i d (9,)(5, PRI Y)Y v, d, o QA’Z, Lk
all go to zero locally uniformly in the appropriate topologies, Wthh when j > 1 shows that the RHS of
(4.132) goes to zero, and gives a contradiction. As for the case j = 0, by definition, we have

08, = 1000 x + e U ’166)( + e’ ’zaa){(,, (4.387)

and we have just shown that d, A 0.1 and d,” e 09y ; both go to zero locally uniformly, so

using also (4.279), we see that the RHS of (4.110) also converges to zero, contradiction. This concludes
Subcase B.

4.14. Subcase C: €¢ — 0

In this subcase, using repeatedly [21, Lemma 2.6], thanks to (4.144) and (4.145) we have that

dgzl “Ye,jk converges to zero in C2’+2+ﬁ JHBIZAlso, using (4.194), we see that d, 2 ‘“t",] .
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converges in C2]+'8 T2 6 g (1, 1)-form 72, jx on C™ x Y X (—o0,0] which is weakly closed. The
bounds in (4.153) give us that d_zj_“(?; v: and d_zj_aiaé X} converge in C12()£+ﬂ,j+ﬁ/2 forall0 < 8 < «

to a function ue, € Clz(fa’jm/z andtoa (1,1) form s € C20]+(x Jral2 , respectively, on C" X (—o0, 0],

and again 7 is weakly closed, and these satisfy (4.356) when j > 1. Using again (4.153), we also

have that d, SAm pmdi Ay ’6)( — Ue in Czﬁﬁﬁﬁ/2 and d, T2 gy ’168/\?* = [2] “f) — Mo in

C2’ BI*BI2 From (4.160) and (4.203), we see that wﬁ — wem locally smoothly, and in particular, (as in
[21 (4.345)]) this implies that

4D A oiXi = d;2" "SDZJAW,")E_;+ o(1), (4.388)
locally uniformly, and so
4 e TR A S Al T (4.389)
locally uniformly. Thanks to (4.170), we also have that for all —1 < ¢ < 2k,
epd TN DTIAT e brize0) = O (4.390)
so when j = 0, from (4.110) (using also (4.160)) we see that
1< Cd;iddge 0.k (%e, 0) = Pry5,i00 ¢ 0.k (%75 1) |g, 0) + Cdy 1 (Re, 0) = Py s,y (%75 1) g, (0)

+ Cd; |75 (%0.0) = Pr 7 (%7 |3, 0)
< Cdga|ﬁg(if’ 0) - Pi}i(ﬁ}?(ié’ fé)|gp(0) + 0(1)’

(4.391)
while when j > 1, from (4.132), we see that
-2j—-a [+0 0 ~%/~ s~k ~t
(1+0(1) = d, 1 DYi0dj7; (3¢, 0) = Pry5, D00 (3. 7))z, 0
—2j— P~k ~ o ~k~r 3
+d, DY 0 (R0, 0) = Py 1 DY 0 (£, 7)) g 0)
/ ass (4.392)
' le
27 % e ~r
+ d I Z Z QZJA[ i.p, k(xf, 0) — Py ip(sz/Af,i,p,k(xg,t[))|§g(0) :
i=l p=
We can then invoke (4.219), and use again the estimates (4.144) and (4.145), and see that
dgzj—a 3)5{( (5’5 _ Ao}?) 5 + d?ﬂf&é’)l =o(1), (4.393)
a,a/2,base,Or,&¢ (0)
where we have set
. j N.',k
oy = e §7 T+ Z Ay i i Gripi)- (4.394)
i=1 p:l

First, we dispose of the case j = 0. Again in this case from (4.268), we see that u., is a constant in
space-time, hence identically zero, and as in subcase B, we see that 77, is time-independent (using the
argument in (4.364)). Then from (4.393), using also (4.157), we see that the quantity

;e (at wf) &y (4.395)
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is becoming asymptotically independent of the base and time directions, and so from (4.389), we
conclude that

tr oem Moo = (cCONSL.), (4.396)

and since 7. vanishes at (0,0), we actually have trem Moo = 0. As in Subcase B, we can write
Neo = i00veo, Where veo € CZH¥(C™) is time-independent and A Voo = 0, S0 Ve is smooth and
lid0ve| = O(]z]®). The Liouville Theorem applied to each component of iddv., then implies that 770,
has constant coefficients; hence, it vanishes identically since its value at (0,0) vanishes. This means
exactly that the RHS of (4.391) converges to zero, which gives us a contradiction when j = 0.

In the remainder of this section, we thus assume that j > 1. Given any p,q > O with p+2q =2j+2,
and given vy, ..., v, tangent vectors to C", from (4.393), recalling (4.157) and (4.181), we see that the
quantity

J
—2j— —d2A52F ~x ~ ~
a7 DL, 0 (0= A ) (e AT+, DGRy o Grir k) (4.397)
is asymptotically independent of the base and time directions. Recall then that from (4.193), we have

ik

J
T T .
Z d(, Dvlmvpat Ad)g(ﬁi,k(Af,i’r’ka Gt’,i,r,k)

i=l r
Zj:
ik

J
S ) 95 -14 p q i
d Z tr ZG;T;wF (z[)a(A@;\p;wF‘{_)Xy) Gl’,i,r,k)ﬂ.Dvl---v,,at Af,i,r,k + 0(1)

Z

1l
2

ik
D, ﬁ(iaé(Ae;W;wFl{_}xy)—lé[,i,,,k)ﬂ D 1AL +o(l)
:1 (4.398)

J
2 ,2j-« ~ *
=e,%d,” § G i kDD 01 AL o +0(1),

where in the second equality, we could exchange tr g (i09)g with tr 2O¥ wp (i0d)g with only a o(1)
. ,

. -2j-a e ~
error since d, "DV A; ; Nl 6.z,(0) < & by (4.170) and 17710020 (0) = 0(1) by (4.200).

Similarly, from (4.186), we see that
J Nik
Zz(ﬁik( g”k,Ghrk))

o =t =l (4.399)
ik
—2j— —1 4 1
=d, o Z Z(AG wFl(‘}XY) le’i,r»kDCI“'V atq+ A€ ik +o(1),

i=l r=

P

d 2j- aDp N aq+ (

while (4.388) implies that

dp D, O g (TR ) = DY 0 A (TR ) o), @400)

and plugging (4.398), (4.399) and (4.400) into (4.397), we conclude that
—2iji—a ~%
A7 (9 = Ao ) DYy, OF (e ( @3 g )
J Nik
-2j-a —1 /4 1 7% -2 A 1%
+d,” Z ((Aa;\v;wh.}xy) 'Grir kDY, 08T Ay L~ 8g2Gf,i,r,kD€1mvpathg,i,r,k)

i=1 r=1

(4.401)
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is asymptotically independent of the base and time directions. Observe that the first line in (4.401) is
a function pulled back from C™, while the second line has fiberwise average zero. Thus, taking the
fiberwise average of (4.401), we see that

4D, 0 (0 = M) (74717 (4.402)

(&

is approaching a (time-independent) constant locally uniformly on C™ X (—o0,0]. Recalling that

d;zf‘“a;( ~di1; ’)2*) — U in CZOJJr'BJJrB/2 and d_2] aAmm( ~di; t)?*) = Wyom oo N

C2IHBIB] 2, passing to the limit in (4.402) shows that #e — tryom 7o iS @ parabolic polynomial on

C™ X (—00,0] of degree at most 2, and since by jet subtraction the parabolic 2j-jets of uc and 7
vanish at (0, 0), we conclude that

Uoo = T yom Moo = 0, (4.403)
on C™ x (—o0,0]. Since j > 1, we can differentiate (4.403) with respect to ¢, and use (4.356) to see that
Oilleo = ticm 0T = tiem (00U = Acmil, (4.404)

SO U Solves the heat equation on (—co, 0] X C™, and | D ue| = O(r>*¥7*) for 0 < ¢ < 2j by (4.153).
By applying Liouville Theorem for ancient heat equation to D%/ u.,, we see that u., must be a space-time
polynomial of degree at most 2, and hence, u, = 0 since its parabolic 2j-jet at (0, 0) vanishes. Going
back to (4.356), it then follows that 77, is time-independent, and it is clearly of the form 770, = id9Vv., for
some time-independent function v, € CZJ B (C™). From (4.403), we see that v, is harmonic. Since
D% 1e| = O(|z|%), the Liouville Theorem in [20, Proposition 3.12] then shows that the coefficients of
N are polynomials of degree at most 2 f, and since these coeflicients have vanishing 2 j-jet at the origin,
this implies that 77, vanishes identically. This kills the first two terms on the RHS of (4.392).
At this point, we return to (4.401), and subtracting its fiber average, we see that

j Nz k
—2 ~ 1 7% =2~ rEs
. GZZ ((Ae corlper) T Grir kDY, 0 AL SEQG[J,V»kD{))I"'VpathE,i,r,k)
i=l r=
(4.405)
is asymptotically independent of the base and time directions. Let us then define a function u, on
QRd;‘ by
-2j-a -1 1+
ue(Z,3,1) =d, ™" ZZ(A@ coorlopy) Geir kDY 08 AL (4.406)
i=1 r=

so that (4.405) is equivalent to the statement that
(0 — A 20% wr | )Xy)u,g (4.407)

is asymptotically independent of the base and time directions.
Our next goal is to show that u, itself is asymptotically constant in the base and time directions. Fix
any two points z,z" € C™ and times ¢,¢’ € (—o0, 0] and consider

V'f(y’f)zuf(z’y’t-i-f)_uf(z”yat,-i-’f)? (4~408)
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so that in L}y (Y), we have

(6 = A 26,02 1 )Ve) 550)
= ((3z~ - As%@’g‘l’;a)phz}xy)uf) (z,9,0) - ((5’5 - Asg(a;w;whz}xy)w) (Z,5,t) (4.409)
- (A 20 wr ey~ Detorwias |(Z,W) ue (2, 5.1 +o(1),
and we can schematically estimate the difference of Laplacians by
o7 (88 (el 2 5) - gf(ded 2, 9)) (0Gun (25,1, (4.410)

and since
_ iy J Nix B
(i00up)g (2, 5,1') =d, ™" Z Z (iaa(Ae;\P;wphz/)xy)_lGe,i,r,k)ﬂDC] vy O A (441D
i=1 r=1
we can use (4.163) with ¢ = 2 to estimate |(i00u¢)g| < Ce7, and so (4.410) can be estimated by
ClgF(dedz'z.3) = g5 (dedy 2. 5)| < Cdedy' |z = 2| = o(1), (4.412)
so that (4.409) shows that
((9; _AS?G);‘P;‘UFHZ}XY)V{ - 0(1), (4.413)
locally uniformly. So the functions v, are approximate solutions of a fiberwise heat equation, with time
parameter 7 € (—oo,0]. We then employ another energy argument on the given fiber {z} x Y. First,
observe that (4.163) with ¢ = 2j implies

|8;2V[| <C. (4.414)

For notational convenience, we denote by wy := ©;%¥;wr|(;)xy and consider then the energy

E((7) = s;“/v§ Wy (4.415)
Y
which satisfies E¢(7) < C for all 7 < 0, and denote by

oy = H(a;—Ag;wy)fo o (4.416)

c0,or

where R > 0 is fixed so that (z,1), (z/,#’) € Q»g. Thanks to (4.413), we have oy — 0. We can then
compute, using the Poincaré inequality on (Y, wy) (recall that v, has fiberwise average zero),

d -6 Y. 2 -4
d—fE{»:—Zs[ /Y|V Vglgyw;+28[ YVg (6,—A8§wy)ww¥

< —2C_1322Eg(f) + 20'58}4 / Vewy (4.417)
Y

< —2C_18;2E[(f) + CO’[&‘EzEg(f)%,
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and using the Young inequality O'[E[(f)% C~'E(f) + Co?, we can bound
D < —Cl6 B+ Coley? 4.418
s - g, Ep+Coye,”. (4.418)

We will compare E, with the real-variable function F, which solves the ODE
F)=-C'¢’F, +Coje?, F)(-R*) = A, (4.419)
which is given explicitly by
Fo(D) = Ae™C o7 (B4 4 0242 (1 - e—C”'sZz(Rz”)) : (4.420)

and if we choose A large enough so that E,(7) < A for all 7 < 0 (which is possible, as shown above),
then we conclude that for all 7 € [-R2, 0], we have

E/(D) < Fy(f) = AeC e (R*+D 4 22 (1 - e—C"SZZ<R2+f>) , (4.421)

and hence in particular E¢(0) — 0 as £ — +co. This means that the functions &, 2y, (+,0), which are

defined on Y and are uniformly bounded by (4.414), converge to 0 in L2(Y, wy). Recalhng the definitions
(4.406), (4.408), this means that the function of § given by

Jj Nik

—2 — 14 ~ ey

e Z((A@ corliop) Crir ) (@)D, 00 A7, (1)
i=1

i Nk (4.422)

Di-a — -1~ S A*
-d, g aeﬁ Z Z((A@;W;wF ey ) le,i,r,k)(Z,s)’)(Del---vpathE,i,r,k)(Z”t/)
i=1 r=1

converges to zero in L2(Y, wﬁ). However, we have

((AQZ‘PEwF\(z/)xy)_léf,i,r»k)(zl’5’) = ((Awp |{dp,zg'z')xy)_IG[’i’r’k)(df/lEIZ,’y)

= ((Aurlyy, 1) Ceira)(deds'2,5) + 0(dedy!) - (4423)

= (A0 wr o) Grir i) (2,9) + O(dedh),

where in the second equality we used that since G¢; » x is a smooth function on the total space with
fiberwise average zero, the function (A, | ey )~ ! G¢.ir.k is also smooth on the total space (by standard
Schauder theory fiber-by-fiber, with continuous dependence on the base variables). Using (4.423)

together with the bound d;2j_as;2|Df] vy B;’A; i r.x| < C, which comes from (4.163) with ¢ = 2, we

see that
Ni i
_2 _ q ~ B -
s ZZZ«A@ corlone)  Ceiri) (@I DY, 07 AG (1)
i=1 r=1

- (4.424)

J
Di—a — —1 5 ~ s i
=d;7 2 Y S (Bopwronie) Gl i) (@ 5) D, 01 As ;. ) 1) +0(1),
i=1 r=1

~
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so from (4.422), we see that

Jj Nik
-2j-—a — 14 ~ e T ’
4052 Y Y (Bopwsurlna) Grirt) (@ 9) (D0, 047 1, 0@ 0) = (D, 0047, (1))
i=1 r=

(4.425)

also converges to zero in L*(Y, w;).~Now, the functions {(A@z\y;wl,|{Z)xy)_1G~g’i’r’k}i’r are fiberwise
linearly independent (since so are {G¢ i,k }ir), and the function in (4.425) along the fiber {z} X Y
is expressed as a linear combination of these functions with coeflicients (which are constants on Y)
given by

—2j—a — >k ik Y
4,22 ((Dﬁl,,,vpaﬁA&i’,,k)(z, 0 - (D0 1AL, (st )) . (4.426)

Since the L? norm of (4.425) is going to zero, these coefficients must be going to zero too, which means
that the functions

Dia _
d,” ast,zDé’l

, a,"A;’i’r,k (4.427)

vp
are approximately constant (in space and time) as £ — +oo. This kills the last term on the RHS of
(4.392) and gives the final contradiction, thus completing the proof of Subcase C and of Theorem 4.2.

5. Proof of the main theorem

In this final section, we give the proof of our main Theorem 1.3; namely, we prove Conjectures 1.1 and
1.2. The asymptotic expansion in Theorem 4.2 will play a crucial role.

5.1. Higher order estimates

To prove the higher order estimates in Conjecture 1.1 from the expansion in Theorem 4.2, we follow the
arguments in [21, Proof of Theorem A], but since our estimate (4.16) is weaker than the corresponding
[21, (4.12)], we will have to deal with some new difficulties. As explained in the Introduction, in this
section we work locally on the base (away from the image of the singular fibers), and the Kihler-Ricci
flow that we analyze thus lives on B X Y X [0, +c0) (with a non-product complex structure) for some
Euclidean ball B ¢ C™. For brevity, in this section, all norms and seminorms will be tacitly taken on
BxY x[t—1,t] (or BX [t—1,t] for objects that live on the base), without making this explicit in the
notation. The ball B and the interval [z — 1, t] will also be shrunk slightly every time we use interpolation.

Given an even integer k > 2, we want to show that w*(¢) is uniformly bounded in CX (gx). Applying
Theorem 4.2 with j := %, up to shrinking B, we can write

@* (1) = W (1) + 70 (1) + y1.& (D) -+ v 1 (1) + 15 1 (0), (5.1)

and in this decomposition, w¥(z) is clearly bounded in C¥(gx), y0(7) has a similar bound by (4.12),
i «(#) is bounded in the shrinking C* norm by (4.9) (hence in the regular C*(gx) norm by

[21, Lemma 2.6]), so we are left with dealing with the terms y; x(¢),1 < i < % By definition and
using (3.1), we have

Nik 2k k

Yix() =100 Y N DT e D (Gip k) @D Arp i (1), (5.2)

p=1 =0 r:[é]
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and so, as in [21, (5.10)], for 0 < g < &,

Nik 2k k g+l

Dlyik=p > D> D e D) @D D, (Grp k) © DA pk,  (53)

p=1 =0 r=[4%7 5=0 i;+ir=s+1

and using the fixed metric gx, we can estimate |D"1¢>L,r(Gi’p,k)|gX < Cand |(D‘1+1“"J)|gx < C, while
from (4.16), we see that [D2*A; , x| = 0(1) when iy + ¢ < k + 2 and from (4.17) that | D2 A; ,, «| =
(i2+‘_k_2)%) when k +2 <is +t < k+2+ 2k, and so

|D Yi, k|gx 0(])+0(]) Z Z Z -rt (lz+t k-2)%

i1+ <q+2 1=k+3—iy r= 5

<o(l) +o(el?M1) Z Z e ()1 <o (1) +0(e 40T = o(1),

=0 r=[31

o(e
5.4

since iy < g +2 and g < k. This completes the proof of Conjecture 1.1.

5.2. Ricci curvature bounds

Next, we prove Conjecture 1.2 — namely, the Ricci curvature bound for w®(f) on compact subsets of
X\ f(S), which in our setting translates to

sup |Ric(w*(1))lg=r) < C. (5.5)
BxY
The argument is similar to [21, Proof of Theorem B], but there are some crucial differences coming
from the time evolution in the Monge-Ampere equation, and from the fact that the bounds in (4.16) are
worse than those in [21, (4.12)].
We will use the expansion (4.8) with j = 1 and k > 4 (arbitrary), and with a close to 1, and our first
task is to improve the estimates (4.10), (4.17). These give us

. Ce o) (1-55)5
'A < ot
DALl {o(e_(4")2), 5<i<

and we can interpolate between |A} , | < e ~(2+a@)5 and [D?A; pklce < Ce ~" from (4.18) and get

<i<4,
5.6
4 (5.6)

+ 2k,

. a l_ﬁ
D' Ay ps| < Ce™ (eﬁ’) 0<ig?, (5.7)

so in particular, we have |A; p.k| =0(e™"). The next claim is that

[Y1klgx = 0(e™). (5.8)
Indeed, using the decomposition in (5.3),

2 Nik 2k 2

il <CY DD Z e DAy p al, (5.9)

i»=0 p=1 =0 r=

and we bound the RHS of (5.9) by o(e™") by considering the possible values of i +¢ € {0, ...,2k +2}:
ifip+¢=0,1,2, then (5.7) in particular gives |Di2+‘A1,p,k| =o(e™"), which is acceptable. If i +¢ = 3,4,
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then necessarily ¢ > 1 and so r > 1, while (5.6) in particular gives |Di2+‘A1 k| = o(1) so the RHS of
(5.9)is again o(e™"). And if i, +¢ > 5, then we use (5.6) exactly as in (5.4) to bound the RHS of (5.9) by

2 Nik
o(e” ’)+o(1)ZZ Z Z et < e +o(e” ’)Z Z e (r=3)t =o(e™),
120plt512r§ t3r§
(5.10)
since i < 2, which concludes the proof of (5.8). Next, we want to show that
Nk _
Von = D ALp ko dr(Ar )Gy g+ o(e™), (5.11)
p=1
where the 0(e™2') is in Ly (gx)- Indeed from (5.2), we can write
Nik 2k _
ade=> > Z 50t (G pk) ® D ALk, (5.12)
p=1 =0 r=[3]

and we can estimate each term as follows. For ¢ > 4, we have |[D‘Ay , x| = o(e‘(““)%) from (5.6),
and so

e 0k0rD, (G ps) ®D A prlex < 0(1)e X e 781 = (72, (5.13)

since r > 5. For ¢ = 3, we have r > 2 and [D‘Ay , x| = o(1) from (5.6), so the term is again o(e™?).
For:¢=1,2, we have r > 1 and [D‘A; p, x| = o(e™") from (5.7), so the term is again o(e™?"). And for
¢t = 0, let us first look at the terms with r > 1. For these, we have |A; , | = O(e~ 1) and so when
multiplied by e™"*,r > 1, these terms are indeed o(e™>). So we are only left with the terms where
¢ = r = 0 which equal

N1k

Z A1 p k00 (AT TIGy (5.14)
p=1

since @ o(G) = (A“Flr)~1G by (3.2), thus proving (5.11). In particular, using the bound (5.6) in
(5.11) gives

2+at

|(y1idmlgx < Cem 27, (5.15)
while tracing (5.11) fiberwise gives
Nk
ter|(,}xy (71,k)ﬂ' = Z Al,p,kGl,p,k + 0(6_2t)~ (5.16)
p=1

Before we continue with the proof of (5.5), recall that from [12, p.110] (see also [39, Lemma 5.13])
we know that

sup |@(1) — (1) < Ce™, (5.17)
BXY -
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for all # > 0. The argument in [43, Lemma 3.1 (iv)] then allows one to deduce from this that
sup (1) — ¢(1)] < Ce™ 2. (5.18)
BxY -

As a consequence of our asymptotic expansion, we can now improve both of these:
Proposition 5.1. On B XY, we have

lo(t) =) =0(e™), (1) = p(1)] = o(e™). (5.19)
Proof. Recall that by definition, we can write

Nk

e-g=tri+ Y 6 x(ALpiGipi), (5.20)
p=1

and we want to bound the L* norm of the two terms on the RHS of (5.20) and their time derivatives.
For /1 i, from (4.9), we have

103y klg(ry < e D)1, (5.21)
so restricting this to a fiber {z} X Y gives
001 k] (epxr gy < ™), (5.22)

and since | x has fiberwise average zero, applying Moser iteration on {z} X Y (with constant that does
not depend on z € B) gives

W1kl < Ce”H, (5.23)
Arguing similarly for ¢, which by (4.9) satisfies (since k > 4)

i3 klg(r) < €2, (5.24)
we get

1| < Ce” ()7, (5.25)

As for the term ®; (A1 p k., G1,p,k), using again (5.2), we can write it as

2k k
DD e @ (Grp k) ®D Ay, (5.26)
=0 r=[4]

and using (5.6) and (5.7), we can argue similarly to the proof of (5.8) and bound

2k k

160 k(A1 Grpi)l SC Yo D0 e D Ay pil, (5.27)
=0 r=[4]

by o(e™") by considering the possible values of ¢ € {0, ...,2k}: if ¢ = 0, then (5.6) in particular gives
|A1 p.k| = o(e™"), which is acceptable. If 1 < ¢ < 4, then necessarily > 1, while (5.6) in particular
gives [D*Ay p, k| = o(1) so the RHS of (5.27) is again o(e™"). And if ¢ > 5, then we use (5.6) to bound
the RHS of (5.27) by
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Nik 2k
o(e” ’)+0(1)ZZ Z TN < o(e™) +o(e” 2’)2 Z e (=1 Z o) + 0(e7),
p=1 =5 r=[3] =5 r=[%]
(5.28)
and so
G/ k(AL p.k-Grpi) =0(e™). (5.29)
Similarly,
2k k
®t,k(Al,p,ks Gl,p,k) = Z Z e_rtq)L,r(Gl,p,k) ®DLAl,p,k’ (530)
=0 r=[3]

and we argue as above to show that this is o(e™?): if t = 0, then (5.7) in particular gives |A1,p,k| =o(e™),
which is acceptable. If 1 < ¢ < 2, then r > 1, while (5.6) in particular gives [D‘Ay , x| = o(1) so the
RHS of (5.30) is again o(e~ ’) And if ¢ > 3, then we use (5.6) to bound the RHS of (5.30) by

N
o(e” ’)+0(1)Zlfi Z (D3 < o(e” ’)Z Z e (=21 = (™ n, (5.31)
p=1 =3 r=[3] =3 r=[4]
and so
6 k(A1 pk,G1px) =o0(e™). (5.32)
Combining (5.20) with (5.23), (5.25), (5.29) and (5.32) we see that (5.19) holds. m|

Remark 5.2. If we use the stronger bounds (5.55), (5.56) for derivatives of Ay , x, which will be
established below, we can then repeat the proof of Proposition 5.1, and we get the better bounds

lp(1) - (] < Ce™, (1) = g(1)] < Ce™ D), (5.33)

where y = 7= > 0.

Now that (5.19) is established, we can use it to prove the next claim, which is the analog of [21, (5.26)]:

Proposition 5.3. We have
|A1p il < Ce™. (5.34)
Proof. First, observe that thanks to (4.9), we have
01 klg(ry < e @5, (5.35)
which implies that

M1klgx = 0(e™), 11 alex = 0(e™), (5.36)

and combining this with (5.8) and (5.15), we get

le"yik +eniklex =0(1), [(e'yik+en lex = 0(e™%). (5.37)
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The Monge-Ampere equation (4.1) that describes the flow can be written as

R + _
#1490 gt (’"n ”)wm AW = (e + ¢ wp +i009(0) + k(D) + )™, (538)

and multiplying this by %ﬁ,) expanding it out, and using that idd¢(¢) is small in C? by (4.12), as well
as (5.36), (5.37), we see that

+¢ c0n t t
el A wh = (Wean +186£)m ANwr +e'yir+en g

- 1e_t(wcan +i039)™ ' A (wr + ey + e )" +0(e7)
n ¢

= (Wean +1039)™ A W + n(wean +i030)"™ (wp ) (€ y1.00m (5:39)

n P — m  _ _ _
+ (2)(11)Cam +166£)m(wp)ﬁ 2(3’71,;()‘% + ¢ Twm=l A a)';rl +o(e™),

(o]

where the error terms o(e™) are in L;> (gx). We used here that o > 2, so that l(e"y1.6)f ] = o(e™) for
p =3 by (5.15). Asin [21, (5.29)], we define a function S by

m—1 n+l _ m n
] Wean ANWE " =Sweg, A W, (5.40)

so that dividing (5.39) by the volume form w;, A w’. and multiplying by e™" gives

, O)wr)g 2 (e yiig
(wF)g

e le¥tP = (e_’ + Wy (V1L + €7 + e_ZIS) (1 + 0(1pase) + 0(e721),

(5.41)

and subtracting from (5.41) its fiber average (the two terms with y; x have fiberwise average zero since
Y1,k is 00-exact) and using (5.16) gives

Ny« n n-2(,t 2
e—t(eSD‘HP _ﬂ) = (Z AI,P,kGl,p,k +e—t (2)(a)Fzz')F)(: yl,k)ﬂ +e—2t(8 _§)) (1 +0(1)base) +0(€_2t).
p=1 fr

(5.42)

To bound the LHS of (5.42), use the Taylor expansion of the exponential, together with Lemma 4.1 (ii)
and (5.19) to bound

e et — e < Cellp+ g —p ¢l = o(e™), (5.43)
while on the RHS of (5.42), we can bound

O (wr)g2(e"yi0p

(wF)g

-t

N

< Ce'|(e"y1 )l < Cem ), (5.44)

by (5.15). Thus, going back to (5.42), we learn that

Nk

Z A1 piGipi =O0(e” ), (5.45)
p=1
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and taking the fiberwise L? inner product with each G, p.k» We see that

Al p i =0(e”IFay (5.46)
which improves over the bound Ay, x = 0 (e~ (1*3)") from (5.6). We can then go back to (5.11) and
see that

|(y1,0lgy < Ce 1P, (5.47)
which allows us to improve (5.37) to
[(e"yix +e'mpmlgy = O(e™), (5.48)

and so as long as we choose « > %, we see that

l(e"y1,1)glex = 0(e™), (5.49)

and so in (5.42), we have

() (wr)i2 (e y1.0)g

(WF)g

-t

< Ce'|(e"y1 )il = o(e™), (5.50)

and returning to (5.42) again, we see that

N1k

Z A1 piGipk =0(e™), (5.51)
p=1

and again taking the fiberwise inner product with each G, x concludes the proof of (5.34). O

Next, observe that from (4.9) we have in particular

i2-a

D1 klgry <Ce T ', 0<i<2. (5.52)

We want to show a similar estimate for y; ; which is only slightly worse:

Proposition 5.4. We have
1D Y1 kley < CeT!, 0<i<2, (5.53)
and also
iklgn) < Ce™2, (5.54)

where y = 7= > 0.

Proof. The first step is to use (5.34) to improve the estimates in (5.6), by interpolating it with
[$4A]’p’k]ca < C from (4.18) and get

Ce™2, =0,
ey (5.55)

; (A—jyi@ )L
|®lA1’p,k| < Ce (=it g5 s < .
Ce , 1<i<4,
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where y = 7= > 0. As for higher order derivatives of A; j, x, given 1 < ¢ < 2k, we interpolate between
|D* Al,p,k| < Ce 2! from (5.55) and (DA pxlce < < Ce?! from (4.18) and letting i = 4 + ¢, we get

4-i+y ¢

DA pil <Ce™ 7', 5<i<4+2k. (5.56)
Finally, using (5.55) and (5.56), we can bound |Di71,k|g(t),0 < i < 2, by going back to (5.3) and
bounding
_ Nik 2k k i+l _ _ )
D y1klgn) < Z D D eI D) g () DD (G p ) e () D AL p ke 1),
p=1 =0 r= %'\ s=0 ij+ir=s+1
(5.57)
and using also |Di‘<I>L’r(G1,p,k)|g(,) < Cells, D g(r) < Ce's, we get
2k ko i+l 2%k k
|5Di71,k|g<z) < CZ Z Z Z ot plirtintitl—s+i-4)§ < Ce(i—z)gz Z e—(r—é)t < Ce(i—Z)%’
=0 r:[f] s=0 i1+ir=s+1 =0 r:[é]
(5.58)
for 0 < i < 2, which proves (5.53). As for (5.54), using (5.3) again, we can bound
Nik 2k ) '
ey < D0 > }S }j > eID D gD @, (Grp i) le )| D At p e
p=1 =0 r %] s=0 i1+ir=s+1
I > 3 et
<C 7rt (11+L2+l s+i1-2— 7)2 < Ce™ 72 e =3 t < Ce™ y2
1=0 r=[31 s=0 ij+ir=s+1 =0 r=[4]
(5.59)
O

After these preparations, we can finally give the proof of the Ricci curvature bound (5.5). For this,
we take i00 log of the Monge-Ampere equation (4.1) and get
Ric(w* (1)) = —idd log det g* (1)
= —idd log(w, A W) —i0d(p(t) + ¢(1))
= —Wcan — iag(‘;o(t) + @(I))
=—w*'(t) + e wp —iddp(1),

(5.60)

where we used the known relation —idd log(wi, /\a);) = —Wwean (see, for example, [39, Proposition 5.9]).
Since w* (1) is uniformly equivalent to w%(7) (by Lemma 4.1 (i)), it suffices to bound |Ric(w*(7))| &5(1)
on compact subsets of X\S. We can then work on B X Y as before, where we may assume that we have
the expansion (4.8) with j = 1 and k > 4,

w* (1) = W (1) + yo () +y1.6(1) + 711 (2). (5.61)

Using (4.12), (5.52) and (5.53), we thus see that

|w* () = WF () lgary = 0(1). (5.62)
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Taking a time derivative of (5.61), we obtain
i00¢ = idI + 71,k + 111 k5 (5.63)
and using (4.12), (5.52), (5.54), we see that
i34,y = 0(1). (5.64)

Thus, going back to (5.60), we can write

Ric(w® (1)) = —w*(t) + e 'wr — iddp(t)
_ (5.65)
= e + (—o)'(t) +l(h) - iaa¢(z)) ,
where thanks to (5.62) and (5.64), we have
—0* (1) + Wh(1) - iaﬁ_gb(t)) = o(1), (5.66)
g4(1)

and since we clearly have [wean|gn(,) < C, the Ricci bound [Ric(w®(2))lgn(,y < C follows.
Observe that (5.65) and (5.66) give us very detailed information about the Ricci curvature of w*®(t)
(on compact subsets of X\S), showing that it is asymptotic to —wc,y in a strong sense.

Remark 5.5. Since wcy, is pulled back from the base, and since w®(f) — wcay locally uniformly (from
Lemma 4.1 (i), (iii)), it follows that

trye (1) Wean = Wy, Wean = M, (5.67)
locally uniformly on X\S. Thus, taking the trace of (5.65) with respect to w®(¢), we see that
R(w*(t)) +m — 0, (5.68)

in Cl% .(X\S), which recovers the main theorem of [22].

Remark 5.6. Continuing the above arguments along the lines of [21, (5.37)—(5.86)], one can also
identify the first nontrivial term in the expansion (4.8) of w®(t), whose shape is identical to the one in
the elliptic setting; see [21, Theorem B]. For the sake of brevity, we leave the straightforward proof to
the interested reader.
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