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Abstract
We consider the Kähler-Ricci flow on compact Kähler manifolds with semiample canonical bundle and intermediate
Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the Iitaka fibration in
the locally smooth topology and with bounded Ricci curvature away from the singular fibers. This follows from an
asymptotic expansion for the evolving metrics, in the spirit of recent work of the first and third-named authors on
collapsing Calabi-Yau metrics, and proves two conjectures of Song and Tian.
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1. Introduction

1.1. Background and motivation

Let (𝑋, 𝜔0) be a compact Kähler manifold, and let 𝜔•(𝑡), 𝑡 ∈ [0, 𝑇) be a family of Kähler metrics on X
which solve the Kähler-Ricci flow

𝜕𝑡𝜔
•(𝑡) = −Ric(𝜔•(𝑡)) − 𝜔•(𝑡), 𝜔•(0) = 𝜔0 (1.1)

for some 0 < 𝑇 � +∞. In this paper, we are interested in the case when 𝜔•(𝑡) is an immortal solution
(i.e., when 𝑇 = +∞). Thanks to a result of Tian-Zhang [37] (see also [45]), we know that the solution
𝜔•(𝑡) is immortal if and only if the canonical bundle 𝐾𝑋 is nef, which means that 𝑐1 (𝐾𝑋 ) lies in
the closure of the cone of Kähler classes in 𝐻1,1(𝑋,R). This condition does not depend on 𝜔0, and
manifolds with 𝐾𝑋 nef are also known as smooth minimal models.

The Abundance Conjecture in birational geometry, and its natural extension to Kähler manifolds,
predicts that if the canonical bundle of a compact Kähler manifold is nef, then it must be semiample,
which means that 𝐾 𝑝

𝑋 is base-point-free for some 𝑝 � 1. This conjecture is known when dim 𝑋 � 3 by
[1, 6, 7].

Throughout the rest of the paper, we will assume that 𝐾𝑋 is semiample. It is then known (see, for
example, [25, Theorem 2.1.27]) that global sections of 𝐾 𝑝

𝑋 for 𝑝 � 1 sufficiently divisible define a
surjective holomorphic map 𝑓 : 𝑋 → 𝐵 ⊂ CP𝑁 (the Iitaka fibration of X) with connected fibers onto a
normal projective variety B (known as the canonical model of X), of dimension m equal to the Kodaira
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dimension of X (in particular, we have 0 � 𝑚 � dim 𝑋). The smooth fibers of f are then Calabi-Yau
manifolds, of dimension 𝑛 := dim 𝑋 − 𝑚, which are pairwise diffeomorphic but in general are not
pairwise biholomorphic.

In the two extreme cases when𝑚 = 0 or𝑚 = dim 𝑋 , the behavior of the flow is completely understood
thanks to the work of many people (see, for example, the recent survey [42] and references therein), so
we will furthermore assume from now on that 0 < 𝑚 < dim 𝑋 , which is known as ‘intermediate Kodaira
dimension’. Thus, we have dim 𝑋 = 𝑚+𝑛, and both the fibers and the base of f are positive-dimensional.

The simplest examples of this setup arise when 𝑚 = 𝑛 = 1, where X is a minimal properly elliptic
surface, B is a compact Riemann surface, and 𝑓 : 𝑋 → 𝐵 is an elliptic fibration. In this case, the
behavior of the Kähler-Ricci flow (1.1) was first studied by Song-Tian [31], who shortly afterwards also
considered the case of general 𝑚, 𝑛 in [32]. A major difficulty in this setting is that the total volume
of (𝑋, 𝜔•(𝑡)) is easily seen to converge to zero as 𝑡 → +∞, and this ‘collapsing’ behavior makes it
extremely hard to analyze the flow. As we will now explain, in [31, 32], it was shown that the metrics
𝜔•(𝑡) collapse in the weak topology to the pullback of a canonical metric on B, and our main goal is to
obtain higher order regularity and a uniform Ricci curvature bound for 𝜔•(𝑡) (away from the singular
fibers of f ) and thus prove two conjectures of Song-Tian.

When X is projective, the condition that 𝐾𝑋 be nef means that X is a smooth minimal model.
The connection between the Minimal Model Program in birational geometry and the behavior of the
Kähler-Ricci flow was first discovered independently by Cascini-La Nave [3] and Song-Tian [31], and
remains an area of current research. These works outlined a conjectural picture for the behavior of the
Kähler-Ricci flow on any projective (or more generally compact Kähler) manifold. When 𝐾𝑋 is not nef,
singularities must develop in finite time, and the flow should implement the corresponding birational
contractions or collapse the fibers of a Mori fiber space. The case when 𝐾𝑋 is nef (so the manifold is a
smooth minimal model) is the topic of our paper.

1.2. Setup

We now describe our setup in more detail. As mentioned above, we have a compact Kähler manifold
(𝑋𝑚+𝑛, 𝜔0) with semiample canonical bundle and intermediate Kodaira dimension m (so 𝑚, 𝑛 > 0),
and 𝜔•(𝑡) denotes the immortal solution of the Kähler-Ricci flow (1.1). Let 𝑓 : 𝑋 → 𝐵 be the Iitaka
fibration of X, and let 𝑆 ⊂ 𝑋 be the preimage of the union of the set of singular values of f and the
singular set of B. Thus, by construction, 𝑓 : 𝑋\𝑆 → 𝐵\ 𝑓 (𝑆) is a proper holomorphic submersion with
n-dimensional connected Calabi-Yau fibers 𝑋𝑧 = 𝑓 −1(𝑧), 𝑧 ∈ 𝐵\ 𝑓 (𝑆). By Ehresmann’s Lemma (and
the connectedness of 𝐵\ 𝑓 (𝑆)), the fibers 𝑋𝑧 are pairwise diffeomorphic, but, in general, their complex
structure varies with z, and this variation can be encoded in a smooth semipositive Weil-Petersson form
𝜔WP � 0 on 𝐵\ 𝑓 (𝑆), defined in [31] (see also [39, §5.6]).

By [32], there exists a smooth Kähler metric 𝜔can on 𝐵\ 𝑓 (𝑆) satisfying the twisted Kähler-Einstein
equation

Ric(𝜔can) = −𝜔can + 𝜔WP. (1.2)

The pullback of 𝜔can to 𝑋\𝑆 will also be denoted by the same symbol, for convenience. The metric 𝜔can
extends to a closed positive current on B, and in [31, 32] it is shown that as 𝑡 → +∞, we have

𝜔•(𝑡) → 𝜔can, (1.3)

weakly as currents on X as well as in the 𝐶0
loc(𝑋\𝑆) topology of Kähler potentials. Motivated by this, in

[31, p.612], [32, p.306], [35, Conjecture 4.5.7], [36, p.258], Song-Tian posed the following:

Conjecture 1.1. Let (𝑋, 𝜔0) be a compact Kähler manifold with 𝐾𝑋 semiample and intermediate
Kodaira dimension 0 < 𝑚 < dim 𝑋 , and let 𝜔•(𝑡) solve (1.1). Then the convergence (1.3) happens in
the locally smooth topology as tensors on 𝑋\𝑆.
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Explicitly, Conjecture 1.1 asks to show that given any 𝐾 � 𝑋\𝑆 and 𝑘 ∈ N, we have

‖𝜔•(𝑡) − 𝜔can‖𝐶𝑘 (𝐾,𝑔0) → 0. (1.4)

There have been a number of partial results towards Conjecture 1.1, often using techniques that were
first developed for a family of elliptic PDEs that describe the collapsing of families of Ricci-flat Kähler
metrics on a Calabi-Yau manifold with a fibration structure, and which share some of the features of
(1.1) (see, for example, the survey [40]). Indeed, Fong-Zhang [12] adapted work of the third-named
author [38] to prove that (1.3) holds in the 𝐶1,𝛼

loc (𝑋\𝑆) topology of Kähler potentials (𝛼 < 1), and the
works [12, 19, 44] proved Conjecture 1.1 when the smooth fibers of f are tori or finite quotients of
tori (see also [13] and [39, §5.14]), using and improving a method of Gross-Tosatti-Zhang [14]. Later,
Tosatti-Weinkove-Yang proved that (1.3) holds in𝐶0

loc(𝑋\𝑆), and this was improved to𝐶𝛼
loc(𝑋\𝑆), 𝛼 < 1

by Chu-Lee [4] adapting the techniques of Hein-Tosatti [20], which also allowed Fong-Lee [11] to prove
Conjecture 1.1 when all smooth fibers are pairwise biholomorphic.

In a later work [33], Song-Tian proved that the scalar curvature of 𝜔•(𝑡) remains uniformly bounded
on X, independent of 𝑡 � 0. They then conjectured a similar statement for the Ricci curvature, away
from the singular fibers of f (see [36, Conjecture 4.7]):
Conjecture 1.2. Let (𝑋, 𝜔0) be a compact Kähler manifold with 𝐾𝑋 semiample and intermediate
Kodaira dimension 0 < 𝑚 < dim 𝑋 , and let 𝜔•(𝑡) solve (1.1). Then the Ricci curvature of 𝜔•(𝑡) remains
uniformly bounded on compact subsets of 𝑋\𝑆, independent of t.

This is only known when the smooth fibers of f are tori, or finite quotients of tori [11] (hence,
in particular, it holds on minimal properly elliptic surfaces), or when the smooth fibers are pairwise
biholomorphic [4]. It is known that, in general, the conjectural Ricci bound cannot be improved to a full
Riemann curvature bound (on compact subsets of 𝑋\𝑆): by [44], this holds if and only if the smooth
fibers are tori or finite quotients.

It is well known that the Kähler-Ricci flow (1.1) reduces to a scalar PDE, of parabolic complex
Monge-Ampère type, for a family of evolving Kähler potentials. Following [32], we construct a closed
real (1, 1)-form 𝜔𝐹 on 𝑋\𝑆, which is of the form 𝜔𝐹 = 𝜔0 + 𝑖𝜕𝜕𝜌, such that for every 𝑧 ∈ 𝐵\ 𝑓 (𝑆), we
have that 𝜔𝐹 |𝑋𝑧 is the unique Ricci-flat Kähler metric on 𝑋𝑧 cohomologous to 𝜔0 |𝑋𝑧 . While 𝜔𝐹 is not
semipositive definite in general (see [2] for a counterexample), given any compact set 𝐾 � 𝑋\𝑆, we can
find 𝑡0 such that for all 𝑡 � 𝑡0,

𝜔♮ (𝑡) := (1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 (1.5)

is a Kähler metric on K, with fibers of size ≈ 𝑒−𝑡/2 and base of size ≈ 1. On 𝑋\𝑆, we can then write
𝜔•(𝑡) = 𝜔♮ (𝑡) + 𝑖𝜕𝜕𝜑(𝑡), where the potentials 𝜑(𝑡) satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑡
𝜑(𝑡) = log

𝑒𝑛𝑡 (𝜔♮ (𝑡) + 𝑖𝜕𝜕𝜑(𝑡))𝑛(𝑚+𝑛
𝑛

)
𝜔𝑚

can ∧ 𝜔𝑛
𝐹

− 𝜑(𝑡),

𝜑(0) = −𝜌,
𝜔•(𝑡) = 𝜔♮ (𝑡) + 𝑖𝜕𝜕𝜑(𝑡) > 0,

(1.6)

for 𝑡 � 0 (see, for example, [39, §5.7] and [43, §3.1]. Then, since we know the weak convergence in
(1.3), Conjecture 1.1 is equivalent to the a priori estimates

‖𝜔•(𝑡)‖𝐶𝑘 (𝐾,𝑔0) � 𝐶𝐾,𝑘 (1.7)

for all 𝑘 ∈ N and all 𝑡 � 0. Furthermore, since 𝜑(𝑡) is uniformly bounded in 𝐿∞(𝑋) by [32] (which uses
[8, 9] – see also [17] for a new proof), these estimates are also equivalent to

‖𝜑(𝑡)‖𝐶𝑘 (𝐾,𝑔0) � 𝐶𝐾,𝑘 , (1.8)

for all 𝑘 ∈ N and all 𝑡 � 0.

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10


Forum of Mathematics, Pi 5

1.3. Main result

The main result of this paper gives a complete solution of Conjectures 1.1 and 1.2:

Theorem 1.3. Conjectures 1.1 and 1.2 are true.

In fact, in both conjectures, we prove much more precise statements. The higher order estimates for
𝜔•(𝑡) are derived as consequences of a very detailed asymptotic expansion for 𝜔•(𝑡), which is in the
same spirit as the expansion recently obtained in [21] by Hein-Tosatti for collapsing Ricci-flat metrics
on Calabi-Yau manifolds. As for the Ricci curvature bound, we show that on 𝑋\𝑆 we have

Ric(𝜔•(𝑡)) = −𝜔can + Err, (1.9)

where on any fixed compact subset of 𝑋\𝑆 we have |Err|𝑔• (𝑡) → 0, as 𝑡 → +∞. Thus, in a strong sense,
the Ricci curvature of the evolving metrics 𝜔•(𝑡) is asymptotic to −𝜔can. Furthermore, our bound on
the Ricci curvature (and on all of the pieces of the asymptotic expansion of the metric) is an a priori
bound: it only depends on the uniform constants in Lemma 4.1, which are due to [12, 33, 43].

The starting point of our analysis, which was proved in [12] by adapting [38] in the elliptic setting,
is the following estimate: given 𝐾 � 𝑋\𝑆, there is 𝐶 > 0 such that on K we have

𝐶−1𝜔♮ (𝑡) � 𝜔•(𝑡) � 𝐶𝜔♮ (𝑡) (1.10)

for all 𝑡 � 𝑡0. In other words, 𝜔•(𝑡) is shrinking in the fiber directions and remains of bounded size in
the base directions. Since the linearized operator of (1.6) is the time-dependent heat operator of 𝜔•(𝑡),
we see from (1.10) that the ellipticity is degenerating in the fiber directions as 𝑡 → +∞, and so there
is no clear way to approach the a priori estimates (1.8). Indeed, the local analog of such estimates are
false; see the discussion in [20] in the elliptic case.

However, it turns out that we can work locally on the base (but using crucially that the fibers are
compact without boundary), and since f is differentiably a locally trivial fiber bundle over 𝐵\ 𝑓 (𝑆), we
may without loss assume that our base B is now simply the Euclidean unit ball inC𝑚, and 𝑓 : 𝐵×𝑌 → 𝐵
is just the projection onto the first factor, where Y is a closed manifold and 𝐵 × 𝑌 is equipped with
a complex structure J (not necessarily a product) such that f is (𝐽, 𝐽C𝑚 ) holomorphic. The fibers
{𝑧} × 𝑌, 𝑧 ∈ 𝐵 are then compact n-dimensional Calabi-Yau manifolds diffeomorphic to Y. Under this
trivialization, the Ricci-flat Kähler metric𝜔𝐹 |𝑋𝑧 defines a Riemannian metric 𝑔𝑌 ,𝑧 on {𝑧}×𝑌 , which we
extend trivially to 𝐵 ×𝑌 , and we use these to define a family of shrinking Riemannian product metrics

𝑔𝑧 (𝑡) = 𝑔C𝑚 + 𝑒−𝑡𝑔𝑌 ,𝑧 , (1.11)

on 𝐵×𝑌 , which are uniformly equivalent to𝜔♮ (𝑡) and hence to𝜔•(𝑡). We will also denote by 𝑔(𝑡) := 𝑔0 (𝑡)
the shrinking product metrics with z equal to the origin in B.

1.4. Overview of the proof

As in [20, 21], the first attempt to overcome the issue of degenerating ellipticity is to try to prove much
more – namely, try to prove uniform bounds for 𝜑(𝑡) or 𝜔•(𝑡) in the shrinking norms𝐶𝑘 (𝐾, 𝑔(𝑡)), since
𝑔•(𝑡) is uniformly equivalent to 𝑔(𝑡). This, however, cannot be proved in general since we know from
[43] that 𝑒𝑡𝜔•(𝑡) |𝑋𝑧 converge smoothly to 𝜔𝐹 |𝑋𝑧 , and since 𝑔𝑌 ,𝑧 and 𝑔𝑌 ,𝑧′ are not in general parallel
with respect to each other, the shrinking 𝐶𝑘 norms of 𝑔𝑧 (𝑡) and 𝑔𝑧′ (𝑡) are not uniformly equivalent as
𝑡 → +∞. To address this issue, the first and third-named authors defined in [21] a connectionD on 𝐵×𝑌
which on each fiber {𝑧} ×𝑌 acts like the Levi-Civita connection of 𝑔𝑧 (𝑡), and using its parallel transport
operator, they defined new shrinking 𝐶𝑘,𝛼 norms, 0 < 𝛼 < 1. We will consider the natural parabolic
extension of these norms to space-time derivatives in Section 2 below. Since parabolic Hölder seminorms
behave differently according to the parity of k, we will only work with 𝑘 = 2 𝑗 even (cf. Remark 2.5).
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The hope would then be to show that 𝜔•(𝑡) − 𝜔♮ (𝑡) = 𝑖𝜕𝜕𝜑(𝑡) is uniformly bounded in these
shrinking 𝐶2 𝑗+𝛼, 𝑗+𝛼/2 norms. This turns out to be true when 𝑗 = 0, but false starting from 𝑗 = 1. This
phenomenon, which was discovered in [21] in the elliptic setting, manifests itself only when the complex
structure J is not a product and the fibers are not tori or quotients. In a nutshell, the variation of complex
structures, and the non-flatness of 𝑔𝑧 (𝑡), destroy these desired shrinking norm bounds. However, with
much work, we are able to construct a collection of ‘obstruction functions’ on 𝐵×𝑌 (up to shrinking B)
and decompose the solution 𝑖𝜕𝜕𝜑(𝑡) into a sum of finitely many terms 𝛾1 (𝑡), . . . , 𝛾 𝑗 (𝑡) (constructed
roughly speaking using the fiberwise 𝐿2 projections of Δ𝑔♮ (𝑡)𝜑(𝑡) onto the space of obstructions), and
a remainder 𝜂 𝑗 (𝑡). We then show via a contradiction and blowup argument that the remainder 𝜂 𝑗 (𝑡) is
bounded in the shrinking 𝐶2 𝑗+𝛼, 𝑗+𝛼/2 norm, while the terms 𝛾1 (𝑡), . . . , 𝛾 𝑗 (𝑡) are not, but they satisfy
strong enough estimates which guarantee that they are bounded in the 𝐶2 𝑗+𝛼, 𝑗+𝛼/2 norm of a fixed
metric 𝜔𝑋 on X. As mentioned earlier, the higher order estimates on all these pieces depend only on
the constant in the 𝐶0 estimate (1.10), and on the other constants that appear in Lemma 4.1 (including
the uniform bound on the scalar curvature of 𝜔•(𝑡) from [33]), and thus ultimately, they depend only
on the geometry of X and on the initial metric 𝜔0.

This procedure is iterated by replacing j with 𝑗 + 1, and new obstruction functions are constructed
by measuring the failure of the remainder 𝜂 𝑗 (𝑡) to be bounded in the shrinking 𝐶2( 𝑗+1)+𝛼, 𝑗+1+𝛼/2 norm.
This way, we can split 𝜂 𝑗 (𝑡) = 𝛾 𝑗+1 (𝑡) + 𝜂 𝑗+1 (𝑡) and obtain the next order in the expansion. As in [21],
there is an extra technical difficulty, which arises from the fact that the terms 𝛾 𝑗 (𝑡) are constructed by
plugging in 𝜂 𝑗−1 (𝑡) and the obstruction functions into an approximate elliptic Green operator, which
has an extra parameter 𝑘 ∈ N that measures the quality of the approximation. Thus, all the terms in the
expansion also end up depending on k, which is large and chosen a priori, and the procedure works for
𝑗 � 𝑘 .

The resulting asymptotic expansion of𝜔•(𝑡) is described in detail in Theorem 4.2 below, which is the
main technical result of the paper. It is the parabolic analog of [21, Theorem 4.1], and its proof follows
the same overall method via blowup and contradiction, but there are some new key difficulties. First,
as mentioned earlier, the (shrinking) parabolic Hölder norms that we use are better behaved when the
order of derivatives is even, which compels us to use𝐶2 𝑗+𝛼, 𝑗+𝛼/2 norms instead of𝐶 𝑗+𝛼, ( 𝑗+𝛼)/2 (see, for
example, Lemma 2.4 and Remark 2.5). More importantly, since the approximate Green operator that we
use in this paper is the same as in [21], it provides an approximate parametrix for the Laplacian of 𝜔♮ (𝑡)
(in a rough sense) but not for the heat operator (it seems far from clear that a similar strategy could be
implemented with an approximate heat kernel construction). Because of this, to obtain a contradiction
at the end of the blowup argument (which is divided into 3 cases, with the last case itself divided into
3 subcases A, B and C), we now have to deal with new terms that come from taking time derivatives
of the solution, which are not taken care of by construction, unlike [21]. To make matters worse, in the
blowup argument, the evolving Kähler potential has 𝐿∞ norm that is blowing up, so it cannot be passed
to a limit to obtain a contradiction. Dealing with these issues requires substantial work.

Another new difficulty, compared to [21], is that the case 𝑗 = 0 (i.e., where we prove𝐶𝛼,𝛼/2 estimates)
does not behave in the same way as the cases 𝑗 � 1 because the parabolic complex Monge-Ampère
equation also involves 𝜑(𝑡) without derivatives landing on it, unlike the elliptic complex Monge-Ampère
equation where only 𝑖𝜕𝜕𝜑 enters. To deal with this issue, we employ a different blowup quantity for
𝑗 = 0, which is closer in spirit to our earlier works [20, 11]. As a result, different ideas will be required
to close the blowup argument, according to whether 𝑗 = 0 or 𝑗 � 1. Furthermore, when 𝑗 � 1, we are
forced to add one new term to the main blowup quantity (when compared to [21]), to gain better control
on the fiber average of the Kähler potential and its time derivative, and we later have to show that this
new term can be dealt with in the blowup argument. Next, in subcase A, dealing with these terms forces
us to refine the Selection Theorem 3.1 where the obstruction functions are chosen, and when 𝑗 = 0, we
need a whole new argument. In subcase B, we employ an energy argument inspired by [11, Claim 3.2],
and in subcase C a different energy argument has to be applied fiber by fiber.

Once the asymptotic expansion is established, the smooth convergence of Conjecture 1.1 follows
easily. However, proving the Ricci curvature bound for𝜔•(𝑡) in Conjecture 1.2 requires substantial work
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by plugging in the expansion with 𝑗 = 1 into the formula for the Ricci curvature (as two derivatives of
the logarithm of the volume form) and using our explicit a priori estimates for the terms of the expansion
to deduce boundedness of Ricci. Here again, we encounter a new difficulty compared to [21], which
arises from the fact that one of the estimates in Theorem 4.2 is weaker than the corresponding one in the
elliptic setting, because of the fact that we can only work with even order norms. During the course of
the proof of the Ricci bound, we also prove a fact of independent interest in Proposition 5.1, by showing
that 𝜑 + �𝜑 minus its fiberwise average decays to zero (away from the singular fibers) faster than 𝑒−𝑡

(see (5.33)). This improves on earlier work of Fong-Zhang [12, p.110] (see also [39, Lemma 5.13]) and
Tosatti-Weinkove-Yang [43, Lemma 3.1 (iv)].
Remark 1.4. We conjecture that the Ricci curvature of 𝜔•(𝑡) remains uniformly bounded also near the
singular fibers of f. One could imagine settling this for some minimal elliptic surfaces by developing a
parabolic version of the Gross-Wilson gluing result in [15] (thanks to J. Lott for this suggestion), and
for some Lefschetz fibered 3-folds by developing a parabolic version of Li’s gluing result in [27].
Remark 1.5. It is natural to ask whether we really need to assume that our compact Kähler manifold X
with 𝐾𝑋 nef satisfies the Abundance Conjecture (thanks to S. Karigiannis and J. Cheng for raising this
point). The reader can verify that the results in [12, 32, 33, 43] on which we rely, as well as our main
theorems, are also valid under the a priori weaker assumption that 𝑐1 (𝐾𝑋 ) is a semiample (1, 1)-class
[41, Def.3.4]: there is a surjective holomorphic map 𝑓 : 𝑋 → 𝐵 with connected fibers onto a normal
compact Kähler analytic space B such that 𝑐1(𝐾𝑋 ) = 𝑓 ∗ [𝜔] for some Kähler class [𝜔] on B. However,
a very recent result of Das-Hacon [5, Theorem 4.4], which was prompted by our questions to C. Hacon
as well as the related [41, Question 3.5], shows that under this hypothesis 𝐾𝑋 is already semiample,
and it is elementary to deduce from this that f is the Iitaka fibration of 𝐾𝑋 . We thank also M. Păun for
discussions about this point.

1.5. Organization of the paper

In Section 2 we introduce our parabolic shrinking norms and seminorms and prove an interpolation
inequality, the crucial Proposition 2.6 and a Schauder estimate. Section 3 contains the proof of the
Selection Theorem 3.1 where the obstruction functions are selected. Section 4 is the main part of
the paper and is where the asymptotic expansion is proved in Theorem 4.2. Lastly, in Section 5, we
give the proof of our main Theorem 1.3.

2. Parabolic Hölder norms and interpolation

The setup where we are working in was described in the Introduction.

2.1. D-derivatives

Recall that our main goal is to establish higher order estimates for the metrics 𝜔•(𝑡) on 𝐵 × 𝑌 which
evolve by the normalized Kähler-Ricci flow (1.1). We know from Lemma 4.1 (i) below that 𝜔•(𝑡) is
uniformly equivalent to 𝜔♮ (𝑡) = (1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 , which is shrinking in the fiber directions as
𝑡 → +∞. As mentioned above in the overview of proof, the fiberwise Ricci-flat metrics 𝑔𝑌 ,𝑧 are in
general quite different from each other as 𝑧 ∈ 𝐵 varies, and this forces us to define a new connection D
which along each fiber {𝑧}×𝑌 acts like the Levi-Civita connection of 𝑔𝑧 (𝑡) = 𝑔C𝑚 +𝑒−𝑡𝑔𝑌 ,𝑧 . This is what
was achieved by the first and third-named authors in [21, §2.1], and we now recall their construction.
Definition 2.1. For 𝑧 ∈ 𝐵 ⊂ C𝑚, we let ∇𝑧 be the Levi-Civita connection of the product metric
𝑔𝑧 (𝑡) = 𝑔C𝑚 + 𝑒−𝑡𝑔𝑌 ,𝑧 on 𝐵 ×𝑌 , which is independent of 𝑡 � 0. Let D be the connection on the tangent
bundle of 𝐵 × 𝑌 and on all of its tensor bundles defined by

(D𝜂) (𝑥) = (∇pr𝐵 (𝑥)𝜂) (𝑥), (2.1)

for all tensors 𝜂 on 𝐵 × 𝑌 and 𝑥 ∈ 𝐵 × 𝑌 .
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For the detailed discussion of the properties of D, we refer readers to [21, §2.1]. Given a curve 𝛾 in
𝐵 ×𝑌 which contains the points 𝑎, 𝑏, we let P𝛾𝑎𝑏 denote the D-parallel transport from a to b along the 𝛾.
A curve 𝛾 is called a P-geodesic if �𝛾 is D-parallel along 𝛾. Two examples of P-geodesics are horizontal
paths (𝑧(𝑡), 𝑦0) where 𝑧(𝑡) is an affine segment in C𝑚, and vertical paths (𝑧0, 𝑦(𝑡)) where 𝑦(𝑡) is a
𝑔𝑌 ,𝑧0 -geodesic in {𝑧0} × 𝑌 . These are the only P-geodesics that we will use in the paper, as every two
points in 𝐵 × 𝑌 can be connected by concatenating two of these P-geodesics, where the vertical one is
minimal. We may also write P𝑎𝑏 instead of P𝛾𝑎𝑏 if the P-geodesic 𝛾 joining a and b is not emphasized.

2.2. 𝕯-derivatives

D-derivatives that we just defined are spatial derivatives. It will be very convenient to use a similar
shorthand notation when we also allow time derivatives. Thus, given a time-dependent contravariant
tensor 𝜂 and 𝑘 ∈ N, we define

𝔇𝑘𝜂 :=
∑

𝑝+2𝑞=𝑘
D
𝑝𝜕𝑞𝑡 𝜂, (2.2)

which is a sum of tensors of different types. We will also use the notation

𝔇𝑘
bt𝜂 :=

∑
𝑝+2𝑞=𝑘

D
𝑝
b· · ·b𝜕

𝑞
𝑡 𝜂 (2.3)

when we only take spatial base derivatives, as well as time derivatives. Observe also that if g is any
Riemannian product metric on 𝐵 × 𝑌 , then we have the pointwise equality

|𝔇𝑘𝜂 |2𝑔 =
∑

𝑝+2𝑞=𝑘
|D𝑝𝜕𝑞𝑡 𝜂 |2𝑔, (2.4)

which we will use implicitly many times.
In our setting, {𝑔𝑌 ,𝑧}𝑧∈𝐵, is a smooth family of Riemannian metrics on Y, so (up to shrinking B

slightly) we can find Λ > 1 so that{
Λ−1𝑔𝑌 ,0 � 𝑔𝑌 ,𝑧 � Λ𝑔𝑌 ,0,
Λ− 1

2 � inj(𝑌, 𝑔𝑌 ,𝑧) � diam(𝑌, 𝑔𝑌 ,𝑧) � Λ
1
2 .

(2.5)

In particular, the norm measured with respect to 𝑔𝑌 ,0 is uniformly comparable to that of 𝑔𝑌 ,𝑧 for 𝑧 ∈ 𝐵.

2.3. Hölder seminorms

We now use the connection D to define a parabolic Hölder norm on 𝐵 × 𝑌 × [0, +∞). For 𝑝 = (𝑧, 𝑦) ∈
𝐵 × 𝑌, 𝑡 � 0, 0 < 𝑅 �

√
𝑡 and (shrinking) product metrics 𝑔𝜁 (𝜏) = 𝑔C𝑚 + 𝑒−𝜏𝑔𝑌 ,𝜁 , we define the

parabolic domain

𝑄𝑔𝜁 (𝜏) ,𝑅 (𝑝, 𝑡) = 𝐵C𝑚 (𝑧, 𝑅) × 𝐵𝑒−𝜏𝑔𝑌 ,𝜁 (𝑦, 𝑅) × [𝑡 − 𝑅2, 𝑡] . (2.6)

The parabolic domain with respect to any other product metric is defined analogously. We will very
often simply take 𝜁 = 0 ∈ 𝐵.

Definition 2.2. For any 0 < 𝛼 < 1, 𝑅 > 0, 𝑝 ∈ 𝐵×𝑌 , 𝑡 � 0 and smooth tensor field 𝜂 on 𝐵×𝑌×[𝑡−𝑅2, 𝑡],
given a product metric g (such as 𝑔 = 𝑔𝑧 (𝜏) for some 𝑧 ∈ 𝐵 and 𝜏 � 0), we define

[𝜂]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑝,𝑡) ,𝑔 = sup

{
|𝜂(𝑥, 𝑠) − P𝑥′𝑥𝜂(𝑥 ′, 𝑠′) |𝑔
(𝑑𝑔 (𝑥, 𝑥 ′) + |𝑠 − 𝑠′| 1

2 )𝛼

}
, (2.7)
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where the supremum is taken among all (𝑥, 𝑠) and (𝑥 ′, 𝑠′) in 𝑄𝑔,𝑅 (𝑝, 𝑡) in which x and 𝑥 ′ are either
horizontally or vertically joined by a P-geodesic.

In the case when we use 𝑔 = 𝑔𝑧 (𝜏) and 𝜏 is allowed to go to +∞, we will refer to these as shrinking
parabolic Hölder seminorms. Nevertheless, for each fixed 𝑅 > 0, we will have

𝐵C𝑚 (𝑧, 𝑅) × 𝐵𝑒−𝜏𝑔𝑌 ,𝑧 (𝑦, 𝑅) = 𝐵C𝑚 (𝑧, 𝑅) × 𝑌 (2.8)

for all 𝜏 > 𝜏0 (𝑅,𝑌 ). This will be the setting where the parabolic Hölder seminorm are applied in the
whole paper. In this case, we will simply denote it by

𝑄𝑅 (𝑧, 𝑡) = 𝐵C𝑚 (𝑧, 𝑅) × 𝑌 × [𝑡 − 𝑅2, 𝑡] (2.9)

when the metric g and the shrinking rate 𝜏 play no role.
Lastly, as in [21, (4.101)], it will also be useful to consider (shrinking) parabolic Hölder seminorms

[𝜂]𝛼,𝛼/2,base,𝑄𝑔,𝑅 (𝑝,𝑡) ,𝑔 which are defined as in (2.7) but where the supremum is taken only among (𝑥, 𝑠)
and (𝑥 ′, 𝑠′) in 𝑄𝑔,𝑅 (𝑝, 𝑡) such that x and 𝑥 ′ are horizontally joined by a P-geodesic.

2.4. Parabolic interpolation

We need an interpolation inequality between the highest order (i.e., 𝐶𝑘+𝛼, (𝑘+𝛼)/2) and the lowest order
(i.e., 𝐿∞) norms of a tensor. In the parabolic framework, it will be more convenient to interpolate with
the top even order (cf. Remark 2.5). This can be viewed as a parabolic version of [21, Proposition 2.8],
and as in there it is crucial that the constants in the interpolation inequality are independent of the
shrinking size parameter 𝜏 � 0.

Proposition 2.3. For any 𝑘 ∈ N>0 and 𝛼 ∈ (0, 1), there exists 𝐶𝑘 = 𝐶𝑘 (𝛼,Λ) > 0 (where Λ is given
in (2.5)) such that the following holds. Let 𝜂 be a smooth contravariant p-tensor on 𝐵 × 𝑌 . Then for all
(𝑥0, 𝑡0) ∈ 𝐵 × 𝑌 × R, 0 < 𝜌 < 𝑅 and 𝜏 � 0 such that 𝑄𝑔0 (𝜏) ,𝑅 (𝑥0, 𝑡0) � 𝐵 × 𝑌 × R, we have

2𝑘∑
𝑗=1

(𝑅 − 𝜌) 𝑗 ‖𝔇 𝑗𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) � 𝐶𝑘

(
(𝑅 − 𝜌)2𝑘+𝛼 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

+ ‖𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

)
.

(2.10)

Moreover, for any 𝑗 ∈ N and 𝛽 ∈ (0, 1) with 𝑗 + 𝛽 < 2𝑘 + 𝛼, we have

(𝑅 − 𝜌) 𝑗+𝛽 [𝔇 𝑗𝜂]𝛽,𝛽/2,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) � 𝐶𝑘

(
(𝑅 − 𝜌)2𝑘+𝛼 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

+ ‖𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

)
.

(2.11)

Proof. We first show (2.10). Fix a pair of (𝑝, 𝑞) such that 0 < 𝑗 = 𝑝 + 2𝑞 � 2𝑘 , and assume first that
𝑝 > 0. Since 𝑑𝑔0 (𝜏) (𝑥, 𝑥0) < 𝜌 for (𝑥, 𝑡) ∈ 𝑄𝑔0 (𝜏) ,𝜌 (𝑥0, 𝑡0), we can treat 𝜕𝑞𝑡 𝜂 |(𝑥,𝑡) as a smooth tensor on
𝐵C𝑚 (𝑧0, 𝜌) × 𝑌 by freezing t so that [21, Proposition 2.8] applies to conclude

(𝑅 − 𝜌) 𝑝 ‖D𝑝𝜕𝑞𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

� 𝐶
(
(𝑅 − 𝜌)2𝑘−2𝑞+𝛼 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) + ‖𝜕𝑞𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

)
.

(2.12)

Thus, it remains to show the interpolation on time derivatives (i.e., we assume in the rest that 𝑝 = 0,
so 𝑞 > 0). For each (𝑥, 𝑡) ∈ 𝑄𝑔0 (𝜏) ,𝜌 (𝑥0, 𝑡0), fix 𝑠 = (𝑅 − 𝜌)2 > 0 so that (𝑥, 𝑡 − 𝑠) ∈ 𝑄𝑔0 (𝜏) ,𝑅 (𝑥0, 𝑡0).
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Then there exists 𝑡𝑠 ∈ [𝑡 − 𝑠, 𝑡] so that

1
𝑠

(
𝜕𝑞−1
𝑡 𝜂(𝑥, 𝑡) − 𝜕𝑞−1

𝑡 𝜂(𝑥, 𝑡 − 𝑠)
)
= 𝜕𝑞𝑡 𝜂(𝑥, 𝑡𝑠), (2.13)

which allows us to estimate

|𝜕𝑞𝑡 𝜂(𝑥, 𝑡) | �
����𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − 1

𝑠

(
𝜕𝑞−1
𝑡 𝜂(𝑥, 𝑡) − 𝜕𝑞−1

𝑡 𝜂(𝑥, 𝑡 − 𝑠)
)����

+ 1
𝑠

���𝜕𝑞−1
𝑡 𝜂(𝑥, 𝑡) − 𝜕𝑞−1

𝑡 𝜂(𝑥, 𝑡 − 𝑠)
���

�
��𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − 𝜕𝑞𝑡 𝜂(𝑥, 𝑡𝑠)

�� + 2
𝑠
‖𝜕𝑞−1

𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) .

(2.14)

If 𝑞 = 𝑘 , we arrive at

‖𝜕𝑘𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) � (𝑅 − 𝜌)𝛼 [𝜕𝑘𝑡 𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

+ 2
(𝑅 − 𝜌)2 ‖𝜕

𝑘−1
𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) .

Otherwise, 𝑞 < 𝑘 , and we have

‖𝜕𝑞𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) � (𝑅 − 𝜌)2‖𝜕𝑞+1
𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

+ 2(𝑅 − 𝜌)−2‖𝜕𝑞−1
𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) .

Applying this dichotomy inductively, with suitable replacements of 𝜌 and R at each step, we conclude
that there exists 𝐶 > 0 so that for each 1 � 𝑞 � 𝑘 ,

(𝑅 − 𝜌)2𝑞 ‖𝜕𝑞𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

� 𝐶
(
(𝑅 − 𝜌)2𝑘+𝛼 [𝜕𝑘𝑡 𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) + ‖𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

)
.

(2.15)

By combining this with (2.12), we see that (2.10) follows.
It remains to prove (2.11). Fix (𝑥, 𝑡), (𝑥 ′, 𝑠) ∈ 𝑄𝑔0 (𝜏) ,𝜌 (𝑥0, 𝑡0) such that x and 𝑥 ′ are joined either

horizontally or vertically by a P-geodesic. Denote 𝑑 = 𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1
2 . We want to estimate

|𝔇 𝑗𝜂(𝑥, 𝑡) − P𝑥′𝑥𝔇 𝑗𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏) . Fix a pair of (𝑝, 𝑞) such that 0 < 𝑝 + 2𝑞 = 𝑗 � 2𝑘 and 𝛽 ∈ (0, 1)
with 𝑗 + 𝛽 < 2𝑘 + 𝛼.

If 𝑑 � 1
4Λ (𝑅 − 𝜌) where Λ is the constant in (2.5), then using the triangle inequality and the

boundedness of the operator norm of P from [21, §2.1.1], we deduce that

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)(
𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1

2

)𝛽 �
𝐶

(𝑅 − 𝜌)𝛽
‖𝔇 𝑗𝜂‖∞,𝑄𝑔0 (𝜏) ,𝜌 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) , (2.16)

so that the conclusion follows from (2.10).
If 𝑑 < 1

4Λ (𝑅 − 𝜌), 𝑗 = 2𝑘 and 𝛽 < 𝛼, then

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)(
𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1

2

)𝛽 =
|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)(

𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1
2

)𝛼 𝑑𝛼−𝛽

� (𝑅 − 𝜌)𝛼−𝛽 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) ,

(2.17)
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which is acceptable. It remains to consider the case when 𝑑 < 1
4Λ (𝑅 − 𝜌) and 𝑗 = 𝑝 + 2𝑞 < 2𝑘 . Here,

using again the boundedness of P, we can estimate

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)

� |D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑡) |𝑔0 (𝜏) + |P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)

� 𝐶𝑑𝛽 [D𝑝𝜕𝑞𝑡 𝜂(𝑡)]𝛽,𝐵C𝑚 (𝑧,𝑑)×𝐵𝑔𝑌 ,0 (𝑦,𝑑) ,𝑔0 (𝜏) + 𝐶 |D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑠) |𝑔0 (𝜏) ,

(2.18)

where the first term is the spatial Hölder seminorm of the tensor 𝜕𝑞𝑡 𝜂(𝑡) with t frozen, and 𝑥 = (𝑧, 𝑦) ∈
C
𝑚 × 𝑌 . Applying [21, Lemma 2.5] to the first term in the last line of (2.18) gives

[D𝑝𝜕𝑞𝑡 𝜂(𝑡)]𝛽,𝐵C𝑚 (𝑧,𝑑)×𝐵𝑔𝑌 ,0 (𝑦,𝑑) ,𝑔0 (𝜏) � 𝐶𝑑
1−𝛽 ‖D𝑝+1𝜕𝑞𝑡 𝜂(𝑡)‖∞,𝐵C𝑚 (𝑧,𝑑)×𝐵𝑔𝑌 ,0 (𝑦,𝑑) ,𝑔0 (𝜏)

� 𝐶𝑑1−𝛽 ‖𝔇 𝑗+1𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) .
(2.19)

As for the second term in the last line of (2.18), assume first that 𝑗 + 2 = 𝑝 + 2(𝑞 + 1) � 2𝑘 . In this case,
we can argue similarly by estimating the difference in term of time derivatives

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑠) |𝑔0 (𝜏) � 𝑑2‖𝔇 𝑗+2𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) . (2.20)

Hence, under the assumption that 𝑗 + 2 = 𝑝 + 2(𝑞 + 1) � 2𝑘 , we can combine (2.18), (2.19) and (2.20)
to get

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)(
𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1

2

)𝛽
� 𝐶

(
𝑑1−𝛽 ‖𝔇 𝑗+1𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) + 𝑑2−𝛽 ‖𝔇 𝑗+2𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

)
.

(2.21)

The conclusion then follows by combining with (2.10) since 𝑑 � 1
4Λ (𝑅 − 𝜌).

It remains to consider the case when 𝑝 + 2𝑞 < 2𝑘 < 𝑝 + 2𝑞 + 2 (i.e., 𝑝 + 2𝑞 = 2𝑘 − 1). This implies
that p is odd, and hence, 𝑝 � 1. Let v run over a 𝑔0 (𝜏)-orthonormal basis of tangent vectors which
are either horizontal or vertical. Let 𝛾(𝑢) be the unique P-geodesic with 𝛾(0) = 𝑥 and �𝛾(0) = 𝑣 with
𝑢 ∈ (0, 𝑅 − 𝜌). Denote 𝜎(𝑢, ·) = P−1

𝛾 (0) ,𝛾 (𝑢)D
𝑝−1𝜕𝑞𝑡 𝜂(𝛾(𝑢), ·) so that D𝑣D𝑝−1𝜕𝑞𝑡 𝜂(𝑥, ·) = 𝜕𝑢 |𝑢=0𝜎(𝑢, ·).

By the mean value theorem, there exists 𝜃 ∈ [0, 1] such that

|D𝑣D𝑝−1𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − D𝑣D𝑝−1𝜕𝑞𝑡 𝜂(𝑥, 𝑠) |𝑔0 (𝜏)

�

����D𝑣D𝑝−1𝜕𝑞𝑡 𝜂(𝑥, 𝑡) −
1
𝑑
(𝜎(𝑑, 𝑡) − 𝜎(0, 𝑡))

����
𝑔0 (𝜏)

+
����D𝑣D𝑝−1𝜕𝑞𝑡 𝜂(𝑥, 𝑠) −

1
𝑑
(𝜎(𝑑, 𝑠) − 𝜎(0, 𝑠))

����
𝑔0 (𝜏)

+ 1
𝑑
| (𝜎(𝑑, 𝑡) − 𝜎(𝑑, 𝑠)) − (𝜎(0, 𝑡) − 𝜎(0, 𝑠)) |𝑔0 (𝜏)

� |𝜎′(0, 𝑡) − 𝜎′(𝜃𝑑, 𝑡) | + |𝜎′(0, 𝑠) − 𝜎′(𝜃𝑑, 𝑠) |

+ 1
𝑑
|𝜎(𝑑, 𝑡) − 𝜎(𝑑, 𝑠) |𝑔0 (𝜏) +

1
𝑑
|𝜎(0, 𝑡) − 𝜎(0, 𝑠) |𝑔0 (𝜏)

� 𝐶𝑑‖D2
𝑣D

𝑝−1𝜕𝑞𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) + 𝐶𝑑‖D𝑝−1𝜕𝑞+1
𝑡 𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏)

� 𝐶𝑑‖𝔇2𝑘𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) ,

(2.22)
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where 𝜎′ denotes the u-derivative. Since v is arbitrary, we conclude that

|D𝑝𝜕𝑞𝑡 𝜂(𝑥, 𝑡) − P𝑥′𝑥D𝑝𝜕𝑞𝑡 𝜂(𝑥 ′, 𝑠) |𝑔0 (𝜏)(
𝑑𝑔0 (𝜏) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 | 1

2

)𝛽 � 𝐶𝑑1−𝛽 ‖𝔇2𝑘𝜂‖∞,𝑄𝑔0 (𝜏) ,𝑅 (𝑥0 ,𝑡0) ,𝑔0 (𝜏) . (2.23)

The result then follows using (2.10) again. This completes the proof. �

We end this subsection by showing that a function on R𝑛 × (−∞, 0] with bounded (2𝑘 +𝛼) parabolic
Hölder seminorm and vanishing parabolic 2𝑘 jet at (𝑥, 𝑡) = (0, 0) will be bounded in 𝐶2𝑘+𝛼,𝑘+𝛼/2

loc .

Lemma 2.4. Let u be a smooth function on R𝑛 × (−∞, 0] such that

[𝔇2𝑘𝑢]𝛼,𝛼/2,𝐵R𝑛 (𝑅)×[−𝑅2 ,0] � Λ0 (2.24)

for some 𝑅,Λ0 > 0, 𝑘 ∈ N and 𝔇ℓ𝑢 |(0,0) = 0 for all 0 � ℓ � 2𝑘 . Then for all 0 < 𝑟 � 𝑅 and
0 � 𝑚 � 2𝑘 , there exists 𝐶0 (𝑛, 𝑚) > 0 such that

‖𝔇𝑚𝑢‖∞,𝐵R𝑛 (𝑟 )×[−𝑟2 ,0] � 𝐶0Λ0𝑟
2𝑘+𝛼−𝑚. (2.25)

Moreover, for all 𝛽 ∈ (0, 𝛼), there exists 𝐶1 (𝑛,Λ0, 𝛽) > 0 such that

[𝔇𝑚𝑢]𝛽,𝛽/2,𝐵R𝑛 (𝑟 )×[−𝑟2 ,0] � 𝐶1Λ0𝑟
2𝑘+𝛼−𝑚−𝛽 . (2.26)

Remark 2.5. This Lemma is false as stated if we replace 2𝑘 with an odd integer, and this is the
main reason why in our main Theorem 4.2, we will restrict to even order derivatives. The simplest
counterexample is the function 𝑢(𝑥, 𝑡) = 𝑡 in R × R, which satisfies 𝑢(0, 0) = 0, 𝔇𝑢 |(0,0) = 0 and
[𝔇𝑢]𝛼,𝛼/2,R×R = 0 but (2.25) fails for 𝑚 = 0.

To fix this, one has to redefine the parabolic Hölder seminorms of odd order by adding an additional
term; see [29, p.46]. If one were to do this, then the statement of Lemma 2.4 would also hold when
2𝑘 is replaced by an odd integer. However, the additional term that one would need to add would not
be compatible with our blowup arguments in section 4, especially with the ‘non-escaping property’ in
Section 4.5.

Proof. Write𝑄𝑟 = 𝐵R𝑛 (𝑟) × [−𝑟2, 0] for notational convenience. We only prove the bound for ‖𝔇𝑚𝑢‖∞
in (2.25) since the bound for Hölder seminorm in (2.26) is similar.

By considering �̃�(𝑥, 𝑡) = Λ−1
0 𝑅−2𝑘−𝛼𝑢(𝑅𝑥, 𝑅2𝑡) for (𝑥, 𝑡) ∈ 𝐵R𝑛 (1) × [−1, 0], we can assume

Λ0 = 1 = 𝑅 = 1 and 0 < 𝑟 � 1. We prove the result by induction on k. In case 𝑘 = 0, the jet assumption
is equivalent to 𝑢(0, 0) = 0, and hence for all 0 < 𝑟 � 1,

‖𝑢‖∞,𝑄𝑟 � 𝑟
𝛼, (2.27)

so that the conclusion holds.
Next, we consider the induction step, so we assume that the conclusion holds for all 0 � ℓ � 𝑘 and

prove it for 𝑘 + 1 � 1. Given a smooth function u with [𝔇2𝑘+2𝑢]𝛼,𝛼/2,𝑄1 � 1, given any 0 � 𝑚 � 2𝑘 ,
every derivative 𝔇𝑚+2𝑢 can be written as 𝔇𝑚𝑣 where 𝑣 = 𝜕𝑡𝑢 or 𝑣 = D2𝑢 (evaluated at some pair of
tangent vectors). The function v satisfies [𝔇2𝑘𝑣]𝛼,𝛼/2,𝑄1 � 1 and 𝔇ℓ𝑣 |(0,0) = 0 for all 0 � ℓ � 2𝑘 . The
induction hypothesis then implies ‖𝔇𝑚+2𝑢‖∞,𝑄𝑟 � 𝐶𝑘𝑟

2𝑘+𝛼−𝑚 for all 0 � 𝑚 � 2𝑘 and 0 < 𝑟 � 1. It
remains to extend it to 𝑚 = −1,−2 (i.e., to bound u and D𝑢). Let (𝑥, 𝑡) ∈ 𝑄𝑟 and fix a unit vector 𝑒1,
and estimate
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|D1𝑢(𝑥, 𝑡) | �
����D1𝑢(𝑥, 𝑡) −

𝑢(𝑥 + 𝑟𝑒1, 𝑡) − 𝑢(𝑥, 𝑡)
𝑟

����
+

����𝑢(𝑥 + 𝑟𝑒1, 𝑡) − 𝑢(𝑥, 𝑡)
𝑟

− 𝑢(𝑥 + 𝑟𝑒1, 0) − 𝑢(𝑥, 0)
𝑟

����
+

����𝑢(𝑥 + 𝑟𝑒1, 0) − 𝑢(𝑥, 0)
𝑟

− D1𝑢(𝑥, 0)
����

+ |D1𝑢(𝑥, 0) − D1𝑢(0, 0) |
= I + II + III + IV,

(2.28)

and we bound each of the numbered terms as follows. By the mean value theorem, there exists 𝜃 ∈ [0, 1]
such that

I = |D1𝑢(𝑥, 𝑡) − D1𝑢(𝑥 + 𝜃𝑟𝑒1, 𝑡) | , (2.29)

and using [21, Lemma 2.5], we can bound this by 𝑟 ‖𝔇2𝑢‖∞,𝑄𝑟 � 𝐶𝑟2𝑘+𝛼+1. For the second term, the
mean value theorem again shows that there is 𝜃 ′ ∈ [0, 1] so that

II = |𝑡 |
𝑟

|𝜕𝑡𝑢(𝑥 + 𝑟𝑒1, 𝜃
′𝑡) − 𝜕𝑡𝑢(𝑥, 𝜃 ′𝑡) | � 𝑟 ‖𝜕𝑡𝑢‖∞,𝑄𝑟 � 𝑟 ‖𝔇2𝑢‖∞,𝑄𝑟 � 𝐶𝑟

2𝑘+𝛼+1. (2.30)

For the third term, using the mean value theorem and [21, Lemma 2.5], we can find 𝜃 ′′ ∈ [0, 1] so that

III = |D1𝑢(𝑥 + 𝑟𝜃 ′′𝑒1, 0) − D1𝑢(𝑥, 0) | � 𝑟 ‖D2𝑢‖∞,𝑄𝑟 � 𝑟 ‖𝔇2𝑢‖∞,𝑄𝑟 � 𝐶𝑟
2𝑘+𝛼+1, (2.31)

and for the fourth term, we again use [21, Lemma 2.5] to bound

IV � 𝑟 ‖D2𝑢‖∞,𝑄𝑟 � 𝑟 ‖𝔇2𝑢‖∞,𝑄𝑟 � 𝐶𝑟
2𝑘+𝛼+1, (2.32)

and putting these all together proves that |D1𝑢(𝑥, 𝑡) | � 𝐶𝑟2𝑘+𝛼+1, and hence, ‖𝔇𝑢‖∞,𝑄𝑟 � 𝐶𝑘𝑟
2𝑘+𝛼+1

since 𝑒1 is arbitrary. The upper bound for |𝑢 | is now straightforward using the bounds on D𝑢 and 𝜕𝑡𝑢.
This completes the proof of the inductive step. �

2.5. Bounds on Hölder seminorms imply decay

In this section, we establish a generalization of [21, Theorem 2.11] to our setting. Recall that at each point
𝑥 = (𝑧, 𝑦) ∈ 𝐵 ×𝑌 , 𝜔𝐹,𝑧 is the unique Kähler-Ricci flat metric on each fiber 𝑋𝑧 which is cohomologous
to 𝜔0 |𝑋𝑧 . We can assume that

∫
{𝑧 }×𝑌 𝜔

𝑛
𝐹,𝑧 = 1 for all 𝑧 ∈ 𝐵. For any function f in space-time 𝐵 ×𝑌 ×R,

we will use 𝑓 (𝑧, 𝑡) to denote its fiberwise average:

𝑓 (𝑧, 𝑡) =
∫
{𝑧 }×𝑌

𝑓 (𝑧, ·, 𝑡) 𝜔𝑛
𝐹,𝑧 . (2.33)

The following result will be crucial for us:
Proposition 2.6. Suppose 𝑔 = 𝑔C𝑚 + 𝛿2𝑔𝑌 ,0 is a metric on 𝐵 × 𝑌 , where 0 < 𝛿 � 1 is arbitrary. For
any 𝑘 ∈ N, 𝛼 ∈ (0, 1) and 0 < 𝜌 < 𝑅 < 1 with 𝜌 � Λ𝛿, there exists 𝐶 (𝑘, 𝛼, 𝜌, 𝑅) > 0 such that for all
smooth function 𝜑 on 𝐵 × 𝑌 × R with 𝜑 = 0, 𝑥0 = (0, 𝑦0), 𝑡0 ∈ R and for all 0 � 𝑗 � 2𝑘 , we have

‖𝔇 𝑗𝜑‖∞,𝑄𝑔,𝜌 (𝑥0 ,𝑡0) ,𝑔 � 𝐶𝛿
2𝑘+𝛼− 𝑗 [𝔇2𝑘𝜑]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔 . (2.34)

Moreover, for all 𝛽 ∈ (0, 1) such that 𝑗 + 𝛽 < 2𝑘 + 𝛼,

[𝔇 𝑗𝜑]𝛽,𝛽/2,𝑄𝑔,𝜌 (𝑥0 ,𝑡0) ,𝑔 � 𝐶𝛿
2𝑘+𝛼− 𝑗−𝛽 [𝔇2𝑘𝜑]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔 . (2.35)

Moreover, the same estimates hold if 𝜑 is replaced by 𝜂 = 𝑖𝜕𝜕𝜑 where 𝜑 = 0.
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Remark 2.7. We require 𝜌 � Λ𝛿 here so as to ensure that

𝑄𝑔,𝜌 (𝑥0, 𝑡0) = (𝐵C𝑚 (𝜌) × 𝑌 ) × [𝑡0 − 𝜌2, 𝑡0] = 𝑄𝜌 (𝑥0, 𝑡0), (2.36)

which is needed in order to apply [21, Theorem 2.11].

Proof. Suppose we can show that

‖𝜑‖∞,𝑄𝑔,𝜌 (𝑥0 ,𝑡0) ,𝑔 � 𝐶𝛿
2𝑘+𝛼 [𝔇2𝑘𝜑]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔 . (2.37)

Then (2.34) and (2.35) would follow from this and the interpolation Proposition 2.3, as in [21, (2.61)–
(2.62)]. To prove (2.37), given (𝑥, 𝑡) ∈ 𝑄𝑔,𝜌 (𝑥0, 𝑡0), write as usual 𝑥 = (𝑧, 𝑦) and freeze the time variable
in 𝜑(·, 𝑡). Assuming first that 𝑘 � 1, similarly to [21, (2.81)], we can use 𝜑(𝑡) = 0 to estimate

sup
{𝑧 }×𝑌

|𝜑(𝑡) | � 𝐶 sup
{𝑧 }×𝑌

|∇f𝜑(𝑡) |{𝑧 }×𝑌 |𝑔𝑌 ,𝑧 � 𝐶 [∇2𝑘
f · · ·f𝜑(𝑡) |{𝑧 }×𝑌 ]𝐶𝛼 ( {𝑧 }×𝑌 ,𝑔𝑌 ,𝑧 )

� 𝐶𝛿2𝑘+𝛼 [D2𝑘
f · · ·f𝜑(𝑡) |{𝑧 }×𝑌 ]𝐶𝛼 ( {𝑧 }×𝑌 ,𝑔) � 𝐶𝛿

2𝑘+𝛼 [D2𝑘𝜑(𝑡)]𝐶𝛼 (𝐵𝑅×𝑌 ,𝑔)

� 𝐶𝛿2𝑘+𝛼 [𝔇2𝑘𝜑]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔,

(2.38)

where in the second inequality, we used [21, Lemma 2.10], and (2.37) follows when 𝑘 � 1. Lastly, when
𝑘 = 0, the argument is straightforward: using again that 𝜑(𝑡) = 0, we bound

sup
{𝑧 }×𝑌

|𝜑(𝑡) | � 𝐶 [𝜑(𝑡) |{𝑧 }×𝑌 ]𝐶𝛼 ( {𝑧 }×𝑌 ,𝑔𝑌 ,𝑧 ) � 𝐶𝛿
𝛼 [𝜑(𝑡) |{𝑧 }×𝑌 ]𝐶𝛼 ( {𝑧 }×𝑌 ,𝑔)

� 𝐶𝛿𝛼 [𝜑(𝑡)]𝐶𝛼 (𝐵𝑅×𝑌 ,𝑔) � 𝐶𝛿
𝛼 [𝜑]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔,

(2.39)

which completes the proof of (2.34) and (2.35) for 𝜑. Lastly, the analogous estimates for 𝜂 = 𝑖𝜕𝜕𝜑
follow in a similar fashion, by first using interpolation Proposition 2.3 to reduce ourselves to proving

‖𝜂‖∞,𝑄𝑔,𝜌 (𝑥0 ,𝑡0) ,𝑔 � 𝐶𝛿
2𝑘+𝛼 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔, (2.40)

and then proving (2.40) by freezing the time variable t and applying [21, (2.61)] to 𝜂(·, 𝑡) and getting

‖𝜂(𝑡)‖∞,𝐵𝑅×𝑌 ,𝑔 � 𝐶𝛿
2𝑘+𝛼 [D2𝑘𝜂]𝐶𝛼 (𝐵𝑅×𝑌 ,𝑔) � 𝐶𝛿

2𝑘+𝛼 [𝔇2𝑘𝜂]𝛼,𝛼/2,𝑄𝑔,𝑅 (𝑥0 ,𝑡0) ,𝑔, (2.41)

which concludes the proof. �

2.6. Parabolic Schauder estimates

In the course of the proof of our main Theorem, we also need two parabolic Schauder estimates on
cylinders, which will be used when linearizing the Kähler-Ricci flow equation, and which are analogs
of [21, Proposition 2.15]. Let (𝑧ℓ , 𝑦ℓ ) → (𝑧∞, 𝑦∞) be a convergent family of points in 𝐵 ×𝑌 . For ℓ � 1,
consider the diffeomorphism Λℓ : (𝑧, �̌�) ↦→ (𝑧ℓ + 𝑒−𝑡ℓ/2𝑧, �̌�), and let 𝐽ℓ be the pullback of the complex
structure J via Λℓ , which converges to 𝐽∞ = 𝐽C𝑚 + 𝐽𝑌 ,𝑧∞ locally smoothly. Similarly, we let Ďℓ denote
the pullback of the connection D so that Ďℓ → Ď∞ = ∇C𝑚 + ∇𝑔𝑌 ,𝑧∞ locally smoothly in spacetime.
By the translation, we may assume that our new base point is 𝑝ℓ = (𝑧ℓ , �̌�ℓ) = (0, �̌�ℓ) → (0, �̌�∞).
We rescale the geometric quantities in a parabolic way centered at 𝑡ℓ , such as, for example, �̌�ℓ (𝑡) =
𝑒𝑡ℓΛ∗

ℓ𝑔(𝑡ℓ + 𝑒
−𝑡ℓ 𝑡), where recall that we denote by 𝑔(𝑡) = 𝑔C𝑚 + 𝑒−𝑡𝑔𝑌 ,0, so that �̌�ℓ (0) = 𝑔C𝑚 + 𝑔𝑌 ,0.

The first Schauder estimate is for scalar functions:

Proposition 2.8. Let 𝑈 ⊂ C𝑚 × 𝑌 be an open set containing (0, 𝑦∞). Let �̌�ℓ , �̌�♯
ℓ be Riemannian resp.

𝐽ℓ-Kähler metrics on U that converge locally smoothly to a Riemannian resp. 𝐽∞-Kähler metric �̌�∞, �̌�♯
∞
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on U. Then for all 𝑎 ∈ N>0, 𝛼 ∈ (0, 1) and 𝑅 > 0, there exists ℓ0 > 0 and 𝐶 > 0 such that for all
0 < 𝜌 < 𝑅, ℓ � ℓ0 and all smooth function u defined on 𝑈 × R, we have that

[𝔇2𝑎𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌 ( �̌�ℓ ,0) ,�̌�ℓ (0)
� 𝐶 [𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝑅 ( �̌�ℓ ,0) ,�̌�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝑅 ( �̌�ℓ ,0) ,
(2.42)

whenever �̌��̌�ℓ (0) ,𝑅 (𝑝ℓ , 0) ⊂ 𝑈 × R.

Proof. We let 𝜎 be small enough so that with respect to �̌�∞ = 𝑔C𝑚 + 𝑔𝑌 ,𝑧∞ , the �̌�∞-geodesic ball of
size 𝜎 is geodesically convex and admits a normal coordinate chart centered at any (𝑧, 𝑦) ∈ C𝑚 × 𝑌 .
This is possible since Y is compact and C𝑚 is flat with respect to �̌�∞. Since �̌�ℓ (𝑡) → 𝑔C𝑚 + 𝑔𝑌 ,𝑧∞ as
ℓ → +∞ and Ďℓ → Ď∞ locally smoothly, for any large 𝑅 > 0, there exists ℓ0 such that for all ℓ > ℓ0 and
(𝑝, 𝑡) ∈ �̌��̌�ℓ (0) ,2𝑅 (𝑝ℓ , 0), 𝐵�̌�ℓ (0) (𝑝, 𝜎) is geodesically convex and is compactly contained in a Euclidean
ball of radius 2𝜎. Moreover, we can assume that the Kähler structure �̌�♯

ℓ , 𝐽ℓ is smoothly close to the
product structure �̌�♯

∞, 𝐽∞ in the parabolic domain �̌��̌�ℓ (0) ,2𝑅 (𝑝ℓ , 0).
The product metric �̌�ℓ (0) is uniformly comparable to the Euclidean metric on �̌��̌�ℓ (0) ,𝜎 (𝑝, 𝑡) for all

(𝑝, 𝑡) ∈ �̌��̌�ℓ (0) ,𝑅 (𝑝ℓ , 0). By the standard Euclidean parabolic Schauder estimates (see, for example,
[29, Theorem 4.9 and p.84]), there exists 𝐶 > 0 such that for all 0 < 𝜌1 < 𝜌2 < 𝜎, and functions u on
�̌��̌�ℓ (0) ,𝜎 (𝑝, 𝑡) where (𝑝, 𝑡) ∈ �̌��̌�ℓ (0) ,𝑅 (𝑝ℓ , 0), we have∑

𝑝+2𝑞=2𝑎
[𝜕 𝑝𝜕𝑞𝑡 𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

+
∑

𝑝+2𝑞�2𝑎
(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝑢‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶
∑

𝑝+2𝑞�2𝑎−2
(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞+2

��������𝜕 𝑝𝜕𝑞𝑡 (
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

��������
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

,

(2.43)

where the derivatives, Hölder norms are computed using the standard Euclidean metric and Δ
�̌�
♯
ℓ

denotes

the Laplacian of the metric �̌�♯
ℓ .

We first use interpolation to eliminate the terms in the last line of (2.43). For 0 < 𝜌1 < 𝜌2 < 𝜎, we
let 𝜌′2 = 1

2 (𝜌1 + 𝜌2) so that (2.43) holds with 𝜌2 replaced by 𝜌′2 and C replaced by a slightly larger C.
Hence, the standard Euclidean interpolation (or Proposition 2.3) yields

∑
𝑝+2𝑞�2𝑎−2

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞+2
��������𝜕 𝑝𝜕𝑞𝑡 (

𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

��������
∞,�̌��̌�ℓ (0) ,𝜌′2

( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼+2
��������( 𝜕𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝑢

��������
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

,

(2.44)

where we have used 𝜌′2 − 𝜌2 = 1
2 (𝜌2 − 𝜌1).

We now want to estimate the 𝐿∞ norm of
(
𝜕
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝑢 in terms of the 𝐿∞ norm of u and of the

Hölder seminorm of top order derivatives of u. To do this, we interpolate again. Let 𝜀 ∈ (0, 1) be a
small constant to be determined, and given 0 < 𝜌1 < 𝜌2 < 𝜎, denote 𝜌′′2 = 𝜌1 + (1 − 𝜀) (𝜌2 − 𝜌1).
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We consider (2.44) with 𝜌2 replaced by 𝜌′′2 . Since �̌�♯
ℓ is uniformly bounded in𝐶∞, the standard Euclidean

interpolation (or Proposition 2.3) yields

(𝜌′′2 − 𝜌1)−2𝑎−𝛼+2
��������( 𝜕𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝑢

��������
∞,�̌��̌�ℓ (0) ,𝜌′′2

( �̌�,𝑡)

=
( 𝜀

1 − 𝜀

)2𝑎+𝛼−2
(𝜌2 − 𝜌′′2 )

−2𝑎−𝛼+2
��������( 𝜕𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝑢

��������
∞,�̌��̌�ℓ (0) ,𝜌′′2

( �̌�,𝑡)

� 𝐶
( 𝜀

1 − 𝜀

)2𝑎+𝛼−2 ���
∑

𝑝+2𝑞=2𝑎

[
𝜕 𝑝𝜕𝑞𝑡 𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ (𝜌2 − 𝜌′′2 )
−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

��� .
(2.45)

Therefore, inserting (2.44) and (2.45) into (2.43), we can choose 𝜀 sufficiently small so that∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)
+

∑
𝑝+2𝑞�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝑢‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 1
2

∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)
,

(2.46)

for all 0 < 𝜌1 < 𝜌2 < 𝜎. We can then apply the iteration lemma in [21, Lemma 2.9] to obtain∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)
+

∑
𝑝+2𝑞�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝑢‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)
.

(2.47)

We now claim that one can interchange the Euclidean derivatives 𝜕 and Euclidean parallel transport
P in the definition of Hölder norms with Ďℓ and P̌ℓ . Although in our definition of Hölder norms we only
consider horizontal and vertical P-geodesics while the standard Euclidean Hölder norms consider all
possible segments, it is immediate to see from [21, (2.31)] that the difference is harmless. To compare
𝜕 with Ďℓ , we note that on each �̌��̌�ℓ (0) ,𝜎 (𝑝, 𝑡), we can write 𝜕 = Ďℓ + Γ̌ℓ (indeed independent of 𝑡) so
that Γ̌ℓ → Γ̌∞ where Γ̌∞(𝑝) = 0 by our choice of normal coordinate centered at 𝑝. In particular, the
local smooth convergence implies that Γ̌ℓ → 0 in 𝐶𝑘 for fixed k uniformly as ℓ → +∞ and 𝜎 → 0, and
then ODE estimates show that 𝑃 − P̌ℓ → 0 in 𝐶𝑘 . In particular, switching from 𝜕 𝑝 to Ď𝑝

ℓ will generate
an error of the form (ignoring combinatorial constants):(

Ď
𝑎
ℓ − 𝜕𝑎

)
𝑢 =

∑
𝑖+ 𝑗1+···+ 𝑗𝑞+𝑞=𝑎,𝑞>0

𝜕𝑖𝑢 � 𝜕 𝑗1 Γ̌ℓ � · · · � 𝜕 𝑗𝑞 Γ̌ℓ . (2.48)

Since 0 < 𝜌1 < 𝜌2 � 𝜎 < 1, and since all terms in (2.48) with Γ̌ℓ are 𝑜(1), the right-hand side in (2.48)
can be absorbed in the second term in the left-hand side of (2.43). Thus, going back to (2.47), we can
change the 𝜕, 𝑃 with �̌�ℓ , P̌ℓ , and using interpolation again, we obtain
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[𝔇2𝑎𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡) ,�̌�ℓ (0)
+

∑
𝑏�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑏 ‖𝔇𝑏𝑢‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡) ,�̌�ℓ (0)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕

𝜕𝑡
− Δ

�̌�
♯
ℓ

)
𝑢

]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

� 𝐶
[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡) ,�̌�ℓ (0)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 1
2

∑
𝑏�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑏 ‖𝔇𝑏𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡) ,�̌�ℓ (0)
,

(2.49)

where the coefficient 1
2 in the last term is achieved by choosing 𝜎 sufficiently small thanks to the local

smooth convergence of Γ̌ℓ . We fix 𝜎 from now on. It now follows from [21, Lemma 2.9] again that we
have

[𝔇2𝑎𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡) ,�̌�ℓ (0)
+

∑
𝑏�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑏 ‖𝔇𝑏𝑢‖∞,�̌��̌�ℓ (0) ,𝜌 ( �̌�,𝑡) ,�̌�ℓ (0)

� 𝐶
[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡) ,�̌�ℓ (0)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)
,

(2.50)

for all 0 < 𝜌1 < 𝜌2 < 𝜎. This in particular shows the desired conclusion for all small 0 < 𝜌1 < 𝜌2 < 𝜎
with arbitrary center (𝑝, 𝑡) in the compact set �̌��̌�ℓ (0) ,𝑅 (𝑝, 0).

Now we prove the Hölder control on �̌��̌�ℓ (0) ,𝜌 (𝑝ℓ , 0) for 0 < 𝜌 < 𝑅. We can assume 𝑅 � 𝜎.
If 𝜌 < 1

2𝜎 �
1
2𝑅 so that 𝜎 − 𝜌 � 1

2𝜎 � 𝐶
−1 (𝑅 − 𝜌), then (2.50) implies

[𝔇2𝑎𝑢]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌 ( �̌�,𝑡) ,�̌�ℓ (0)
� 𝐶

[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜎 ( �̌�,𝑡) ,�̌�ℓ (0)

+ 𝐶 (𝜎 − 𝜌)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜎 ( �̌�,𝑡)

� 𝐶
[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝑅 ( �̌�,𝑡) ,�̌�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝜎 ( �̌�,𝑡) .

(2.51)

Hence, it remains to consider the case 𝜌 � 1
2𝜎. Given any two points (𝑝, 𝑡) and (𝑞, 𝑠) in

�̌��̌�ℓ (0) ,𝜌 (𝑝ℓ , 0) with 𝑟 = 𝑑�̌�ℓ (0) (𝑝, 𝑞) + |𝑡 − 𝑠 | 1
2 , we choose a sequence of points {(𝑝𝑖 , 𝑡𝑖)}𝑁𝑖=1 inside

�̌��̌�ℓ (0) ,𝜌 (𝑝ℓ , 0) such that (𝑝1, 𝑡1) = (𝑝, 𝑡) and (𝑝𝑁 , 𝑡𝑁 ) = (𝑞, 𝑠). We can choose them in a way so that
𝑟𝑖 = 𝑑�̌�ℓ (0) (𝑝𝑖 , 𝑝𝑖+1) + |𝑡𝑖 − 𝑡𝑖+1 |

1
2 � 1

4𝜎 is uniformly comparable to r and 𝑁 � 𝐶𝜎−2. Here, the square
comes from the time direction. Moreover, we can assume �̌��̌�ℓ (0) , 1

4 𝜎
(𝑝𝑖 , 𝑡𝑖) ⊂ �̌��̌�ℓ (0) ,𝜌 (𝑝ℓ , 0) for all

𝑖 = 2, . . . , 𝑁 − 1 (i.e., except (𝑝, 𝑡) and (𝑞, 𝑠)). For each 𝑖 = 1, . . . , 𝑁 − 1, we can apply (2.50) again to
obtain

|𝔇2𝑎𝑢(𝑝𝑖+1, 𝑡𝑖+1) − P̌ℓ𝔇2𝑎𝑢(𝑝𝑖 , 𝑡𝑖) |�̌�ℓ (0)
𝑟𝛼𝑖

� 𝐶
[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌�

�̌�ℓ (0) ,
1
4 𝜎+min(𝑅−𝜌, 1

4 𝜎) ( �̌�𝑖 ,𝑡𝑖 ) ,�̌�ℓ (0)

+ 𝐶 min
(
𝑅 − 𝜌,

1
4
𝜎

)−2𝑎−𝛼
‖𝑢‖∞,�̌�

�̌�ℓ (0) ,
1
4 𝜎+min(𝑅−𝜌, 1

4 𝜎) ( �̌�𝑖 ,𝑡𝑖 )

� 𝐶
[
𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝑢
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝑅 ( �̌�𝑖 ,𝑡𝑖 ) ,�̌�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−2𝑎−𝛼‖𝑢‖∞,�̌��̌�ℓ (0) ,𝑅 ( �̌�ℓ ,0) ,

(2.52)
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for all 𝑖 = 1, . . . , 𝑁 − 1. Here, we have used the fact that 𝜎 � 𝐶−1𝑅 � 𝐶−1(𝑅 − 𝜌). Since

|𝔇2𝑎𝑢(𝑝, 𝑡) − P̌ℓ𝔇2𝑎𝑢(𝑞, 𝑠) |�̌�ℓ (0)
𝑟𝛼

� 𝐶
𝑁−1∑
𝑖=0

|𝔇2𝑎𝑢(𝑝𝑖+1, 𝑡𝑖+1) − P̌ℓ𝔇2𝑎𝑢(𝑝𝑖 , 𝑡𝑖) |�̌�ℓ (0)
𝑟𝛼𝑖

, (2.53)

using (2.52) completes the proof after taking supremum over all (𝑝, 𝑡) and (𝑞, 𝑠) in �̌��̌�ℓ (0) ,𝜌 (𝑝ℓ , 0). �

The second Schauder estimate is for real (1, 1)-forms:

Proposition 2.9. Let 𝑈 ⊂ C𝑚 × 𝑌 be an open set containing (0, 𝑦∞). Let �̌�ℓ , �̌�♯
ℓ be Riemannian resp.

𝐽ℓ-Kähler metrics on U that converges locally smoothly to a Riemannian resp. 𝐽∞-Kähler metric �̌�∞, �̌�♯
∞

on U. Then for all 𝑎 ∈ N>0, 𝛼 ∈ (0, 1) and 𝑅 > 0, there exists ℓ0 > 0 and 𝐶 > 0 such that for all
0 < 𝜌 < 𝑅, ℓ � ℓ0 and all real 𝐽ℓ-(1, 1) form 𝜂 defined on 𝑈 × R, we have that

[𝔇2𝑎𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌 ( �̌�ℓ ,0) ,�̌�ℓ (0)
� 𝐶 [𝔇2𝑎−2(𝜕𝑡 − Δ

�̌�
♯
ℓ

)𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝑅 ( �̌�ℓ ,0) ,�̌�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−2𝑎−𝛼‖𝜂‖∞,�̌��̌�ℓ (0) ,𝑅 ( �̌�ℓ ,0) ,
(2.54)

whenever �̌��̌�ℓ (0) ,𝑅 (𝑝ℓ , 0) ⊂ 𝑈 × R, and where Δ
�̌�
♯
ℓ

𝜂 denotes the Hodge Laplacian of �̌�♯
ℓ acting on

differential forms.

Proof. The proof shares some similarities with the proof of Proposition 2.8. After the same preliminary
remarks as there, we first work in the Euclidean setting, with the Hodge Laplacian Δ

�̌�
♯
ℓ

𝜂. We can then
apply standard parabolic Schauder estimate to the uniformly parabolic system given by (𝜕𝑡 − Δ

�̌�
♯
ℓ

)
acting on real (1, 1)-forms [24, Chapter 7], which shows that there exists 𝐶 > 0 such that for all
0 < 𝜌1 < 𝜌2 < 𝜎, and 𝜂 lives in �̌��̌�ℓ (0) ,𝜎 (𝑝, 𝑡) where (𝑝, 𝑡) ∈ �̌��̌�ℓ (0) ,𝑅 (𝑝ℓ , 0), we have∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)
+

∑
𝑝+2𝑞�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝜂‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝜂‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶
∑

𝑝+2𝑞�2𝑎−2
(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞+2

������𝜕 𝑝𝜕𝑞𝑡 (
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
������
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

,

(2.55)

where the derivatives and Hölder norms are computed using standard Euclidean metric.
We first eliminate the terms in the last line of (2.55) by interpolation: given 0 < 𝜌1 < 𝜌2 < 𝜎, we let

𝜌′2 = 1
2 (𝜌1 + 𝜌2), so that (2.55) holds with 𝜌2 replaced by 𝜌′2, and so standard interpolation gives∑

𝑝+2𝑞�2𝑎−2
(𝜌′2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞+2

������𝜕 𝑝𝜕𝑞𝑡 (
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
������
∞,�̌��̌�ℓ (0) ,𝜌′2

( �̌�,𝑡)

�
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼+2
���(𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
���
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

,

(2.56)

using that 𝜌′2 − 𝜌2 = 1
2 (𝜌2 − 𝜌1). We now want to estimate the 𝐿∞ norm of

(
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂. Let 𝜀 ∈ (0, 1)

be a constant to be determined, and denote by 𝜌′′2 = 𝜌2 + 𝜀(𝜌2 − 𝜌1). By interpolation and the 𝐶∞

boundedness of �̌�♯ℓ , we have
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𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼+2
������(𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
������
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

= 𝐶𝜀2𝑎+𝛼−2(𝜌′′2 − 𝜌2)−2𝑎−𝛼+2
������(𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
������
∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

� 𝐶𝜀2𝑎+𝛼−2(𝜌′′2 − 𝜌2)−2𝑎−𝛼+2
∑
𝑝+𝑞=2

‖𝜕 𝑝𝜕𝑞𝑡 𝜂‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

� 𝐶𝜀2𝑎+𝛼−2
∑

𝑝+2𝑞=2𝑎
[𝜕 𝑝𝜕𝑞𝑡 𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌′′2

( �̌�,𝑡) + 𝐶𝜀 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝜂‖∞,�̌��̌�ℓ (0) ,𝜌′′2
( �̌�,𝑡) .

(2.57)

Since 𝑎 � 1, we can choose 𝜀 small enough so that 𝐶𝜀2𝑎+𝛼−2 � 1
2 . Inserting this in (2.56) (replacing

𝜌′′2 by 𝜌2), and plugging into (2.55) gives∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)
+

∑
𝑝+2𝑞�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝜂‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝜂‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 1
2

∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌′′2
( �̌�,𝑡) ,

(2.58)

and the iteration lemma in [21, Lemma 2.9] then gives∑
𝑝+2𝑞=2𝑎

[𝜕 𝑝𝜕𝑞𝑡 𝜂]𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)
+

∑
𝑝+2𝑞�2𝑎

(𝜌2 − 𝜌1)−2𝑎−𝛼+𝑝+2𝑞 ‖𝜕 𝑝𝜕𝑞𝑡 𝜂‖∞,�̌��̌�ℓ (0) ,𝜌1 ( �̌�,𝑡)

� 𝐶
∑

𝑝+2𝑞=2𝑎−2

[
𝜕 𝑝𝜕𝑞𝑡

(
𝜕𝑡 − Δ

�̌�
♯
ℓ

)
𝜂
]
𝛼,𝛼/2,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)

+ 𝐶 (𝜌2 − 𝜌1)−2𝑎−𝛼‖𝜂‖∞,�̌��̌�ℓ (0) ,𝜌2 ( �̌�,𝑡)
.

(2.59)

This is the direct analog of (2.47). After this, the rest of the proof of (2.54) proceeds exactly as in the
proof of Proposition 2.8. �

3. The Selection Theorem

In our main theorem, we will need the analog of the Selection Theorem [21, Theorem 3.11], adapted
to our parabolic setting, and to the specific structure of the parabolic complex Monge-Ampère equation
that we are dealing with. As in [21], to state this, we will need some preparatory notation. First, we fix
two natural numbers 0 � 𝑗 � 𝑘 and a Euclidean ball B centered at the origin, and as usual, we have
fixed the fiberwise Calabi-Yau volume forms on the fibers {𝑧} ×𝑌 . Given 𝑡, 𝑘 and two smooth functions
𝐴 ∈ 𝐶∞(𝐵,R) and 𝐺 ∈ 𝐶∞(𝐵 × 𝑌,R) with fiberwise average zero and fiberwise 𝐿2 norm 1, we
constructed in [21, §3.2] a function𝔊𝑡 ,𝑘 (𝐴, 𝐺) ∈ 𝐶∞(𝐵×𝑌,R) also with fiberwise average zero, which
is in some appropriate sense an approximate right inverse of Δ𝜔

♮
𝑡 applied to 𝐴𝐺; see [21, Lemma 3.7]

for a precise statement. We will need the following quasi-explicit formula from [21, Lemma 3.8]: given
any 𝐴, 𝐺 as above, there are t-independent smooth functions Φ 𝜄,𝑟 (𝐺) on 𝐵 × 𝑌 such that for all 𝑡 � 0,
we have

𝔊𝑡 ,𝑘 (𝐴, 𝐺) =
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡 (Φ 𝜄,𝑟 (𝐺) � D 𝜄𝐴), (3.1)
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where here and in the rest, � denotes some tensorial contraction, and we have

Φ0,0(𝐺) = (Δ𝜔𝐹 |{·}×𝑌 )−1𝐺. (3.2)

For all 𝑖 < 𝑗 , we suppose that we have smooth functions 𝐺𝑖, 𝑝,𝑘 ∈ 𝐶∞(𝐵 × 𝑌,R), 1 � 𝑝 � 𝑁𝑖,𝑘 ,
which have fiberwise average zero and are fiberwise 𝐿2 orthonormal, with 𝐺𝑖, 𝑝,𝑘 = 0 when 𝑖 = 0. The
main goal is to find smooth functions 𝐺 𝑗 , 𝑝,𝑘 which satisfy a certain property that we now describe.

We are also given sequences of real numbers 𝑡ℓ → +∞ and 𝛿ℓ > 0 with 𝛿ℓ → 0 and
𝜆ℓ := 𝛿ℓ𝑒

𝑡ℓ
2 → +∞. Consider the diffeomorphisms

Σℓ : 𝐵
𝑒
𝑡ℓ
2
× 𝑌 × [−𝑒𝑡ℓ 𝑡ℓ , 0] → 𝐵 × 𝑌 × [0, 𝑡ℓ], (𝑧, 𝑦, 𝑡) = Σℓ (𝑧, �̌�, 𝑡) = (𝑒−

𝑡ℓ
2 𝑧, �̌�, 𝑡ℓ + 𝑒−𝑡ℓ 𝑡), (3.3)

where 𝐵𝑅 := 𝐵C𝑚 (0, 𝑅), and for any function u on 𝐵 × 𝑌 × [0, 𝑡ℓ], we will write �̌�ℓ = Σ∗
ℓ𝑢, and

for a time-dependent 2-form 𝛼 (with 𝑡 ∈ [0, 𝑡ℓ]) we will write �̌�ℓ = 𝑒𝑡ℓΣ∗
ℓ𝛼. In particular, note that

�̌�ℓ,can = 𝑒𝑡ℓΣ∗
ℓ𝜔can is a (time-independent) Kähler metric on 𝐵

𝑒
𝑡ℓ
2

uniformly equivalent to Euclidean
(independent of ℓ).

We will also need to factor Σℓ = Ψℓ ◦ Ξℓ , where

Ξℓ : 𝐵
𝑒
𝑡ℓ
2
× 𝑌 × [−𝑒𝑡ℓ 𝑡ℓ , 0] → 𝐵𝜆ℓ × 𝑌 × [−𝜆2

ℓ 𝑡ℓ , 0], (𝑧, �̂�, 𝑡) = Ξℓ (𝑧, �̌�, 𝑡) = (𝛿ℓ 𝑧, �̌�, 𝛿2
ℓ 𝑡), (3.4)

Ψℓ : 𝐵𝜆ℓ × 𝑌 × [−𝜆2
ℓ 𝑡ℓ , 0] → 𝐵 × 𝑌 × [0, 𝑡ℓ], (𝑧, 𝑦, 𝑡) = Ψℓ (𝑧, �̂�, 𝑡) = (𝜆−1

ℓ 𝑧, �̂�, 𝑡ℓ + 𝜆−2
ℓ 𝑡), (3.5)

and given a function u on 𝐵 ×𝑌 × [0, 𝑡ℓ], we will write �̂� = Ψ∗
ℓ𝑢, and given a time-dependent 2-form 𝛼,

we will write �̂� = 𝜆2
ℓΨ

∗
ℓ𝛼. We will also use the notation

�̂�𝑅 := 𝐵𝑅 × 𝑌 × [−𝑅2, 0] � (𝑧, �̂�, 𝑡), �̌�𝑅 := 𝐵𝑅 × 𝑌 × [−𝑅2, 0] � (𝑧, �̌�, 𝑡), (3.6)

so that for example Ξℓ (�̌�𝑅) = �̂�𝑅𝛿−1
ℓ

.
Let also 𝜂‡ℓ be an arbitrary sequence of (1, 1)-forms on 𝐵 × [0, 𝑡ℓ] with coefficients (spacetime)

polynomials of degree at most 2 𝑗 which satisfy 𝜂‡ℓ → 0 locally smoothly in spacetime (which implies
that 𝜂‡ℓ → 0 locally smoothly as well), let 𝐵♯ℓ be an arbitrary sequence of smooth functions on 𝐵× [0, 𝑡ℓ]
such that �̂�♯ℓ → 0 locally smoothly, and for 1 � 𝑖 � 𝑗 , let 𝐴♯𝑖, 𝑝,𝑘 be arbitrary (spacetime) polynomials
of degree at most 2 𝑗 on B such that �̂�♯ℓ,𝑖, 𝑝,𝑘 = 𝜆2

ℓΨ
∗
ℓ𝐴

♯
𝑖, 𝑝,𝑘 satisfy that there is some 0 < 𝛼0 < 1 such

that given any 𝑅 > 0, there is 𝐶 > 0 with

‖𝔇 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
2
ℓ𝑒

−𝛼0
𝑡ℓ
2 (3.7)

for all 0 � 𝜄 � 2 𝑗 , or equivalently that �̌�♯ℓ,𝑖, 𝑝,𝑘 = 𝑒𝑡ℓΣ∗
ℓ𝐴

♯
𝑖, 𝑝,𝑘 = 𝛿2

ℓΞ
∗
ℓ �̂�

♯
ℓ,𝑖, 𝑝,𝑘 satisfy

‖𝔇 𝜄 �̌�♯ℓ,𝑖, 𝑝,𝑘 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) � 𝐶𝛿

𝜄
ℓ𝑒

−𝛼0
𝑡ℓ
2 . (3.8)

With these, we define for 1 � 𝑖 � 𝑗

𝛾♯𝑡 ,𝑖,𝑘 =
𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕𝔊𝑡 ,𝑘 (𝐴♯𝑖, 𝑝,𝑘 , 𝐺𝑖, 𝑝,𝑘 ), (3.9)

so 𝛾♯𝑡 , 𝑗 ,𝑘 depends on how we choose the functions 𝐺 𝑗 , 𝑝,𝑘 . It is proved by the argument in (4.200) below
that our assumption (3.7) on �̂�♯ℓ,𝑖, 𝑝,𝑘 implies that for any 𝑅 > 0, there is 𝐶 > 0 with

‖𝔇 𝜄 �̂�♯ℓ,𝑖,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
− 𝜄
ℓ 𝑒−𝛼0

𝑡ℓ
2 , (3.10)
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or equivalently

‖𝔇 𝜄 �̌�♯ℓ,𝑖,𝑘 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) � 𝐶𝑒

−𝛼0
𝑡ℓ
2 , (3.11)

for all 𝜄 � 0 and all 1 � 𝑖 � 𝑗 (these can be just taken as assumptions for now). Observe that the
constants C in (3.10) and (3.11) depend on the choice of the functions 𝐺 𝑗 , 𝑝,𝑘 , but the exponent 𝛼0 does
not. We also define

𝜂†𝑡 =
𝑗∑

𝑖=1
𝛾♯𝑡 ,𝑖,𝑘 , (3.12)

and

𝜔♯
𝑡 = (1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 + 𝜂†𝑡 + 𝜂

‡
𝑡 , (3.13)

which has the property that �̂�♯
ℓ is a Kähler metric on �̂�𝑅 for all 𝑅 > 0, and ℓ sufficiently large, using

that 𝜂‡ℓ is pulled back from B and goes to zero locally uniformly, and the estimate (3.10) with 𝜄 = 0 for
𝜂†ℓ . Passing to the check picture, we obtain

�̌�♯
ℓ = (1 − 𝑒−𝑡ℓ−𝑒

−𝑡ℓ 𝑡 )�̌�ℓ,can + 𝑒−𝑒
−𝑡ℓ 𝑡Σ∗

ℓ𝜔𝐹 + 𝜂†ℓ + 𝜂
‡
ℓ . (3.14)

The key quantity we are interested in is then

𝛿
−2 𝑗−𝛼
ℓ

���log

(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛

(�̌�♯
ℓ)𝑚+𝑛

+
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�
♯
ℓ,𝑖, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯ℓ,𝑖, 𝑝,𝑘 , �̌�ℓ,𝑖, 𝑝,𝑘 ) + Σ∗
ℓ𝐵

♯
ℓ

��� ,
(3.15)

which can be compared to the corresponding quantity [21, (3.47)] in the elliptic setting. Observe that
by definition, we have Σ∗

ℓ𝐵
♯
ℓ = Ξ∗

ℓ �̂�
♯
ℓ .

To clarify, when we will apply the Selection Theorem later, the functions 𝐵♯ℓ will be defined by

�̂�♯ℓ = 𝑒−𝜆
−2
ℓ 𝑡𝜕𝑡 �̂�

♯
ℓ − 𝑛𝜆−2

ℓ 𝑡, (3.16)

where 𝜕𝑡 �̂�
♯
ℓ is a spacetime polynomial of degree at most 2 𝑗 . The fact that �̂�♯ℓ → 0 locally smoothly will

follow from (4.158). We will also later define

�̌�♯
ℓ
= 𝛿−2

ℓ Ξ∗
ℓ ( �̂�

♯
ℓ ). (3.17)

Hence, we will have

Σ∗
ℓ𝐵

♯
ℓ = Ξ∗

ℓ �̂�
♯
ℓ = 𝑒−𝑒

−𝑡ℓ 𝑡𝜕𝑡 �̌�
♯
ℓ − 𝑛𝑒−𝑡ℓ 𝑡. (3.18)

Given these preliminaries, the following is then the key result:
Theorem 3.1 (Selection Theorem). Suppose we are given 0 � 𝑗 � 𝑘 and when 𝑗 > 1, we are also given
smooth function 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 � 𝑗 − 1, 1 � 𝑝 � 𝑁𝑖,𝑘 , on 𝐵 × 𝑌 which are fiberwise 𝐿2 orthonormal
and have fiberwise average zero. Then there are a concentric ball 𝐵′ = 𝐵C𝑚 (0, 𝑟) ⊂ 𝐵 and smooth
functions 𝐺 𝑗 , 𝑝,𝑘 , 1 � 𝑝 � 𝑁 𝑗 ,𝑘 on 𝐵′ × 𝑌 (identically zero if 𝑗 = 0), with fiberwise average zero so
that 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑝 � 𝑁𝑖,𝑘 , 1 � 𝑖 � 𝑗 are all fiberwise 𝐿2 orthonormal with the following property: if
𝛿ℓ , 𝑡ℓ > 0 are any sequences with 𝑡ℓ → +∞, 𝛿ℓ → 0 and 𝛿ℓ𝑒

𝑡ℓ
2 → +∞, and if 𝐴♯𝑖, 𝑝,𝑘 , 𝐵

♯
ℓ , 𝜂

†
ℓ , 𝜂

‡
ℓ , 𝜔

♯
ℓ are
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as above, and if (3.15) converges locally uniformly on C𝑚 ×𝑌 × (−∞, 0] to some limiting function F as
ℓ → ∞, then on Σ−1

ℓ (𝐵′ × 𝑌 × [−𝑟2, 0]), we can write (3.15) as

𝛿
−2 𝑗−𝛼
ℓ Σ∗

ℓ
��� 𝑓ℓ,0 +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑓ℓ,𝑖, 𝑝𝐺𝑖, 𝑝,𝑘
��� + 𝑜(1), (3.19)

where 𝑓ℓ,0, 𝑓ℓ,𝑖, 𝑝 are functions pulled back from 𝐵′ × (−𝑟2, 0] such that 𝑓ℓ,0 = Ψ∗
ℓ 𝑓ℓ,0, 𝑓ℓ,𝑖, 𝑝 = Ψ∗

ℓ 𝑓ℓ,𝑖, 𝑝
converge locally smoothly to zero, and 𝑜(1) is a term that converges locally smoothly to zero. Lastly,
(3.15) converges to F locally smoothly.

Remark 3.2. The argument follows closely the proof of the Selection Theorem 3.11 in [21], but apart
from the obvious change from space to space-time, there are some other differences that we now briefly
discuss, which arise from the different structure of the parabolic complex Monge-Ampère equation that
we have compared to its elliptic counterpart in [21]. The first term in (3.15) is reminescent of [21,
(3.47)], but it now has a logarithm. This change will be quite immaterial, since log(𝑥) ≈ 𝑥 − 1 for 𝑥 ≈ 1.
Next, compared to [21, (3.47)], the quantity in (3.15) also contains two more pieces. The last term with
𝐵♯ℓ is trivially acceptable since it can be absorbed into 𝑓ℓ,0, while the term involving �̌�𝑡 ,𝑘 will have to
be dealt with, and it will turn out to be ‘lower order’ compared to the first term in (3.15). Putting these
all together will allow us to follow the proof of [21, Theorem 3.11] very closely.

Proof. The proof is by induction on j. First, we treat the base case 𝑗 = 0. In this case, by definition,
there are no obstruction functions and the quantity in (3.15) reduces to

𝛿−𝛼ℓ

(
log

(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛

(�̌�♯
ℓ)𝑚+𝑛

+ Σ∗
ℓ𝐵

♯
ℓ

)
. (3.20)

As in [21], we introduce the notation

Σ∗
ℓ𝜔𝐹 = (Σ∗

ℓ𝜔𝐹 )bb + (Σ∗
ℓ𝜔𝐹 )bf + (Σ∗

ℓ𝜔𝐹 )ff =: 𝑒−𝑡ℓ �̌�𝐹,bb + 𝑒−
𝑡ℓ
2 �̌�𝐹,bf + �̌�𝐹,ff , (3.21)

where the functions �̌�𝐹,bb, �̌�𝐹,bf , �̌�𝐹,ff so defined are uniformly bounded on 𝐵
𝑒
𝑡ℓ
2
× 𝑌 × [−𝑒𝑡ℓ 𝑡ℓ , 0].

Following [21, (3.50)], we then compute

(�̌�♯
ℓ)
𝑚+𝑛 = ((1 − 𝑒−𝑡ℓ−𝑒

−𝑡ℓ 𝑡 )�̌�ℓ,can + 𝑒−𝑒
−𝑡ℓ 𝑡Σ∗

ℓ𝜔𝐹 + 𝜂‡ℓ)
𝑚+𝑛

= (�̌�ℓ,can + �̌�𝐹,ff + 𝜂‡ℓ)
𝑚+𝑛 +𝑂 (𝑒−𝑡ℓ )

=

(
𝑚 + 𝑛
𝑛

)
(�̌�ℓ,can + 𝜂‡ℓ)

𝑚(Σ∗
ℓ𝜔𝐹 )𝑛ff +𝑂 (𝑒−𝑡ℓ ),

(3.22)

where the 𝑂 (𝑒−𝑡ℓ ) is in the locally smooth topology, and so

log
(�̌�♯

ℓ)
𝑚+𝑛(𝑚+𝑛

𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= log

(�̌�ℓ,can + 𝜂‡ℓ)
𝑚

�̌�𝑚
ℓ,can

+𝑂 (𝑒−𝑡ℓ )

= Σ∗
ℓ 𝑓ℓ +𝑂 (𝑒−𝑡ℓ ),

(3.23)

where 𝑓ℓ is some sequence of smooth functions pulled back from B. Passing to the hat picture (i.e.,
letting 𝑓ℓ = Ψ∗

ℓ 𝑓ℓ), our assumption that 𝜂‡ℓ → 0 locally smoothly implies that 𝑓ℓ → 0 locally smoothly.
It thus follows that

log

(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛

(�̌�♯
ℓ)𝑚+𝑛

+ Σ∗
ℓ𝐵

♯
ℓ = Σ∗

ℓ (𝐵
♯
ℓ − 𝑓ℓ) +𝑂 (𝑒−𝑡ℓ ), (3.24)
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and recalling that 𝑓ℓ → 0 and �̂�♯ℓ → 0 locally smoothly, as well as 𝛿−𝛼ℓ 𝑒−𝑡ℓ = 𝑜(1), we see that
(3.19) holds. Lastly, since by assumption (3.20) converges locally uniformly to F , the same is true for
𝛿−𝛼ℓ Σ∗

ℓ (𝐵
♯
ℓ − 𝑓ℓ), and the same argument as in [21, (3.52)–(3.54)] shows that this convergence is locally

smooth. This concludes the proof of Theorem 3.1 in the case 𝑗 = 0.
We then treat the inductive step, and assume 𝑗 � 1. By assumption, the obstruction functions 𝐺𝑖, 𝑝,𝑘

with 1 � 𝑖 < 𝑗 have already been selected on 𝐵′ × 𝑌 (recall that 𝐵′ = 𝐵𝑟 ), and we need to select the
𝐺 𝑗 , 𝑝,𝑘 ’s. As in [21], this will be done via an iterative procedure, with iteration parameter 𝜅, initially set at
𝜅 = 0, and at each step assuming we have already selected some obstruction functions𝐺 [𝑞]

𝑗 , 𝑝,𝑘 , 1 � 𝑞 � 𝜅
(this being the empty list when 𝜅 = 0), and with the iterative step consisting of selecting some new
obstruction functions 𝐺 [𝜅+1]

𝑗 , 𝑝,𝑘 to add to these. After this will be achieved, we will then show that if we
perform this iterative step 𝜅 times (for some uniform 𝜅) and define the obstruction function 𝐺 𝑗 , 𝑝,𝑘 by
putting together all the 𝐺 [𝑞]

𝑗 , 𝑝,𝑘 ’s obtained at all iterations 1 � 𝑞 � 𝜅 + 1, then the desired conclusion
(3.19) holds.

To start the proof, we give a couple of definitions following [21]. We will say that a sequence of
functions on Σ−1

ℓ (𝐵𝑟 × 𝑌 × (−𝑟2, 0]) satisfies condition (★) if it equals

𝛿
−2 𝑗−𝛼
ℓ Σ∗

ℓ

(
𝑓ℓ,0 +

𝑁∑
𝑖=1

𝑓ℓ,𝑖ℎ𝑖

)
+ 𝑜(1) (3.25)

for some 𝑁 ∈ N, where the functions 𝑓ℓ,0, 𝑓ℓ,𝑖 are smooth and pulled back from 𝐵𝑟 × (−𝑟2, 0] and
𝑓ℓ,0 = Ψ∗

ℓ 𝑓ℓ,0, 𝑓ℓ,𝑖 = Ψ∗
ℓ 𝑓ℓ,𝑖 converge locally smoothly to zero, the time-independent functions ℎ𝑖 are

smooth on 𝐵𝑟 × 𝑌 with fiberwise average zero, and the 𝑜(1) is a term that converges locally smoothly
to zero. This definition is tailored to our desired conclusion in (3.19). As in [21, Remark 3.13], we see
that if a sequence of functions satisfies (★) and converges locally uniformly to some limit, then this
convergence is actually smooth.

For 𝜅 � 0, given also arbitrary spacetime polynomials 𝐴♯, [𝑞]𝑗 , 𝑝,𝑘 , 1 � 𝑞 � 𝜅, of degree at most 2 𝑗 such
that �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 = 𝑒𝑡ℓΣ∗

ℓ𝐴
♯, [𝑞]
𝑗 , 𝑝,𝑘 satisfy (3.8), we construct as in (3.9)

𝛾♯, [𝑞]𝑡 , 𝑗 ,𝑘 =

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
𝑖𝜕𝜕𝔊𝑡 ,𝑘 (𝐴♯, [𝑞]𝑗 , 𝑝,𝑘 , 𝐺 𝑗 , 𝑝,𝑘 ), (3.26)

for 1 � 𝑞 � 𝜅 (setting 𝛾♯, [0]𝑡 , 𝑗 ,𝑘 = 0) and let

�̌�♯, [𝜅 ]
ℓ = (1 − 𝑒−𝑡ℓ−𝑒

−𝑡ℓ 𝑡 )�̌�ℓ,can + 𝑒−𝑒
−𝑡ℓ 𝑡Σ∗

ℓ𝜔𝐹 +
𝑗−1∑
𝑟=1

�̌�♯ℓ,𝑟 ,𝑘 +
𝜅∑

𝑞=1
�̌�♯, [𝑞]ℓ, 𝑗,𝑘 + 𝜂‡ℓ . (3.27)

This is a Kähler metric on 𝐵𝑟 × 𝑌 × (−𝑟2, 0], and we can then consider the function

B [𝜅 ]
ℓ := 𝛿

−2 𝑗−𝛼
ℓ

(
log

(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛

(�̌�♯, [𝜅 ]
ℓ )𝑚+𝑛

+
𝑗−1∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�
♯
ℓ,𝑖, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯ℓ,𝑖, 𝑝,𝑘 , �̌�ℓ,𝑖, 𝑝,𝑘 )

+
𝜅∑

𝑞=1

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )
)
.

(3.28)

The following is the analog of [21, Lemma 3.14]:
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Lemma 3.3. Suppose either 𝜅 = 0 or 𝜅 � 1 and we have selected the functions 𝐺 [𝑞]
𝑗 , 𝑝,𝑘 as above for

1 � 𝑞 � 𝜅. Then the sequence of functions B [𝜅 ]
ℓ satisfies (★). Furthermore, we have

𝛿
2 𝑗+𝛼
ℓ B [𝜅 ]

ℓ = 𝑂 (𝑒−𝛼0
𝑡ℓ
2 ) + 𝑜(1)from base, (3.29)

where the term 𝑂 (𝑒−𝛼0
𝑡ℓ
2 ) is in 𝐿∞

loc, while the last term is a function from the base which goes to zero
locally smoothly.

Proof. For ease of notation, define

𝜔�𝑡 = (1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 + 𝜂‡𝑡 , (3.30)

which have the property that �̂��ℓ are Kähler metrics on �̂�𝑅 for all 𝑅 > 0 and ℓ large, and which in the
check picture become

�̌��ℓ = (1 − 𝑒−𝑡ℓ−𝑒
−𝑡ℓ 𝑡 )�̌�ℓ,can + 𝑒−𝑒

−𝑡ℓ 𝑡Σ∗
ℓ𝜔𝐹 + 𝜂‡ℓ . (3.31)

We first consider (in the original undecorated picture)

(𝜔�𝑡 )𝑚+𝑛 = ((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 + 𝜂‡𝑡 )𝑚+𝑛

=

(
𝑚 + 𝑛
𝑛

)
𝑒−𝑛𝑡 ((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹,bb + 𝜂‡𝑡 )𝑚 ∧ 𝜔𝑛

𝐹,ff

+
𝑚∑
𝑞=1

𝑒−(𝑛+𝑞)𝑡
(
𝑚 + 𝑛
𝑛 + 𝑞

)
((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹,bb + 𝜂‡𝑡 )𝑚−𝑞 ∧ (𝜔𝐹,ff + 𝜔𝐹,bf)𝑛+𝑞

=:
(
𝑚 + 𝑛
𝑛

)
𝑒−𝑛𝑡

(
((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹,bb + 𝜂‡𝑡 )𝑚 ∧ 𝜔𝑛

𝐹,ff + 𝑒−𝑡D𝑡

)
,

(3.32)

and so

(𝜔�𝑡 )𝑚+𝑛(𝑚+𝑛
𝑛

)
𝜔𝑚

can ∧ (𝑒−𝑡𝜔𝐹 )𝑛

=
((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹,bb + 𝜂‡𝑡 )𝑚 ∧ 𝜔𝑛

𝐹,ff + 𝑒−𝑡D𝑡

𝜔𝑚
can ∧ 𝜔𝑛

𝐹

= (1 − 𝑒−𝑡 )𝑚 +
∑

0<𝑝+𝑞�𝑚

𝑚!
𝑝!𝑞!(𝑚 − 𝑝 − 𝑞)!

𝜔𝑝
can𝑒

−𝑞𝑡𝜔𝑞
𝐹,bb (𝜂

‡
𝑡 )𝑚−𝑝−𝑞

𝜔𝑚
can

+ 𝑒−𝑡D𝑡

𝜔𝑚
can ∧ 𝜔𝑛

𝐹

.

(3.33)

Note that the functions

𝜔𝑝
can𝑒

−𝑞𝑡𝜔𝑞
𝐹,bb(𝜂

‡
𝑡 )𝑚−𝑝−𝑞

𝜔𝑚
can

(3.34)

with 𝑞 = 0 are 𝑜(1) and pulled back from B, while when 𝑞 > 0 they are not pulled back from B, but they
are visibly of the form 𝑓𝑡 ,0 +

∑𝑁
𝑖=1 𝑓𝑡 ,𝑖ℎ𝑖 with the same notation as above, where the 𝑓𝑡 ,0, 𝑓𝑡 ,𝑖 converge

smoothly to zero at least as𝑂 (𝑒−𝑞𝑡 ), and the functions ℎ𝑖 have fiberwise average zero and do not depend
on the choice of 𝜂‡𝑡 . An analogous statement holds for

𝑒−𝑡D𝑡

𝜔𝑚
can ∧ 𝜔𝑛

𝐹

, (3.35)
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and if we take the logarithm and use the Taylor expansion of log(1 + 𝑥), this shows that

log
(𝜔�𝑡 )𝑚+𝑛(𝑚+𝑛

𝑛

)
𝜔𝑚

can ∧ (𝑒−𝑡𝜔𝐹 )𝑛
= 𝑓𝑡 ,0 +

𝑁∑
𝑖=1

𝑓𝑡 ,𝑖ℎ𝑖 +𝑂 (𝑒−( 𝑗+1)𝑡 ) (3.36)

for some possibly different functions 𝑓𝑡 ,0, 𝑓𝑡 ,𝑖 , and where the term 𝑂 (𝑒−( 𝑗+1)𝑡 ) is in 𝐶 𝑝
loc for all 𝑝 � 0.

Passing to the check picture, we have

log
(�̌��ℓ )

𝑚+𝑛(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= −𝑛𝑒−𝑡ℓ 𝑡 + Σ∗

ℓ log
((1 − 𝑒−𝑡 )𝜔can + 𝑒−𝑡𝜔𝐹 + 𝜂‡𝑡 )𝑚+𝑛(𝑚+𝑛

𝑛

)
𝜔𝑚

can ∧ (𝑒−𝑡𝜔𝐹 )𝑛
, (3.37)

and so

𝛿
−2 𝑗−𝛼
ℓ log

(�̌��ℓ )
𝑚+𝑛(𝑚+𝑛

𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= 𝛿

−2 𝑗−𝛼
ℓ Σ∗

ℓ

(
𝑓ℓ,0 +

𝑁∑
𝑖=1

𝑓ℓ,𝑖ℎ𝑖

)
+𝑂 (𝛿−2 𝑗−𝛼

ℓ 𝑒−( 𝑗+1)𝑡ℓ ), (3.38)

and 𝛿
−2 𝑗−𝛼
ℓ 𝑒−( 𝑗+1)𝑡ℓ = 𝑜(1) by assumption, namely the LHS of (3.38) satisfies (★), as well as

log
(�̌��ℓ )

𝑚+𝑛(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= 𝑂 (𝑒−𝑡ℓ ) + 𝑜(1)from base. (3.39)

The next step is to show that the quantity

𝛿
−2 𝑗−𝛼
ℓ log

(�̌�♯, [𝜅 ]
ℓ )𝑚+𝑛(𝑚+𝑛

𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= 𝛿

−2 𝑗−𝛼
ℓ log

(�̌��ℓ )
𝑚+𝑛(𝑚+𝑛

𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
+ 𝛿−2 𝑗−𝛼

ℓ log
(�̌�♯, [𝜅 ]

ℓ )𝑚+𝑛

(�̌��ℓ )𝑚+𝑛

(3.40)

also satisfies (★). We have just discussed the first piece, and the second piece equals

𝛿
−2 𝑗−𝛼
ℓ log ���1 +

𝑚+𝑛∑
𝑖=1

(
𝑚 + 𝑛
𝑖

) (�̌�♯ℓ,1,𝑘 + · · · + �̌�♯ℓ, 𝑗−1,𝑘 + �̌�
♯, [1]
ℓ, 𝑗,𝑘 + · · · + �̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 )

𝑖 ∧ (�̌��ℓ )
𝑚+𝑛−𝑖

(�̌��ℓ )𝑚+𝑛
��� , (3.41)

and for the terms with �̌�♯ℓ,1,𝑘 + · · · + �̌�♯ℓ, 𝑗−1,𝑘 + �̌�
♯, [1]
ℓ, 𝑗,𝑘 + · · · + �̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 , we recall from (3.9) and (3.26) that

we have

�̌�♯ℓ,𝑖,𝑘 =
𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̌�𝑡 ,𝑘 ( �̌�
♯
ℓ,𝑖, 𝑝,𝑘 , �̌�𝑖, 𝑝,𝑘 ), �̌�♯, [𝑞]ℓ, 𝑗,𝑘 =

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
𝑖𝜕𝜕�̌�𝑡 ,𝑘 ( �̌�

♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘 , �̌� 𝑗 , 𝑝,𝑘 ), (3.42)

with the bounds (3.11), where the approximate Green operator �̌�𝑡 ,𝑘 is given schematically by

�̌�𝑡 ,𝑘 ( �̌�, �̌�) =
𝑗∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡ℓ 𝑒−𝑟𝑒−𝑡ℓ 𝑡 (Φ̌ 𝜄,𝑟 (�̌�) � D 𝜄 �̌�) (3.43)

by (3.1). Plugging this into (3.41) and arguing as we did above reveals that the quantity in (3.40) satisfies
(★) and that, furthermore,

log
(�̌�♯, [𝜅 ]

ℓ )𝑚+𝑛(𝑚+𝑛
𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
= 𝑂 (𝑒−𝛼0

𝑡ℓ
2 ) + 𝑜(1)from base. (3.44)
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Lastly, to prove that B [𝜅 ]
ℓ satisfies (★), it remains to consider the piece

𝛿
−2 𝑗−𝛼
ℓ

����
𝑗−1∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�
♯
ℓ,𝑖, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯ℓ,𝑖, 𝑝,𝑘 , �̌�ℓ,𝑖, 𝑝,𝑘 ) +
𝜅∑

𝑞=1

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝑞 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝑞 ]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )
���� .

(3.45)

The fact that this term satisfies (★) again follows immediately from (3.43) together with (3.8), which
also give that

𝑗−1∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�
♯
ℓ,𝑖, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯ℓ,𝑖, 𝑝,𝑘 , �̌�ℓ,𝑖, 𝑝,𝑘 ) +
𝜅∑

𝑞=1

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )

= 𝑂 (𝑒−𝛼0
𝑡ℓ
2 ) + 𝑜(1)from base,

(3.46)

and this completes the proof that B [𝜅 ]
ℓ satisfies (★) and that (3.29) holds. �

Now that Lemma 3.3 is established, we can start the first step of the iteration, when 𝜅 = 0 and we need
to select the obstruction functions 𝐺 [1]

𝑗 , 𝑝,𝑘 . To do this, we consider B [0]
ℓ , which by Lemma 3.3 satisfies

(★), and let {ℎ𝑖} be the corresponding functions in its expansion (3.25). Applying the approximate
fiberwise Gram-Schmidt [21, Proposition 3.1] to the functions ℎ𝑖 together with the 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 ,
produces our desired list 𝐺 [1]

𝑗 , 𝑝,𝑘 (on 𝐵𝑟 ×𝑌 , up to shrinking r), so that we may assume that the functions
ℎ𝑖 in (3.25) lie in the fiberwise linear span of the 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 together with the 𝐺 [1]

𝑗 , 𝑝,𝑘 . This
completes the first step (𝜅 = 0).

Next, we consider a subsequent step 𝜅 � 1 of the iteration, so we assume we are given the lists
𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 and 𝐺 [𝑞]

𝑗 , 𝑝,𝑘 , 1 � 𝑞 � 𝜅; hence, we have the function B [𝜅 ]
ℓ in (3.28), and we want to

construct the obstruction functions 𝐺 [𝜅+1]
𝑗 , 𝑝,𝑘 . In order to do this, we must compare B [𝜅 ]

ℓ and B [𝜅−1]
ℓ . We

have

𝛿
2 𝑗+𝛼
ℓ (B [𝜅 ]

ℓ − B [𝜅−1]
ℓ ) = − log

(�̌�♯, [𝜅 ]
ℓ )𝑚+𝑛

(�̌�♯, [𝜅−1]
ℓ )𝑚+𝑛

+
𝑁

[𝜅 ]
𝑗,𝑘∑

𝑝=1
�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )

= − log ���1 +
𝑚+𝑛∑
𝑖=1

(
𝑚 + 𝑛
𝑖

) (�̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 )
𝑖 ∧ (�̌�♯, [𝜅−1]

ℓ )𝑚+𝑛−𝑖

(�̌�♯, [𝜅−1]
ℓ )𝑚+𝑛

���
+
𝑁

[𝜅 ]
𝑗,𝑘∑

𝑝=1
�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 ).

(3.47)

As in [21, (3.75)–(3.76)], for 1 � 𝑖 � 𝑚 + 𝑛, we have

(�̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 )
𝑖 ∧ (�̌�♯, [𝜅−1]

ℓ )𝑚+𝑛−𝑖

(�̌�♯, [𝜅−1]
ℓ )𝑚+𝑛

=
(�̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 )

𝑖 ∧ (�̌�ℓ,can + (Σ∗
ℓ𝜔𝐹 )ff)𝑚+𝑛−𝑖(𝑚+𝑛

𝑛

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛ff
(1 +𝑂 (𝑒−𝛼0

𝑡ℓ
2 ) + 𝑜(1)from base),

(3.48)
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where the 𝑂 (·), 𝑜(·) are in the locally smooth topology. Using (3.43), we can write (for any 1 � 𝑞 � 𝜅)

�̌�♯, [𝑞]ℓ, 𝑗,𝑘 =

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1

𝑗∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡ℓ 𝑒−𝑟𝑒−𝑡ℓ 𝑡 𝑖𝜕𝜕(Φ̌ 𝜄,𝑟 (�̌� [𝑞]

𝑗 , 𝑝,𝑘 ) � D
𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 ). (3.49)

As in [21, (3.80)], we decompose (3.49) schematically as the sum of 6 pieces

�̌�♯, [𝑞]ℓ, 𝑗,𝑘 =

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1

𝑗∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡ℓ 𝑒−𝑟𝑒−𝑡ℓ 𝑡

{
(𝑖𝜕𝜕Φ̌ 𝜄,𝑟 (�̌� [𝑞]

𝑗 , 𝑝,𝑘 ))ff � D
𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘

+ (𝑖𝜕𝜕Φ̌ 𝜄,𝑟 (�̌� [𝑞]
𝑗 , 𝑝,𝑘 ))bf � D 𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 + (𝑖𝜕𝜕Φ̌ 𝜄,𝑟 (�̌� [𝑞]

𝑗 , 𝑝,𝑘 ))bb � D 𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘

+ (𝑖𝜕Φ̌ 𝜄,𝑟 (�̌� [𝑞]
𝑗 , 𝑝,𝑘 ))b � 𝜕D

𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 + (𝑖𝜕Φ̌ 𝜄,𝑟 (�̌� [𝑞]
𝑗 , 𝑝,𝑘 ))f � 𝜕D

𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘

+ Φ̌ 𝜄,𝑟 (�̌� [𝑞]
𝑗 , 𝑝,𝑘 ) � 𝑖𝜕𝜕D

𝜄 �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘

}
=:

𝑗∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

(
I[𝑞]𝜄,𝑟 + · · · + VI[𝑞]𝜄,𝑟

)
,

(3.50)

(which depend on ℓ, 𝑗 , 𝑘 , but we omit this from the notation for simplicity). Observe here that for all
(𝑧, �̌�, 𝑡) ∈ �̌�𝑅𝛿−1

ℓ
, we have

−𝑅2𝑒−𝑡ℓ 𝛿−2
ℓ � 𝑒−𝑡ℓ 𝑡 � 0, (3.51)

where, by assumption, 𝑒−𝑡ℓ 𝛿−2
ℓ → 0, so the term 𝑒−𝑟𝑒

−𝑡ℓ 𝑡 in (3.50) is 1 + 𝑜(1). Now, as in [21, (3.85)–
(3.91)], we see that I[𝑞]0,0 is the dominant term, in the sense that

‖ •[𝑞]𝜄,𝑟 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) � 𝐶𝛿ℓ ‖I[𝑞]0,0 ‖∞,�̌�

𝑅𝛿−1
ℓ
,�̌�ℓ (0) , (3.52)

whenever • ≠ I or (𝜄, 𝑟) ≠ (0, 0). This together with (3.11) implies that

𝑚+𝑛∑
𝑖=1

(
𝑚 + 𝑛
𝑖

) (�̌�♯, [𝑞]ℓ, 𝑗,𝑘 )
𝑖 ∧ (�̌�♯, [𝑞−1]

ℓ )𝑚+𝑛−𝑖

(�̌�♯, [𝑞−1]
ℓ )𝑚+𝑛

=
(𝑚 + 𝑛)(𝑚+𝑛

𝑛

) I[𝑞]0,0 ∧ (�̌�ℓ,can + (Σ∗
ℓ𝜔𝐹 )ff)𝑚+𝑛−1

�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛ff
(1 +𝑂 (𝑒−𝛼0

𝑡ℓ
2 ) + 𝑜(1)from base) + 𝐹 [𝑞]

ℓ ,

(3.53)

where given any 𝑅 > 0, there is a 𝐶 > 0 such that for all ℓ,

‖𝐹 [𝑞]
ℓ ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿𝛼0
ℓ ‖𝐼 [𝑞]0,0 ‖∞,�̌�

𝑅𝛿−1
ℓ
,�̌�ℓ (0) . (3.54)

Relation (3.2) shows that

(𝑚 + 𝑛)(𝑚+𝑛
𝑛

) I[𝑞]0,0 ∧ (�̌�ℓ,can + (Σ∗
ℓ𝜔𝐹 )ff)𝑚+𝑛−1

�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛ff
=

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌� [𝑞]

𝑗 , 𝑝,𝑘 �̌�
♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘 , (3.55)
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while from the definition of 𝐼 [𝑞]0,0 and (3.8), we have

‖𝐼 [𝑞]0,0 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) � 𝐶

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
‖ �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿𝛼0
ℓ , (3.56)

while the argument in [21, (3.83)] gives the reverse bound

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
‖ �̌�♯, [𝑞]ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶‖𝐼 [𝑞]0,0 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) , (3.57)

and (3.53), (3.54), (3.55), (3.56) imply in particular that������𝑚+𝑛∑
𝑖=1

(
𝑚 + 𝑛
𝑖

) (�̌�♯, [𝑞]ℓ, 𝑗,𝑘 )
𝑖 ∧ (�̌�♯, [𝑞−1]

ℓ )𝑚+𝑛−𝑖

(�̌�♯, [𝑞−1]
ℓ )𝑚+𝑛

������
∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶‖𝐼 [𝑞]0,0 ‖∞,�̌�
𝑅𝛿−1

ℓ
,�̌�ℓ (0) � 𝐶𝛿

𝛼0
ℓ . (3.58)

From (3.53), (3.54), (3.55), (3.58) and the Taylor expansion of log(1 + 𝑥), we see that

log ���1 +
𝑚+𝑛∑
𝑖=1

(
𝑚 + 𝑛
𝑖

) (�̌�♯, [𝜅 ]ℓ, 𝑗,𝑘 )
𝑖 ∧ (�̌�♯, [𝜅−1]

ℓ )𝑚+𝑛−𝑖

(�̌�♯, [𝜅−1]
ℓ )𝑚+𝑛

��� =
����
𝑁

[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌� [𝑞]

𝑗 , 𝑝,𝑘 �̌�
♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘

���� (1 + 𝑜(1)from base) + 𝐹 [𝑞]
ℓ ,

(3.59)

where 𝐹 [𝑞]
ℓ satisfies (3.54).

This deals with the term on the second line of (3.47). As for the last line, we can use (3.43) to expand

�̌�𝑡 ,𝑘 (𝜕𝑡 �̌�
♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )

=
𝑗∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡ℓ 𝑒−𝑟𝑒−𝑡ℓ 𝑡 (Φ̌ 𝜄,𝑟 (�̌�ℓ, 𝑗, 𝑝,𝑘 ) � D 𝜄 (𝜕𝑡 �̌�

♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 )),
(3.60)

and applying the obvious parabolic extension of [21, Lemma 3.10] to balls of radius 𝑅𝛿−1
ℓ gives for 𝜄 � 0,

‖𝔇 𝜄 �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�
𝑅𝛿−1

ℓ

� 𝐶𝛿 𝜄ℓ ‖ �̌�
♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�

𝑅𝛿−1
ℓ

, (3.61)

and so

‖D 𝜄 (𝜕𝑡 �̌�
♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 )‖∞,�̌�
𝑅𝛿−1

ℓ

� 𝐶𝛿2
ℓ ‖𝔇

𝜄 �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�
𝑅𝛿−1

ℓ

� 𝐶𝛿 𝜄+2
ℓ ‖ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 ‖∞,�̌�

𝑅𝛿−1
ℓ

.

(3.62)

Inserting (3.62) into (3.60), and using also (3.57) and the fact that 𝑒−𝑟𝑒−𝑡ℓ 𝑡 = 1 + 𝑜(1) from (3.51), we
see that ����̌�𝑡 ,𝑘 (𝜕𝑡 �̌�

♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯, [𝜅 ]ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗, 𝑝,𝑘 )
���
∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿2
ℓ ‖𝐼

[𝑞]
0,0 ‖∞,�̌�

𝑅𝛿−1
ℓ
,�̌�ℓ (0) , (3.63)
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and combining this with (3.47) and (3.59), we finally obtain

B [𝜅 ]
ℓ = B [𝜅−1]

ℓ − 𝛿
−2 𝑗−𝛼
ℓ

����
𝑁 [𝜅 ]
𝑗,𝑘∑

𝑝=1
�̌� [𝜅 ]

𝑗 , 𝑝,𝑘 �̌�
♯, [𝜅 ]
ℓ, 𝑗, 𝑝,𝑘

���� (1 + 𝑜(1)from base) + 𝛿−2 𝑗−𝛼
ℓ 𝐸 [𝜅 ]

ℓ , (3.64)

where 𝐸 [𝜅 ]
ℓ satisfies

‖𝐸 [𝜅 ]
ℓ ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿𝛼0
ℓ ‖𝐼 [𝜅 ]0,0 ‖∞,�̌�

𝑅𝛿−1
ℓ
,�̌�ℓ (0) . (3.65)

Now, from Lemma 3.3, we know that both B [𝜅 ]
ℓ and B [𝜅−1]

ℓ satisfy (★), and from (3.64), we see that so
does 𝛿−2 𝑗−𝛼

ℓ 𝐸 [𝜅 ]
ℓ , and so it has an expansion of the form (3.25). As in [21], we apply the approximate

fiberwise Gram-Schmidt [21, Proposition 3.1] to the functions ℎ𝑖 together with the𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 and
𝐺 [𝑞]

𝑗 , 𝑝,𝑘 , 1 � 𝑞 � 𝜅; this produces our desired list 𝐺 [𝜅+1]
𝑗 , 𝑝,𝑘 (on 𝐵𝑟 × 𝑌 , up to shrinking r), so that we may

assume that the functions ℎ𝑖 in (3.25) lie in the fiberwise linear span of the 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 together
with the 𝐺 [𝑞]

𝑗 , 𝑝,𝑘 , 1 � 𝑞 � 𝜅 + 1. This completes the step from 𝜅 to 𝜅 + 1 in our iterative procedure.
Iterating (3.64) shows that for every 𝜅 � 1, we have

B [𝜅 ]
ℓ = B [0]

ℓ − 𝛿
−2 𝑗−𝛼
ℓ

����
𝜅∑

𝑞=1

𝑁
[𝑞 ]
𝑗,𝑘∑

𝑝=1
�̌� [𝑞]

𝑗 , 𝑝,𝑘 �̌�
♯, [𝑞]
ℓ, 𝑗, 𝑝,𝑘

���� (1 + 𝑜(1)from base) + 𝛿−2 𝑗−𝛼
ℓ

𝜅∑
𝑞=1

𝐸 [𝑞]
ℓ , (3.66)

with

‖𝐸 [𝑞]
ℓ ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿𝛼0
ℓ ‖𝐼 [𝑞]0,0 ‖∞,�̌�

𝑅𝛿−1
ℓ
,�̌�ℓ (0) (3.67)

for 1 � 𝑞 � 𝜅, and also

‖B [0]
ℓ ‖∞,�̌�

𝑅𝛿−1
ℓ

� 𝐶𝛿−2 𝑗−𝛼
ℓ , (3.68)

which follows immediately from (3.29).
We can now repeat the iterative step 𝜅 := � 2 𝑗+𝛼

𝛼0
� and then we stop, so the last set of functions which

are added to the list are the 𝐺 [𝜅+1]
𝑗 , 𝑝,𝑘 . Our choice of 𝜅 is made so that

𝛿
−2 𝑗−𝛼
ℓ 𝛿 (𝜅+1)𝛼0

ℓ → 0. (3.69)

The resulting 𝐺 [𝑞]
𝑗 , 𝑝,𝑘 with 1 � 𝑞 � 𝜅 + 1 are then renamed simply 𝐺 𝑗 , 𝑝,𝑘 . These, together with the

𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 < 𝑗 , are the obstruction functions that we seek. It remains to show that the statement of
the Selection Theorem 3.1 holds with this choice of obstruction functions. By definition, the quantity in
(3.15) equals B [𝜅+1]

ℓ (up to the term with Σ∗
ℓ𝐵

♯
ℓ , which we can ignore since it can be absorbed into 𝑓ℓ,0

in (3.19)). We know that B [𝜅+1]
ℓ satisfies (★) thanks to Lemma 3.3. As mentioned earlier, because of

this we know that if it converges locally uniformly, then it converges locally smoothly, which is the last
claim in the Selection Theorem 3.1. The last thing to prove is that if B [𝜅+1]

ℓ converges locally uniformly,
then (3.19) holds, and thanks to (3.66) (with 𝜅 = 𝜅 + 1) and to our choice of obstruction functions, it
suffices to show that 𝛿−2 𝑗−𝛼

ℓ 𝐸 [𝜅+1]
ℓ is 𝑜(1) in the locally smooth topology. Since this term satisfies (★)

(as mentioned earlier), it suffices to show that it is 𝑜(1) in the 𝐿∞
loc topology, and this follows from (3.66),

(3.67), (3.68), (3.69) and our main assumption that B [𝜅+1]
ℓ = 𝑂 (1) in 𝐿∞

loc, by using the same iteration
argument as [21, (3.101)–(3.112)]. This completes the proof of Theorem 3.1. �
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4. Asymptotic expansion

In this section, we will prove our main technical result, Theorem 4.2, which gives an asymptotic
expansion for the metrics 𝜔•(𝑡) which evolve under the Kähler-Ricci flow (1.1). Recall that 𝜔•(𝑡) =
𝜔♮ (𝑡) + 𝑖𝜕𝜕𝜑(𝑡), where the potentials 𝜑(𝑡) solve the parabolic complex Monge-Ampère equation (1.6),
which we can write as

(𝜔•(𝑡))𝑚+𝑛 = (𝜔♮ (𝑡) + 𝑖𝜕𝜕𝜑(𝑡))𝑚+𝑛 = 𝑒𝜑 (𝑡)+ �𝜑 (𝑡)−𝑛𝑡
(
𝑚 + 𝑛
𝑛

)
𝜔𝑚

can ∧ 𝜔𝑛
𝐹 . (4.1)

4.1. Known estimates

First, let us recall a few of the known estimates for the Kähler-Ricci flow (1.1) and its equivalent
formulation (1.6). There are many other facts that are known about this flow (see, for example, [39, §5]
or [42, §7] for overviews), but the following are the only ones that we will need:
Lemma 4.1. Assume the setup in Section 1.2. Then there exists 𝐶 > 0 such that on 𝐵 ×𝑌 × [0, +∞), we
have
(i) 𝐶−1𝜔♮ (𝑡) � 𝜔•(𝑡) � 𝐶𝜔♮ (𝑡),

(ii) |𝜑(𝑡) | + | �𝜑(𝑡) | → 0 as 𝑡 → +∞,
(iii) |𝜔•(𝑡) − 𝜔can |𝑔• (𝑡) → 0 as 𝑡 → +∞,
(iv) |𝑅(𝑔•(𝑡)) | � 𝐶,
(v) | �𝜑(𝑡) + �𝜑(𝑡) | � 𝐶,

(vi) |∇(𝜑(𝑡) + �𝜑(𝑡)) |𝑔• (𝑡) � 𝐶.
Proof. Item (i) is proved in [12] (and is an adaptation of [38]; see also [31] for the case 𝑚 = 𝑛 = 1).
Item (ii) is proved in [43, Lemma 3.1], and item (iii) in [43, Theorem 1.2] (see especially the very end
of its proof on p.685). Item (iv) is the main theorem of [33], and this implies (v) thanks to the relation
[39, p.345]

�𝜑(𝑡) + �𝜑(𝑡) = −𝑅(𝑔•(𝑡)) − 𝑚. (4.2)

To prove (vi), we use [33, Proposition 3.1] which gives����∇ log
𝑒𝑛𝑡 (𝜔•(𝑡))𝑚+𝑛

Ω

����
𝑔• (𝑡)

� 𝐶, (4.3)

where Ω is a smooth positive volume form on X such that −𝑖𝜕𝜕 logΩ = −𝜔𝐵 is the pullback of a Kähler
form on B. However, by [39, Proposition 5.9], we have −𝑖𝜕𝜕 log(𝜔𝑚

can ∧ 𝜔𝑛
𝐹 ) = −𝜔can, so on 𝐵 ×𝑌 , we

have

𝑖𝜕𝜕 log
(𝑚+𝑛

𝑛

)
𝜔𝑚

can ∧ 𝜔𝑛
𝐹

Ω
= −𝜔𝐵 + 𝜔can, (4.4)

which is a (1, 1)-form pulled back from B; hence, the logarithm of the ratio of these two volume forms
restricted to the fibers {𝑧} × 𝑌 is pluriharmonic, hence constant. Thus,(

𝑚 + 𝑛
𝑛

)
𝜔𝑚

can ∧ 𝜔𝑛
𝐹 = 𝑒𝐺Ω (4.5)

for some smooth function G on B, and so using (4.1) and (4.3), we get

|∇(𝜑(𝑡) + �𝜑(𝑡)) |𝑔• (𝑡) =
����∇ (

log
𝑒𝑛𝑡 (𝜔•(𝑡))𝑚+𝑛

Ω
− 𝐺

)����
𝑔• (𝑡)

� 𝐶 + |∇𝐺 |𝑔• (𝑡) � 𝐶, (4.6)

as desired. �
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4.2. Statement of the asymptotic expansion

Given any 𝑗 ∈ N, 0 � 2 𝑗 � 𝑘 and 𝑧 ∈ 𝐵, during the course of the proof of Theorem 4.2 below, we will
work by induction on j. By applying repeatedly the Selection Theorem 3.1, and consequently shrinking
our ball at each step, we will obtain in particular a collection 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 of smooth
function on 𝐵 × 𝑌 with fiberwise average zero, which are fiberwise 𝐿2 orthonormal. For each such
𝐺𝑖, 𝑝,𝑘 and 𝑡 > 0, as in [21, (3.6)], we define 𝑃𝑡 ,𝑖, 𝑝,𝑘 = 𝑃𝑡 ,𝐺𝑖,𝑝,𝑘 , where

𝑃𝑡 ,𝐻 (𝛼) = 𝑛(pr𝐵)∗(𝐻𝛼 ∧ 𝜔𝑛−1
𝐹 ) + 𝑒−𝑡 tr𝜔can (pr𝐵)∗(𝐻𝛼 ∧ 𝜔𝑛

𝐹 ), (4.7)

for any (1, 1) form 𝛼 on 𝐵 × 𝑌 and H with
∫
{𝑧 }×𝑌 𝐻𝜔𝑛

𝐹 = 0 for all 𝑧 ∈ C𝑚. Throughout the proof, we
will fix a reference shrinking product metric 𝑔(𝑡) = 𝑔C𝑚 + 𝑒−𝑡𝑔𝑌 ,𝑧0 . It will only be used to measure
the norms and distance but not the connection, and thus the exact choice of 𝑧0 is unimportant thanks to
(2.5) (we will usually take 𝑧0 = 0). We will also need the t-dependent approximate Green operator𝔊𝑡 ,𝑘

defined in [21, §3.2], to which we refer for its basic properties.

Theorem 4.2. For all 𝑗 , 𝑘 ∈ N, 0 � 2 𝑗 � 𝑘 , 𝑧 ∈ 𝐵, there exists 𝐵′ = 𝐵C𝑚 (𝑧, 𝑅) � 𝐵 and functions
𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 as above, such that on 𝐵′ × 𝑌 , we have a decomposition

𝜔•(𝑡) = 𝜔♮ (𝑡) + 𝛾0 (𝑡) + 𝛾1,𝑘 (𝑡) + · · · + 𝛾 𝑗 ,𝑘 (𝑡) + 𝜂 𝑗 ,𝑘 (𝑡), (4.8)

with the following properties. For all 𝛼 ∈ (0, 1) and 𝑟 < 𝑅, there is 𝐶 > 0 such that for all 𝑡 � 0,

‖𝔇 𝜄𝜂 𝑗 ,𝑘 ‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔 (𝑡) � 𝐶𝑒
𝜄−2 𝑗−𝛼

2 𝑡 for all 0 � 𝜄 � 2 𝑗 , (4.9)

[𝔇2 𝑗𝜂 𝑗 ,𝑘 ]𝛼,𝛼/2,𝑄𝑟 (𝑧,𝑡) ,𝑔 (𝑡) � 𝐶, (4.10)

where 𝑄𝑟 (𝑧, 𝑡) = (𝐵C𝑚 (𝑧, 𝑟) × 𝑌 ) × [𝑡 − 𝑟2, 𝑡]. Furthermore, we have

𝛾0 (𝑡) = 𝑖𝜕𝜕𝜑, 𝛾𝑖,𝑘 (𝑡) =
𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕𝔊𝑡 ,𝑘
(
𝐴𝑖, 𝑝,𝑘 (𝑡), 𝐺𝑖, 𝑝,𝑘

)
, (4.11)

for 1 � 𝑖 � 𝑗 where 𝐴𝑖, 𝑝,𝑘 (𝑡) = 𝑃𝑡 ,𝑖, 𝑝,𝑘 (𝜂𝑖−1,𝑘 (𝑡)) are functions from the base, and we have

‖𝔇 𝜄𝛾0‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 = 𝑜(1) for all 0 � 𝜄 � 2 𝑗 , (4.12)

[𝔇2 𝑗𝛾0]𝛼,𝛼/2,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 � 𝐶, (4.13)

‖𝔇 𝜄 (𝜕𝑡𝜑 + 𝜑)‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 = 𝑜(1) for all 0 � 𝜄 � 2 𝑗 , (4.14)

[𝔇2 𝑗 (𝜕𝑡𝜑 + 𝜑)]𝛼,𝛼/2,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 � 𝐶, (4.15)

‖𝔇 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 � 𝐶𝑒
−(2𝑖+𝛼) (1− 𝜄

2 𝑗+2+𝛼 )
𝑡
2 , for all 0 � 𝜄 � 2 𝑗 + 2, 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 ,

(4.16)

‖𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔C𝑚 � 𝐶𝑒
(
− 𝛼(2𝑖+𝛼)

𝜄+𝛼 (1− 2 𝑗+2
2 𝑗+2+𝛼 )+

𝜄2
𝜄+𝛼

)
𝑡
2 , for all 0 � 𝜄 � 2𝑘, 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 ,

(4.17)

sup
(𝑥,𝑠) , (𝑥′,𝑠′) ∈𝑄𝑟 (𝑧,𝑡)

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝑒− 𝜄
𝑡
2

(
|𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 (𝑥, 𝑠) − P𝑥′𝑥 (𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 (𝑥 ′, 𝑠′)) |𝑔 (𝑡)(

𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) + |𝑠 − 𝑠′| 1
2

)𝛼 )
� 𝐶.

(4.18)
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Remark 4.3. Key differences between Theorem 4.2 and [21, Theorem 4.1] are the estimates in (4.14),
(4.15). These will be crucial for us in the proof, to deal with the term 𝜕𝑡𝜑 + 𝜑 in the complex
Monge-Ampère equation (4.1). Another difference is that the bounds in (4.16) are worse than those in
[21, (4.12)], due to the fact that in this paper, we can only consider even order Hölder norms.

4.3. Setup of induction scheme

We start with a given 𝑧 ∈ 𝐵. For any given 𝑘 ∈ N, we prove the Theorem by induction on j. We treat
both the base case and induction case together, although they will have to be considered separately at
certain steps of the proof. Given k with 0 � 2 𝑗 � 𝑘 , if 𝑗 > 0, we assume Theorem 4.2 holds at the
( 𝑗 − 1)-th step, so there exists 𝐵C𝑚 (𝑧, 𝑟) ⊂ 𝐵 such that we already have the decomposition of 𝜔•(𝑡) at
the ( 𝑗 − 1)-th step satisfying the desired estimates on 𝐵C𝑚 (𝑧, 𝑟) × 𝑌 × [0, +∞). We aim to refine the
decomposition at the j-th step as well as define it for 𝑗 = 0.

As mentioned in the Introduction, we can write 𝜔• = 𝜔♮ + 𝑖𝜕𝜕𝜑. When 𝑗 = 0, we take 𝛾0 = 𝑖𝜕𝜕𝜑 and
𝜂0,𝑘 = 𝑖𝜕𝜕 (𝜑 − 𝜑) so that 𝜔• = 𝜔♮ + 𝛾0 + 𝜂0,𝑘 . If 𝑗 � 1, suppose we already have the decomposition

𝜔• = 𝜔♮ + 𝛾0 + 𝛾1,𝑘 + · · · + 𝛾 𝑗−1,𝑘 + 𝜂 𝑗−1,𝑘 (4.19)

on (𝐵C𝑚 (𝑧, 𝑟) × 𝑌 ) × [0, +∞). We further decompose 𝜂 𝑗−1,𝑘 into 𝛾 𝑗 ,𝑘 + 𝜂 𝑗 ,𝑘 as follows. When 𝑗 > 1,
up to shrinking 𝑟 > 0, we can assume that we already have selected smooth functions 𝐺𝑖, 𝑝,𝑘 , 1 � 𝑖 �
𝑗 − 1, 1 � 𝑝 � 𝑁𝑖,𝑘 on 𝐵C𝑚 (𝑧, 𝑟) × 𝑌 , which are fiberwise 𝐿2 orthonormal and have fiberwise average
zero. When 𝑗 � 1, we then apply the Selection Theorem 3.1 which up to shrinking r further, gives us
a list of functions 𝐺 𝑗 , 𝑝,𝑘 , 1 � 𝑝 � 𝑁 𝑗 ,𝑘 on 𝐵C𝑚 (𝑧, 𝑟) × 𝑌 , which are fiberwise 𝐿2 orthonormal and
have fiberwise average zero, so that the conclusion of the Selection Theorem 3.1 holds for the collection
𝐺𝑖, 𝑝,𝑘 , 1 � 𝑝 � 𝑁𝑖,𝑘 , 1 � 𝑖 � 𝑗 . With this collection of function, we define

𝐴 𝑗 , 𝑝,𝑘 (𝑡) := 𝑃𝑡 , 𝑗 , 𝑝,𝑘 (𝜂 𝑗−1,𝑘 (𝑡)), (4.20)

where P is given by (4.7) and

𝛾 𝑗 ,𝑘 :=
𝑁 𝑗,𝑘∑
𝑝=1

𝑖𝜕𝜕𝔊𝑡 ,𝑘 (𝐴 𝑗 , 𝑝,𝑘 , 𝐺 𝑗 , 𝑝,𝑘 ), (4.21)

where 𝔊𝑡 ,𝑘 is defined in [21, §3.2]. Finally, we define 𝜂 𝑗 ,𝑘 := 𝜂 𝑗−1,𝑘 − 𝛾 𝑗 ,𝑘 so that

𝜔• = 𝜔♮ + 𝛾0 + 𝛾1,𝑘 + · · · + 𝛾 𝑗 ,𝑘 + 𝜂 𝑗 ,𝑘 (4.22)

on 𝐵C𝑚 (𝑧, 𝑟) ×𝑌 × [0, +∞). For ease of notation, by scaling and translation of our coordinates, we may
assume without loss that we have this decomposition 𝐵C𝑚 (𝑧, 𝑟) = 𝐵C𝑚 (1) = 𝐵.

4.3.1. The base case of the induction 𝒋 = 0
The base case of the induction, where 𝑗 = 0, needs to be treated separately, and although the overall
scheme of proof is the same as when 𝑗 � 1, there will be some crucial differences.

First of all, let us examine the estimates that we need to prove in order to establish Theorem 4.2
for 𝑗 = 0. The estimates (4.16), (4.17), (4.18) are vacuous by definition. By Lemma 4.1 (iii), we have
that ‖𝑖𝜕𝜕𝜑‖∞,𝐵×𝑌×[𝑡−1,𝑡 ],𝑔 (𝑡) = 𝑜(1) as 𝑡 → +∞, and the fiber integration argument in [38, p. 436]
then gives ‖𝛾0‖∞,𝐵×[𝑡−1,𝑡 ],𝑔C𝑚 = 𝑜(1) as well, which implies (4.12). Similarly, Lemma 4.1 (ii) implies
that ‖𝜕𝑡𝜑 + 𝜑‖∞,𝐵×𝑌×[𝑡−1,𝑡 ] = 𝑜(1), and taking fiberwise average, this easily implies that ‖𝜕𝑡𝜑 +
𝜑‖∞,𝐵×[𝑡−1,𝑡 ] = 𝑜(1) too, which implies (4.14).
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Next, using the bounds ‖𝜕2
𝑡 𝜑 + 𝜕𝑡𝜑‖∞,𝐵×𝑌×[𝑡−1,𝑡 ] � 𝐶 and ‖∇(𝜕𝑡𝜑 + 𝜑)‖∞,𝐵×𝑌×[𝑡−1,𝑡 ],𝑔 (𝑡) � 𝐶 from

Lemma 4.1 (v), (vi), which together with the 𝐿∞ bound for 𝜕𝑡𝜑 + 𝜑 imply the same bounds for the fiber
average

‖𝜕2
𝑡 𝜑 + 𝜕𝑡𝜑‖∞,𝐵×[𝑡−1,𝑡 ] � 𝐶, ‖∇(𝜕𝑡𝜑 + 𝜑)‖∞,𝐵×[𝑡−1,𝑡 ],𝑔C𝑚 � 𝐶, (4.23)

we can bound for any 𝑥, 𝑥 ′ ∈ 𝐵 and 𝑡 � 0 and 𝑠 ∈ [𝑡 − 1, 𝑡],

| (𝜕𝑡𝜑 + 𝜑) (𝑥, 𝑡) − (𝜕𝑡𝜑 + 𝜑) (𝑥 ′, 𝑠) | � 𝐶 (|𝑥 − 𝑥 ′ | + |𝑡 − 𝑠 |) � 𝐶 (|𝑥 − 𝑥 ′ | + |𝑡 − 𝑠 |
1
2 )𝛼, (4.24)

which gives

[𝜕𝑡𝜑 + 𝜑]𝛼,𝛼/2,𝐵×[𝑡−1,𝑡 ],𝑔C𝑚 � 𝐶, (4.25)

which implies (4.15).
Thus, when 𝑗 = 0, it suffices to establish (4.9), (4.10) and (4.13). The final claim we will need is that

if we suppose we have proved that for all 𝑡 � 0 we have

[𝑖𝜕𝜕𝜑]𝛼,𝛼/2,𝑄𝑟 (𝑧,𝑡) ,𝑔 (𝑡) � 𝐶, (4.26)

where 𝑄𝑟 (𝑧, 𝑡) is as in the statement of Theorem 4.2, then the estimates (4.9), (4.10) and (4.13) will all
hold. To prove this claim, we use the following ‘non-cancellation’ inequality

[𝑖𝜕𝜕𝜑]𝛼,𝛼/2,𝐵C𝑚 (𝑧,𝑟 )×[𝑡−𝑟2 ,𝑡 ],𝑔C𝑚 � 𝐶 [𝑖𝜕𝜕𝜑]𝛼,𝛼/2,base,𝑄𝑟 (𝑧,𝑡) ,𝑔𝑋 + 𝐶‖𝑖𝜕𝜕𝜑‖∞,𝑄𝑟 (𝑧,𝑡) ,𝑔𝑋 , (4.27)

which is straightforward to prove using [21, (4.215)], except that here there is no stretching involved.
Plugging (4.26) and Lemma 4.1 (iii) into (4.27) gives

[𝑖𝜕𝜕𝜑]𝛼,𝛼/2,𝐵C𝑚 (𝑧,𝑟 )×[𝑡−𝑟2 ,𝑡 ],𝑔C𝑚 � 𝐶, (4.28)

which is exactly (4.13), and recalling that 𝜂0,𝑘 = 𝑖𝜕𝜕𝜑 − 𝑖𝜕𝜕𝜑, we can use (4.26), (4.28), the triangle
inequality and the boundedness of P to estimate

[𝜂0,𝑘 ]𝛼,𝛼/2,𝑄𝑟 (𝑧,𝑡) ,𝑔 (𝑡) � 𝐶, (4.29)

which proves (4.10). Lastly, (4.9) follows from this and Proposition 2.6, using that the potential 𝜑 − 𝜑
of 𝜂0,𝑘 has fiberwise average zero. This completes the proof of the claim and shows that in order to
establish Theorem 4.2 for 𝑗 = 0, it suffices to prove the single estimate (4.26).

4.3.2. Estimates from induction hypothesis
Suppose 𝑗 � 1 and the conclusion holds at the ( 𝑗 − 1)-th step. We first observe that by [21, (4.16)], the
operator 𝑃𝑡 , 𝑗 , 𝑝,𝑘 satisfies

‖𝑃𝑡 , 𝑗 , 𝑝,𝑘 (𝛼)‖∞,𝐵 � 𝐶𝑒−𝑡 ‖𝛼‖∞,𝐵×𝑌 ,𝑔 (𝑡) (4.30)

for any (1, 1) form 𝛼 on the total space and 𝑡 � 0. In particular, we can put 𝛼 = 𝜂𝑖−1,𝑘 (𝑡) for 𝑡 � 0 and
1 � 𝑖 � 𝑗 and use also (4.9) to see that

‖𝐴𝑖, 𝑝,𝑘 ‖∞,𝐵×[𝑡−1,𝑡 ] � 𝐶𝑒
−𝑡 ‖𝜂𝑖−1,𝑘 ‖∞,𝐵×[𝑡−1,𝑡 ] � 𝐶𝛽𝑒

−(𝑖+𝛽/2)𝑡 (4.31)

for all 𝛽 ∈ (0, 1), 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 and 𝑡 � 0.
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4.3.3. Reduction to estimating the Hölder seminorms, when 𝒋 � 1
Suppose again that 𝑗 � 1 and fix a real number 𝛼 ∈ (0, 1). We first show that (4.9), (4.12), (4.14), (4.16)
and (4.17) on 𝐵C𝑚 (𝜌) ×𝑌 × [0, +∞) (for some 𝜌 < 1) would follow immediately once we establish the
Hölder seminorm bounds (4.10), (4.13), (4.15) and (4.18) on a slightly larger domain.

We first address (4.9) and (4.12). Since the potential of 𝜂 𝑗 ,𝑘 has fiberwise average zero, (4.9)
follows directly from Proposition 2.6 and (4.10). Next, as in Section 4.3.1, we observe that the estimate
in Lemma 4.1 (iii) implies that ‖𝛾0‖∞,𝐵×[𝑡−1,𝑡 ],𝑔C𝑚 = 𝑜(1). Then, (4.12) follows by interpolating
between this and (4.13) using Proposition 2.3. Similarly, the estimate in Lemma 4.1 (ii) implies that
‖𝜕𝑡𝜑 + 𝜑‖∞,𝐵×[𝑡−1,𝑡 ] = 𝑜(1), and interpolating between this and (4.15) via Proposition 2.3, we obtain
(4.14). The remaining task is to show (4.16) and (4.17). By (4.18), (4.31), we can interpolate from
𝑄𝜌 (0, 𝑡) to 𝑄𝑅 (0, 𝑡) (𝜌 < 𝑅 < 1) using Proposition 2.3 and get

2 𝑗+2∑
𝜄=1

(𝑅 − 𝜌) 𝜄‖𝔇 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝜌 (0,𝑡) ,𝑔 (𝑡) � 𝐶𝑘 (𝑅 − 𝜌)2 𝑗+2+𝛼 + 𝐶𝑒−(𝑖+𝛼/2)𝑡 . (4.32)

By choosing

𝑅 − 𝜌 ≈ 𝑒−
2𝑖+𝛼

2 𝑗+2+𝛼
𝑡
2 , (4.33)

(which is small), we see that for each 1 � 𝜄 � 2 𝑗 + 2,

‖𝔇 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝜌 (0,𝑡) ,𝑔 (𝑡) � 𝐶𝑒
−(2𝑖+𝛼) (1− 𝜄

2 𝑗+2+𝛼 )
𝑡
2 , (4.34)

which is (4.16). Finally for (4.17), by interpolating (4.16) (with 𝜄 = 2 𝑗 + 2) with (4.18) using
Proposition 2.3, we obtain

(𝑅 − 𝜌) 𝜄‖𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝜌 (0,𝑡) ,𝑔 (𝑡) � 𝐶 (𝑅 − 𝜌) 𝜄+𝛼𝑒 𝜄
𝑡
2 + 𝐶𝑒−(2𝑖+𝛼) (1−

𝜄
2 𝑗+2+𝛼 )

𝑡
2 . (4.35)

By choosing

𝑅 − 𝜌 ≈ 𝑒
−
(
(2𝑖+𝛼) (1− 𝜄

2 𝑗+2+𝛼 )+ 𝜄
)

𝑡
2( 𝜄+𝛼) , (4.36)

we arrive at

‖𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 ‖∞,𝑄𝜌 (0,𝑡) ,𝑔 (𝑡) � 𝐶𝑒
(
− 𝛼(2𝑖+𝛼)

𝜄+𝛼 (1− 2 𝑗+2
2 𝑗+2+𝛼 )+

𝜄2
𝜄+𝛼

)
𝑡
2 . (4.37)

This shows (4.17). Thus, to prove Theorem 4.2, it suffices to prove (4.26) when 𝑗 = 0, and to prove
(4.10), (4.13), (4.15) and (4.18) when 𝑗 � 1.

4.4. Setup of primary blowup quantity

To this end, we denote

𝜓 𝑗 ,𝑘 := 𝜑 − 𝜑 −
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝔊𝑡 ,𝑘
(
𝐴𝑖, 𝑝,𝑘 , 𝐺𝑖, 𝑝,𝑘

)
, (4.38)

which by definition satisfies 𝜂 𝑗 ,𝑘 = 𝑖𝜕𝜕𝜓 𝑗 ,𝑘 . Of course, when 𝑗 = 0, we have by definition 𝜓0,𝑘 = 𝜑−𝜑.
For 𝑥 = (𝑧, 𝑦), 𝑥 ′ = (𝑧′, 𝑦′) ∈ 𝐵 ×𝑌 which are either horizontally or vertically joined and 0 < 𝑡 ′ < 𝑡, we
consider the quantities
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H0(𝑥, 𝑥 ′, 𝑡, 𝑡 ′) =
|𝑖𝜕𝜕𝜑(𝑥, 𝑡) − P𝑥′𝑥𝑖𝜕𝜕𝜑(𝑥 ′, 𝑡 ′) |𝑔 (𝑡)

(𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) +
√
𝑡 − 𝑡 ′)𝛼

, (4.39)

and for 𝑗 � 1,

H 𝑗 (𝑥, 𝑥 ′, 𝑡, 𝑡 ′) =
|𝔇2 𝑗𝑖𝜕𝜕𝜑(𝑥, 𝑡) − P𝑥′𝑥𝔇2 𝑗𝑖𝜕𝜕𝜑(𝑥 ′, 𝑡 ′) |𝑔 (𝑡)

(𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) +
√
𝑡 − 𝑡 ′)𝛼

+
|𝔇2 𝑗 (𝜕𝑡𝜑 + 𝜑) (𝑥, 𝑡) − P𝑥′𝑥𝔇2 𝑗 (𝜕𝑡𝜑 + 𝜑) (𝑥 ′, 𝑡 ′) |𝑔 (𝑡)

(𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) +
√
𝑡 − 𝑡 ′)𝛼

+
|𝔇2 𝑗+2𝜓 𝑗 ,𝑘 (𝑥, 𝑡) − P𝑥′𝑥𝔇2 𝑗+2𝜓 𝑗 ,𝑘 (𝑥 ′, 𝑡 ′) |𝑔 (𝑡)

(𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) +
√
𝑡 − 𝑡 ′)𝛼

+
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝑒− 𝜄
𝑡
2

(
|𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 (𝑥, 𝑡) − P𝑥′𝑥 (𝔇2 𝑗+2+ 𝜄𝐴𝑖, 𝑝,𝑘 (𝑥 ′, 𝑡 ′)) |𝑔 (𝑡)

(𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) +
√
𝑡 − 𝑡 ′)𝛼

)
(4.40)

as well as

D 𝑗 (𝑥, 𝑥 ′, 𝑡) = sup
𝑡′ ∈ [𝑡−1,𝑡 ]

H 𝑗 (𝑥, 𝑥 ′, 𝑡, 𝑡 ′), 𝑗 � 0. (4.41)

For each 𝑥 = (𝑧, 𝑦) ∈ 𝐵 × 𝑌 and 𝑡 � 0, we define the blowup quantity

𝜇 𝑗 (𝑥, 𝑡) = |1 − |𝑧 | |2 𝑗+𝛼 supD 𝑗 (𝑥, 𝑥 ′, 𝑡), (4.42)

where the sup is taken over all 𝑥 ′ = (𝑧′, 𝑦′) ∈ 𝐵×𝑌 with |𝑧′ − 𝑧 | < 1
4 | |𝑧 | − 1| and 𝑥 ′ is either horizontally

or vertically joined with x. We want to show that there is 𝐶 > 0 such that for all 𝑡 � 0,

sup
𝐵×𝑌

𝜇 𝑗 (𝑥, 𝑡) � 𝐶. (4.43)

Since 𝑔(𝑡) is uniformly comparable to 𝑔(𝑠) if |𝑡 − 𝑠 | < 1, a bound on 𝜇 𝑗 implies (4.26) when 𝑗 = 0, and
implies (4.10), (4.13), (4.15) and (4.18) when 𝑗 � 1, and would thus conclude the proof of Theorem 4.2.

Observe that the quantity H0 is closer in spirit to the one used in our earlier works [20, (5.7)] and
[4, (3.10)] (which dealt only with the case 𝑗 = 0), rather than the one used in [21, (4.29)] (which dealt
with all 𝑗 � 0 at once).

We now setup the contradiction argument, so suppose that (4.43) fails. We can then find a sequence
𝑡ℓ > 0 such that sup𝐵×𝑌×[0,𝑡ℓ ] 𝜇 𝑗 (𝑥, 𝑡) → +∞ as ℓ → +∞. Since the solution of the flow is smooth
on any compact time interval, we must have 𝑡ℓ → +∞. Moreover, there exists 𝑠ℓ ∈ [0, 𝑡ℓ] such that
sup𝐵×𝑌 𝜇 𝑗 (𝑥, 𝑠ℓ) = sup𝐵×𝑌×[0,𝑡ℓ ] 𝜇 𝑗 (𝑥, 𝑡). Without loss of generality, we can assume 𝑠ℓ = 𝑡ℓ → +∞
and

sup
𝐵×𝑌

𝜇 𝑗 (𝑥, 𝑡ℓ) → +∞. (4.44)

For each ℓ, we choose 𝑥ℓ = (𝑧ℓ , 𝑦ℓ ) ∈ 𝐵 ×𝑌 such that 𝜇 𝑗 (𝑥ℓ , 𝑡ℓ) = sup𝐵×𝑌 𝜇 𝑗 (𝑥, 𝑡ℓ). We also define
𝜆ℓ by

𝜆
2 𝑗+𝛼
ℓ := sup

𝑥′
D 𝑗 (𝑥ℓ , 𝑥 ′, 𝑡ℓ), (4.45)

so that

𝜇 𝑗 (𝑥ℓ , 𝑡ℓ) = | |𝑧ℓ | − 1|2 𝑗+𝛼 𝜆2 𝑗+𝛼
ℓ → +∞, (4.46)

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10


36 H-J. Hein, M-C. Lee and V. Tosatti

and hence, 𝜆ℓ → +∞. Let 𝑥 ′ℓ ∈ 𝐵 × 𝑌 be the point realizing sup𝑥′ D 𝑗 (𝑥ℓ , 𝑥 ′, 𝑡ℓ) and 𝑡 ′ℓ ∈ [𝑡ℓ − 1, 𝑡ℓ]
realizing sup𝑡′ H 𝑗 (𝑥ℓ , 𝑥 ′ℓ , 𝑡ℓ , 𝑡

′). Without loss of generality, we can also assume 𝑥ℓ → 𝑥∞ ∈ 𝐵 × 𝑌 .
Consider the diffeomorphisms

Ψℓ : 𝐵𝜆ℓ × 𝑌 × [−𝜆2
ℓ 𝑡ℓ , 0] → 𝐵 × 𝑌 × [0, 𝑡ℓ], (𝑧, 𝑦, 𝑡) = Ψℓ (𝑧, �̂�, 𝑡) = (𝜆−1

ℓ 𝑧, �̂�, 𝑡ℓ + 𝜆−2
ℓ 𝑡). (4.47)

Let 𝑥ℓ := (𝑧ℓ , �̂�ℓ), where

(𝑧ℓ , �̂�ℓ , 𝑡) := Ψ−1
ℓ (𝑧ℓ , 𝑦ℓ , 𝑡), (4.48)

so that 𝑡ℓ = 0, 𝑡 ′ℓ = 𝜆2
ℓ (𝑡

′
ℓ − 𝑡ℓ), and 𝑡 = 𝜆2

ℓ (𝑡 − 𝑡ℓ) ∈ [−𝜆2
ℓ 𝑡ℓ , 0]. Given a (time-dependent) contravariant

2-tensor 𝛼 (such as 𝜔•(𝑡), 𝑔(𝑡), etc.), we define �̂�ℓ := 𝜆2
ℓΨ

∗
ℓ𝛼. Thus, for example, �̂�•

ℓ (𝑡) = 𝜆2
ℓΨ

∗
ℓ𝜔

•(𝑡ℓ +
𝜆−2
ℓ 𝑡). The pullback complex structure will be denoted by 𝐽ℓ . Given a (time-dependent) scalar function

F, we will also denote by �̂�ℓ := Ψ∗
ℓ𝐹, so that, for example, �̂�ℓ,𝑖, 𝑝,𝑘 = Ψ∗

ℓ𝐺𝑖, 𝑝,𝑘 . However, for the two
functions 𝐴𝑖, 𝑝,𝑘 and 𝜑, we will define instead

�̂�ℓ,𝑖, 𝑝,𝑘 (𝑡) := 𝜆2
ℓΨ

∗
ℓ𝐴𝑖, 𝑝,𝑘 (𝑡ℓ + 𝜆

−2
ℓ 𝑡), �̂�ℓ (𝑡) := 𝜆2

ℓΨ
∗
ℓ𝜑(𝑡ℓ + 𝜆

−2
ℓ 𝑡), (4.49)

where 𝑡 ∈ [−𝑡ℓ𝜆2
ℓ , 0]. We define also

𝛿ℓ := 𝜆ℓ𝑒
− 𝑡ℓ

2 . (4.50)

Observe that from (4.31), we have that

‖ �̂�ℓ,𝑖, 𝑝,𝑘 (𝑡)‖𝐿∞ (�̂�𝜆ℓ )
� 𝐶𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 𝑡ℓ− 2𝑖+𝛼
2 𝜆−2

ℓ 𝑡 (4.51)

for all 1 � 𝑖 � 𝑗 and 1 � 𝑝 � 𝑁𝑖,𝑘 and −𝑡ℓ𝜆2
ℓ � 𝑡 � 0. For notational convenience, we will still

use 𝔇 and P to denote their pullbacks via Ψℓ . In particular, �̂�•
ℓ = �̂�

♮
ℓ + 𝑖𝜕𝜕�̂�ℓ satisfies the following

Kähler-Ricci flow

𝜕𝑡 �̂�
•
ℓ = −Ric(�̂�•

ℓ) − 𝜆−2
ℓ �̂�•

ℓ , (4.52)

and we can equivalently write the complex Monge-Ampère equation (4.1) as

(�̂�•
ℓ)
𝑚+𝑛 = 𝑒𝜕𝑡 �̂�ℓ+𝜆

−2
ℓ �̂�ℓ−𝑛𝜆−2

ℓ 𝑡

(
𝑚 + 𝑛
𝑚

)
�̂�𝑚
ℓ,can ∧ (𝛿2

ℓΨ
∗
ℓ𝜔𝐹 )𝑛, (4.53)

where (following the above convention) �̂�ℓ,can = 𝜆2
ℓΨ

∗
ℓ𝜔can. It is then straightforward to see that for all

ℓ � 0, we have for 𝑗 = 0,

1 =
|𝑖𝜕𝜕�̂�ℓ (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ 𝑖𝜕𝜕�̂�ℓ (𝑥 ′ℓ , 𝑡

′
ℓ) |�̂�ℓ (0)

(𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

, (4.54)

and for 𝑗 � 1,

1 =
|𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ𝔇

2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0)

(𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

+
|𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2

ℓ �̂�ℓ) (𝑥ℓ , 0) − P�̂�′
ℓ
�̂�ℓ𝔇

2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) (𝑥 ′ℓ , 𝑡

′
ℓ) |�̂�ℓ (0)

(𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 )𝛼
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+
|𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ𝔇

2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0)

(𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

+
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ

(
|𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 𝑡ℓ) − P�̂�′

ℓ
�̂�ℓ (𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥 ′ℓ , 𝑡

′
ℓ)) |�̂�ℓ (0)

(𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

)
, (4.55)

and 𝑥 ′ℓ was chosen to maximize the difference quotients in (4.54) and (4.55) (which we can call
D̂ 𝑗 (𝑥ℓ , 𝑥 ′, 𝑡ℓ)) among all points 𝑥 ′ = (𝑧′, �̂�′) ∈ 𝐵C𝑚 (𝜆ℓ) × 𝑌 , with |𝑧′ − 𝑧ℓ | < 1

4 | |𝑧ℓ | − 𝜆ℓ | which are
horizontally or vertically joined to 𝑥ℓ . Moreover, the points 𝑥ℓ and 𝑡ℓ themselves maximize the quantity

‖𝑧 | − 𝜆ℓ |2 𝑗+𝛼 sup
�̂�′=( �̂�′, �̂�′) 𝑠.𝑡 . | �̂�′−�̂� |< 1

4 ‖ �̂� |−𝜆ℓ |
�̂�′ and �̂� horizontally or vertically joined

D̂ 𝑗 (𝑥, 𝑥 ′, 𝑡) (4.56)

among all 𝑥 = (𝑧, �̂�) ∈ 𝐵C𝑚 (𝜆ℓ) × 𝑌 and 𝑡 ∈ [−𝑡ℓ𝜆2
ℓ , 0]; hence, for all such 𝑥, 𝑥 ′, 𝑡, we have

D̂ 𝑗 (𝑥, 𝑥 ′, 𝑡) �
(
| |𝑧ℓ | − 𝜆ℓ |
| |𝑧 | − 𝜆ℓ |

)2 𝑗+𝛼
. (4.57)

Using | |𝑧ℓ | − 𝜆ℓ | = 𝜆ℓ | |𝑧ℓ | − 1| → +∞ (hence the pointed limit centered at 𝑥ℓ will be complete) and

‖𝑧′ℓ | − 𝜆ℓ | �
3
4
‖𝑧ℓ | − 𝜆ℓ | → +∞, (4.58)

together with the triangle inequality, we see from (4.57) that there exists 𝐶 > 0 such that for any fixed
𝑅 > 0, there exists ℓ𝑅 ∈ N such that for all ℓ � ℓ𝑅 and 𝑧•ℓ = 𝑧ℓ or 𝑧′ℓ , we have

sup
�̂�, �̂�′ ∈�̂�C𝑚 ( �̂�•ℓ ,𝑅)×𝑌 , 𝑡 ∈[−𝑡ℓ𝜆

2
ℓ ,0]

�̂�′ and �̂� horizontally or vertically joined

D̂ 𝑗 (𝑥, 𝑥 ′, 𝑡) � 𝐶, (4.59)

where here and in the following, the hat decoration over 𝐵C𝑚 is just to remind the reader that we are in
the hat picture. This in particular implies there exists 𝐶 > 0 so that for all fixed R, 𝑡 ∈ [−𝑡ℓ𝜆2

ℓ , 0] and all
sufficiently large ℓ, we have for 𝑗 = 0,

[𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ( �̂� ,𝑡) ,�̂�ℓ (𝑡) � 𝐶, (4.60)

and for 𝑗 � 1,

[𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ( �̂� ,𝑡) ,�̂�ℓ (𝑡) + [𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ)]𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡)

+ [𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ
[
𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶,

(4.61)

where �̂�𝑅 (𝑧, 𝑡) = (𝐵C𝑚 (𝑧, 𝑅) × 𝑌 ) × [−𝑅2 + 𝑡, 𝑡] with 𝑧 being either 𝑧ℓ or 𝑧′ℓ .
When 𝑗 = 0 we will need the following ‘non-cancellation’ inequality

[𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶 [𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,base,�̂�𝑅 ( �̂�,𝑡) ,𝑔𝑋 + 𝐶
(
𝑅

𝜆ℓ

)1−𝛼
‖𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝑅 ( �̂�,𝑡) ,𝑔𝑋 ,

(4.62)
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which is again straightforward to prove using [21, (4.215)], and plugging in the Hölder bound in (4.60)
and the 𝐿∞ bound ‖𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) = 𝑜(1) which comes from Lemma 4.1 (iii), we see that

[𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ( �̂� ,𝑡) ,�̂�ℓ (𝑡) � 𝐶, (4.63)

and combining this with (4.60), using that 𝜂0,𝑘 = 𝑖𝜕𝜕�̂�ℓ,0,𝑘 = 𝑖𝜕𝜕�̂�ℓ − 𝑖𝜕𝜕�̂�ℓ , and using the triangle
inequality and the boundedness of P, we get

[𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ( �̂� ,𝑡) ,�̂�ℓ (𝑡) + [𝑖𝜕𝜕�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶. (4.64)

After passing to subsequence, we will split the rest of the proof into three cases, according to the
behavior of 𝛿ℓ = 𝜆ℓ𝑒

−𝑡ℓ/2: Case 1: 𝛿ℓ → +∞, Case 2: 𝛿ℓ → 𝛿∞ > 0 and Case 3: 𝛿ℓ → 0.

4.5. Non-escaping property

In this subsection, we will show that in Cases 2 and 3, the distance between the two blowup points 𝑥ℓ
and 𝑥 ′ℓ will not go to infinity. This proof does not apply to Case 1 (at least when 𝑗 � 1), but we will
nevertheless establish the same result in that case in (4.97) below.

Proposition 4.4. Suppose 𝛿ℓ � 𝐶 for some 𝐶 > 0. Then there exists 𝐶 ′ > 0 such that for all ℓ > 0,

𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 � 𝐶 ′. (4.65)

Proof. First, we can easily deal with the case 𝑗 = 0. By Lemma 4.1 (iii), we know that

sup
𝐵×𝑌×[𝑡−1,𝑡 ]

|𝑖𝜕𝜕𝜑|𝑔 (𝑡) = 𝑜(1), (4.66)

which implies

‖𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝜌 ( �̂�,𝑡) ,𝑔ℓ (𝑡) = 𝑜(1) (4.67)

as ℓ → ∞, for fixed 𝑧, 𝑡, 𝜌, and applying this to 𝑧 = 𝑧ℓ or 𝑧′ℓ and 𝑡 = 0 or 𝑡 ′ℓ , we see that the numerator
on the RHS of (4.54) is going to zero, which gives us the even stronger statement that

𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 = 𝑜(1), (4.68)

and for 𝑗 = 0, we do not even need the assumption that 𝛿ℓ � 𝐶.
Next, we assume 𝑗 � 1. The argument is a modification of [21, Proposition 4.5], and the goal is

to estimate each of the terms in the blowup quantity in (4.55). In the following, we denote �̂�𝑅 (𝑧, 𝑡) =
(𝐵C𝑚 (𝑧, 𝑅) × 𝑌 ) × [−𝑅2 + 𝑡, 𝑡] with 𝑧 being either 𝑧ℓ or 𝑧′ℓ and 𝑡 is either 𝑡ℓ = 0 or 𝑡 ′ℓ .

We first handle the terms involving 𝐴ℓ,𝑖, 𝑝,𝑘 . Recall from (4.61) that for all −2 � 𝜄 � 2𝑘 and each
given 𝑅 > 0, [

𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘
]
𝛼,𝛼/2,�̂�𝑅 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶𝛿

− 𝜄
ℓ , (4.69)

while from (4.51),

‖ �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑅 ( �̂�,𝑡) � 𝐶𝛿
2
ℓ𝑒

−2𝑖+2−𝛼
2 𝑡ℓ+ 2𝑖+𝛼

2 𝜆−2
ℓ (𝑅2−𝑡) � 𝐶𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 𝑡ℓ (4.70)

since 𝑡 = 0 or 𝑡 ′ℓ satisfies 𝑡 � −𝜆2
ℓ . By Proposition 2.3, for all 1 � 𝑟 � 2 𝑗 ,

(𝑅 − 𝜌)𝑟 ‖𝔇𝑟 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶 (𝑅 − 𝜌)2 𝑗+𝛼𝛿2
ℓ + 𝐶𝛿

2
ℓ𝑒

−2𝑖+2−𝛼
2 𝑡ℓ . (4.71)
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We choose

𝑅 − 𝜌 ≈
(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

) 1
2 𝑗+𝛼

, (4.72)

which is small for any given R. We get for all 0 � 𝑟 � 2 𝑗 that

‖𝔇𝑟 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶𝛿
2
ℓ

(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

)1− 𝑟
2 𝑗+𝛼

= 𝑜(1), (4.73)

where 𝑡 is either 𝑡ℓ = 0 or 𝑡 ′ℓ .
If we let 𝑟 = 𝜄 + 2 > 0, then for 0 < 𝑟 � 2𝑘 + 2, we can interpolate again, using (4.69), and get

(𝑅 − 𝜌)𝑟 ‖𝔇2 𝑗+𝑟 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶 (𝑅 − 𝜌)𝑟+𝛼𝛿−𝑟+2
ℓ + 𝐶𝛿2

ℓ

(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

) 𝛼
2 𝑗+𝛼

. (4.74)

By taking

𝑅 − 𝜌 ≈
(
𝛿𝑟ℓ

(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

) 𝛼
2 𝑗+𝛼

) 1
𝑟+𝛼

, (4.75)

which is small thanks to our assumption that 𝛿ℓ � 𝐶, we conclude that for all 0 < 𝑟 � 2𝑘 + 2,

𝛿𝑟−2
ℓ ‖𝔇2 𝑗+𝑟 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶

(
𝛿𝑟ℓ

(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

) 𝛼
2 𝑗+𝛼

) 𝛼
𝑟+𝛼

= 𝑜(1). (4.76)

Applying (4.73) and (4.76) to balls centered at (𝑧ℓ , 𝑡ℓ) and (𝑧′ℓ , 𝑡
′
ℓ) (of any radius – for example, 1),

together with the boundedness of operator norm of P from [21, §2.1.1], this gives

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ

(
|𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ (𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥 ′ℓ , 𝑡

′
ℓ)) |�̂�ℓ (0)

)
= 𝑜(1). (4.77)

We now treat �̂�ℓ, 𝑗,𝑘 which has fiberwise average zero. By Proposition 2.6 (in case 𝛿ℓ does not
converge to 0, we choose 𝜌 to be sufficiently large) and (4.61), we have

‖𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 ‖∞,�̂�𝜌 ( �̂�,𝑡) ,�̂�ℓ (𝑡) � 𝐶𝛿
𝛼
ℓ . (4.78)

Applying this to balls centered at 𝑧ℓ and 𝑧′ℓ and invoking [21, §2.1.1] again, we have

|𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥ℓ , 0) − P�̂�′
ℓ
�̂�ℓ𝔇

2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0) � 𝐶𝛿

𝛼
ℓ . (4.79)

It remains to consider the fiberwise average of the potential (i.e., �̂�ℓ). Recalling (4.66) and taking
fiber average (using the fiber integration argument in [38, p.436]) gives in particular

‖𝑖𝜕𝜕𝜑‖∞,𝐵×[𝑡−1,𝑡 ],𝑔C𝑚 = 𝑜(1), (4.80)

as 𝑡 → +∞, which implies

‖𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝜌 ( �̂�,𝑡) ,𝑔ℓ (𝑡) = 𝑜(1), (4.81)

as ℓ → ∞, for fixed 𝑧, 𝑡, 𝜌, and interpolating between this and (4.61) gives

‖𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝜌 ( �̂�,𝑡) ,𝑔ℓ (𝑡) = 𝑜(1) (4.82)
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for 𝑧 = 𝑧ℓ or 𝑧′ℓ and 𝑡 = 0 or 𝑡 ′ℓ . Using again the boundedness of the operator norm of P, this implies that

|𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥ℓ , 0) − P�̂�′
ℓ
�̂�ℓ𝔇

2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0) = 𝑜(1). (4.83)

Similarly, from Lemma 4.1 (ii) and taking fiber average, we know that

sup
𝐵×𝑌×[𝑡−1,𝑡 ]

|𝜕𝑡𝜑 + 𝜑| = 𝑜(1), (4.84)

as 𝑡 → +∞, which implies

‖𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ ‖∞,�̂�𝜌 ( �̂�,𝑡) ,𝑔ℓ (𝑡) = 𝑜(1), (4.85)

as ℓ → ∞, for fixed 𝑧, 𝑡, 𝜌, and again interpolating between this and (4.61) gives

‖𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ)‖∞,�̂�𝜌 ( �̂�,𝑡) ,𝑔ℓ (𝑡) = 𝑜(1), (4.86)

for 𝑧 = 𝑧ℓ or 𝑧′ℓ and 𝑡 = 0 or 𝑡 ′ℓ , and hence,

|𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ𝔇

2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) (𝑥 ′ℓ , 𝑡

′
ℓ) |�̂�ℓ (0) = 𝑜(1). (4.87)

Combining (4.55) with (4.77), (4.79), (4.83) and (4.87), we obtain the desired bound (4.65). �

We are now in position to study the flows obtained as complete pointed limits of(
�̂�C𝑚 (𝑧ℓ , 𝜆ℓ) × 𝑌, �̂�ℓ (𝑡), 𝑥ℓ

)
, (4.88)

as ℓ → +∞, where as usual 𝑡 ∈ [−𝜆2
ℓ 𝑡ℓ , 0]. By translation, we can assume 𝑥ℓ = (𝑧ℓ , �̂�ℓ) = (0, �̂�ℓ ) ∈

C
𝑚 × 𝑌 and �̂�ℓ → �̂�∞ ∈ 𝑌 by compactness of Y after passing to a subsequence.

4.6. Blowup analysis in Case 1: 𝜹ℓ → +∞

In this case, the metrics 𝑔ℓ (0) are blowing up in the fiber directions, so that their pointed blowup limit
(modulo local diffeomorphisms that stretch the fibers) would be C𝑚+𝑛. While this is the approach taken
in our earlier works [4, 11, 20], it turns out that we need a different approach instead (at least when
𝑗 � 1). So, following [21], we consider the diffeomorphisms

Ξℓ : 𝐵
𝑒
𝑡ℓ
2
× 𝑌 × [−𝑒𝑡ℓ 𝑡ℓ , 0] → 𝐵𝜆ℓ × 𝑌 × [−𝜆2

ℓ 𝑡ℓ , 0], (𝑧, �̂�, 𝑡) = Ξℓ (𝑧, �̌�, 𝑡) = (𝛿ℓ 𝑧, �̌�, 𝛿2
ℓ 𝑡), (4.89)

pull back time-dependent 2-tensors via Ξℓ , rescale them by 𝛿−2
ℓ and denote the new tensors with a check,

so, for example, �̌�•
ℓ (𝑡) = 𝛿−2

ℓ Ξ∗
ℓ�̂�

•
ℓ (𝛿

2
ℓ 𝑡). We also apply the same pullback and rescaling procedure to

the scalar functions �̂�ℓ,𝑖, 𝑝,𝑘 and �̂�ℓ .
In this case, �̌�ℓ (𝑡) is locally uniformly Euclidean in space-time and �̌�•

ℓ satisfies the Kähler-Ricci flow
equation

𝜕𝑡 �̌�
•
ℓ = −Ric(�̌�•

ℓ) − 𝑒−𝑡ℓ �̌�•
ℓ , (4.90)

and the Monge-Ampère equation (4.53) becomes

(�̌�•
ℓ)
𝑚+𝑛 = 𝑒𝜕𝑡 �̌�ℓ+𝑒

−𝑡ℓ �̌�ℓ−𝑛𝑒−𝑡ℓ 𝑡
(
𝑚 + 𝑛
𝑚

)
�̌�𝑚
ℓ,can ∧ (Ξ∗

ℓΨ
∗
ℓ𝜔𝐹 )𝑛. (4.91)
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Thanks to Lemma 4.1 (i), we know that �̌�•
ℓ (𝑡) is uniformly equivalent to

�̌�
♮
ℓ (𝑡) = (1 − 𝑒−𝑡ℓ−𝑒

−𝑡ℓ 𝑡 )�̌�ℓ,can + 𝑒−𝑒
−𝑡ℓ 𝑡Ξ∗

ℓΨ
∗
ℓ𝜔𝐹 , (4.92)

which in turn is locally uniformly equivalent to the Euclidean metric. The pullback of the complex
structure also converges locally uniformly smoothly to the Euclidean product complex structure due to
the stretching. We want to apply the local higher order estimates in [4, Proposition 2.1] on �̌�1 (𝑧ℓ , 0) and
�̌�1 (𝑧′ℓ , 𝑡

′
ℓ), but we do not know whether �̌�1 (𝑧ℓ), �̌�1 (𝑧′ℓ) are contained in 𝐵

𝑒
𝑡ℓ
2

, as we do not have any
relation between 𝛿ℓ and ‖𝑧ℓ | − 𝜆ℓ |. However, these are compactly contained in the slightly larger ball
𝐵
(1+𝜎)𝑒

𝑡ℓ
2

for any fixed 𝜎 > 0 and all ℓ sufficiently large, and we may assume without loss that �̌�•
ℓ (𝑡)

is uniformly equivalent to Euclidean on 𝐵
(1+𝜎)𝑒

𝑡ℓ
2
× 𝑌 × [−(1 + 𝜎)2𝑒𝑡ℓ 𝑡ℓ , 0]. Thus, the local higher

order estimates give us uniform 𝐶∞ estimates for �̌�•
ℓ on �̌�1(𝑧ℓ , 0) and �̌�1 (𝑧′ℓ , 𝑡

′
ℓ). Thus, on these sets,

we have uniform 𝐶∞ bounds for 𝑖𝜕𝜕�̌�, hence on 𝑖𝜕𝜕�̌� (by fiber averaging), hence on �̌�ℓ,1, 𝑝,𝑘 (from its
definition), hence on �̌�ℓ,1,𝑘 (also from its definition), hence on 𝜂ℓ,1,𝑘 (from its definition), and so forth
until �̌�ℓ, 𝑗, 𝑝,𝑘 , �̌�ℓ, 𝑗,𝑘 , 𝜂ℓ, 𝑗,𝑘 . From the PDE (4.91), we also get uniform𝐶∞ bounds for 𝜕𝑡 �̌�ℓ +𝑒−𝑡ℓ �̌�ℓ , and
so by fiber averaging also on 𝜕𝑡 �̌�ℓ + 𝑒−𝑡ℓ �̌�ℓ . Also, since 𝜂ℓ, 𝑗,𝑘 = 𝑖𝜕𝜕𝜓ℓ, 𝑗,𝑘 is locally smoothly bounded,
and 𝜓ℓ, 𝑗,𝑘 has fiberwise average zero, then fiberwise Moser iteration gives us a uniform 𝐿∞ bound for
𝜓ℓ, 𝑗,𝑘 , and elliptic estimates show that 𝜓ℓ, 𝑗,𝑘 has uniform 𝐶∞ bounds. Putting these all together, we get
in particular

‖𝔇2 𝑗𝑖𝜕𝜕�̌�ℓ ‖∞,�̌�1 ,�̌�ℓ (0) + ‖𝔇2 𝑗𝑖𝜕𝜕�̌�ℓ ‖∞,�̌�1 ,�̌�ℓ (0) + ‖𝔇2 𝑗 (𝜕𝑡 �̌�ℓ + 𝑒−𝑡ℓ �̌�ℓ)‖∞,�̌�1 ,�̌�ℓ (0)

+ ‖𝔇2 𝑗+2�̌�ℓ, 𝑗,𝑘 ‖∞,�̌�1 ,�̌�ℓ (0) +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

‖𝔇2 𝑗+2+ 𝜄 �̌�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̌�1 ,�̌�ℓ (0) � 𝐶,
(4.93)

[𝔇2 𝑗𝑖𝜕𝜕�̌�ℓ]𝛼,𝛼/2,�̌�1 ,�̌�ℓ (0) + [𝔇2 𝑗𝑖𝜕𝜕�̌�ℓ]𝛼,𝛼/2,�̌�1 ,�̌�ℓ (0) + [𝔇2 𝑗 (𝜕𝑡 �̌�ℓ + 𝑒−𝑡ℓ �̌�ℓ)]𝛼,𝛼/2,�̌�𝛿ℓ
,�̌�ℓ (0)

+ [𝔇2 𝑗+2�̌�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̌�1 ,�̌�ℓ (0) +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

[
𝔇2 𝑗+2+ 𝜄 �̌�ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̌�1 ,�̌�ℓ (0) � 𝐶,

(4.94)

where �̌�1 is either �̌�1 (𝑧ℓ , 0) or �̌�1(𝑧′ℓ , 𝑡
′
ℓ). Transferring these back to the hat picture gives

‖𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝛿ℓ
,�̂�ℓ (0) + ‖𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝛿ℓ

,�̂�ℓ (0) + ‖𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ)‖∞,�̂�𝛿ℓ

,�̂�ℓ (0)

+ ‖𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 ‖∞,�̂�𝛿ℓ
,�̂�ℓ (0) +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ ‖𝔇
2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝛿ℓ

,�̂�ℓ (0) � 𝐶𝛿
−2 𝑗
ℓ ,

(4.95)

[𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝛿ℓ
,�̂�ℓ (0) + [𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝛿ℓ

,�̂�ℓ (0) + [𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ)]𝛼,𝛼/2,�̂�𝛿ℓ

,�̂�ℓ (0)

+ [𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̂�𝛿ℓ
,�̂�ℓ (0) +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ
[
𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̂�𝛿ℓ

,�̂�ℓ (0) � 𝐶𝛿
−2 𝑗−𝛼
ℓ ,

(4.96)

where �̂� 𝛿ℓ is either �̂� 𝛿ℓ (𝑧ℓ , 0) or �̂� 𝛿ℓ (𝑧′ℓ , 𝑡
′
ℓ). Using (4.95) and the triangle inequality (and the usual

bound on the operator norm of P), we obtain a uniform upper bound for the numerators of (4.54) and
(4.55), and so for 𝑗 � 1, we conclude that

𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 � 𝐶𝛿−2 𝑗

ℓ , (4.97)
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so that the two points (𝑧ℓ , 𝑡ℓ) and (𝑧′ℓ , 𝑡
′
ℓ) are approaching each other (we already know this when 𝑗 = 0

thanks to (4.68)). Thus, (𝑥 ′ℓ , 𝑡
′
ℓ) ∈ �̂� 𝛿ℓ (𝑧ℓ , 0) for all ℓ large, and so applying (4.96) shows that the

quantities in (4.54) and (4.55), which both equal 1, are also bounded above by 𝐶𝛿−2 𝑗−𝛼
ℓ → 0, which is

a contradiction.

4.7. Blowup analysis in Case 2: 𝜹ℓ → 𝜹∞ ∈ (0, +∞)

Without loss of generality, we can assume 𝛿∞ = 1. In this case, the blowup model is C𝑚 × 𝑌 and

�̂�
♮
ℓ (𝑡) → 𝑔can |𝑧=0 + 𝑔𝑌 ,𝑧∞=0 = 𝑔𝑃 , (4.98)

as ℓ → +∞ in 𝐶∞
loc(C

𝑚 × 𝑌 × (−∞, 0]). Moreover, the complex structure also converges to a product.
As in Case 1, Lemma 4.1 (i) implies that �̂�•

ℓ (𝑡) is locally uniformly equivalent to product metric on
C
𝑚 × 𝑌 . Moreover, since �̂�•

ℓ satisfies the Kähler-Ricci flow equation

𝜕𝑡 �̂�
•
ℓ = −Ric(�̂�•

ℓ) − 𝜆−2
ℓ �̂�•

ℓ , (4.99)

we can again apply [4, Proposition 2.1] on �̂�𝑅 (𝑧ℓ , 0) for R sufficiently large to obtain 𝐶∞
loc regularity

of �̂�•
ℓ . Arguing as in Case 1, we obtain 𝐶∞ bounds for all the pieces in the decomposition, and using

Proposition 4.4, we can assume (𝑥 ′ℓ , 𝑡
′
ℓ) → (𝑥 ′∞, 𝑡 ′∞) ∈ (C𝑚×𝑌 )× (−∞, 0]. Estimating the𝐶𝛼 difference

quotients in (4.55) by 𝐶𝛽 ones for any 𝛽 > 𝛼, we see that 𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 � 𝐶−1 for all ℓ, which

when 𝑗 = 0 is already a contradiction to (4.68).
Assuming then that 𝑗 � 1, we see that the limit (𝑥∞, 0) of (𝑥ℓ , 0) is different from (𝑥 ′∞, 𝑡 ′∞). By the

local uniform higher order regularity, the geometric quantities smoothly subconverge as ℓ → +∞. In
particular, the limit �̂�•

∞(𝑡) is an ancient solution on C𝑚 × 𝑌 × (−∞, 0] of the Kähler-Ricci flow

𝜕𝑡 �̂�
•
∞ = −Ric(�̂�•

∞). (4.100)

Smooth convergence also implies that (4.55) still holds in the limit.
By (4.51), we have that �̂�ℓ,𝑖, 𝑝,𝑘 → 0 locally uniformly, hence locally smoothly, so its contributions

to (4.55) vanish in the limit as ℓ → +∞. However, Lemma 4.1 (ii),(iii) also implies that the limits of
𝑖𝜕𝜕�̂�ℓ and 𝜕𝑡 �̂�ℓ + 𝜆−2

ℓ �̂�ℓ (and hence also of 𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) vanish so that their contributions in (4.55)

also vanish in the limit.
We are left with killing the limit of the contribution of �̂�ℓ, 𝑗,𝑘 . For this, recall that from Lemma 4.1

(iv) we have |𝑅(𝑔•(𝑡)) | � 𝐶, and so |𝑅(�̂�•(𝑡)) | � 𝐶𝜆−2
ℓ → 0, thus the limiting metrics �̂�•

∞(𝑡) are scalar-
flat, and hence Ricci-flat and static (using the well-known evolution equation of the scalar curvature
under the Kähler-Ricci flow (4.100)). Also, since �̂�ℓ,𝑖, 𝑝,𝑘 → 0 locally smoothly, this implies that
�̂�ℓ,𝑖,𝑘 → 0, 1 � 𝑖 � 𝑗 , and so �̂�•

∞ = 𝜔𝑃 + 𝜂∞, 𝑗 ,𝑘 , and in particular, 𝜂∞, 𝑗 ,𝑘 is also static. The Liouville
Theorem from [18] shows that ∇𝑔𝑃𝜂∞, 𝑗 ,𝑘 = ∇𝑔𝑃 �̂�•

∞ ≡ 0. Thus 𝜂∞, 𝑗 ,𝑘 = 𝑖𝜕𝜕�̂�∞, 𝑗 ,𝑘 is parallel, with
bounded 𝑔𝑃 norm (from Lemma 4.1 (i)), so by [20, Proposition 3.12], we have 𝑖𝜕𝜕�̂�∞, 𝑗 ,𝑘 = 𝑖𝜕𝜕𝑝 for
some quadratic polynomial p on C𝑚. This means that �̂�∞, 𝑗 ,𝑘 − 𝑝 is pluriharmonic on C𝑚 ×𝑌 , and hence
it is also pulled back from C𝑚 (since Y is compact). This clearly implies that �̂�∞, 𝑗 ,𝑘 is pulled back from
C
𝑚, and since it also has fiberwise average zero, it must vanish identically. Thus, the contribution of

�̂�ℓ, 𝑗,𝑘 to (4.55) also vanishes in the limit, and this gives a contradiction to (4.55).

4.8. Blowup analysis in Case 3: 𝜹ℓ → 0

In this case, the blowup model is C𝑚 which is still collapsed. This is the most difficult case and will
occupy most of the rest of the paper.
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By Proposition 4.4, we know that (𝑥 ′ℓ , 𝑡
′
ℓ) remains at bounded distance from (𝑥ℓ , 0). The key claim

is the following non-colliding estimate, whose proof will take substantial work:
Claim 4.5. There exists 𝜀0 > 0 such that for all ℓ � 1, we have

𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 � 𝜀0 > 0. (4.101)

First, we show how to quickly complete the proof of Theorem 4.2 assuming Claim 4.5 holds. When
𝑗 = 0, it is clear that (4.101) is incompatible with (4.68), while if 𝑗 � 1 then (4.55) implies

𝜀𝛼0 � |𝔇2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥ℓ , 0) − P�̂�′
ℓ
�̂�ℓ𝔇

2 𝑗𝑖𝜕𝜕�̂�ℓ (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0)

+ |𝔇2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) (𝑥ℓ , 0) − P�̂�′

ℓ
�̂�ℓ𝔇

2 𝑗 (𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ) (𝑥 ′ℓ , 𝑡

′
ℓ) |�̂�ℓ (0)

+ |𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥ℓ , 0) − P�̂�′
ℓ
�̂�ℓ𝔇

2 𝑗+2�̂�ℓ, 𝑗,𝑘 (𝑥 ′ℓ , 𝑡
′
ℓ) |�̂�ℓ (0)

+
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝛿 𝜄ℓ

(
|𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 𝑡ℓ) − P�̂�′

ℓ
�̂�ℓ (𝔇2 𝑗+2+ 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 (𝑥 ′ℓ , 𝑡

′
ℓ)) |�̂�ℓ (0)

)
,

(4.102)

while the right-hand side is of 𝑜(1) thanks to (4.77), (4.79), (4.83) and (4.87) as ℓ → +∞, since 𝛿ℓ → 0.
This is a contradiction. Therefore, to complete the proof of Theorem 4.2, it remains to prove Claim 4.5.

4.9. Setup of secondary blowup in proving Claim 4.5

For each ℓ � 1, let

𝑑ℓ := 𝑑�̂�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 > 0. (4.103)

If Claim 4.5 fails to be true, then we may assume that 𝑑ℓ → 0 as ℓ → +∞. Define a new parameter

𝜀ℓ := 𝑑−1
ℓ 𝛿ℓ = 𝑑−1

ℓ 𝜆ℓ𝑒
− 𝑡ℓ

2 , (4.104)

and consider the diffeomorphism

Θℓ : 𝐵𝑑−1
ℓ
𝜆ℓ

× 𝑌 × [−𝑑−2
ℓ 𝜆2

ℓ 𝑡ℓ , 0] → 𝐵𝜆ℓ × 𝑌 × [−𝜆2
ℓ 𝑡ℓ , 0], (𝑧, �̂�, 𝑡) = Θℓ (𝑧, �̃�, 𝑡) = (𝑑ℓ 𝑧, �̃�, 𝑑2

ℓ 𝑡),
(4.105)

As usual, we pull back time-dependent 2-tensors via Θℓ , rescale them by 𝑑−2
ℓ and denote the new

tensors with a tilde, so, for example, �̃�•
ℓ (𝑡) = 𝑑−2

ℓ Θ∗
ℓ�̂�

•
ℓ (𝑑

2
ℓ 𝑡). We also apply the same pullback and

rescaling procedure to the scalar functions �̂�ℓ,𝑖, 𝑝,𝑘 and �̂�ℓ , so �̃�ℓ,𝑖, 𝑝,𝑘 (𝑡) = 𝑑−2
ℓ Θ∗

ℓ �̂�ℓ,𝑖, 𝑝,𝑘 (𝑑
2
ℓ 𝑡), �̃�ℓ (𝑡) =

𝑑−2
ℓ Θ∗

ℓ �̂�ℓ (𝑑
2
ℓ 𝑡).

The decomposition (4.22) becomes

�̃�•
ℓ = �̃�

♮
ℓ + �̃�ℓ,0 + �̃�ℓ,1,𝑘 + · · · + �̃�ℓ, 𝑗,𝑘 + 𝜂ℓ, 𝑗,𝑘 , (4.106)

and the parabolic complex Monge-Ampère equation (4.53) becomes

(�̃�•
ℓ)
𝑚+𝑛 = 𝑒𝜕𝑡 �̃�ℓ+𝑑

2
ℓ𝜆

−2
ℓ �̃�ℓ−𝑛𝑑2

ℓ𝜆
−2
ℓ 𝑡

(
𝑚 + 𝑛
𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛. (4.107)

From (4.64) (when 𝑗 = 0) and (4.61) (when 𝑗 � 1), we immediately see that for any fixed 𝑅 > 0 and
𝑡 ∈ [−𝜆2

ℓ𝑑
−2
ℓ 𝑡ℓ , 0], we have

[𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
(𝑡) ,�̃�ℓ (𝑡) + [𝑖𝜕𝜕�̃�ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ

(𝑡) ,�̃�ℓ (𝑡) � 𝐶𝑑
𝛼
ℓ , (4.108)
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if 𝑗 = 0, and

[𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
(𝑡) ,�̃�ℓ (𝑡) + [𝔇2 𝑗 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ)]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ

(𝑡) ,�̃�ℓ (𝑡)

+ [𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
(𝑡) ,�̃�ℓ (𝑡) +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝜀 𝜄ℓ
[
𝔇2 𝑗+2+ 𝜄 �̃�ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ

(𝑡) ,�̃�ℓ (𝑡) � 𝐶𝑑
2 𝑗+𝛼
ℓ ,

(4.109)

when 𝑗 � 1, where �̃�𝑅 (𝑡) = 𝐵C𝑚 (𝑧ℓ , 𝑅) × 𝑌 × [−𝑅2 + 𝑡, 𝑡]. Moreover, (4.54) and (4.55) become,
respectively,

1 = 𝑑−𝛼ℓ
|𝑖𝜕𝜕�̃�ℓ (𝑥ℓ , 0) − P�̃�′

ℓ
�̃�ℓ 𝑖𝜕𝜕�̃�ℓ (𝑥 ′ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

(𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

(4.110)

for 𝑗 = 0 and

1 = 𝑑
−2 𝑗−𝛼
ℓ

|𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ (𝑥ℓ , 0) − P�̃�′
ℓ
�̃�ℓ𝔇

2 𝑗𝑖𝜕𝜕�̃�ℓ (𝑥 ′ℓ , 𝑡
′
ℓ) |�̃�ℓ (0)

(𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

+ 𝑑−2 𝑗−𝛼
ℓ

|𝔇2 𝑗 (𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ) (𝑥ℓ , 0) − P�̃�′

ℓ
�̃�ℓ𝔇

2 𝑗 (𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ) (𝑥 ′ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

(𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 )𝛼

+ 𝑑−2 𝑗−𝛼
ℓ

|𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 (𝑥ℓ , 0) − P�̃�′
ℓ
�̃�ℓ𝔇

2 𝑗+2�̃�ℓ, 𝑗,𝑘 (𝑥 ′ℓ , 𝑡
′
ℓ) |�̃�ℓ (0)

(𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

+ 𝑑−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝜀 𝜄ℓ

(
|𝔇2 𝑗+2+ 𝜄 �̃�ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 0) − P�̃�′

ℓ
�̃�ℓ (𝔇2 𝑗+2+ 𝜄 �̃�ℓ,𝑖, 𝑝,𝑘 (𝑥 ′ℓ , 𝑡

′
ℓ)) |�̃�ℓ (0)

(𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ) + |𝑡 ′ℓ |
1
2 )𝛼

)
(4.111)

for 𝑗 � 1, and by definition, we also have

𝑑�̃�ℓ (0) (𝑥ℓ , 𝑥 ′ℓ ) + |𝑡 ′ℓ |
1
2 = 1, (4.112)

for all ℓ > 0.
For convenience, from now on, �̃�𝑟 will always denote 𝐵C𝑚 (0, 𝑟) × 𝑌 × [−𝑟2, 0], where recall that

we have translated the first blowup point (𝑥ℓ , 𝑡ℓ) in the C𝑚 directions so that (𝑧ℓ , 𝑡ℓ) = (0, 0) ∈ C𝑚 ×R.
As long as 𝑟 > 1, the cylinder �̃�𝑟 always contains the other blowup point (𝑥 ′ℓ , 𝑡

′
ℓ) because of (4.112).

Following [21, §4.8], our goal is to obtain a contradiction by passing to the limit as ℓ → +∞ the
various pieces of the decomposition, after scaling them by 𝑑

−2 𝑗−𝛼
ℓ . To do this, we need to perform a jet

subtraction centered at (0, 0) ∈ C𝑚 × (−∞, 0] for functions pulled back from the base. Given 𝑟 ∈ N, the
parabolic r-jet at (0, 0) of a function u in C𝑚 × (−∞, 0] is given by

𝑢♯ :=
∑

|𝑝 |+2𝑞�𝑟
D
𝑝𝜕𝑞

𝑡
𝑢 |(0,0)

𝑧𝑝

𝑝!
𝑡𝑞

𝑞!
, (4.113)

using standard multiindex notation, where here we treat 𝑧 as real variables. The parabolic degree of such
a polynomial is defined by letting the 𝑧 variables have degree 1 and the 𝑡 variable degree 2. Thus, the
degree of 𝑢♯ is at most r. We will also write 𝑢∗ := 𝑢 − 𝑢♯, whose r-jet at (0, 0) thus vanishes.

With this notation, we define �̃�♯ℓ,𝑖, 𝑝,𝑘 as the parabolic 2 𝑗-jet of �̃�ℓ,𝑖, 𝑝,𝑘 at (0, 0), and define �̃�∗
ℓ,𝑖, 𝑝,𝑘 =

�̃�ℓ,𝑖, 𝑝,𝑘 − �̃�♯ℓ,𝑖, 𝑝,𝑘 so that D𝑝𝜕𝑞
𝑡
�̃�∗
ℓ,𝑖, 𝑝,𝑘 |(0,0) = 0 for any 𝑝 + 2𝑞 � 2 𝑗 . As for the potential �̃�ℓ , since the

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10


Forum of Mathematics, Pi 45

PDE (4.107) and the blowup quantity in (4.109) (for 𝑗 � 1) both contain the term 𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ , it

will be more convenient to consider instead

�̃�ℓ := 𝑒𝑑
2
ℓ𝜆

−2
ℓ 𝑡 �̃�ℓ , (4.114)

so that

𝜕𝑡 �̃�ℓ = 𝑒𝑑
2
ℓ𝜆

−2
ℓ 𝑡 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ). (4.115)

We claim that the fiber average �̃�ℓ satisfies estimates similar to those satisfied by �̃�ℓ in (4.108) and
(4.109):

Claim 4.6. For any fixed 𝑅 > 0, we have

𝑑
−2 𝑗−𝛼
ℓ

����[𝔇2 𝑗𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) − [𝔇2 𝑗

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

���� = 𝑜(1), (4.116)

𝑑
−2 𝑗−𝛼
ℓ

����[𝔇2 𝑗𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) − [𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

���� = 𝑜(1), (4.117)

as ℓ → +∞.

Proof of Claim 4.6. We first treat 𝜕𝑡 �̃�ℓ , and since this will only be used when 𝑗 � 1, we only prove it
here in this case (but see (4.137) and (4.147) below for a stronger statement when 𝑗 = 0). Observe first
that for any 𝑟 ∈ N, we have ���𝜕𝑟𝑡 (

𝑒𝑑
2
ℓ𝜆

−2
ℓ 𝑡

)���
∞,�̃�

𝑅𝑑−1
ℓ

= (1 + 𝑜(1)) (𝑑ℓ𝜆−1
ℓ )2𝑟 . (4.118)

Using this, we bound����[𝔇2 𝑗𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) − [𝔇2 𝑗

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

����
�

����𝑒𝑑2
ℓ𝜆

−2
ℓ 𝑡 [𝔇2 𝑗

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) − [𝔇2 𝑗

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

����
+

∑
𝑝+2𝑞=2 𝑗

𝑞∑
𝑟=1

���𝜕𝑟𝑡 (
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

)���
∞,�̃�

𝑅𝑑−1
ℓ

[D𝑝𝜕𝑞−𝑟
𝑡

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

+
∑

𝑝+2𝑞=2 𝑗

𝑞∑
𝑟=0

[
𝜕𝑟𝑡

(
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

)]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

‖D𝑝𝜕𝑞−𝑟
𝑡

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝑜(1)
����[𝔇2 𝑗

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

����
+ 𝐶

𝑗∑
𝑟=1

(𝑑ℓ𝜆−1
ℓ )2𝑟 [𝔇2 𝑗−2𝑟

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

+ 𝐶
𝑗∑

𝑟=0
(𝑑ℓ𝜆−1

ℓ )2𝑟+𝛼‖𝔇2 𝑗−2𝑟
(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) .

(4.119)

Thanks to (4.109), the third line from the bottom is 𝑜(𝑑2 𝑗+𝛼
ℓ ). As for the last two lines, we interpolate

between (4.109) and the estimate ‖𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ ‖∞,�̃�

𝑅𝑑−1
ℓ

= 𝑜(1) which comes from Lemma 4.1 (ii),
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and we get for each 1 � 𝜄 � 2 𝑗 ,

𝑑− 𝜄ℓ (𝑅 − 𝜌) 𝜄‖𝔇 𝜄
(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
‖∞,�̃�

𝜌𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶 (𝑅 − 𝜌)2 𝑗+𝛼 + 𝑜(1). (4.120)

By choosing 𝑅 − 𝜌 ≈ 1 (which is clearly allowed) and replacing R by a slightly smaller one, we see that
for all 1 � 𝜄 � 2 𝑗 ,

‖𝔇 𝜄
(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝑑

𝜄
ℓ . (4.121)

We can then estimate
𝑗∑

𝑟=0
(𝑑ℓ𝜆−1

ℓ )2𝑟+𝛼‖𝔇2 𝑗−2𝑟
(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝐶
𝑗∑

𝑟=0
(𝑑ℓ𝜆−1

ℓ )2𝑟+𝛼𝑑
2 𝑗−2𝑟
ℓ = 𝐶𝜆−𝛼ℓ 𝑑

2 𝑗+𝛼
ℓ = 𝑜(𝑑2 𝑗+𝛼

ℓ ),

(4.122)

𝑗∑
𝑟=1

(𝑑ℓ𝜆−1
ℓ )2𝑟 [𝔇2 𝑗−2𝑟

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝐶
𝑗∑

𝑟=1
(𝑑ℓ𝜆−1

ℓ )2𝑟𝑑
2 𝑗−2𝑟+𝛼
ℓ = 𝐶𝜆−2

ℓ 𝑑
2 𝑗+𝛼
ℓ = 𝑜(𝑑2 𝑗+𝛼

ℓ ).

(4.123)

Putting these together proves (4.116).
Next, we treat 𝑖𝜕𝜕 �̃�ℓ in a similar fashion (allowing now also 𝑗 = 0),����[𝔇2 𝑗𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) − [𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

����
�

����𝑒𝑑2
ℓ𝜆

−2
ℓ 𝑡 [𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) − [𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

����
+

∑
𝑝+2𝑞=2 𝑗

𝑞∑
𝑟=1

���𝜕𝑟𝑡 (
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

)���
∞,�̃�

𝑅𝑑−1
ℓ

[D𝑝𝜕𝑞−𝑟
𝑡

𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0)

+
∑

𝑝+2𝑞=2 𝑗

𝑞∑
𝑟=0

[
𝜕𝑟𝑡

(
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

)]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

‖D𝑝𝜕𝑞−𝑟
𝑡

𝑖𝜕𝜕�̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0)

� 𝑜(1)
����[𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

���� + 𝐶 𝑗∑
𝑟=1

(𝑑ℓ𝜆−1
ℓ )2𝑟 [𝔇2 𝑗−2𝑟 𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

+ 𝐶
𝑗∑

𝑟=0
(𝑑ℓ𝜆−1

ℓ )2𝑟+𝛼‖𝔇2 𝑗−2𝑟 𝑖𝜕𝜕�̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) ,

(4.124)

and then we continue the argument exactly as above, using the bound (4.108) when 𝑗 = 0. This proves
(4.117). �

With this modification in mind, we let �̃�♯ℓ be the (parabolic) jet of �̃�ℓ = 𝑒𝑑
2
ℓ𝜆

−2
ℓ 𝑡 �̃�ℓ at (𝑧, 𝑡) = (0, 0) of

order 2 𝑗 + 2, and define �̃�∗ℓ := �̃�ℓ − �̃�♯ℓ . Define also

𝜂‡ℓ := 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�♯ℓ , 𝜂♦ℓ := 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�∗ℓ , (4.125)
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so that by definition, we have

𝑖𝜕𝜕�̃�ℓ = 𝜂‡ℓ + 𝜂
♦
ℓ . (4.126)

Recall that for 1 � 𝑖 � 𝑗 , we had defined

�̃�ℓ,𝑖,𝑘 =
𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̃�𝑡 ,𝑘 ( �̃�ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) (4.127)

(see also (4.347) below for an explicit formula). We shall further denote

𝜂◦ℓ :=
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ), 𝜂†ℓ :=

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ), (4.128)

so that

�̃�•
ℓ = �̃�

♮
ℓ + 𝑖𝜕𝜕�̃�ℓ +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̃�𝑡 ,𝑘 ( �̃�ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) + 𝑖𝜕𝜕�̃�ℓ, 𝑗,𝑘

= �̃�
♮
ℓ + 𝜂

†
ℓ + 𝜂

‡
ℓ + 𝜂

◦
ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ,

(4.129)

and we will write �̃�♯
ℓ := �̃�

♮
ℓ + 𝜂

†
ℓ + 𝜂

‡
ℓ .

Thanks to these jet subtractions, and to Claim 4.6, from (4.108), (4.109), (4.111) and (4.112), we
obtain

[𝑖𝜕𝜕 �̃�∗ℓ ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) + [𝑖𝜕𝜕�̃�ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝑑

𝛼
ℓ (4.130)

when 𝑗 = 0, and

[𝔇2 𝑗𝑖𝜕𝜕 �̃�∗ℓ ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) + [𝔇2 𝑗𝜕𝑡 �̃�

∗
ℓ ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

+ [𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝜀 𝜄ℓ

[
𝔇2 𝑗+2+ 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝐶𝑑2 𝑗+𝛼
ℓ ,

(4.131)

when 𝑗 � 1, as well as

(1 + 𝑜(1)) = 𝑑
−2 𝑗−𝛼
ℓ |𝔇2 𝑗𝑖𝜕𝜕 �̃�∗ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝔇

2 𝑗𝑖𝜕𝜕 �̃�∗ℓ (𝑥
′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

+ 𝑑−2 𝑗−𝛼
ℓ |𝔇2 𝑗𝜕𝑡 �̃�

∗
ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝔇

2 𝑗𝜕𝑡 �̃�
∗
ℓ (𝑥

′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0) + 𝑑

−2 𝑗−𝛼
ℓ |𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 (𝑥ℓ , 0)

− P�̃�′
ℓ
�̃�ℓ𝔇

2 𝑗+2�̃�ℓ, 𝑗,𝑘 (𝑥 ′ℓ , 𝑡
′
ℓ) |�̃�ℓ (0)

+ 𝑑−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=−2

𝜀 𝜄ℓ

(
|𝔇2 𝑗+2+ 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ (𝔇
2 𝑗+2+ 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 (𝑥
′
ℓ , 𝑡

′
ℓ)) |�̃�ℓ (0)

)
,

(4.132)

while on the other hand (4.110), remains the same for 𝑗 = 0.
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4.10. Estimates on each component

Our next task is then to obtain precise estimates on all the pieces of the decomposition (4.129), which
will allow us to later expand and linearize the Monge-Ampère equation (4.107). In the following, the
radii R and S will be any fixed radii, unless otherwise specified. Some of the estimates are analogous to
those in [21, §4.9], replacing balls �̃�𝑟 by parabolic cylinders �̃�𝑟 = 𝐵C𝑚 (0, 𝑟) ×𝑌 × [−𝑟2, 0]. We follow
closely the arguments there.

4.10.1. Estimates for �̃�ℓ, 𝒋,𝒌

First, we assume that 𝑗 = 0. Then from the Hölder seminorm bound for 𝑖𝜕𝜕�̂�ℓ,0,𝑘 in (4.64), together
with Proposition 2.6, we obtain

‖𝑖𝜕𝜕�̂�ℓ,0,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
𝛼
ℓ , (4.133)

and since �̂�ℓ,0,𝑘 has fiberwise average zero, we can apply fiberwise Moser iteration to this, and get

‖�̂�ℓ,0,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
2+𝛼
ℓ . (4.134)

Using the bounds ‖𝜕2
𝑡 𝜑 + 𝜕𝑡𝜑‖∞,𝐵×𝑌×[𝑡−1,𝑡 ] � 𝐶 and ‖D(𝜕𝑡𝜑 + 𝜑)‖∞,𝐵×𝑌×[𝑡−1,𝑡 ],𝑔 (𝑡) � 𝐶 from

Lemma 4.1 (v), (vi), we can bound for any 𝑥, 𝑥 ′ ∈ 𝐵𝑅𝜆−1
ℓ
× 𝑌 and 𝑡, 𝑠 ∈ (𝑡ℓ − 𝜆−2

ℓ 𝑅2, 𝑡ℓ],

| (𝜕𝑡𝜑 + 𝜑) (𝑥, 𝑡) − (𝜕𝑡𝜑 + 𝜑) (𝑥 ′, 𝑠) | � 𝐶 (𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 |) � 𝑜(1) (𝑑𝑔 (𝑡) (𝑥, 𝑥 ′) + |𝑡 − 𝑠 |
1
2 )𝛼,
(4.135)

which gives

[𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝜆

−𝛼
ℓ [𝜕𝑡𝜑 + 𝜑]𝛼,𝛼/2,𝐵

𝑅𝜆−1
ℓ
×𝑌×(𝑡ℓ−𝜆−2

ℓ
𝑅2 ,𝑡ℓ ],𝑔 (𝑡ℓ ) = 𝑜(1). (4.136)

Repeating the argument with 𝜑 gives

[𝜕𝑡 �̂�ℓ + 𝜆−2
ℓ �̂�ℓ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) = 𝑜(1), (4.137)

and combining these, we see that

[𝜕𝑡 �̂�ℓ,0,𝑘 + 𝜆−2
ℓ �̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) = 𝑜(1), (4.138)

so from this, the bound [𝑖𝜕𝜕�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶 from (4.64), and the bounds (4.133) and (4.209)
below (on �̂�♯

ℓ), we see that[(
𝜕𝑡 − Δ

�̂�
♯
ℓ

)
�̂�ℓ,0,𝑘

]
𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0)

� 𝐶𝜆−2
ℓ [�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) + 𝐶. (4.139)

We wish to use the Schauder estimates in Proposition 2.8, and for this, we need to pass to the check
picture via the diffeomorphism Ξℓ in (3.4), pulling back all geometric quantities and scaling 2-forms
(as well as �̂�ℓ,0,𝑘 ) by 𝛿−2

ℓ . We can then apply Proposition 2.8 to �̌�ℓ,0,𝑘 and then transfer the result back
to the hat picture. This shows that for every 𝜌 < 𝑅 (where R is fixed), we have

[𝔇2�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝜌 ,�̂�ℓ (0) � 𝐶
[(
𝜕𝑡 − Δ

�̂�
♯
ℓ

)
�̂�ℓ,0,𝑘

]
𝛼,𝛼/2,�̂� 𝑅+𝜌

2
,�̂�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−2−𝛼‖�̂�ℓ,0,𝑘 ‖∞,�̂�𝑅
,

(4.140)
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and employing the interpolation inequality in (2.11), and (4.134), (4.139), we can bound the RHS of
(4.140) by

𝐶𝜆−2
ℓ [�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂� 𝑅+𝜌

2
,�̂�ℓ (0) + 𝐶 + 𝐶 (𝑅 − 𝜌)−2−𝛼𝛿2+𝛼

ℓ

� 𝐶𝜆−2
ℓ (𝑅 − 𝜌)2 [𝔇2�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) + 𝐶𝜆

−2
ℓ (𝑅 − 𝜌)−𝛼‖�̂�ℓ,0,𝑘 ‖∞,�̂�𝑅

+ 𝐶 + 𝐶 (𝑅 − 𝜌)−2−𝛼𝛿2+𝛼
ℓ

�
1
2
[𝔇2�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) + 𝐶 + 𝐶𝜆−2

ℓ (𝑅 − 𝜌)−𝛼𝛿2+𝛼
ℓ + 𝐶 (𝑅 − 𝜌)−2−𝛼𝛿2+𝛼

ℓ ,

(4.141)

and after combining (4.140) and (4.141), we can apply the iteration lemma in [21, Lemma 2.9] and
deduce that for every 𝜌 < 𝑅, we have

[𝔇2�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝜌 ,�̂�ℓ (0) � 𝐶 + 𝐶𝜆−2
ℓ (𝑅 − 𝜌)−𝛼𝛿2+𝛼

ℓ + 𝐶 (𝑅 − 𝜌)−2−𝛼𝛿2+𝛼
ℓ , (4.142)

so in particular, for any fixed R, we deduce that

[𝔇2�̂�ℓ,0,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶, (4.143)

and finally applying Proposition 2.6 and translating to the tilde picture, we get

𝑑−𝛼ℓ ‖𝔇 𝜄�̃�ℓ, 𝑗,𝑘 ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶𝜀

2+𝛼− 𝜄
ℓ , 𝑑−𝛼ℓ [𝔇 𝜄�̃�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝜀

2− 𝜄
ℓ (4.144)

for any 0 � 𝜄 � 2.
Next, when 𝑗 � 1, from the Hölder seminorm bound for 𝔇2 𝑗+2�̂�ℓ, 𝑗,𝑘 in (4.61), together with

Proposition 2.6, we obtain bounds for the lower-order derivatives of �̂�ℓ, 𝑗,𝑘 , which in the tilde picture
translate to

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇 𝜄�̃�ℓ, 𝑗,𝑘 ‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝜀

2 𝑗+2+𝛼− 𝜄
ℓ , 𝑑

−2 𝑗−𝛼
ℓ [𝔇 𝜄�̃�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝜀

2 𝑗+2− 𝜄
ℓ ,

(4.145)

for any 0 � 𝜄 � 2 𝑗 + 2. Observe that these are formally the same as (4.144) when 𝑗 = 0.

4.10.2. Estimates for �̃�ℓ

By Lemma 4.1 (ii),(iii),⎧⎪⎪⎨⎪⎪⎩
‖𝑖𝜕𝜕 �̃�ℓ ‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = ‖𝑒𝑑2

ℓ𝜆
−2
ℓ 𝑡 𝑖𝜕𝜕�̃�ℓ ‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1),

‖𝜕𝑡 �̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = ‖𝑒𝑑2

ℓ𝜆
−2
ℓ 𝑡 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ)‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1).

(4.146)

When 𝑗 = 0, we have

𝑑−𝛼ℓ [𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑑−𝛼ℓ

[
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ)

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝑑−𝛼ℓ

[
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

‖𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ ‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

+ 𝑑−𝛼ℓ
���𝑒𝑑2

ℓ𝜆
−2
ℓ 𝑡

���
∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

[𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝑜(1)𝐶𝑑−𝛼ℓ (𝑑ℓ𝜆−1
ℓ )𝛼 + 𝑜(1) = 𝑜(1),

(4.147)
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where we used 𝑑−𝛼ℓ [𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1), which follows from (4.137). Similarly,

𝑑−𝛼ℓ [𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑑−𝛼ℓ

[
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕�̃�ℓ

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

� 𝑑−𝛼ℓ

[
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

‖𝑖𝜕𝜕�̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0)

+ 𝑑−𝛼ℓ
���𝑒𝑑2

ℓ𝜆
−2
ℓ 𝑡

���
∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0)

[𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0)

� 𝑜(1)𝐶𝑑−𝛼ℓ (𝑑ℓ𝜆−1
ℓ )𝛼 + 𝐶 � 𝐶,

(4.148)

where we used 𝑑−𝛼ℓ [𝑖𝜕𝜕�̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶, which follows from (4.108). Thus, when 𝑗 = 0, we

have

[𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶𝑑

𝛼
ℓ , [𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(𝑑𝛼ℓ ). (4.149)

When 𝑗 � 1, from (4.109), (4.116) and (4.117), we obtain the analogous seminorm bounds

[𝔇2 𝑗𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+𝛼
ℓ , [𝔇2 𝑗𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+𝛼
ℓ , (4.150)

and we can interpolate between these and (4.146) to conclude that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑− 𝜄ℓ ‖𝔇 𝜄𝑖𝜕𝜕 �̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1), 0 � 𝜄 � 2 𝑗 ,

𝑑− 𝜄ℓ ‖𝔇 𝜄𝜕𝑡 �̃�ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1), 0 � 𝜄 � 2 𝑗 ,

𝑑− 𝜄−𝛼ℓ [𝔇 𝜄𝑖𝜕𝜕 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1), 0 � 𝜄 < 2 𝑗 ,

𝑑− 𝜄−𝛼ℓ [𝔇 𝜄𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1), 0 � 𝜄 < 2 𝑗

(4.151)

We now treat �̃�∗ℓ . From (4.149), (4.150) and the definition of �̃�∗ℓ we see that for all 𝑗 � 0,

[𝔇2 𝑗𝑖𝜕𝜕 �̃�∗ℓ ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+𝛼
ℓ , [𝔇2 𝑗𝜕𝑡 �̃�

∗
ℓ ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+𝛼
ℓ . (4.152)

Using these and Lemma 2.4, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇 𝜄𝑖𝜕𝜕 �̃�∗ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼− 𝜄,

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇 𝜄𝜕𝑡 �̃�

∗
ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼− 𝜄,

𝑑
−2 𝑗−𝛼
ℓ [𝔇 𝜄𝑖𝜕𝜕 �̃�∗ℓ ]𝛼,𝛼/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗− 𝜄,

𝑑
−2 𝑗−𝛼
ℓ [𝔇 𝜄𝜕𝑡 �̃�

∗
ℓ ]𝛼,𝛼/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗− 𝜄,

(4.153)

for all 0 � 𝜄 � 2 𝑗 and 0 < 𝑆 � 𝑅𝑑−1
ℓ .

We will also need a bound for the 𝐿∞ norm of derivatives of 𝑑−2 𝑗−𝛼
ℓ �̃�∗ℓ of order up to 2 𝑗 + 2, which

in general may blow up, but which will nevertheless be useful later. To start, from Lemma 4.1 (ii), we
have ‖ �̂�ℓ ‖∞,�̂�𝑅

= 𝑜(1)𝜆2
ℓ , while from (4.152), we see in particular that[

𝔇2 𝑗 (𝜕𝑡 − Δ𝜔C𝑚
)
�̂�ℓ

]
𝛼,𝛼/2,�̂�𝑅 ,𝑔C𝑚

� 𝐶. (4.154)
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Standard Euclidean Schauder estimates then imply that[
𝔇2 𝑗+2 �̂�ℓ

]
𝛼,𝛼/2,�̂�𝑅 ,𝑔C𝑚

� 𝐶 + 𝑜(1)𝜆2
ℓ , (4.155)

and since we may assume without loss that 𝑜(1)𝜆2
ℓ � 𝐶, passing to the tilde picture, we get

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2 �̃�∗ℓ

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,𝑔C𝑚

= 𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2 �̃�ℓ

]
𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,𝑔C𝑚

� 𝑜(1)𝜆2
ℓ , (4.156)

and we can then apply Lemma 2.4 to �̃�𝑅 and get

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇 𝜄 �̃�∗ℓ ‖∞,�̃�𝑅 ,𝑔C𝑚

= 𝑜(1)𝜆2
ℓ , (4.157)

for 0 � 𝜄 � 2 𝑗 + 2.
Since �̃�♯ℓ is a jet of �̃�ℓ , it inherits from (4.146) and (4.151) the bounds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑− 𝜄ℓ ‖𝔇 𝜄𝑖𝜕𝜕 �̃�♯ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1),

𝑑− 𝜄ℓ ‖𝔇 𝜄𝜕𝑡 �̃�
♯
ℓ ‖∞,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1),

𝑑− 𝜄−𝛼ℓ [𝔇 𝜄𝑖𝜕𝜕 �̃�♯ℓ ]𝛼,𝛼/2,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1),

𝑑− 𝜄−𝛼ℓ [𝔇 𝜄𝜕𝑡 �̃�
♯
ℓ ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1),

(4.158)

for all 0 � 𝜄 � 2 𝑗 and R fixed. Moreover, since �̃�♯ℓ is a polynomial of degree at most 2 𝑗 + 2, it vanishes
when differentiated more than 2 𝑗 + 2 times.

Furthermore, recalling the definitions of 𝜂‡ℓ and 𝜂♦ℓ in (4.125), from (4.153) and (4.158), we quickly
deduce

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇 𝜄𝜂♦ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼− 𝜄, 𝑑
−2 𝑗−𝛼
ℓ [𝔇 𝜄𝜂♦ℓ ]𝛼,𝛼/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗− 𝜄 (4.159)

for 0 � 𝜄 � 2 𝑗 , 0 < 𝑆 � 𝑅𝑑−1
ℓ , and

𝑑− 𝜄ℓ ‖𝔇 𝜄𝜂‡ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) = 𝑜(1), 𝑑− 𝜄−𝛼ℓ [𝔇 𝜄𝜂‡ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) = 𝑜(1), (4.160)

also for 0 � 𝜄 � 2 𝑗 , R fixed (and derivatives of 𝜂‡ℓ of order higher than 2 𝑗 vanish, of course).

4.10.3. Estimates for �̃�∗
ℓ,𝒊,𝒑,𝒌

From (4.131), we have

[𝔇2 𝑗 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿

2
ℓ , (4.161)

and hence, Lemma 2.4 implies

‖𝔇 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿

2
ℓ𝑅

2 𝑗+𝛼− 𝜄, [𝔇 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿

2
ℓ𝑅

2 𝑗− 𝜄 (4.162)

for all 0 � 𝜄 � 2 𝑗 and fixed 𝑅 > 0. Taking 𝑅 = 𝑆𝑑ℓ and transferring to the tilde picture, we have

𝑑− 𝜄ℓ ‖𝔇 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝜀

2
ℓ (𝑑ℓ𝑆)

2 𝑗+𝛼− 𝜄, 𝑑− 𝜄−𝛼ℓ [𝔇 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝜀

2
ℓ (𝑑ℓ𝑆)

2 𝑗− 𝜄

(4.163)

for all 0 � 𝜄 � 2 𝑗 and 𝑆 � 𝑅𝑑−1
ℓ .
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For higher order derivatives of �̃�∗
ℓ,𝑖, 𝑝,𝑘 , we use interpolation. Since �̃�♯ℓ,𝑖, 𝑝,𝑘 is a parabolic polynomial

of degree at most 2 𝑗 , (4.131) implies[
𝔇2 𝑗+ 𝜄 �̂�∗

ℓ,𝑖, 𝑝,𝑘

]
𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0)

� 𝐶𝛿2− 𝜄
ℓ (4.164)

for all 0 � 𝜄 � 2𝑘+2. For any 1 � 𝜄 � 2𝑘+2, Proposition 2.3 in the hat picture gives for 0 < 𝜌1 < 𝜌2 � 𝑅,

(𝜌2 − 𝜌1) 𝜄‖𝔇2 𝑗+ 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌1 ,�̂�ℓ (0)

� 𝐶
(
(𝜌2 − 𝜌1) 𝜄+𝛼 [𝔇2 𝑗+ 𝜄 �̂�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝜌2 ,�̂�ℓ (0)
+ ‖𝔇2 𝑗 �̂�∗

ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝜌2 ,�̂�ℓ (0)

)
� 𝐶 (𝜌2 − 𝜌1) 𝜄+𝛼𝛿2− 𝜄

ℓ + 𝐶𝛿2
ℓ 𝜌

𝛼
2 .

(4.165)

We can follow closely the choice of 𝜌𝑖 in the interpolation in [21, §4.9.3] (with j replaced by 2 𝑗 here)
to conclude that

‖𝔇2 𝑗+ 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆𝛿ℓ

,�̂�ℓ (0) � 𝐶𝑆𝛿
2+𝛼− 𝜄
ℓ . (4.166)

This will play an important role in case 𝜀ℓ � 𝐶−1. For later purposes, we will need to estimate the
dependence of 𝐶𝑆 on S as 𝑆 → +∞. In fact, 𝐶𝑆 in [21, (4.127)] is given by 𝐶 (𝐴𝑆) 𝛼2

𝜄+𝛼 where 𝐴 > 1 is
given as a function of 𝑆 > 1 by solving the equation (𝐴 − 1)−1𝐴

𝛼
𝜄+𝛼 = 𝑆

𝜄
𝜄+𝛼 . Since 𝛼

𝜄+𝛼 < 1 for 𝜄 � 1, A
stays bounded as 𝑆 → +∞. Hence, we can estimate 𝐶𝑆 from above by

𝐶𝑆 � 𝐶 (𝐴𝑆)
𝛼2
𝜄+𝛼 � 𝐶𝑆𝛼 (4.167)

for 𝑆 > 1. Therefore, in the tilde picture we obtain

‖𝔇2 𝑗+ 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑆𝜀ℓ

,�̃�ℓ (0) � 𝐶𝑆
𝛼𝜀2− 𝜄+𝛼

ℓ 𝑑
2 𝑗+𝛼
ℓ , (4.168)

where 1 � 𝜄 � 2𝑘 + 2 and 𝑆 > 1 fixed (which is the analog of [21, (4.129)]).
Similarly, in the case when 𝜀ℓ → 0, following the derivation of [21, (4.132)], we obtain

‖𝔇2 𝑗+ 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶𝛿
2− 𝜄
ℓ 𝑑𝛼ℓ 𝜀

𝜄𝛼
𝜄+𝛼
ℓ 𝑆

𝛼2
𝜄+𝛼 , (4.169)

which in the tilde picture becomes

‖𝔇2 𝑗+ 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝜀

2− 𝜄
ℓ (𝑆𝛼𝜀 𝜄ℓ)

𝛼
𝜄+𝛼 𝑑

2 𝑗+𝛼
ℓ (4.170)

for 1 � 𝜄 � 2𝑘 + 2 and 𝑆 > 1 fixed.

4.10.4. Estimates for �̃�♯
ℓ,𝒊,𝒑,𝒌

By (4.73), we have for all 0 � 𝜄 � 2 𝑗 that

‖𝔇 𝜄 �̂�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
2
ℓ

(
𝑒

−2𝑖+2−𝛼
2 𝑡ℓ

)1− 𝜄
2 𝑗+𝛼 (4.171)

for all given 𝑅 > 0 (with C independent of 𝑅 > 0). Since �̂�♯ℓ,𝑖, 𝑝,𝑘 is the 2 𝑗-jet of �̂�ℓ,𝑖, 𝑝,𝑘 at (0, 0), we

see that all the coefficients of the polynomial �̂�♯ℓ,𝑖, 𝑝,𝑘 are bounded by 𝐶𝛿2
ℓ𝑒

−2𝑖+2−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ , and so⎧⎪⎪⎨⎪⎪⎩
‖𝔇 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆 ,�̂�ℓ (0) � 𝐶 max(1, 𝑆2 𝑗− 𝜄)𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 · 𝛼
2 𝑗+𝛼 𝑡ℓ ,

[𝔇 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̂�𝑆 ,�̂�ℓ (0) � 𝐶 max(1, 𝑆2 𝑗− 𝜄−𝛽)𝛿2
ℓ𝑒

−2𝑖+2−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ
(4.172)
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for all 𝑆 > 0, 0 � 𝜄 � 2 𝑗 and 0 < 𝛽 < 1. Transferring to the tilde picture yields⎧⎪⎪⎨⎪⎪⎩
𝑑− 𝜄+2
ℓ ‖𝔇 𝜄 �̃�♯ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶 max(1, (𝑆𝑑ℓ)2 𝑗− 𝜄)𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 · 𝛼
2 𝑗+𝛼 𝑡ℓ ,

𝑑
− 𝜄+2−𝛽
ℓ [𝔇 𝜄 �̃�♯ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶 max(1, (𝑆𝑑ℓ)2 𝑗− 𝜄−𝛽)𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 · 𝛼
2 𝑗+𝛼 𝑡ℓ ,

(4.173)

for all 0 < 𝑆 � 𝑅𝑑−1
ℓ , 0 � 𝜄 � 2 𝑗 and 0 < 𝛽 < 1, c.f. [21, (4.135)–(4.136)].

4.10.5. Estimates for �̃�◦ℓ and its potential
First, we recall that

𝜂◦ℓ =
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑖𝜕𝜕�̂�𝑡 ,𝑘 ( �̂�∗
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 ). (4.174)

Here, �̂�𝑡 ,𝑘 and �̂�ℓ,𝑖, 𝑝,𝑘 are 𝑡-dependent while �̂�ℓ,𝑖, 𝑝,𝑘 is independent of time.
By applying (3.1) for each fixed 𝑡, we can write

�̂�𝑡 ,𝑘 ( �̂�∗
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 ) =

2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑒−𝑞𝜆
−2
ℓ 𝑡−(𝑞− 𝜄

2 )𝑡ℓ 𝛿 𝜄ℓΦ̂ 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) � D 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 , (4.175)

where Φ̂ 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) is independent of time. Note also that 𝐽ℓ is independent of time and hence [21,
(4.141), (4.144)] can be directly carried over, so that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖𝔇 𝜄𝐽ℓ ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
− 𝜄
ℓ ,

[𝔇 𝜄𝐽ℓ]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
− 𝜄−𝛼
ℓ ,

‖𝔇 𝜄Φ̂ 𝜄,𝑞 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
− 𝜄
ℓ ,

[𝔇 𝜄Φ̂ 𝜄,𝑞]𝛼,𝛼/2,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝛿
− 𝜄−𝛼
ℓ ,

(4.176)

for each 𝜄 � 0, � 𝜄2 � � 𝑞 � 2𝑘 and fixed 𝑅 > 0.
Schematically, we have

𝔇𝑟�̂�𝑡 ,𝑘 ( �̂�∗
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )

=
2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑟∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=𝑟−𝑑

𝑒−𝑞𝜆
−2
ℓ 𝑡−(𝑞− 𝜄

2 )𝑡ℓ
(
𝑞𝜆−2

ℓ

) 𝑑
2
𝛿 𝜄ℓ𝔇

𝑖1Φ̂ 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 .

(4.177)

To estimate this, we will need (4.162), (4.164) and (4.168):⎧⎪⎪⎨⎪⎪⎩
‖𝔇 𝜄 �̂�∗

ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆𝛿ℓ
,�̂�ℓ (0) � 𝐶𝑆

𝛼𝛿
2 𝑗+2+𝛼− 𝜄
ℓ max(1, 𝑆2 𝑗− 𝜄),

[𝔇 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑆𝛿ℓ

,�̂�ℓ (0) � 𝐶𝛿
2 𝑗+2− 𝜄
ℓ max(1, 𝑆2 𝑗− 𝜄),

(4.178)

for all 0 � 𝜄 � 2𝑘 + 2 + 2 𝑗 and 𝑆 > 1 fixed. Now using (4.176) and (4.178) in (4.177), and recalling that
𝛿ℓ = 𝜆ℓ𝑒

− 𝑡ℓ
2 , yields

‖𝔇𝑟�̂�𝑡 ,𝑘 ( �̂�∗
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )‖∞,�̂�𝑆𝛿ℓ

,�̂�ℓ (0) � 𝐶𝑆
𝛼

2𝑘∑
𝜄=0

𝑟∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=𝑟−𝑑

max(1, 𝑆2 𝑗− 𝜄)𝜆−𝑑ℓ 𝛿
𝜄−𝑖1+2 𝑗+2+𝛼−𝑖2− 𝜄
ℓ

� 𝐶𝑆2 𝑗+𝛼𝛿
−𝑟+2 𝑗+2+𝛼
ℓ ,

(4.179)
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for all 0 � 𝑟 � 2 𝑗 + 2. Similarly,

[𝔇𝑟�̂�𝑡 ,𝑘 ( �̂�∗
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,�̂�𝑆𝛿ℓ

,�̂�ℓ (0) � 𝐶𝑆
2 𝑗+𝛼𝛿

−𝑟+2 𝑗+2
ℓ , (4.180)

for all 0 � 𝑟 � 2 𝑗 + 2. Transferring to the tilde picture gives⎧⎪⎪⎨⎪⎪⎩
𝑑−𝑟+2
ℓ ‖𝔇𝑟�̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )‖∞,�̃�𝑆𝜀ℓ
,�̃�ℓ (0) � 𝐶𝑆2 𝑗+𝛼𝛿

−𝑟+2 𝑗+2+𝛼
ℓ ,

𝑑−𝑟−𝛼+2
ℓ [𝔇𝑟�̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,�̃�𝑆𝜀ℓ
,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝛿
−𝑟+2 𝑗+2
ℓ ,

(4.181)

for all 0 � 𝑟 � 2 𝑗 + 2 and 𝑆 > 1 fixed.
Next, we consider the case when 𝜀ℓ � 𝐶, and we take only derivatives and difference quotients in the

base and time directions. The argument is similar to [21, (4.159)]. We start by noting that if a certain
derivative 𝔇 𝜄 contains precisely u fiber derivatives (0 � 𝑢 � 𝜄), then we will denote it schematically by
𝔇 𝜄

# f=𝑢 . We then have the easy bounds from [21, (4.153)–(4.154)]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖𝔇 𝜄
# f=𝑢𝐽ℓ ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝜆

− 𝜄+𝑢
ℓ 𝛿−𝑢ℓ ,

[𝔇 𝜄
# f=𝑢𝐽ℓ]𝛼,𝛼/2,base,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝜆

− 𝜄−𝛼+𝑢
ℓ 𝛿−𝑢ℓ ,

‖𝔇 𝜄
# f=𝑢Φ̂ 𝜄,𝑞 ‖∞,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝜆

− 𝜄+𝑢
ℓ 𝛿−𝑢ℓ ,

[𝔇 𝜄
# f=𝑢Φ̂ 𝜄,𝑞]𝛼,𝛼/2,base,�̂�𝑅 ,�̂�ℓ (0) � 𝐶𝜆

− 𝜄−𝛼+𝑢
ℓ 𝛿−𝑢ℓ .

(4.182)

We use (4.162), (4.164) and (4.169) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖𝔇 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶𝛿
2
ℓ (𝑆𝑑ℓ)

2 𝑗+𝛼− 𝜄,

[𝔇 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶𝛿
2
ℓ (𝑆𝑑ℓ)

2 𝑗− 𝜄,

‖𝔇2 𝑗+ 𝜄′ �̂�∗
ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶𝛿
2− 𝜄′
ℓ (𝑑ℓ𝑆)𝛼𝜀

𝜄′𝛼
𝜄′+𝛼
ℓ ,

[𝔇 𝜄′ �̂�∗
ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶𝛿
2− 𝜄′
ℓ ,

(4.183)

for all 0 � 𝜄 � 2 𝑗 , 1 � 𝜄′ � 2𝑘 + 2 and 𝑆 > 1 fixed. Then (4.177), (4.182) and (4.183) imply

‖𝔇𝑟
bt�̂�𝑡 ,𝑘 ( �̂�∗

ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )‖∞,�̂�𝑆𝑑ℓ
,�̂�ℓ (0) � 𝐶

2𝑘∑
𝜄=0

𝑟∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=𝑟−𝑑

𝜆−𝑑−𝑖1ℓ 𝛿 𝜄ℓ ·
{
𝛿2
ℓ (𝑆𝑑ℓ )

2 𝑗+𝛼−𝑖2− 𝜄, if 𝑖2 + 𝜄 � 2 𝑗 ,
𝛿

2+2 𝑗−𝑖2− 𝜄
ℓ (𝑆𝑑ℓ )𝛼, if 𝑖2 + 𝜄 > 2 𝑗 ,

� 𝐶𝑑2 𝑗+2+𝛼−𝑟
ℓ 𝑆2 𝑗+𝛼,

(4.184)

for 0 � 𝑟 � 2 𝑗 + 2, and fixed 𝑆 > 1. Arguing similarly for the Hölder seminorms, and transferring to
the tilde picture yields{

𝑑−𝑟+2
ℓ ‖𝔇𝑟

bt�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+2+𝛼−𝑟
ℓ 𝑆2 𝑗+𝛼,

𝑑−𝑟−𝛼+2
ℓ [𝔇𝑟

bt�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,base,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

2 𝑗+2−𝑟
ℓ 𝑆2 𝑗+𝛼 .

(4.185)

Observe that when 𝑟 = 2 𝑗 + 2, the leading term arises when 𝑑 = 𝑖1 = 𝑞 = 𝜄 = 0 and 𝑖2 = 2 𝑗 + 2,
which in the tilde picture is given by

𝔇2 𝑗+2
bt �̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) =
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

(ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖, 𝑝,𝑘 ·𝔇2 𝑗+2 �̃�∗
ℓ,𝑖, 𝑝,𝑘 + 𝑜(𝑑

2 𝑗+𝛼
ℓ ).

(4.186)
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We now bound 𝜂◦ℓ and its derivatives. Using [21, (4.139)], paying extra attention to the time
derivatives, we have

𝔇𝑟𝜂◦ℓ =
∑

𝑒−𝑞 (𝑡ℓ+𝜆
−2
ℓ 𝑡)+ 𝜄

2 𝑡ℓ
(
𝑞𝜆−2

ℓ

) 𝑑
2
𝛿 𝜄ℓ (𝔇

𝑟−𝑑+1−𝑠𝐽ℓ) �𝔇𝑖1Φ̂ℓ, 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄 �̂�∗
ℓ,𝑖, 𝑝,𝑘 , (4.187)

where ∑
=

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑟∑
𝑑=0
𝑑∈2N

𝑑+1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

. (4.188)

Using (4.176) with (4.178), we can estimate 𝔇𝑟𝜂◦ℓ by

‖𝔇𝑟𝜂◦ℓ ‖∞,�̂�𝑆𝛿ℓ
,�̂�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝜆−𝑑ℓ 𝛿
𝜄−𝑟+𝑑−1+𝑠−𝑖1+2 𝑗+2+𝛼−𝑖2− 𝜄
ℓ � 𝐶𝑆2 𝑗+𝛼𝛿

−𝑟+2 𝑗+𝛼
ℓ , (4.189)

where we have used the fact that 𝛿ℓ = 𝜆ℓ𝑒
−𝑡ℓ/2. Similarly,

[𝔇𝑟𝜂◦ℓ]𝛼,𝛼/2,�̂�𝑅𝛿ℓ
,�̂�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝛿
−𝑟+2 𝑗
ℓ . (4.190)

In particular in the tilde picture,⎧⎪⎪⎨⎪⎪⎩
𝑑−𝑟ℓ ‖𝔇𝑟𝜂◦ℓ ‖∞,�̃�𝑆𝜀ℓ

,�̃�ℓ (0) � 𝐶𝑆2 𝑗+𝛼𝛿
−𝑟+2 𝑗+𝛼
ℓ ,

𝑑−𝑟−𝛼ℓ [𝔇𝑟𝜂◦ℓ]𝛼,𝛼/2,�̃�𝑆𝜀ℓ
,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝛿
−𝑟+2 𝑗
ℓ ,

(4.191)

for all 0 � 𝑟 � 2 𝑗 (which is the analog of [21, (4.151)]).
These estimates are only useful when 𝜀ℓ � 𝐶−1. In the case when 𝜀ℓ → 0, we shall only take

derivatives and difference quotients in the base and time directions. We can follow the argument to
derive [21, (4.159)], using (4.162), (4.164),(4.166) and (4.167) instead of [21, (4.123), (4.125), (4.130)],
and using 𝔇 instead of D, and taking also time derivatives of 𝑒−𝑞 (𝑡ℓ+𝜆−2

ℓ 𝑡) in (4.187), we obtain

⎧⎪⎨⎪⎩ 𝑑−𝑟ℓ ‖𝔇𝑟
bt𝜂

◦
ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝑑
2 𝑗+𝛼−𝑟
ℓ ,

𝑑−𝑟−𝛼ℓ [𝔇𝑟
bt𝜂

◦
ℓ]𝛼,𝛼/2,base,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆

2 𝑗+𝛼𝑑
2 𝑗−𝑟
ℓ ,

(4.192)

for all 0 � 𝑟 � 2 𝑗 and S fixed. Also, it is important to note that in the 𝐿∞ bound in (4.192) with 𝑟 = 2 𝑗 ,
which nominally is 𝑂 (𝑑𝛼ℓ ), the only term which is not actually 𝑜(𝑑𝛼ℓ ) comes from the terms in the sum
in (4.187) with 𝑑 = 0. To see this, we follow verbatim the discussion in [21, (4.161)], which gives us that

𝑑
−2 𝑗−𝛼
ℓ 𝔇2 𝑗

bt 𝜂
◦
ℓ = 𝑑

−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

(
𝑖𝜕𝜕 (ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖, 𝑝,𝑘

)
ff
𝔇2 𝑗 �̃�∗

ℓ,𝑖, 𝑝,𝑘 + 𝑜(1), (4.193)

locally uniformly.
Similarly, following the derivation of [21, (4.162)], in the case when 𝜀ℓ → 0, we have

⎧⎪⎨⎪⎩ 𝑑−𝑟ℓ ‖𝔇𝑟𝜂◦ℓ ‖∞,�̃�𝑆 ,𝑔𝑋
� 𝐶𝑆2 𝑗+𝛼𝑑

2 𝑗+𝛼−𝑟
ℓ ,

𝑑−𝑟−𝛼ℓ [𝔇𝑟𝜂◦ℓ]𝛼,𝛼/2,�̃�𝑆 ,𝑔𝑋
� 𝐶𝑆2 𝑗+𝛼𝑑

2 𝑗−𝑟
ℓ ,

(4.194)

for all 0 � 𝑟 � 2 𝑗 , fixed 𝑆 > 0 and a fixed metric 𝑔𝑋 .
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4.10.6. Estimates for �̃�†ℓ and its potential
Recall that by definition we have

𝜂†ℓ = 𝑖𝜕𝜕

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑒−𝑞 (𝑡ℓ+𝜆
−2
ℓ 𝑡)+ 𝜄

2 𝑡ℓ 𝛿 𝜄ℓ

(
Φ̂ℓ, 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) � D 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘

)
, (4.195)

where we have applied (3.1). From (4.172), we have⎧⎪⎪⎨⎪⎪⎩
‖𝔇 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ‖∞,�̂�𝑆 ,�̂�ℓ (0) � 𝐶 max(1, 𝑆2 𝑗− 𝜄)𝛿2

ℓ𝑒
−2𝑖+2−𝛼

2 · 𝛼
2 𝑗+𝛼 𝑡ℓ ,

[𝔇 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̂�𝑆 ,�̂�ℓ (0) � 𝐶 max(1, 𝑆2 𝑗− 𝜄−𝛽)𝛿2
ℓ𝑒

−2𝑖+2−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,
(4.196)

for all 𝑆 > 0, 0 � 𝜄 � 2 𝑗 and 0 < 𝛽 < 1, while the derivatives of (parabolic) order > 2 𝑗 vanish since
�̂�♯ℓ,𝑖, 𝑝,𝑘 is a (parabolic) polynomial of degree at most 2 𝑗 . By applying 𝔇𝑟 to 𝜂†ℓ , we have

𝔇𝑟𝜂†ℓ =
∑

𝑒−𝑞 (𝑡ℓ+𝜆
−2
ℓ 𝑡)+ 𝜄

2 𝑡ℓ (𝑞𝜆−2
ℓ )

𝑑
2 𝛿 𝜄ℓ (𝔇

𝑟−𝑑+1−𝑠𝐽ℓ) �𝔇𝑖1Φ̂ 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 , (4.197)

where ∑
=

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑟∑
𝑑=0
𝑑∈2N

𝑑+1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

, (4.198)

so that (4.176) and (4.196) imply

‖𝔇𝑟𝜂†ℓ ‖∞,�̂�𝑆 ,�̂�ℓ (0) � 𝐶
∑

𝜆−𝑑ℓ 𝛿 𝜄−𝑟+𝑑−1+𝑠−𝑖1+2
ℓ 𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ � 𝐶𝛿−𝑟ℓ 𝑒
−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ . (4.199)

The Hölder seminorm is similar, and hence,{
𝑑−𝑟ℓ ‖𝔇𝑟𝜂†ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝛿−𝑟ℓ 𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,

𝑑
−𝑟−𝛽
ℓ [𝔇𝑟𝜂†ℓ]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝛿

−𝑟−𝛽
ℓ 𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,
(4.200)

for all 𝑟 � 0, 𝛽 ∈ (0, 1) and 𝑆 � 𝑅𝑑−1
ℓ with R fixed (as in [21, (4.172)]). Likewise, if we take at most 2

fiber derivatives landing on Φ̂ and 𝐽ℓ , then we use (4.196) and (4.182) to get⎧⎪⎨⎪⎩ 𝑑−𝑟ℓ ‖𝔇𝑟
bt𝜂

†
ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,

𝑑
−𝑟−𝛽
ℓ [𝔇𝑟

bt𝜂
†
ℓ]𝛽,𝛽/2,base,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ
(4.201)

for all 𝑟 � 0, 𝛽 ∈ (0, 1) and 𝑆 � 𝑅𝑑−1
ℓ with R fixed (as in [21, (4.173)]). In particular, they converge to

zero. If instead we use fixed metric 𝑔𝑋 , then the derivatives of Φ̂ and 𝐽ℓ are bounded, and thus,⎧⎪⎪⎨⎪⎪⎩
‖𝔇𝑟𝜂†ℓ ‖∞,�̂�𝑆 ,𝑔𝑋

� 𝐶𝛿2
ℓ𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,

[𝔇𝑟𝜂†ℓ]𝛽,𝛽/2,�̂�𝑆 ,𝑔𝑋
� 𝐶𝛿2

ℓ𝑒
−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,
(4.202)

for all 𝑟 � 0, 𝛽 ∈ (0, 1) and fixed 𝑆 > 0 (as in [21, (4.174)]). Similarly to the discussion of [21, (4.175)],
we also have ⎧⎪⎨⎪⎩ ‖𝔇𝑟𝜂†ℓ ‖∞,�̃�𝑆 ,𝑔𝑋

� 𝐶𝜀2
ℓ𝑒

−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,

[𝔇𝑟𝜂†ℓ]𝛽,𝛽/2,�̃�𝑆 ,𝑔𝑋
� 𝐶𝜀2

ℓ𝑒
−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ ,
(4.203)

for all 𝑟 � 0, 𝛽 ∈ (0, 1) and fixed 𝑆 > 0 (as in [21, (4.175)]).
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Next, we estimate the potential of 𝜂†ℓ when 𝜀ℓ � 𝐶. Given 𝑟 � 0, by applying 𝔇𝑟
bt to

�̂�𝑡 ,𝑘 ( �̂�
♯
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 ) with (3.1)

𝔇𝑟
bt�̂�𝑡 ,𝑘 ( �̂�

♯
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )

=
2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑟∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=𝑟−𝑑

𝑒−𝑞𝜆
−2
ℓ 𝑡−(𝑞− 𝜄

2 )𝑡ℓ
(
𝑞𝜆−2

ℓ

) 𝑑
2
𝛿 𝜄ℓ𝔇

𝑖1
btΦ̂ 𝜄,𝑞 (�̂�ℓ,𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄 �̂�♯ℓ,𝑖, 𝑝,𝑘 ,

(4.204)

which can be estimated using (4.196) and (4.182) to get

[𝔇𝑟
bt�̂�𝑡 ,𝑘 ( �̂�

♯
ℓ,𝑖, 𝑝,𝑘 , �̂�ℓ,𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,base,�̂�𝑆𝑑ℓ

,�̂�ℓ (0) � 𝐶
2𝑘∑
𝜄=0

𝑟∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=𝑟−𝑑

𝜆−𝑑−𝑖1ℓ 𝛿 𝜄+2
ℓ 𝑒

−2𝑖+2−𝛼
2 · 𝛼

2 𝑗+𝛼 𝑡ℓ = 𝑜(1).

(4.205)

The 𝐿∞ norm is similar, and hence in the tilde picture we have⎧⎪⎪⎨⎪⎪⎩
𝑑−𝑟+2−𝛼
ℓ [𝔇𝑟

bt�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,base,�̃�𝑆 ,�̃�ℓ (0) = 𝑜(1),

𝑑−𝑟+2
ℓ ‖𝔇𝑟

bt�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )‖∞,�̃�𝑆 ,�̃�ℓ (0) = 𝑜(1),
(4.206)

for all 𝑟 � 0 and S fixed.

4.10.7. Estimates for �̃�♯
ℓ

Recall that

�̃�♯
ℓ (𝑡) = (1 − 𝑒−𝑡ℓ−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 )�̃�ℓ,can + 𝜀2

ℓ𝑒
−𝑑2

ℓ𝜆
−2
ℓ 𝑡Θ∗

ℓΨ
∗
ℓ𝜔𝐹 + 𝜂†ℓ + 𝜂

‡
ℓ . (4.207)

We can follow exactly the same discussion in [21, §4.9.7] to conclude the following. Since �̃�ℓ,can =
𝑑−2
ℓ 𝜆2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔can and (Ψℓ ◦ Θℓ) (𝑧, �̃�) = (𝑑ℓ𝜆−1

ℓ 𝑧, 𝑦) where 𝑑ℓ𝜆−1
ℓ → 0, the spatial stretching implies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖𝔇 𝜄
(
(1 − 𝑒−𝑡ℓ−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 )�̃�ℓ,can

)
‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

𝜄
ℓ𝜆

− 𝜄
ℓ ,

[𝔇 𝜄
(
(1 − 𝑒−𝑡ℓ−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 )�̃�ℓ,can

)
]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

𝜄+𝛽
ℓ 𝜆

− 𝜄−𝛽
ℓ ,

‖𝔇 𝜄 (𝜀2
ℓ𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡Θ∗

ℓΨ
∗
ℓ𝜔𝐹 )‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

𝜄
ℓ𝛿

− 𝜄
ℓ ,

[𝔇 𝜄 (𝜀2
ℓ𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡Θ∗

ℓΨ
∗
ℓ𝜔𝐹 )]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑑

𝜄+𝛽
ℓ 𝛿

− 𝜄−𝛽
ℓ

(4.208)

for all 𝜄 � 0, 𝛽 ∈ (0, 1) and 𝑆 � 𝑅𝑑−1
ℓ with R fixed (which is the analog [21, (4.181)–(4.182)]).

Therefore, ⎧⎪⎪⎨⎪⎪⎩
𝑑− 𝜄ℓ ‖𝔇 𝜄�̃�♯

ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝛿
− 𝜄
ℓ ,

𝑑
− 𝜄−𝛽
ℓ [𝔇 𝜄�̃�♯

ℓ]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝛿
− 𝜄−𝛽
ℓ ,

(4.209)

for all 𝜄 � 0, 𝛽 ∈ (0, 1) and 𝑆 � 𝑅𝑑−1
ℓ with R fixed. Likewise, if we only differentiate in the base and

time directions, then we have the following improvement:⎧⎪⎪⎨⎪⎪⎩
𝑑− 𝜄ℓ ‖𝔇 𝜄

bt�̃�
♯
ℓ ‖∞,�̃�𝑆 ,�̃�ℓ (0) = 𝑜(1),

𝑑
− 𝜄−𝛽
ℓ [𝔇 𝜄

bt�̃�
♯
ℓ]𝛽,𝛽/2,base,�̃�𝑆 ,�̃�ℓ (0) = 𝑜(1),

(4.210)
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for all 𝜄 � 0, 𝛽 ∈ (0, 1) with 𝜄 + 𝛽 > 0 and 𝑆 � 𝐶𝑑−1
ℓ (which is the analog of [21, (4.183)]) as well as{

𝑑− 𝜄ℓ ‖𝔇 𝜄
bt (𝜀

2
ℓΘ

∗
ℓΨ

∗
ℓ𝜔𝐹 )‖∞,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝜆

− 𝜄
ℓ ,

𝑑
− 𝜄−𝛽
ℓ [𝔇 𝜄

bt (𝜀
2
ℓΘ

∗
ℓΨ

∗
ℓ𝜔𝐹 )]𝛽,𝛽/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝜆

− 𝜄−𝛽
ℓ ,

(4.211)

for all 𝜄 � 0, 𝛽 ∈ (0, 1) and 𝑆 � 𝐶𝑑−1
ℓ (which is the analog of [21, (4.184)–(4.185)])

4.11. Expansion of the Monge-Ampère flow

We rewrite the complex Monge-Ampère equation (4.107) as

𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�ℓ

= tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
+

(
log

(�̃�♯
ℓ + 𝜂

◦
ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )

𝑚+𝑛

(�̃�♯
ℓ)𝑚+𝑛

− tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

))
+ log

(�̃�♯
ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛

+ 𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡

=: tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
+ E1 + E2,

(4.212)

where the terms E1 and E2 are given respectively by the third and second line from the bottom in (4.212).
Recall also that

�̃�ℓ = 𝑒𝑑
2
ℓ𝜆

−2
ℓ 𝑡 ����̃�ℓ, 𝑗,𝑘 +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

��� + 𝑒𝑑2
ℓ𝜆

−2
ℓ 𝑡

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) + �̃�∗ℓ + �̃�♯ℓ

(4.213)

so that if we define

�̃�ℓ := 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) + �̃�ℓ, 𝑗,𝑘 , (4.214)

then by definition, we have

𝑖𝜕𝜕�̃�ℓ = 𝜂♦ℓ + 𝜂
◦
ℓ + 𝜂ℓ, 𝑗,𝑘 , (4.215)

and we can further rewrite the (4.212) as

𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ = tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂ℓ, 𝑗,𝑘 + 𝜂

♦
ℓ

)
+ E1 + E2

− 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡

���𝑒𝑑2
ℓ𝜆

−2
ℓ 𝑡

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )
��� − 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

♯
ℓ

=: tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂ℓ, 𝑗,𝑘 + 𝜂

♦
ℓ

)
+ E1 + E2 + E3,

(4.216)

where we defined

E3 := −𝑒−𝑑2
ℓ𝜆

−2
ℓ 𝑡 ���𝜕𝑡 ���𝑒𝑑2

ℓ𝜆
−2
ℓ 𝑡

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )
��� + 𝜕𝑡 �̃�♯ℓ��� . (4.217)

The next Proposition gives us control on the error terms E𝑖:
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Proposition 4.7. For any fixed 𝑅 > 0 and 𝑖 = 1, 2, 3, we have

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

bt E𝑖
]
𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1). (4.218)

In particular,

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

bt

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ − tr

�̃�
♯
ℓ

(
𝜂♦ℓ + 𝜂

◦
ℓ + 𝜂ℓ, 𝑗,𝑘

) )]
𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1). (4.219)

Furthermore, if 𝜀ℓ � 𝐶−1, then for any fixed 𝑅 > 1 and 0 � 𝑎 � 2 𝑗 , we have

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇𝑎E1‖∞,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝛿
2 𝑗+𝛼
ℓ 𝜀

2 𝑗+𝛼−𝑎
ℓ , (4.220)

𝑑
−2 𝑗−𝛼
ℓ [𝔇𝑎E1]𝛼,𝛼/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝛿
2 𝑗+𝛼
ℓ 𝜀

2 𝑗−𝑎
ℓ , (4.221)

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇𝑎 (E2 + E3)‖∞,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝜀
2 𝑗+𝛼−𝑎
ℓ , (4.222)

𝑑
−2 𝑗−𝛼
ℓ [𝔇𝑎 (E2 + E3)]𝛼,𝛼/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝜀
2 𝑗−𝑎
ℓ . (4.223)

Proof. The estimate (4.218) for E3 follows easily from (4.158) and (4.206).
As for E2, recall that

E2 = log
(�̃�♯

ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛

+ 𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡. (4.224)

The term 𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡 is killed by [𝔇2 𝑗

bt ·]𝛼,𝛼/2,base if 𝑗 > 0, while if 𝑗 = 0, we have

𝑑−𝛼ℓ [𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡]𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝑑

2−𝛼
ℓ 𝜆−2

ℓ = 𝑜(1). (4.225)

Estimate (4.218) for E2 then follows from this together with (4.208), (4.210) and (4.211).
For E1, we write

log
(�̃�♯

ℓ + 𝜂
◦
ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )

𝑚+𝑛

(�̃�♯
ℓ)𝑚+𝑛

=: log
(
1 + tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
+ E4

)
, (4.226)

where we defined

E4 :=
𝑚+𝑛∑
𝑝=2

(
𝑚 + 𝑛
𝑝

) (
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

) 𝑝 ∧ (�̃�♯
ℓ)
𝑚+𝑛−𝑝

(�̃�♯
ℓ)𝑚+𝑛

. (4.227)

Thanks to (4.145), (4.159), (4.192) and (4.210), for every 0 � 𝜄 � 2 𝑗 and fixed 𝑅 > 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑− 𝜄ℓ ‖𝔇 𝜄
btE4‖∞,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1),

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗

bt E4]𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1),

𝑑− 𝜄ℓ ‖𝔇 𝜄
bt tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
‖∞,�̃�𝑅 ,�̃�ℓ (0) = 𝑂 (1),

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

bt tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

) ]
𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0)

= 𝑂 (1).

(4.228)
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If we write schematically A = tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
,B = E4, which are both 𝑜(1) locally uniformly,

then we have E1 = log(1 + A + B) − A. For any 𝑎 � 0, we can then write schematically

𝔇𝑎E1 = 𝔇𝑎 (log(1 + A + B) − A) = −𝔇𝑎A A + B
1 + A + B + 𝔇𝑎B

1 + A + B

+
∑

𝑖1+𝑖2=𝑎−1
𝑖2>0

𝑖2∑
𝜄=1

∑
𝑗1+···+ 𝑗𝜄=𝑖2

𝔇𝑖1+1(1 + A + B)
1 + A + B

𝔇 𝑗1 (1 + A + B)
1 + A + B · · · 𝔇

𝑗𝜄 (1 + A + B)
1 + A + B ,

(4.229)

and then (4.218) for E1 follows from (4.228).
Now that (4.218) is established, (4.219) follows immediately from this and (4.216).
When 𝜀ℓ � 𝐶−1, estimates (4.220) and (4.221) follow from (4.145), (4.159), (4.191), (4.209) together

with (4.229). Lastly, to prove (4.222) and (4.223), using (4.216), (4.220) and (4.221), it suffices to show
that

𝑑
−2 𝑗−𝛼
ℓ

�����𝔇𝑎

(
𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ − tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂ℓ, 𝑗,𝑘 + 𝜂

♦
ℓ

) )�����
∞,�̃�𝑅𝜀ℓ

,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎
ℓ , (4.230)

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇𝑎

(
𝑒𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ − tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂ℓ, 𝑗,𝑘 + 𝜂

♦
ℓ

) )]
𝛼,𝛼/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0)

� 𝐶𝜀2 𝑗−𝑎
ℓ , (4.231)

for fixed 𝑅 > 0 and 0 � 𝑎 � 2 𝑗 , which is a direct consequence of (4.145), (4.153), (4.181), (4.191)
together with (4.209) and (4.229). �

The goal is then to kill the RHS of (4.110) when 𝑗 = 0, and to kill the contributions of 𝑑−2 𝑗−𝛼
ℓ �̃�∗ℓ ,

𝑑
−2 𝑗−𝛼
ℓ �̃�ℓ, 𝑗,𝑘 and 𝑑

−2 𝑗−𝛼
ℓ �̃�∗

ℓ,𝑖, 𝑝,𝑘 to (4.132) when 𝑗 � 1. We will split the discussion into three cases
(without loss of generality): Subcase A: 𝜀ℓ → +∞, Subcase B: 𝜀ℓ → 𝜀∞ > 0, Subcase C: 𝜀ℓ → 0 as
ℓ → +∞ where 𝜀ℓ = 𝑑−1

ℓ 𝛿ℓ = 𝑑−1
ℓ 𝜆ℓ𝑒

−𝑡ℓ/2.

4.12. Subcase A: 𝜺ℓ → +∞

In this subcase, the background geometry is diverging in the fiber directions, and similarly to the
analogous case in [21, §4.10], we will kill all contributions to (4.132) using parabolic Schauder estimates
for the linear heat equation. The Selection Theorem 3.1 will also be used crucially. The argument is
quite long and involved because of the complexity of the quantitative estimates satisfied by all the pieces
in the decomposition of the solution �̃�•

ℓ . We start with the direct analog of the non-cancellation result
in [21, Proposition 4.7].

Proposition 4.8. The following inequalities hold for all 0 � 𝛼 < 1, 𝑎 ∈ N, 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘

and all 𝑅 > 0:

[𝔇𝑎𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,�̂�𝑅
� 𝐶 [𝔇𝑎

bt𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,base,�̂�𝑅 ,𝑔𝑋
+ 𝐶

(
𝑅

𝜆ℓ

)1−𝛼 𝑎∑
𝑏=0

𝜆−𝛼ℓ ‖𝔇𝑏𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝑅 ,𝑔𝑋
,

(4.232)

[𝔇𝑎 �̂�ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̂�𝑅
� 𝐶𝛿2

ℓ

(
[𝔇𝑎

bt𝑖𝜕𝜕�̂�ℓ]𝛼,𝛼/2,base,�̂�𝑅 ,�̂�ℓ (0) +
(
𝑅

𝜆ℓ

)1−𝛼 𝑎∑
𝑏=0

𝜆−𝛼ℓ

(
‖𝔇𝑏𝜂‡ℓ ‖∞,�̂�𝑅 ,�̂�ℓ (0)

+ ‖𝔇𝑏 (𝜂♦ℓ + 𝜂
◦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̂�𝑅 ,�̂�ℓ (0) + 𝛿

−2
ℓ ‖𝔇𝑏𝜂†ℓ ‖∞,�̂�𝑅 ,𝑔𝑋

))
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+ 𝐶
𝑖−1∑
𝜄=1

𝑁𝑖,𝑘∑
𝑞=1

(
𝛿2𝑘+2
ℓ [𝔇𝑎+2𝑘+2 �̂�ℓ, 𝜄,𝑞,𝑘 ]𝛼,𝛼/2,�̂�𝑅

+
𝑎+2𝑘+2∑
𝑏=0

(
𝑅

𝜆ℓ

)1−𝛼
𝑒−(2𝑘+2) 𝑡ℓ2 𝜆𝑏−𝑎−𝛼ℓ ‖𝔇𝑏 �̂�ℓ, 𝜄,𝑞,𝑘 ‖∞,�̂�𝑅

)
.

(4.233)

Proof. The proof is very similar to that of [21, Proposition 4.7], so we only highlight the differences.
The starting point of the proof (Claim 1 in [21, Proof of Proposition 4.7]) is to express 𝑖𝜕𝜕�̂�ℓ and
�̂�ℓ,𝑖, 𝑝,𝑘 as pushforwards of quantities on the total space. This step is essentially identical here, with the
only difference being that in the formula for �̂�ℓ,𝑖, 𝑝,𝑘 , the term 𝑒−(2𝑘+2) 𝑡2 in [21, (4.204)] now becomes
𝑒−(2𝑘+2) (𝑡ℓ+𝜆−2

ℓ 𝑡)/2.The extra time-dependent constant 𝑒−(2𝑘+2)𝜆−2
ℓ

𝑡
2 will then also need to be differentiated

in the analog of [21, (4.234)], which gives us extra cross terms in the analog of [21, (4.247)], but which
can be estimated in a similar way resulting in the same upper bound as stated.

The next step is to try to commute the derivative𝔇𝑎 with the pushforward, and make the commutation
error terms explicit. Recalling that 𝔇𝑎 is a sum of terms of the form D𝑝𝜕𝑞

𝑡
, we observe that 𝜕𝑞

𝑡
trivially

commutes with pushforwards (with no error terms), while the commutation of D𝑝 gives exactly the
same result as in Claim 2 [21, Proof of Proposition 4.7]; cf. [21, (4.223), (4.240)].

The last step is to estimate the Hölder difference quotient of 𝔇𝑎𝑖𝜕𝜕�̂�ℓ and 𝔇𝑎 �̂�ℓ,𝑖, 𝑝,𝑘 . This is now a
space-time Hölder difference quotient, which we can split with the triangle inequality into a space-only
difference quotient (which is estimated following the method of Claim 3 in [21, Proof of Proposition 4.7]
verbatim), and a time-only difference quotient, which again commutes with pushforward and so can be
estimated trivially without any further error terms. This completes the outline of the proof. �

For notation convenience, we will denote 𝜂ℓ = 𝑖𝜕𝜕�̂�ℓ = 𝜂†ℓ + 𝜂
‡
ℓ + 𝜂

♦
ℓ + 𝜂

◦
ℓ + 𝜂ℓ, 𝑗,𝑘 .

4.12.1. The case 𝒋 = 0
Unlike [21], the case 𝑗 = 0 requires a separate treatment. This is due to the fact that the Monge-Ampère
equation (4.216) is naturally a parabolic PDE for the scalar potential �̃�ℓ , which, however, does not have
a uniform bound on its 𝐿∞ norm, which is an issue when applying Schauder estimates. This is remedied
in two different ways according to whether 𝑗 = 0 or 𝑗 > 0. In this subsection, we treat the case 𝑗 = 0.

The first crucial claim is that for any fixed 𝑅 > 0, we have

𝑑−𝛼ℓ [(E1 + E2 + E3)]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1). (4.234)

For the term E1, we have already proved an even strong result in (4.221), so we consider E2 + E3, which
when 𝑗 = 0 equals

log
(�̃�♯

ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛

+ 𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡 − 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

♯
ℓ , (4.235)

and since 𝜕𝑡 �̃�
♯
ℓ is a constant (in space and time), it is clear that

𝑑−𝛼ℓ [𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡 − 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

♯
ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.236)

and we are left with showing that

𝑑−𝛼ℓ

[
log

(�̃�♯
ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛

]
𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1). (4.237)

For this, we pass to the check picture using the diffeomorphisms Πℓ in (4.285) below, scaling geometric
quantities by 𝜀−2

ℓ , so that the quantity in (4.237) equals
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𝛿−𝛼ℓ

[
log

(�̌�♯
ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛

]
𝛼,𝛼/2,�̌�

𝑅𝜀−1
ℓ
,�̌�ℓ (0)

, (4.238)

and using (3.23), together with the facts that [𝜂‡ℓ]𝛼,𝛼/2,�̌�
𝑅𝜀−1

ℓ
,�̌�ℓ (0) = 0, and

𝛿−𝛼ℓ [�̌�ℓ,can]𝛼,𝛼/2,�̌�
𝑅𝜀−1

ℓ
,�̌�ℓ (0) � 𝐶𝜆

−𝛼
ℓ = 𝑜(1), we see that (4.237) holds.

The next issue we face is that (4.144) does not provide us with uniform bounds on
𝑑−𝛼ℓ ‖𝔇2�̃�ℓ,0,𝑘 ‖∞,�̃�𝑅 ,�̃�ℓ (0) , for any fixed R, so we are unable to pass 𝑑−𝛼ℓ 𝜕𝑡 �̃�ℓ,0,𝑘 or 𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�ℓ,0,𝑘 to a
limit. To fix this, we use the method of [20, Subclaim 1.3], by replacing the whole fiber Y with a coordi-
nate chart and performing a jet subtraction to 𝑑−𝛼ℓ �̃�ℓ,0,𝑘 so that the remainder is locally 𝐶2 convergent.

To fix this, recall that �̃�ℓ (𝑡) = 𝑔C𝑚 + 𝜀2
ℓ𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡𝑔𝑌 ,0. Let x2𝑚+1, . . . , x2𝑚+2𝑛 be normal coordinates

for 𝑔𝑌 ,0 centered at 𝑦ℓ . Viewed as a map from Y to R2𝑛, these depend on ℓ, but we prefer to instead pull
back our setup to R2𝑛 under the inverse map. In this sense, we may then assume without loss that���� 𝜕 𝜄𝜕x 𝜄 (𝑔𝑌 ,0 (x)𝑎𝑏 − 𝛿𝑎𝑏)

���� � 1
100

|x|2− 𝜄 for |x| � 2 and 𝜄 = 0, 1. (4.239)

This is possible thanks to the compactness of Y. Define x̃ 𝑗 = 𝜀ℓx 𝑗 , so that x̃2𝑚+1, . . . , x̃2𝑚+2𝑛 are normal
coordinates for 𝜀2

ℓ𝑔𝑌 ,0 centered at 𝑦ℓ . Formally also write x̃1, . . . , x̃2𝑚 for the standard real coordinates
on C𝑚. Then x̃1, . . . , x̃2𝑚+2𝑛 are normal coordinates for �̃�ℓ (0) centered at 𝑥ℓ with���� 𝜕 𝜄𝜕x̃ 𝜄 (�̃�ℓ (0, x̃)𝑎𝑏 − 𝛿𝑎𝑏)

���� � 𝜀−2
ℓ

100
|x̃|2− 𝜄 for |x̃| � 2𝜀ℓ and 𝜄 = 0, 1. (4.240)

We then define a function �̃�♯
ℓ,0,𝑘 on �̃�2𝜀ℓ to be the parabolic 2nd order Taylor polynomial of �̃�ℓ,0,𝑘

at the space-time origin (0, 0), using the spatial coordinates x̃𝑖 , 1 � 𝑖 � 2𝑚 + 2𝑛, and we define also
�̃�∗
ℓ,0,𝑘 := �̃�ℓ,0,𝑘 − �̃�♯

ℓ,0,𝑘 .

Since all Euclidean derivatives of �̃�∗
ℓ,0,𝑘 of order at most 2 vanish at (0, 0), using the formula in [21,

Lemma 2.3] relating D-derivatives and ordinary derivatives, we see that 𝔇 𝜄�̃�∗
ℓ,0,𝑘

��
(0,0) = 0, 0 � 𝜄 � 2.

Next, we prove the following bounds for 𝑑−𝛼ℓ �̃�♯
ℓ,0,𝑘 : for all 𝜄 � 0, 0 < 𝛽 < 1, and 0 < 𝑅 � 𝜀ℓ ,

𝑑−𝛼ℓ [𝔇 𝜄�̃�♯
ℓ,0,𝑘 ]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) �

{
𝐶𝜀1+𝛼− 𝜄

ℓ 𝑅1−𝛽 , if 𝜄 > 0,
𝐶𝜀1+𝛼

ℓ 𝑅1−𝛽 + 𝐶𝜀𝛼ℓ 𝑅
2−𝛽 , if 𝜄 = 0,

(4.241)

𝑑−𝛼ℓ ‖𝔇 𝜄�̃�♯
ℓ,0,𝑘 ‖∞,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝜀

2+𝛼− 𝜄
ℓ . (4.242)

To prove this claim, note that for any 𝑧 ∈ 𝐵1, the metric 𝑔𝑌 ,𝑧 is at bounded distance to 𝑔𝑌 ,0 in𝐶∞(𝑌 ),
and thus,

|∇ 𝜄,�̃�ℓ (0) �̃��̃� (𝑡) |�̃�ℓ (0) � 𝐶 𝜄𝜀
− 𝜄
ℓ on �̃�𝑅, (4.243)

for all 𝜄 � 1, 𝑅 � 𝜀ℓ .
Let us also note the following bounds for the Euclidean derivatives �̃�ℓ,0,𝑘 ,

𝑑−𝛼ℓ |𝜕 |𝛾 |𝜕𝑞
𝑡
�̃�ℓ,0,𝑘 | (x̃ℓ , 𝑡ℓ) � 𝐶𝜀2+𝛼−|𝛾 |−2𝑞

ℓ , (4.244)

for all multiindices 𝛾 with |𝛾 | + 2𝑞 � 2. To see this, we first apply the diffeomorphism

Λℓ : �̌�2 → �̃�2𝜀ℓ , (x̃1, . . . , x̃2𝑚+2𝑛, 𝑡) = Λℓ (x̌1, . . . , x̌2𝑚+2𝑛, 𝑡) = (𝜀ℓ x̌1, . . . , 𝜀ℓ x̌2𝑚+2𝑛, 𝜀2
ℓ 𝑡),
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and pull back metrics and 2-forms, as well as �̃�ℓ,0,𝑘 , via Λℓ , multiply them by 𝜀−2
ℓ and denote the

resulting objects with a check, so, for example, the metrics �̌�ℓ (0) = 𝜀−2
ℓ Λ∗

ℓ �̃�ℓ (0) on �̌�2 are smoothly
convergent to a fixed metric (smoothly comparable to Euclidean), and the pulled back complex structure
is approaching the Euclidean one (without loss). The bounds (4.144) transform to

𝑑−𝛼ℓ ‖𝔇 𝜄�̌�ℓ,0,𝑘 ‖∞,�̌�2 ,�̌�ℓ (0) � 𝐶𝜀
2+𝛼
ℓ , 𝑑−𝛼ℓ [𝔇 𝜄�̌�ℓ,0,𝑘 ]𝛼,𝛼/2,�̌�2 ,�̌�ℓ (0) � 𝐶𝜀

2+𝛼
ℓ ,

for 0 � 𝜄 � 2. Since �̌�ℓ (0) is approximately Euclidean, [21, Lemma 2.6] gives us that the Euclidean
𝐶𝛼,𝛼/2 norm of 𝑑−𝛼ℓ �̌�ℓ,0,𝑘 is also bounded by 𝐶𝜀2+𝛼

ℓ , and translating these back to the tilde picture
proves (4.244).

First, we prove (4.241). Given (𝑥, 𝑡), (𝑥 ′, 𝑡 ′) ∈ �̃�𝑅, call 𝑑 = 𝑑�̃�ℓ (0) (𝑥, 𝑥 ′) + |𝑡− 𝑡 ′ | 1
2 , and given 𝑝, 𝑞 � 0

with 𝑝 + 2𝑞 = 𝜄, we can bound

𝑑−𝛼ℓ |D𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥, 𝑡) − P�̃�′ �̃� (D

𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥

′, 𝑡 ′)) |�̃�ℓ (0)

� 𝑑−𝛼ℓ |D𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥, 𝑡) − P�̃�′ �̃� (D

𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥

′, 𝑡)) |�̃�ℓ (0)

+ 𝑑−𝛼ℓ |D𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥

′, 𝑡) − P�̃�′ �̃� (D𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 (𝑥

′, 𝑡 ′)) |�̃�ℓ (0)

� 𝑑�̃�ℓ (0) (𝑥, 𝑥 ′)𝑑−𝛼ℓ ‖D𝑝+1𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) + |𝑡 − 𝑡 ′|𝑑−𝛼ℓ ‖D𝑝𝜕𝑞+1

𝑡
�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0)

� 𝑑 · 𝑑−𝛼ℓ ‖D𝑝+1𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) + 𝑑

2 · 𝑑−𝛼ℓ ‖D𝑝𝜕𝑞+1
𝑡

�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) .

(4.245)

Since �̃�♯
ℓ,0,𝑘 is the sum of a polynomial of degree at most 2 in the x̃ variables (constant in time), and of

a polynomial of degree at most 1 in the 𝑡 variable (constant in space), it follows that D𝑝+1𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 ≡ 0

unless 𝑞 = 0 (hence, 𝜄 = 𝑝), and that D𝑝𝜕𝑞+1
𝑡

�̃�♯
ℓ,0,𝑘 ≡ 0 unless 𝑝 = 𝑞 = 0 (and hence, 𝜄 = 0).

We consider these two cases separately, so we first bound the term with D 𝜄+1�̃�♯
ℓ,0,𝑘 (which is equal

to D 𝜄+1 applied to the spatial Taylor polynomial only), by converting D 𝜄+1 into ∇ 𝜄+1 using [21, Lemma
2.3] (which involves a certain tensor A), and estimating

𝑑−𝛼ℓ ‖D 𝜄+1�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) (4.246)

�

����𝑑−𝛼ℓ ((
𝜕

𝜕x̃ + Γ�̃��̃� (𝑡) (x̃)
) 𝜄+1

+
𝜄−1∑
𝑟=0

∇ 𝜄−1−𝑟
𝑧,𝑦,�̃� A �

(
𝜕

𝜕x̃ + Γ�̃��̃� (𝑡) (x̃)
)𝑟 )

(4.247)( ∑
𝛾∈N2𝑚+2𝑛

|𝛾 |�2

1
𝛾!

𝜕 |𝛾 |�̃�ℓ,0,𝑘
𝜕x̃𝛾 (x̃ℓ , 𝑡ℓ) (x̃ − x̃ℓ)𝛾

)����
∞,�̃�2𝑅 ,�̃�ℓ (0)

(4.248)

and estimating the big 𝐿∞ norm by 𝐶𝜀1+𝛼− 𝜄
ℓ , as follows.

(1) We have 𝜕𝑏Γ = 𝑂 (𝜀−𝑏−1
ℓ ) by (4.240) and (4.243).

(2) The A-tensor in the tilde picture is bounded by 𝑂 (𝜀−2
ℓ ), since it is schematically of the same type

as 𝜕Γ. By the same reason, ∇𝑟
𝑧,𝑦,�̃�A is 𝑂 (𝜀−𝑟−2

ℓ ).
(3) Writing 𝑑−𝛼ℓ �̃�ℓ,0,𝑘 = 𝜓, we can then estimate

(𝜕 + Γ)𝑟 ((𝜕 |𝛾 |𝜓) (x̃ℓ , 𝑡ℓ) (x̃ − x̃ℓ)𝛾) = (𝜕 |𝛾 |𝜓) (x̃ℓ , 𝑡ℓ)
∑

𝜕𝑎1Γ · · · 𝜕𝑎ℓΓ · 𝜕𝑏 (x̃ − x̃ℓ)𝛾 , (4.249)

where in the sum, 𝑎1 + · · · + 𝑎ℓ + ℓ + 𝑏 = 𝑟 by counting the total number of 𝜕s and Γs in each term, and
𝑏 � |𝛾 |. Now recall that 𝑅 � 𝜀ℓ , so that 𝜕𝑏 (x̃− x̃ℓ)𝛾 = 𝑂 (𝜀 |𝛾 |−𝑏ℓ ). Since (𝜕 |𝛾 |𝜓) (x̃ℓ) = 𝑂 (𝜀2+𝛼−|𝛾 |

ℓ ) by
(4.244) and using Step (1), the quantity in (4.249) can be estimated by 𝑂 (𝜀2+𝛼−𝑟

ℓ ).
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(4) From Steps (2) and (3), we can bound(
∇ 𝜄−1−𝑟
𝑧,𝑦,�̃� A � (𝜕 + Γ)𝑟

) ∑
𝛾

(𝜕 |𝛾 |𝜓) (x̃ℓ , 𝑡ℓ) (x̃ − x̃ℓ)𝛾 = 𝑂 (𝜀1+𝛼− 𝜄
ℓ ), (4.250)

and so using Step (3) again, we obtain the desired bound of 𝐶𝜀1+𝛼− 𝜄
ℓ for the big 𝐿∞ norm. This gives us

the desired bound

𝑑−𝛼ℓ ‖D 𝜄+1�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) � 𝐶𝜀

1+𝛼− 𝜄
ℓ (4.251)

for the first term in the last line of (4.245). As for the other term in that line, it is only nontrivial
when 𝜄 = 𝑝 = 𝑞 = 0, and in that case, we want to bound 𝑑−𝛼ℓ ‖𝜕𝑡 �̃�♯

ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) . Since we have
𝜕𝑡 �̃�

♯
ℓ,0,𝑘 = (𝜕𝑡 �̃�ℓ,0,𝑘 ) (x̃ℓ , 𝑡ℓ), we obtain from (4.244)

𝑑−𝛼ℓ ‖𝜕𝑡 �̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) � 𝐶𝜀

𝛼
ℓ , (4.252)

and combining (4.245) with (4.251) and (4.252) proves (4.241).
To prove (4.242), given 𝑝, 𝑞 � 0 with 𝑝+2𝑞 = 𝜄, to bound 𝑑−𝛼ℓ D

𝑝𝜕𝑞
𝑡
�̃�♯
ℓ,0,𝑘 , we again need to consider

only two cases. The first case (𝑞 = 0, 𝑝 = 𝜄) is the one with only spatial derivatives that land on the
spatial Taylor polynomial (writing again 𝜓 = 𝑑−𝛼ℓ �̃�ℓ,0,𝑘 )[

(𝜕 + Γ) 𝜄 +
𝜄−2∑
𝑟=0

∇ 𝜄−2−𝑟
𝑧,𝑦,�̃� A � (𝜕 + Γ)𝑟

] ∑
𝛾

(𝜕 |𝛾 |𝜓) (x̃ℓ , 𝑡ℓ) (x̃ − x̃ℓ)𝛾 , (4.253)

whose 𝐿∞ norm on �̃�2𝑅 is bounded by 𝐶𝜀2+𝛼− 𝜄
ℓ thanks to the estimates in Step (3) (with 𝑟 = 𝜄) and Step

(4) (with 𝜄 there replaced by 𝜄 − 1). The second case only happens when 𝜄 = 2 and we have only 1 time
derivative that lands on the 𝑡-variable Taylor polynomial, which gives simply 𝑑−𝛼ℓ (𝜕𝑡 �̃�ℓ,0,𝑘 ) (x̃ℓ , 𝑡ℓ), and
this is bounded by 𝐶𝜀𝛼ℓ by (4.244). Putting these observations together proves (4.242).

Combining (4.241) for 𝜄 = 2 with the bound 𝑑−𝛼ℓ [𝔇2�̃�ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) � 𝐶 from (4.144), we see
that

𝑑−𝛼ℓ [𝔇2�̃�∗
ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝑅, (4.254)

and so we can apply Lemma 2.4 and get

𝑑−𝛼ℓ ‖𝔇 𝜄�̃�∗
ℓ,0,𝑘 ‖∞,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝑅, 𝑑−𝛼ℓ [𝔇 𝜄�̃�∗

ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝑅, 0 � 𝜄 � 2. (4.255)

However, from (4.153), we also get uniform local parabolic 𝐶𝛼,𝛼/2 bounds on 𝑑−𝛼ℓ 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ and

𝑑−𝛼ℓ 𝑖𝜕𝜕
(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
, and so if we define

�̃�∗ℓ := �̃�∗
ℓ,0,𝑘 + 𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ , (4.256)

then from (4.214), we have �̃�ℓ = �̃�∗ℓ + �̃�
♯
ℓ,0,𝑘 , and

𝑑−𝛼ℓ

(
𝜕𝑡 �̃�

∗
ℓ + 𝑑

2
ℓ𝜆

−2
ℓ �̃�∗ℓ

)
= 𝑑−𝛼ℓ 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ + 𝑑

−𝛼
ℓ

(
𝜕𝑡 �̃�

∗
ℓ,0,𝑘 + 𝑑

2
ℓ𝜆

−2
ℓ �̃�∗

ℓ,0,𝑘

)
, (4.257)

which by these estimates has uniform local parabolic 𝐶𝛼,𝛼/2 bounds. The same estimates also give us
uniform local parabolic 𝐶𝛼,𝛼/2 bounds on 𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�∗ℓ , so passing to a subsequence, we have that

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10


Forum of Mathematics, Pi 65

𝑑−𝛼ℓ

(
𝜕𝑡 �̃�

∗
ℓ + 𝑑

2
ℓ𝜆

−2
ℓ �̃�∗ℓ

)
→ 𝑢∞, 𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�∗ℓ → 𝜂∞, (4.258)

in𝐶𝛾,𝛾/2
loc for all 0 < 𝛾 < 𝛼, for a function𝑢∞ ∈ 𝐶𝛼,𝛼/2

loc and a (1, 1)-form 𝜂∞ ∈ 𝐶𝛼,𝛼/2
loc onC𝑚+𝑛×(−∞, 0].

Moreover, thanks to (4.157) and (4.255), we have

𝑑−𝛼+2
ℓ 𝜆−2

ℓ ‖ �̃�∗ℓ ‖∞,�̃�𝑅
� 𝐶𝑅𝑑

2
ℓ𝜆

−2
ℓ + 𝑜(1)𝑑2

ℓ = 𝑜(1), (4.259)

and hence, 𝑑−𝛼ℓ 𝜕𝑡 �̃�
∗
ℓ → 𝑢∞ locally uniformly.

Next, we observe that by definition, for any fixed 𝑅 > 0, we have

𝑑−𝛼ℓ [𝑒−𝑑2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑑−𝛼ℓ [𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = [𝜕𝑡 �̂�ℓ + 𝜆−2

ℓ �̂�ℓ ]𝛼,𝛼/2,�̂�𝑅𝑑ℓ
,�̂�ℓ (0) = 𝑜(1),

(4.260)

thanks to (4.136), and similarly from (4.137),

𝑑−𝛼ℓ [𝑒−𝑑2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�ℓ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = [𝜕𝑡 �̂�ℓ + 𝜆−2

ℓ �̂�ℓ]𝛼,𝛼/2,�̂�𝑅𝑑ℓ
,�̂�ℓ (0) = 𝑜(1), (4.261)

and since

𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�ℓ − 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�ℓ = 𝜕𝑡 �̃�ℓ,0,𝑘 + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ,0,𝑘 , (4.262)

we see that

𝑑−𝛼ℓ [𝜕𝑡 �̃�ℓ,0,𝑘 + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.263)

and using (4.144), this gives

𝑑−𝛼ℓ [𝜕𝑡 �̃�ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.264)

which combined with (4.241) implies

𝑑−𝛼ℓ [𝜕𝑡 �̃�∗
ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1). (4.265)

Also, (4.255) implies that

𝑑−𝛼ℓ 𝑑2
ℓ𝜆

−2
ℓ [�̃�∗

ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1). (4.266)

However, from (4.158), we see that

𝑑−𝛼ℓ [𝑒−𝑑2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

♯
ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.267)

and which combined with (4.261) gives

𝑑−𝛼ℓ [𝑒−𝑑2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1). (4.268)

Plugging (4.265), (4.266) and (4.268) into (4.257) gives

𝑑−𝛼ℓ [𝜕𝑡 �̃�∗ℓ + 𝑑
2
ℓ𝜆

−2
ℓ �̃�∗ℓ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.269)

which implies that 𝑢∞ is constant in space-time, and since its value at (0, 0) vanishes, we conclude that
𝑢∞ ≡ 0 on C𝑚+𝑛 × (−∞, 0]. Thus, 𝑑−𝛼ℓ 𝜕𝑡 �̃�

∗
ℓ → 0 locally uniformly.
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Given any (𝑥, 𝑡), (𝑥, 𝑡 ′) ∈ �̃�𝑅, we have

𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�∗ℓ (𝑥, 𝑡) − 𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�∗ℓ (𝑥, 𝑡
′) = 𝑖𝜕𝜕

∫ 𝑡

𝑡′

(
𝑑−𝛼ℓ 𝜕𝑡 �̃�

∗
ℓ

)
(𝑥, 𝑠)𝑑𝑠, (4.270)

and since we know that
∫ 𝑡

𝑡′

(
𝑑−𝛼ℓ 𝜕𝑡 �̃�

∗
ℓ

)
(𝑥, 𝑠)𝑑𝑠 → 0 locally uniformly (as a function of 𝑥), it follows that

the RHS of (4.270) converges to zero weakly as currents. Since the LHS of (4.270) converges in 𝐶𝛾
loc to

𝜂∞(𝑥, 𝑡) − 𝜂∞(𝑥, 𝑡 ′), we conclude that this Hölder continuous (1, 1)-form (with 𝑥 varying) is zero as a
current, and hence, it is identically zero. This shows that 𝜂∞ is time-independent.

From (4.216), we have(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�∗ℓ + 𝑑

2
ℓ𝜆

−2
ℓ �̃�∗ℓ = E1 + E2 + E3 −

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�♯
ℓ,0,𝑘 − 𝑑2

ℓ𝜆
−2
ℓ �̃�♯

ℓ,0,𝑘 , (4.271)

and from (4.234) and (4.241), we see that applying 𝑑−𝛼ℓ [·]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) to the RHS of (4.271), we get
𝑜(1) as ℓ → +∞. We can then multiply (4.271) by 𝑑−𝛼ℓ , and since the LHS converges in 𝐶𝛾,𝛾/2

loc , we can
pass to the limit (recalling that 𝑢∞ ≡ 0) and get

tr𝑔C𝑚+𝑛 𝜂∞ = 𝑐, (4.272)

on C𝑚+𝑛 × (−∞, 0], for some time-independent constant c. Since the value of the LHS of (4.272) at
(0, 0) is zero, this forces 𝑐 = 0; that is,

tr𝑔C𝑚+𝑛 𝜂∞ = 0. (4.273)

Since the 𝐶𝛾
loc form 𝜂∞ is time-independent and weakly closed, it can be written as 𝜂∞ = 𝑖𝜕𝜕𝑣∞ for

some time-independent function 𝑣∞ ∈ 𝐶
2+𝛾
loc (C𝑚+𝑛). From (4.273), we see that Δ𝑔C𝑚+𝑛 𝑣∞ = 0, so 𝜂∞ is

smooth by elliptic regularity, and passing to the limit (4.153) and (4.254), we see that |𝑖𝜕𝜕𝑣∞| = 𝑂 (|𝑧 |𝛼).
Thus, each component 𝜕𝛼𝜕𝛽𝑣∞ of 𝑖𝜕𝜕𝑣∞ satisfies Δ𝑔C𝑚+𝑛 𝜕𝛼𝜕𝛽𝑣∞ = 0 and |𝜕𝛼𝜕𝛽𝑣∞| = 𝑂 (|𝑧 |𝛼), so by
the standard Liouville Theorem for harmonic functions, we have that 𝜂∞ has constant coefficients, and
hence, it vanishes identically since its value at (0, 0) is zero.

This implies that

𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�∗ℓ → 0, (4.274)

locally uniformly on C𝑚+𝑛 × (−∞, 0] in the coordinates (x̃, 𝑡). Recall that, by definition, we have

�̃�ℓ = �̃�∗ℓ + �̃�
♯
ℓ,0,𝑘 + 𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡 �̃�♯ℓ , (4.275)

and that �̃�♯ℓ is a polynomial on C𝑚 of degree at most 2, while �̃�♯
ℓ,0,𝑘 is a polynomial on C𝑚+𝑛 (in the

(x̃, 𝑡) coordinates) of degree at most 2. To convert 𝑖𝜕𝜕 into D-derivatives, schematically we have
𝑖𝜕𝜕 = 𝐽ℓ � D2 + (D𝐽ℓ ) � D, with the bounds (cf. [21, (4.304)])

‖D 𝜄𝐽ℓ ‖∞,�̃�
𝑅𝑑−1

ℓ
,�̃�ℓ (0) � 𝐶𝜀

− 𝜄
ℓ , [D 𝜄𝐽ℓ]𝛼,𝛼/2,�̃�

𝑅𝑑−1
ℓ
,�̃�ℓ (0) � 𝐶𝜀

− 𝜄−𝛼
ℓ . (4.276)

Since 𝐽ℓ and D are independent of 𝑡, it follows that

𝜕𝑡 𝑖𝜕𝜕�̃�
♯
ℓ,0,𝑘 = 𝐽ℓ � D2𝜕𝑡 �̃�

♯
ℓ,0,𝑘 + (D𝐽ℓ) � D𝜕𝑡 �̃�♯

ℓ,0,𝑘 = 0, (4.277)
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so, as in the proof of (4.245), we can bound

𝑑−𝛼ℓ [𝑖𝜕𝜕�̃�♯
ℓ,0,𝑘 ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝑅

1−𝛼𝑑−𝛼ℓ ‖D𝑖𝜕𝜕�̃�♯
ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0)

� 𝐶𝑅1−𝛼𝑑−𝛼ℓ
(
‖D3�̃�♯

ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0) + 𝜀
−1
ℓ ‖D2�̃�♯

ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0)

+ 𝜀−2
ℓ ‖D�̃�♯

ℓ,0,𝑘 ‖∞,�̃�2𝑅 ,�̃�ℓ (0)
)

� 𝐶𝑅1−𝛼𝜀𝛼−2
ℓ = 𝑜(1),

(4.278)

using (4.276) for the second inequality and (4.242) for the third one. Also, from the bounds (4.158), it
follows easily that

𝑑−𝛼ℓ

[
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�♯ℓ

]
𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1), (4.279)

and so using (4.274), (4.275), (4.278) and (4.279), and recalling also (4.112), we see that

𝑑−𝛼ℓ |𝑖𝜕𝜕�̃�ℓ (𝑥ℓ , 0) − P�̃�′
ℓ
�̃�ℓ 𝑖𝜕𝜕�̃�ℓ (𝑥 ′ℓ , 𝑡

′
ℓ) |�̃�ℓ (0) = 𝑜(1), (4.280)

a contradiction to (4.110).

4.12.2. The case 𝒋 � 1. Killing the contribution of �̃�ℓ,𝒊,𝒑,𝒌

In the rest of this section, we will assume that 𝑗 � 1. The goal of this subsection is to prove a precise
estimate on �̃�ℓ,𝑖, 𝑝,𝑘 : for all 𝑎 � 2 𝑗 , 𝑎 ∈ 2N and 𝛼 � 𝛽 < 1, there is 𝐶 > 0 such that

𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝜀
𝑎−2 𝑗−2
ℓ [𝔇𝑎 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀𝛼−𝛽ℓ , (4.281)

where here and in the rest of this section, we use the notation 𝑂 (𝜀ℓ ) for a radius R such that Λ𝜀ℓ � 𝑅 �
Λ2𝜀ℓ , where Λ > 1 is the fixed constant from (2.5) (so that the �̃�ℓ (0)-geodesic ball centered at 𝑥ℓ with
radius R contains a Euclidean ball of radius 𝑅/2 times the whole Y fiber). Note that since 𝑗 � 1, we
have 𝑎 � 2.

Observe that once (4.281) is established for all even 𝑎 � 2 𝑗 , the same estimate will also hold for all
𝑎 � 2 𝑗 by interpolation: indeed, if 𝑎 � 2 𝑗 + 1 is odd, then for any 0 < 𝜌 < 𝑅,

𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ [𝔇𝑎 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝜌 ,�̃�ℓ (0) � 𝐶 (𝑅 − 𝜌)𝑑−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ [𝔇𝑎+1 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)−1𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ [𝔇𝑎−1 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

� 𝐶 (𝑅 − 𝜌)𝜀𝛼−𝛽−1
ℓ + 𝐶 (𝑅 − 𝜌)−1𝜀

𝛼−𝛽+1
ℓ ,

(4.282)

and taking 𝜌, 𝑅 = 𝑂 (𝜀ℓ) gives the claim.
Thus, once (4.281) is established, taking 𝑎 = 2 𝑗 + 2 + 𝜄 (with −2 � 𝜄 � 2𝑘), and 𝛽 > 𝛼 gives an 𝑜(1)

bound for the 𝐶𝛽,𝛽/2 seminorm on the cylinder centered at (𝑥ℓ , 𝑡ℓ) of radius 2, which contains the other
blowup point (𝑥 ′ℓ , 𝑡

′
ℓ) which lies at distance 1, and hence an 𝑜(1) bound for the 𝐶𝛼,𝛼/2 seminorm on the

same cylinder, which kills the contribution of 𝔇2 𝑗+2+ 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 in (4.132).

Apart from the fact that in our parabolic setting we only work with derivatives of even order (as was
explained earlier), the overall argument to prove (4.281) will be similar to the one to prove [21, (4.252)],
replacing D by 𝔇, j by 2 𝑗 and t by 𝑡ℓ . As in [21, (4.254)], we use (4.145), (4.153), (4.158), (4.191),
(4.202) and Proposition 4.8 to conclude that for all 𝑎 � 2 𝑗 , 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 , 𝑎 ∈ 2N and
𝛼 � 𝛽 < 1, there is 𝐶 > 0 so that
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𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ [𝔇𝑎 �̃�ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝑜(𝜀𝛼−𝛽ℓ ) + 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎

bt𝜂ℓ]𝛽,𝛽/2,base,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+ 𝐶𝑒−(1−𝛽)
𝑡ℓ
2

𝑎∑
𝑏=2 𝑗+1

𝜆
−𝛽
ℓ 𝛿

𝑎−2 𝑗
ℓ 𝑑

−𝑏+𝛽−𝛼
ℓ ‖𝔇𝑏 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+ 𝐶
𝑖−1∑
𝑟=1

𝑁𝑝,𝑘∑
𝑞=1

(
𝑑
−2 𝑗−𝛼
ℓ 𝜀

2𝑘+𝑎−2 𝑗
ℓ [𝔇𝑎+2𝑘+2 �̃�ℓ,𝑟 ,𝑞,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+
𝑎+2𝑘+2∑
𝑏=0

𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ 𝑑

𝑎−𝑏+𝛽
ℓ 𝑒−(2𝑘+2+1−𝛽) 𝑡ℓ2 𝜆

𝑏−𝑎−𝛽
ℓ ‖𝔇𝑏 �̃�ℓ,𝑟 ,𝑞,𝑘 ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

)
.

(4.283)

Our goal is to show that each term on the right-hand side of (4.283) is of 𝑂 (𝜀𝛼−𝛽ℓ ) which implies
(4.281).

We first treat the second term, [𝔇𝑎
bt𝜂ℓ]𝛽,𝛽/2,base,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

. We start with noting that we can inter-
change 𝜂ℓ with 𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 thanks to (4.160) and (4.201): for all 𝑎 � 2 𝑗 , 𝑎 ∈ 2N,

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎

bt𝜂ℓ ]𝛽,𝛽/2,base,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ )]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+ 𝑜(𝜀𝛼−𝛽ℓ ).
(4.284)

To bound the RHS of (4.284) using the parabolic Schauder estimates in Proposition 2.9, we need to pass
to the check picture via the diffeomorphism

Πℓ : 𝐵
𝑒
𝑡ℓ
2
× 𝑌 × [−𝑒𝑡ℓ 𝑡ℓ , 0] → 𝐵𝑑−1

ℓ
𝜆ℓ

× 𝑌 × [−𝑑−2
ℓ 𝜆2

ℓ 𝑡ℓ , 0], (𝑧, �̃�, 𝑡) = Πℓ (𝑧, �̌�, 𝑡) = (𝜀ℓ 𝑧, �̌�, 𝜀2
ℓ 𝑡),

(4.285)

pulling back all geometric quantities and scaling 2-forms by 𝜀−2
ℓ . We can then apply Proposition 2.9 to

𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂
◦
ℓ and then transfer the result back to the tilde picture. This shows that given any radius

𝑅 = 𝑂 (𝜀ℓ ) and 0 < 𝜌 < 𝑅, and letting �̃� = 𝜌 + 1
2 (𝑅 − 𝜌), we have

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)]𝛽,𝛽/2,�̃�𝜌 ,�̃�ℓ (0)

� 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
(𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

+ 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ (𝑅 − 𝜌)−𝑎−𝛽 ‖𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ ‖∞,�̃��̃� ,�̃�ℓ (0)

� 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
(𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

+ 𝐶𝜀𝑎+𝛼ℓ (𝑅 − 𝜌)−𝑎−𝛽 ,

(4.286)

using (4.145), (4.159) and (4.191), where here Δ
�̃�
♯
ℓ

denotes the Hodge Laplacian acting on forms. This
is the parabolic analog of [21, (4.259)]. Recalling that 𝜂ℓ, 𝑗,𝑘 +𝜂♦ℓ +𝜂

◦
ℓ = 𝑖𝜕𝜕�̃�ℓ , and using that the Hodge

Laplacian of a Kähler metric commutes with 𝑖𝜕𝜕, we have[
𝔇𝑎−2

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
(𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

=
[
𝔇𝑎−2𝑖𝜕𝜕

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�ℓ

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

,

(4.287)

and using the PDE (4.216), the triangle inequality and the boundedness of P-parallel transport, this can
be bounded by
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𝐶𝑑2
ℓ𝜆

−2
ℓ

[
𝔇𝑎−2(𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

+ 𝐶
[
𝔇𝑎−2𝑖𝜕𝜕 (E1 + E2 + E3)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

, (4.288)

and inserting these into (4.286) and interpolating again with Proposition 2.3, we get

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ )]𝛽,𝛽/2,�̃�𝜌 ,�̃�ℓ (0) � 𝐶𝑑

2
ℓ𝜆

−2
ℓ 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ )

]
𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2𝑖𝜕𝜕 (E1 + E2 + E3)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

+ 𝐶𝜀𝑎+𝛼ℓ (𝑅 − 𝜌)−𝑎−𝛽

�
1
4
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ )

]
𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2𝑖𝜕𝜕 (E1 + E2 + E3)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

+ 𝐶𝜀𝑎+𝛼ℓ (𝑅 − 𝜌)−𝑎−𝛽 .
(4.289)

The main claim is then the following:

Claim 4.9. For all 𝑎 � 2 𝑗 , 𝑎 ∈ 2N, 𝑅 = 𝑂 (𝜀ℓ ), 0 < 𝜌 < 𝑅, 𝛼 � 𝛽 < 1, if we let �̃� = 𝜌 + 1
2 (𝑅 − 𝜌),

then we have

𝐶𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2𝑖𝜕𝜕 (E1 + E2 + E3)

]
𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

�
1
4
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ )

]
𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶
𝑎∑
𝑟=0

𝜀
𝛼−𝛽+𝑟
ℓ (𝑅 − 𝜌)−𝑟 + 𝐶

𝑎∑
𝑟=0

𝜀𝛼+𝑟ℓ (𝑅 − 𝜌)−𝑟−𝛽 .

(4.290)

Before giving the proof of Claim 4.9, we establish some of its consequences. Suppose Claim 4.9 has
been proved for some 𝑎 � 2 𝑗 . Then plugging it into (4.289) we get for all 𝑅 = 𝑂 (𝜀ℓ) and 0 < 𝜌 < 𝑅,

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)]𝛽,𝛽/2,�̃�𝜌 ,�̃�ℓ (0) �

1
2
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)

]
𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶
𝑎∑
𝑟=0

𝜀
𝛼−𝛽+𝑟
ℓ (𝑅 − 𝜌)−𝑟 + 𝐶

𝑎∑
𝑟=0

𝜀𝛼+𝑟ℓ (𝑅 − 𝜌)−𝑟−𝛽 ,

(4.291)

and then the iteration lemma in [21, Lemma 2.9] gives

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)]𝛽,𝛽/2,�̃�𝜌 ,�̃�ℓ (0) � 𝐶

𝑎∑
𝑟=0

𝜀
𝛼−𝛽+𝑟
ℓ (𝑅 − 𝜌)−𝑟 + 𝐶

𝑎∑
𝑟=0

𝜀𝛼+𝑟ℓ (𝑅 − 𝜌)−𝑟−𝛽 ,

(4.292)

and choosing now 𝜌 = 𝑂 (𝜀ℓ ) gives

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ , (4.293)

and this can be inserted back into (4.284) to finally give

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎

bt𝜂ℓ]𝛽,𝛽/2,base,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀𝛼−𝛽ℓ , (4.294)

which would show that the second term on the RHS of (4.283) is 𝑂 (𝜀𝛼−𝛽ℓ ).
Furthermore, we can interpolate between (4.293) and the 𝐿∞ norm bound for 𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ that

comes from (4.145), (4.159) and (4.191), using Proposition 2.3 on cylinders of radius 𝑂 (𝜀ℓ ) to see that
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‖𝔇𝑏 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂
◦
ℓ)‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑏
ℓ 𝑑

2 𝑗+𝛼
ℓ ,

[𝔇𝑏 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂
◦
ℓ)]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑏−𝛽
ℓ 𝑑

2 𝑗+𝛼
ℓ ,

(4.295)

for all 0 � 𝑏 � 𝑎, and so following the discussion in [21, (4.280)–(4.283)], this implies that the third
term on the RHS of (4.283) is of 𝑂 (𝜀𝛼−𝛽ℓ ).

To summarize, we have shown that if Claim 4.9 holds, then for all 𝑎 � 2 𝑗 , 𝑎 ∈ 2N, 𝛼 � 𝛽 < 1,
1 � 𝑖 � 𝑗 and 1 � 𝑝 � 𝑁𝑖,𝑘 , there is 𝐶 > 0 such that

𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ [𝔇𝑎 �̃�ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ + 𝐶
𝑖−1∑
𝑟=1

𝑁𝑝,𝑘∑
𝑞=1

(
𝑑
−2 𝑗−𝛼
ℓ 𝜀

2𝑘+𝑎−2 𝑗
ℓ [𝔇𝑎+2𝑘+2 �̃�ℓ,𝑟 ,𝑞,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+
𝑎+2𝑘+2∑
𝑏=0

𝑑
−2 𝑗−𝛼
ℓ 𝜀

𝑎−2 𝑗−2
ℓ 𝑑

𝑎−𝑏+𝛽
ℓ 𝑒−(2𝑘+2+1−𝛽) 𝑡ℓ2 𝜆

𝑏−𝑎−𝛽
ℓ ‖𝔇𝑏 �̃�ℓ,𝑟 ,𝑞,𝑘 ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

)
,

(4.296)

which is the parabolic analog of [21, (4.283)]. The remaining argument follows closely that of [21,
§4.10.5]. We use induction on 1 � 𝑖 � 𝑗 to show that for all 𝑎 � 2 𝑗 and 𝑎 ∈ 2N, we have

𝑑
−2 𝑗−𝛼
ℓ

𝑁𝑖,𝑘∑
𝑝=1

𝜀
𝑎−2 𝑗−2
ℓ [𝔇𝑎 �̃�ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ . (4.297)

The base case 𝑖 = 1 follows directly from (4.296). Suppose (4.297) holds up to 𝑖0 −1 for some 𝑖0 � 2.
Then the first term inside the summation on (4.296) can be estimated by 𝐶𝜀𝛼−𝛽ℓ since 𝑎 + 2𝑘 + 2 ∈ 2N.
We now treat the second term inside the summation – namely, the last line of (4.296). First, we treat the
terms with 0 � 𝑏 � 2 𝑗 , by using (4.73) and transferring it to the tilde picture which gives

𝑑−𝑏ℓ ‖𝔇𝑏 �̃�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
= 𝑜(𝜀2

ℓ ), (4.298)

and using these, we can bound these terms by 𝑜(𝜀𝛼−𝛽ℓ ) exactly as in [21, (4.286)]. As for the terms
with 2 𝑗 < 𝑏 � 𝑎 + 2𝑘 + 2, we apply interpolation (i.e., Proposition 2.3) using (4.298) and (4.297) for
𝑖 � 𝑖0 − 1 from the induction hypothesis to show that for 2 𝑗 < 𝑏 � 𝑎 + 2𝑘 + 2 and 𝑖 � 𝑖0 − 1,

‖𝔇𝑏 �̃�ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀2+2 𝑗+𝛼−𝑏

ℓ 𝑑
2 𝑗+𝛼
ℓ + 𝐶𝜀2+2 𝑗−𝑏

ℓ 𝑑
2 𝑗
ℓ , (4.299)

so that the terms in the last line of (4.296) with 2 𝑗 < 𝑏 � 𝑎 + 2𝑘 + 2 are also of 𝑜(𝜀𝛼−𝛽ℓ ) by the same
argument as [21, (4.290)]. This completes the inductive proof of (4.297), and hence of (4.281), modulo
the proof of Claim 4.9, which we now turn to.

4.12.3. Proof of Claim 4.9
The proof of Claim 4.9 goes along similar lines to [21, (4.261)], but with some differences. We will
prove the claim by induction on 𝑎 � 2 𝑗 , following the discussion in [21, §4.10.3–4.10.4]. Recall that
the terms E𝑖 , 𝑖 = 1, 2, 3, are defined in (4.212) and (4.217). First, we consider the term E2 + E3, which by
definition equals

log
(�̃�♯

ℓ )
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̃�𝑚
ℓ,can ∧ (𝜀2

ℓΘ
∗
ℓΨ

∗
ℓ𝜔𝐹 )𝑛

+ 𝑛𝑑2
ℓ𝜆

−2
ℓ 𝑡 −

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘

(
𝜕𝑡 �̃�

♯
ℓ,𝑖, 𝑝,𝑘 + 𝑑

2
ℓ𝜆

−2
ℓ �̃�♯ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘

)
− 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

♯
ℓ ,

(4.300)
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and we claim that for all 𝑏 � 0 and 𝛼 � 𝛽 < 1, and all fixed 𝑅 > 1, there is 𝐶 > 0 such that

⎧⎪⎪⎨⎪⎪⎩
𝜀
𝑏−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇𝑏 (E2 + E3)‖∞,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝜀
𝛼
ℓ ,

𝜀
𝑏−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑏 (E2 + E3)]𝛽,𝛽/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝜀
𝛼−𝛽
ℓ .

(4.301)

Observe that (4.301) for 𝑎 � 2 𝑗 and 𝛽 = 𝛼 is exactly given by (4.222) and (4.223). To prove it for 𝑎 � 2 𝑗
and 𝛽 � 𝛼, we apply the diffeomorphism Πℓ in (4.285) so that Π∗

ℓ (E2 + E3) equals

log
(�̌�♯

ℓ)
𝑚+𝑛(𝑚+𝑛

𝑚

)
�̌�𝑚
ℓ,can ∧ (Σ∗

ℓ𝜔𝐹 )𝑛
+ 𝑛𝑒−𝑡ℓ 𝑡 −

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̌�𝑡 ,𝑘

(
𝜕𝑡 �̌�

♯
ℓ,𝑖, 𝑝,𝑘 + 𝑒

−𝑡ℓ �̌�♯ℓ,𝑖, 𝑝,𝑘 , �̌�ℓ,𝑖, 𝑝,𝑘

)
− 𝑒−𝑒

−𝑡ℓ 𝑡𝜕𝑡 �̌�
♯
ℓ ,

(4.302)

and for any 𝑏 � 0, we have

𝜀−𝛼ℓ 𝜀
𝑏−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇𝑏 (E2 + E3)‖∞,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) = 𝛿
−2 𝑗−𝛼
ℓ ‖𝔇𝑏 (Π∗

ℓ (E2 + E3))‖∞,�̌�𝑅 ,�̌�ℓ (0) , (4.303)

𝜀
𝛽−𝛼
ℓ 𝜀

𝑏−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑏 (E2 + E3)]𝛽,𝛽/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) = 𝛿
−2 𝑗−𝛼
ℓ [𝔇𝑏 (Π∗

ℓ (E2 + E3))]𝛽,𝛽/2,�̌�𝑅 ,�̌�ℓ (0) . (4.304)

So thanks to (4.301), we see that 𝛿−2 𝑗−𝛼
ℓ Π∗

ℓ (E2 + E3) is locally uniformly bounded in 𝐶2 𝑗+𝛼, 𝑗+𝛼/2 with
respect to the (essentially fixed) metric �̌�ℓ (0), so by Ascoli-Arzelà, up to passing to a subsequence,
it converges locally uniformly on C𝑚 × 𝑌 × (−∞, 0] to some limiting function F . Since the quantity
−𝛿−2 𝑗−𝛼

ℓ Π∗
ℓ (E2 + E3) is exactly (3.15), we would like to apply the Selection Theorem 3.1, so we check

that its hypotheses are satisfied. The functions �̂�ℓ,𝑖, 𝑝,𝑘 satisfy (3.7) with 𝛼0 = 𝛼2

2 𝑗+𝛼 thanks to (4.172),
while the function −𝑒−𝜆−2

ℓ 𝑡𝜕𝑡 �̂�
♯
ℓ − 𝑛𝜆−2

ℓ 𝑡 converges to 0 locally smoothly thanks to (4.158). We can thus

apply the Selection Theorem and conclude that 𝛿−2 𝑗−𝛼
ℓ Π∗

ℓ (E2 + E3) converges to F locally smoothly,
and hence, its derivatives of all orders are uniformly bounded on �̌�𝑅. Thanks to (4.303), (4.304), this
proves that (4.301) holds for all 𝑏 � 0 and 𝛼 � 𝛽 < 1. Recalling then that 𝑖𝜕𝜕 = 𝐽ℓ �D2 +D𝐽ℓ �D, and
using the bounds in (4.176) for 𝐽ℓ and its derivatives, these imply directly that for all 𝑎 � 2, 𝛼 � 𝛽 < 1,

𝐶𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ

[
𝔇𝑎−2𝑖𝜕𝜕(E2 + E3)

]
𝛽,𝛽/2,�̃�𝑅𝜀ℓ

,�̃�ℓ (0) � 𝐶𝜀
𝛼−𝛽
ℓ . (4.305)

Next, we consider the term E1. Recall that

E1 = log
(�̃�♯

ℓ + 𝜂
◦
ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )

𝑚+𝑛

(�̃�♯
ℓ)𝑚+𝑛

− tr
�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
= log

(
1 + tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4

)
− tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘

)
,

(4.306)

where E4 was defined in (4.227). Taking 𝔇𝑎 derivatives, for 𝑎 � 2 𝑗 � 2, 𝑎 ∈ 2N, we again expand
it schematically as in (4.229). The first step is to prove estimates for E4, and for this, we observe that
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ E4 is identical to the term N in [21, (4.268)], and we will bound it following the discussion

there. To do this, we need some basic estimates first. Using (4.209), we have for all 𝜄 � 0 that

[𝔇 𝜄�̃�♯
ℓ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀−𝛽− 𝜄ℓ , ‖𝔇 𝜄�̃�♯
ℓ ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀− 𝜄ℓ . (4.307)
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Next, we observe that for all 𝛼 � 𝛽 < 1 and 0 � 𝜄 < max(𝑎 − 1, 2 𝑗), we have

‖𝔇 𝜄 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝛿2 𝑗+𝛼
ℓ 𝜀− 𝜄ℓ , [𝔇 𝜄 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝛿2 𝑗+𝛼
ℓ 𝜀

− 𝜄−𝛽
ℓ .

(4.308)

Indeed, these estimates are already known to hold for 𝜄 � 2 𝑗 and 𝛽 = 𝛼 thanks to (4.145), (4.153) and
(4.181); hence, using interpolation, they also hold for 𝜄 < 2 𝑗 and𝛼 � 𝛽 < 1, while if 𝜄 < 𝑎−1, 𝛼 � 𝛽 < 1,
these also hold thanks to the estimates (4.295) which hold by the induction hypothesis. Recalling that
in this section we have 𝑗 � 1, it follows that max(𝑎 − 1, 2 𝑗) � 2.

From (4.308) and the definition of E4 in (4.227), it follows immediately that for 0 � 𝜄 < max(𝑎−1, 2 𝑗)
and 𝛼 � 𝛽 < 1, we have

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇 𝜄E4‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝑎+𝛼− 𝜄ℓ 𝛿
2 𝑗+𝛼
ℓ , 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇 𝜄E4]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝑎+𝛼− 𝜄−𝛽ℓ 𝛿
2 𝑗+𝛼
ℓ .

(4.309)

However, we do not have the estimates (4.308) when 𝑎 − 1 � 𝜄 � 𝑎 and 𝜄 � 2 𝑗 , since our induction
argument is only on even values of 𝑎 � 2 𝑗 , and this is different from the discussion in [21, §4.10.3]. To
accommodate for the missing term with derivatives of order between 𝑎 − 1 and a, we apply Proposition
2.3 with (4.308) so that

‖𝔇𝑎−1 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

1+𝛽
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) + 𝐶𝛿

2 𝑗+𝛼
ℓ (𝑅 − 𝜌)−1𝜀−𝑎+2

ℓ ,

(4.310)

[𝔇𝑎−1 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀ℓ [𝔇

𝑎 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) + 𝐶𝛿

2 𝑗+𝛼
ℓ (𝑅 − 𝜌)−𝛽−1𝜀−𝑎+2

ℓ ,

(4.311)

‖𝔇𝑎 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

𝛽
ℓ [𝔇

𝑎 (𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) + 𝐶𝛿

2 𝑗+𝛼
ℓ (𝑅 − 𝜌)−2𝜀−𝑎+2

ℓ .

(4.312)

Given these, we can use the same method as in [21, (4.272)–(4.275)] and see that for every 𝜄 with
max(𝑎 − 1, 2 𝑗) � 𝜄 � 𝑎 and 𝛼 � 𝛽 < 1, we have

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇 𝜄E4‖∞,�̃��̃� ,�̃�ℓ (0) � 𝑜(1)𝜀𝑎+𝛽− 𝜄ℓ 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)− 𝜄𝛿2 𝑗+𝛼
ℓ 𝜀𝑎+𝛼ℓ , (4.313)

and for max(𝑎 − 1, 2 𝑗) � 𝜄 < 𝑎, 𝛼 � 𝛽 < 1,

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇 𝜄E4]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) � 𝑜(1)𝜀𝑎− 𝜄ℓ 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)− 𝜄−𝛽𝛿2 𝑗+𝛼
ℓ 𝜀𝑎+𝛼ℓ , (4.314)

while for 𝜄 = 𝑎,

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎E4]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) � 𝑜(1)𝜀𝑎−2 𝑗

ℓ 𝑑
−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) . (4.315)

One important observation that we used here is that whenever we need to use (4.310), (4.311) or (4.312)
for some term in E4, the remaining part of this summand in E4 is hit by at most 1 + 𝛽 derivatives, and
since 1 + 𝛽 < 2 � max(𝑎 − 1, 2 𝑗), for these other terms, we are allowed to apply (4.308).

Now that we have our estimates for E4, we need estimates on derivatives of tr
�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ).

For this, from (4.307) and (4.308), we see that for 0 � 𝜄 < max(𝑎 − 1, 2 𝑗), 𝛼 � 𝛽 < 1,
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𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇 𝜄 tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

𝑎+𝛼− 𝜄
ℓ , (4.316)

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇 𝜄 tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

𝑎+𝛼− 𝜄−𝛽
ℓ , (4.317)

while for derivatives of order 𝑎 − 1 � 𝜄 � 𝑎 and 𝜄 � 2 𝑗 , we can argue as above and estimate crudely

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇 𝜄 tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

𝑎+𝛽− 𝜄
ℓ 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)− 𝜄𝜀𝑎+𝛼ℓ , (4.318)

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇 𝜄 tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) � 𝐶𝜀

𝑎− 𝜄
ℓ 𝜀

𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶 (𝑅 − 𝜌)− 𝜄−𝛽𝜀𝑎+𝛼ℓ . (4.319)

Equipped with (4.309), (4.313), (4.314), (4.315), (4.316), (4.317), (4.318) and (4.319), we proceed to
estimate derivatives of E1. We first consider the first line of (4.229), which we can write as

−𝔇𝑎 tr
�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )

tr
�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4

1 + tr
�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4

+ 𝔇𝑎E4

1 + tr
�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4

, (4.320)

and we take 𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [·]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) of this. Since | tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂
♦
ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4 | = 𝑜(1), when the

difference quotient lands on 𝔇𝑎tr, we can estimate this by 𝑜(1) times (4.319) (with 𝜄 = 𝑎). Similarly,
[tr

�̃�
♯
ℓ

(𝜂◦ℓ + 𝜂♦ℓ + 𝜂ℓ, 𝑗,𝑘 ) + E4]𝐶𝛽 = 𝑜(𝜀−𝛽ℓ ), so when the difference quotient lands on tr+E4
1+tr+E4

, we can

estimate this by 𝑜(𝜀−𝛽ℓ ) times (4.318) (with 𝜄 = 𝑎). And when the difference quotient lands on 𝔇𝑎E4
1+tr+E4

,
we argue similarly with (4.313) and (4.315). So all together when we apply 𝜀𝑎−2 𝑗

ℓ 𝑑
−2 𝑗−𝛼
ℓ [·]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0)

to (4.320), we can bound it by

𝑜(1)𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0) + 𝐶 (𝑅 − 𝜌)−𝑎−𝛽𝜀𝑎+𝛼ℓ + 𝐶 (𝑅 − 𝜌)−𝑎𝜀𝑎+𝛼−𝛽ℓ .

(4.321)

Lastly, we need to consider what happens when we take 𝜀𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [·]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) of the large sum

in the second line of (4.229). If all the derivatives that appear there are of order < max(𝑎 − 1, 2 𝑗), then
this is bounded by 𝑜(𝜀𝛼−𝛽ℓ ), while if there is at least one derivative of order at least max(𝑎 − 1, 2 𝑗) (to
which we apply (4.313)–(4.315), (4.318)–(4.319)), then all other derivatives in total are of order at most
1 (and to these we can instead apply (4.309), (4.316)–(4.317)). Putting all these together proves that

𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎E1]𝛽,𝛽/2,�̃��̃� ,�̃�ℓ (0) �

1
4
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶
𝑎∑
𝑟=0

𝜀
𝛼−𝛽+𝑟
ℓ (𝑅 − 𝜌)−𝑟 + 𝐶

𝑎∑
𝑟=0

𝜀𝛼+𝑟ℓ (𝑅 − 𝜌)−𝑟−𝛽 ,
(4.322)

and combining this with (4.305) completes the proof of Claim 4.9.
For later use, observe also that the same argument gives an analogous bound for the 𝐿∞ norm of

derivatives of E1 – namely,

𝜀
𝑎−2 𝑗−𝛽
ℓ 𝑑

−2 𝑗−𝛼
ℓ ‖𝔇𝑎E1‖∞,�̃��̃� ,�̃�ℓ (0) �

1
4
𝜀
𝑎−2 𝑗
ℓ 𝑑

−2 𝑗−𝛼
ℓ [𝔇𝑎 (𝜂◦ℓ + 𝜂

♦
ℓ + 𝜂ℓ, 𝑗,𝑘 )]𝛽,𝛽/2,�̃�𝑅 ,�̃�ℓ (0)

+ 𝐶
𝑎∑
𝑟=0

𝜀
𝛼−𝛽+𝑟
ℓ (𝑅 − 𝜌)−𝑟 + 𝐶

𝑎∑
𝑟=0

𝜀𝛼+𝑟ℓ (𝑅 − 𝜌)−𝑟−𝛽 .
(4.323)
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4.12.4. Killing the contributions from �̃�∗
ℓ

The starting point is (4.232) with 𝑎 = 2 𝑗 and radius 𝐶𝛿ℓ . For 0 � 𝑏 � 2 𝑗 , we first bound the term

‖𝔇𝑏𝑖𝜕𝜕�̂�ℓ ‖∞,�̂�𝐶𝛿ℓ
,𝑔𝑋
� 𝐶‖𝔇𝑏 (𝜂♦ℓ + 𝜂

‡
ℓ + 𝜂

◦
ℓ + 𝜂ℓ, 𝑗,𝑘 )‖∞,�̂�𝐶𝛿ℓ

,�̂�ℓ (0) + ‖𝔇𝑏𝜂†ℓ ‖∞,�̂�𝐶𝛿ℓ
,𝑔𝑋
� 𝐶,

(4.324)

using (4.145), (4.159), (4.160), (4.189), (4.190) and (4.202). Using this, we transfer (4.232) to the tilde
picture and multiply it by 𝑑

𝛽−𝛼
ℓ and get

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗𝜂♦ℓ ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

= 𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝑑−2 𝑗−𝛼
ℓ [𝔇2 𝑗

bt 𝜂ℓ]𝛽,𝛽/2,base,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
+ 𝐶𝑑𝛽−𝛼ℓ 𝑒−(1−𝛽)

𝑡ℓ
2 𝜆

−𝛽
ℓ

� 𝐶𝑑−2 𝑗−𝛼
ℓ [𝔇2 𝑗 (𝜂ℓ, 𝑗,𝑘 + 𝜂♦ℓ + 𝜂

◦
ℓ)]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+ 𝑜(𝜀𝛼−𝛽ℓ )

� 𝐶𝜀𝛼−𝛽ℓ ,

(4.325)

where we used (4.284) and (4.293). Taking 𝛽 > 𝛼 gives us an 𝑜(1) bound for the parabolic 𝐶𝛽,𝛽/2

seminorm of 𝑑−2 𝑗−𝛼
ℓ 𝔇2 𝑗𝜂♦ℓ on the cylinder of radius 2 centered at 𝑥ℓ (which contains the other blowup

point 𝑥 ′ℓ), and hence an 𝑜(1) bound for the parabolic 𝐶𝛼,𝛼/2 seminorm on this same cylinder. Thanks
to the bounds (4.159), the same conclusion holds for the parabolic 𝐶𝛼,𝛼/2 seminorm of

𝑑
−2 𝑗−𝛼
ℓ 𝔇2 𝑗

(
𝑒𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜂♦ℓ

)
= 𝑑

−2 𝑗−𝛼
ℓ 𝔇2 𝑗𝑖𝜕𝜕 �̃�∗ℓ , (4.326)

on the same cylinder, which kills one contribution of �̃�∗ℓ to (4.132).

Next, using (4.295) and the bounds (4.307) for �̃�♯
ℓ , we see that for any 𝑎 � 0, there is𝐶 > 0 such that

𝑑
−2 𝑗−𝛼
ℓ

�����𝔇𝑎 tr
�̃�
♯
ℓ

(
𝜂♦ℓ + 𝜂

◦
ℓ + 𝜂ℓ, 𝑗,𝑘

) �����
∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎
ℓ , (4.327)

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇𝑎 tr

�̃�
♯
ℓ

(
𝜂♦ℓ + 𝜂

◦
ℓ + 𝜂ℓ, 𝑗,𝑘

) ]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎−𝛽
ℓ , (4.328)

while from (4.301), (4.322), (4.323) and (4.293), we have

𝑑
−2 𝑗−𝛼
ℓ ‖𝔇𝑎 (E1 + E2 + E3)‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎
ℓ , (4.329)

𝑑
−2 𝑗−𝛼
ℓ

[𝔇𝑎 (E1 + E2 + E3)]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀2 𝑗+𝛼−𝑎−𝛽

ℓ , (4.330)

and so using these in the PDE (4.216), we get

𝑑
−2 𝑗−𝛼
ℓ

��𝔇𝑎 (𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ)

��
∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎
ℓ , (4.331)

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇𝑎 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ)

]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀2 𝑗+𝛼−𝑎−𝛽
ℓ . (4.332)

At this point, we want to deduce from this bounds for the fiber average of 𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ , and this

can be done using the following ‘non-cancellation’ estimate, stated in the hat picture, for a smooth
time-dependent function f on �̂�𝑅 (where the fiber average is 𝑓 = (pr𝐵)∗( 𝑓Ψ∗

ℓ𝜔
𝑛
𝐹 )) which states
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[𝔇𝑎 𝑓 ]𝛽,𝛽/2,�̂�𝑅
� [𝔇𝑎

bt 𝑓 ]𝛽,𝛽/2,base,�̂�𝑅 ,𝑔𝑋
+ 𝐶

(
𝑅

𝜆ℓ

)1−𝛽
𝜆
−𝛽
ℓ

𝑎∑
𝑏=0

‖𝔇𝑏 𝑓 ‖∞,�̂�𝑅 ,𝑔𝑋

� [𝔇𝑎 𝑓 ]𝛽,𝛽/2,�̂�𝑅 ,�̂�ℓ (0) + 𝐶
(
𝑅

𝜆ℓ

)1−𝛽
𝜆
−𝛽
ℓ

𝑎∑
𝑏=0

‖𝔇𝑏 𝑓 ‖∞,�̂�𝑅 ,�̂�ℓ (0) ,

(4.333)

and which is proved exactly as [21, (4.199)], using Claims 2 and 3 there. We apply this in the tilde picture
with 𝑎 = 2 𝑗 to the function 𝜕𝑡 �̃�ℓ +𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ , whose fiber average is by definition 𝑒−𝑑2

ℓ𝜆
−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ , and we get

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ

)]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ )

� 𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗 (𝜕𝑡 �̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ )

]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

+ 𝐶𝑑𝛽−𝛼ℓ 𝑒−(1−𝛽)
𝑡ℓ
2 𝜆

−𝛽
ℓ

2 𝑗∑
𝑏=0

𝑑−𝑏ℓ ‖𝔇𝑏 (𝜕𝑡 �̃�ℓ + 𝑑2
ℓ𝜆

−2
ℓ �̃�ℓ )‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ + 𝐶𝑑𝛽−𝛼ℓ 𝑒−(1−𝛽)
𝑡ℓ
2 𝜆

−𝛽
ℓ

2 𝑗∑
𝑏=0

𝛿
2 𝑗+𝛼−𝑏
ℓ

� 𝐶𝜀𝛼−𝛽ℓ ,

(4.334)

using (4.331) and (4.332). Thus, if we take 𝛽 > 𝛼, then the LHS of (4.334) is 𝑜(1), and so we get an
𝑜(1) bound for the same 𝐶𝛽,𝛽/2 seminorm on �̃�𝑅 (𝑅 > 1 fixed), and hence,

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ

)]
𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1), (4.335)

which thanks to the bounds in (4.153) implies that

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗𝜕𝑡 �̃�

∗
ℓ ]𝛼,𝛼/2,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1), (4.336)

which kills the other contribution of �̃�∗ℓ to (4.132).

4.12.5. Killing the contribution of �̃�ℓ, 𝒋,𝒌

It remains to kill the contribution from �̃�ℓ, 𝑗,𝑘 to (4.132). In contrast with [21, §4.10.7] where they had
to kill the contribution from 𝑑

−2 𝑗−𝛼
ℓ 𝔇2 𝑗𝑖𝜕𝜕�̃�ℓ, 𝑗,𝑘 , here we need to kill 𝑑−2 𝑗−𝛼

ℓ 𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 .
From the definition of �̃�ℓ in (4.214), we have

�̃�ℓ − �̃�ℓ = �̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ), (4.337)

and so using (4.332) and (4.334), together with the triangle inequality and the boundedness of P-parallel
transport, gives

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

(
𝜕𝑡

����̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
+ 𝑑2

ℓ𝜆
−2
ℓ

����̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
)]

𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ .

(4.338)
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Now thanks to (4.145) and (4.181), we can bound

𝑑2
ℓ𝜆

−2
ℓ 𝑑

−2 𝑗−𝛼
ℓ

⎡⎢⎢⎢⎢⎣𝔇2 𝑗 ����̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
⎤⎥⎥⎥⎥⎦𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝑑2
ℓ𝜆

−2
ℓ 𝜀

2+𝛼−𝛽
ℓ = 𝑜(𝜀𝛼−𝛽ℓ ),

(4.339)

and so (4.338) implies

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗𝜕𝑡

����̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ . (4.340)

Next, from the bound (4.325), as well as the analogous bounds for lower derivatives of 𝜂♦ℓ which come
from (4.159), and the bounds (4.307) for �̃�♯

ℓ , we see that

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗 tr

�̃�
♯
ℓ

𝜂♦ℓ ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀𝛼−𝛽ℓ , (4.341)

and this together with (4.328) gives

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗 tr

�̃�
♯
ℓ

(
𝜂◦ℓ + 𝜂ℓ, 𝑗,𝑘

)
]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ , (4.342)

which together with (4.340) gives

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

) ����̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ .

(4.343)

This estimate can be inserted in the Schauder estimates in Proposition 2.8 (as usual by first going to the
check picture, and then changing the result back to the tilde picture), with radii both 𝑂 (𝜀ℓ ),

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2 ����̃�ℓ, 𝑗,𝑘 +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
]
𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ + 𝐶𝜀−2 𝑗−2−𝛽
ℓ 𝑑

−2 𝑗−𝛼
ℓ

�������̃�ℓ, 𝑗,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

������
∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀𝛼−𝛽ℓ ,

(4.344)

where we used the bounds (4.145) and (4.181) for the 𝐿∞ norm. As usual, taking 𝛽 > 𝛼, this implies
an 𝑜(1) bound for the 𝐶𝛽,𝛽/2 seminorm on �̃�𝑂 (𝜀ℓ ) , hence on �̃�2, and hence also an 𝑜(1) bound for the
𝐶𝛼,𝛼/2 seminorm on �̃�2; that is,

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2 ����̃�ℓ, 𝑗,𝑘 +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

���
]
𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0)

= 𝑜(1). (4.345)
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Next, we claim that

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2�̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )
]
𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0)

= 𝑜(1). (4.346)

The argument is identical to the deduction of (4.181) except we now use the improved parabolic Hölder
seminorm from (4.281) instead of that from blowup argument. By applying (3.1), we have

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) =

2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

𝑒−𝑞𝑑
2
ℓ𝜆

−2
ℓ 𝑡−(𝑞− 𝜄

2 )𝑡ℓ𝜀 𝜄ℓ · Φ̃ 𝜄,𝑞 (�̃�𝑖, 𝑝,𝑘 ) � D 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 . (4.347)

so that

𝔇2 𝑗+2�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )

=
2𝑘∑
𝜄=0

𝑘∑
𝑞= � 𝜄2 �

2 𝑗+2∑
𝑑=0
𝑑∈2N

∑
𝑖1+𝑖2=2 𝑗+2−𝑑

𝑒−𝑞𝑑
2
ℓ𝜆

−2
ℓ 𝑡−(𝑞− 𝜄

2 )𝑡ℓ (𝑞𝑑2
ℓ𝜆

−2
ℓ )

𝑑
2 𝜀 𝜄ℓ ·𝔇

𝑖1Φ̃ 𝜄,𝑞 (�̃�𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄 �̃�∗
ℓ,𝑖, 𝑝,𝑘 .

(4.348)

To estimate it, we need the following simple bounds from [21, (4.302)–(4.303)]{
‖𝔇 𝜄Φ̃ 𝜄,𝑞 (�̃�𝑖, 𝑝,𝑘 )‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)

� 𝐶𝜀− 𝜄ℓ ,

[𝔇 𝜄Φ̃ 𝜄,𝑞 (�̃�𝑖, 𝑝,𝑘 )]𝛼,𝛼/2,�̃�𝑆 ,�̃�ℓ (0) � 𝐶𝑆
1−𝛼𝜀− 𝜄−1

ℓ = 𝑜(𝜀− 𝜄−𝛼ℓ ),
(4.349)

for all 𝜄 � 0, 𝛼 ∈ (0, 1) and fixed 𝑆 > 1.
Transferring (4.178) to the tilde picture,

𝑑− 𝜄+2
ℓ ‖𝔇 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝛿2+2 𝑗− 𝜄+𝛼

ℓ = 𝑜(𝛿2+2 𝑗− 𝜄
ℓ ), (4.350)

for all 0 � 𝜄 � 2𝑘 + 2 + 2 𝑗 . Putting 𝛽 > 𝛼 in (4.281) yields

𝑑− 𝜄+2−𝛼
ℓ [𝔇 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛽,𝛽/2,�̃�𝑂 (𝜀ℓ ) ,�̃�ℓ (0)
� 𝐶𝜀𝛼−𝛽ℓ 𝛿

2 𝑗− 𝜄+2
ℓ = 𝑜(𝛿2+2 𝑗− 𝜄

ℓ ), (4.351)

for all 𝜄 � 2 𝑗 and thus implies

𝑑− 𝜄+2−𝛼
ℓ [𝔇 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0) � 𝐶𝜀
𝛼−𝛽
ℓ 𝛿

2+2 𝑗− 𝜄
ℓ = 𝑜(𝛿2+2 𝑗− 𝜄

ℓ ), (4.352)

for all 2 𝑗 � 𝜄 � 2 𝑗 + 2 + 2𝑘 while for 0 � 𝜄 � 2 𝑗 , we have from (4.163) that

𝑑2− 𝜄−𝛼
ℓ [𝔇 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ]𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0) � 𝐶𝛿
2
ℓ𝑑

2 𝑗− 𝜄
ℓ = 𝑜(𝛿2+2 𝑗− 𝜄

ℓ ), (4.353)

since 𝜀ℓ → +∞.
We now estimate (4.348) using the above estimates of each terms:

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗+2�̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 )
]
𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0)

� 𝑜(1)
∑

𝜄,𝑖1 ,𝑖2 ,𝑑

(
(𝑑ℓ𝜆−1

ℓ )𝑑+𝛼𝜀 𝜄−𝑖1ℓ 𝛿
2+2 𝑗− 𝜄−𝑖2
ℓ 𝑑𝑖2+ 𝜄−2

ℓ + (𝑑ℓ𝜆−1
ℓ )𝑑𝜀 𝜄−𝑖1−𝛼ℓ 𝛿

2+2 𝑗− 𝜄−𝑖2
ℓ 𝑑𝑖2+ 𝜄−2

ℓ

+ (𝑑ℓ𝜆−1
ℓ )𝑑𝜀 𝜄−𝑖1ℓ 𝛿

2+2 𝑗− 𝜄−𝑖2
ℓ 𝑑𝑖2+ 𝜄+𝛼−2

ℓ

)
= 𝑜(1),

(4.354)
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which proves (4.346). Combining it with (4.345), and using the triangle inequality gives

𝑑
−2 𝑗−𝛼
ℓ [𝔇2 𝑗+2�̃�ℓ, 𝑗,𝑘 ]𝛼,𝛼/2,�̃�2 ,�̃�ℓ (0) = 𝑜(1), (4.355)

which kills the contribution of �̃�ℓ, 𝑗,𝑘 in (4.132). In conclusion, all terms that appear on the right-hand
side of (4.132) converge to zero, which gives a contradiction and finally concludes Subcase A.

4.13. Subcase B: 𝜺ℓ → 𝜺∞ > 0

Without loss of generality, we will assume that 𝜀∞ = 1. By (4.144), (4.145) and [21, Lemma 2.6], we
see that 𝑑−2 𝑗−𝛼

ℓ �̃�ℓ, 𝑗,𝑘 converges in 𝐶
2 𝑗+2+𝛽, 𝑗+1+𝛽/2
loc to a function �̃�∞, 𝑗 ,𝑘 ∈ 𝐶

2 𝑗+2+𝛼, 𝑗+1+𝛼/2
loc defined on

C
𝑚×𝑌 × (−∞, 0], for all 0 < 𝛽 < 𝛼, while (4.153) gives us that 𝑑−2 𝑗−𝛼

ℓ 𝜕𝑡 �̃�
∗
ℓ and 𝑑−2 𝑗−𝛼

ℓ 𝑖𝜕𝜕 �̃�∗ℓ converge

in 𝐶2 𝑗+𝛽, 𝑗+𝛽/2
loc for all 0 < 𝛽 < 𝛼 to a function 𝑢∞ ∈ 𝐶2 𝑗+𝛼, 𝑗+𝛼/2

loc and to a (1, 1) form 𝜂∞ ∈ 𝐶2 𝑗+𝛼, 𝑗+𝛼/2
loc ,

respectively, on C𝑚 × (−∞, 0]. Using again (4.153), we also have that 𝑑−2 𝑗−𝛼
ℓ 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ → 𝑢∞ in

𝐶
2 𝑗+𝛽, 𝑗+𝛽/2
loc and 𝑑

−2 𝑗−𝛼
ℓ 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�∗ℓ → 𝜂∞ in 𝐶2 𝑗+𝛽, 𝑗+𝛽/2

loc . Moreover, when 𝑗 � 1, we have

𝑖𝜕𝜕𝑢∞ = 𝜕𝑡𝜂∞. (4.356)

From (4.144), (4.145), (4.153), (4.191), we see that �̃�∞, 𝑗 ,𝑘 = 𝑂 (𝑟2 𝑗+2+𝛼), 𝑢∞ = 𝑂 (𝑟2 𝑗+𝛼), 𝜂∞ =
𝑂 (𝑟2 𝑗+𝛼), and 𝜂◦∞ = 𝑂 (𝑟2 𝑗+𝛼) where 𝑟 = |𝑧 | +

√
|𝑡 |.

By (4.164), (4.163) and (4.168), the functions 𝑑−2 𝑗−𝛼
ℓ �̃�∗

ℓ,𝑖, 𝑝,𝑘 converge to limiting functions �̃�∗
∞,𝑖, 𝑝,𝑘

from the base C𝑚 in 𝐶
2 𝑗+2+2𝑘+𝛽, 𝑗+1+2𝑘+𝛽/2
loc for any 0 < 𝛽 < 𝛼 while �̃�𝑖, 𝑝,𝑘 converge locally uni-

formly smoothly to functions �̃�∞,𝑖, 𝑝,𝑘 pulled back from Y. Using (4.181), we see that the functions
𝑑
−2 𝑗−𝛼
ℓ �̃�𝑡 ,𝑘 ( �̃�∗

ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ) converge in 𝐶2 𝑗+2+𝛽, 𝑗+1+𝛽/2
loc to a function which, thanks to [21, (4.310)],

is given by

�̃�∞,𝑘 ( �̃�∗
∞,𝑖, 𝑝,𝑘 , �̃�∞,𝑖, 𝑝,𝑘 ) =

𝑘∑
ℓ=0

(−1)ℓ (ΔC𝑚 )ℓ𝐴∗
∞,𝑖, 𝑝,𝑘 (Δ

𝑌 )−ℓ−1�̃�∞,𝑖, 𝑝,𝑘 . (4.357)

By (4.158) and (4.200), the metrics �̃�♯ℓ (𝑡) → 𝑔𝑃 = 𝑔C𝑚 + 𝑔𝑌 ,𝑧∞=0 locally smoothly where 𝑔C𝑚 equals
𝑔can |𝑧=𝑧∞=0.

Recall from (4.216) that

𝑑
−2 𝑗−𝛼
ℓ

((
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)
= 𝑑

−2 𝑗−𝛼
ℓ (E1 + E2 + E3), (4.358)

where �̃�ℓ is given by (4.214). From (4.144), (4.145), (4.157) and (4.179), it follows that

𝑑
−2 𝑗−𝛼
ℓ 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ → 0, (4.359)

in 𝐶0
loc, so as ℓ → +∞ the LHS of (4.358) converges to

(
𝜕𝑡 − Δ𝜔𝑃

) ����̃�∞, 𝑗 ,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�∞,𝑘

(
�̃�∗
∞,𝑖, 𝑝,𝑘 , �̃�∞,𝑖, 𝑝,𝑘

)��� + 𝑢∞ − tr𝜔C𝑚 𝜂∞, (4.360)

while at the same time, thanks to (4.219), the LHS of (4.358) is forced to be a polynomial F in the (𝑧, 𝑡)
variables, of (spacetime) degree at most 2 𝑗 , with coefficients that are functions on Y, namely

F (𝑧, 𝑦, 𝑡) =
∑

|𝑝 |+2𝑞�2 𝑗
𝐻𝑝,𝑞 (𝑦)𝑧𝑝𝑡𝑞 , (4.361)
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for some smooth functions 𝐻𝑝,𝑞 pullback from the fiber Y, where here again we treat z as real variables.
Plugging (4.361) into (4.360), and taking the fiberwise average, gives

𝑢∞ − tr𝜔C𝑚 𝜂∞ = 𝑄, (4.362)

where Q is a polynomial in the (𝑧, 𝑡) variables of degree at most 2 𝑗 . But thanks to the jet subtractions,
𝑢∞ and 𝜂∞ have vanishing 2 𝑗 parabolic jet at (𝑧, 𝑡) = (0, 0), so

𝑢∞ − tr𝜔C𝑚 𝜂∞ = 0, (4.363)

on C𝑚 × (−∞, 0].
We now claim that 𝑢∞ and 𝜂∞ are both identically zero. First, we assume that 𝑗 = 0. In this case, we

can use (4.268) and see that 𝑢∞ is a constant in space-time, and hence identically zero. At this point, we
can argue similarly as in subcase A to show that 𝜂∞ also vanishes identically: first, we show that 𝜂∞ is
time-independent, by arguing similarly to (4.270), noting that for any 𝑧 ∈ C𝑚 and 𝑡, 𝑡 ′ � 0,

𝑑−𝛼ℓ 𝑖𝜕𝜕 �̃�∗ℓ (𝑧, 𝑡) − 𝑑−𝛼ℓ 𝑖𝜕𝜕 �̃�∗ℓ (𝑧, 𝑡
′) = 𝑖𝜕𝜕

∫ 𝑡

𝑡′

(
𝑑−𝛼ℓ 𝜕𝑡 �̃�

∗
ℓ

)
(𝑧, 𝑠)𝑑𝑠, (4.364)

and since
∫ 𝑡

𝑡′

(
𝑑−𝛼ℓ 𝜕𝑡 �̃�

∗
ℓ

)
(𝑧, 𝑠)𝑑𝑠 → 0 locally uniformly (from 𝑢∞ ≡ 0), it follows that the RHS of

(4.364) goes to 0 weakly, and since the LHS converges in 𝐶
𝛽
loc to 𝜂∞(𝑧, 𝑡) − 𝜂∞(𝑧, 𝑡 ′), this must be

identically zero as claimed.
We can then write 𝜂∞ = 𝑖𝜕𝜕𝑣∞, where 𝑣∞ ∈ 𝐶2+𝛼

loc (C𝑚) is time-independent and Δ𝑔C𝑚 𝑣∞ = 0, so 𝑣∞
is smooth and |𝑖𝜕𝜕𝑣∞| = 𝑂 (|𝑧 |𝛼). The Liouville Theorem applied to each component of 𝑖𝜕𝜕𝑣∞ then
implies that 𝜂∞ has constant coefficients; hence, it vanishes identically since its value at (0, 0) vanishes.

Next, we assume 𝑗 � 1. We can then differentiate (4.363) and use (4.356) to see that

𝜕𝑡𝑢∞ = trC𝑚 𝜕𝑡𝜂∞ = trC𝑚 𝑖𝜕𝜕𝑢∞ = ΔC𝑚𝑢∞, (4.365)

so 𝑢∞ solves the heat equation on (−∞, 0] × C𝑚, and |𝔇 𝜄𝑢∞| = 𝑂 (𝑟2 𝑗+𝛼− 𝜄) where 𝑟 = |𝑥 | +
√
𝑡 for

0 � 𝜄 � 2 𝑗 by (4.153). By applying Liouville Theorem for ancient heat equation to 𝔇2 𝑗𝑢∞, we see that
𝑢∞ must be a space-time polynomial of degree at most 2 𝑗 , and hence, 𝑢∞ ≡ 0 since its parabolic 2 𝑗-jet
at (0, 0) vanishes. Going back to (4.356), it then follows that 𝜂∞ is time-independent, and it is clearly
of the form 𝜂∞ = 𝑖𝜕𝜕𝑣∞ for some time-independent function 𝑣∞ ∈ 𝐶2 𝑗+2+𝛼

loc (C𝑚). From (4.363), we see
that 𝑣∞ is harmonic. Since |D2 𝑗𝜂∞| = 𝑂 (|𝑧 |𝛼), the Liouville Theorem in [20, Proposition 3.12] then
shows that the coefficients of 𝜂∞ are polynomials of degree at most 2 𝑗 , and since these coefficients have
vanishing 2 𝑗-jet at the origin, this implies that 𝜂∞ vanishes identically.

Now that we know that 𝑢∞ ≡ 0, 𝜂∞ ≡ 0, we can return to (4.360), (4.361) and get

(
𝜕𝑡 − Δ𝜔𝑃

) ����̃�∞, 𝑗 ,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�∞,𝑘

(
�̃�∗
∞,𝑖, 𝑝,𝑘 , �̃�∞,𝑖, 𝑝,𝑘

)��� = F . (4.366)

Recall from (4.358) and the discussion after it that 𝑑−2 𝑗−𝛼
ℓ (E1 + E2 + E3) → F locally uniformly. From

(4.220), we see that 𝑑−2 𝑗−𝛼
ℓ E1 → 0 locally uniformly, while the term −𝑑−2 𝑗−𝛼

ℓ (E2 + E3) is exactly equal
to (3.15) (in this subcase, the check picture equal the tilde picture since 𝜀ℓ → 1), so the Selection
Theorem 3.1 shows that F is also equal to the limit of

𝑑
−2 𝑗−𝛼
ℓ Σ∗

ℓ
��� 𝑓ℓ,0 +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑓ℓ,𝑖, 𝑝𝐺𝑖, 𝑝,𝑘
��� , (4.367)
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where Σℓ was defined in (3.3), and where 𝑓ℓ,0, 𝑓ℓ,𝑖, 𝑝 are time-dependent functions pulled back from
the base, such that 𝑓ℓ,0 = Ψ∗

ℓ 𝑓ℓ,0, 𝑓ℓ,𝑖, 𝑝 = Ψ∗
ℓ 𝑓ℓ,𝑖, 𝑝 converge locally smoothly to zero. This implies

that for any function G on C𝑚 × 𝑌 which is fiberwise 𝐿2 orthogonal to the span of the functions
{�̃�∞,𝑖, 𝑝,𝑘 }1�𝑖� 𝑗 ,1�𝑝�𝑁𝑖,𝑘 together with the constants, and for any 𝑧 ∈ C𝑚 and 𝑡 ∈ (−∞, 0], we have∫

{𝑧 }×𝑌
F (𝑧, 𝑦, 𝑡)𝐺 (𝑧, 𝑦)𝜔𝑛

𝑌 (𝑦) = 0, (4.368)

which implies that we can write

F (𝑧, 𝑦, 𝑡) = 𝑔0 (𝑧, 𝑡) +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝑔𝑖, 𝑝,𝑘 (𝑧, 𝑡)�̃�∞,𝑖, 𝑝,𝑘 (𝑦), (4.369)

for some functions 𝑔0, 𝑔𝑖, 𝑝,𝑘 on C𝑚 × (−∞, 0]. Since F is a polynomial in (𝑧, 𝑡) of degree at most 2 𝑗 ,
by fiberwise 𝐿2 projecting F onto each �̃�∞,𝑖, 𝑝,𝑘 and onto the constants, we see that the coefficients
𝑔0 (𝑧, 𝑡), 𝑔𝑖, 𝑝,𝑘 (𝑧, 𝑡) are also polynomials of degree at most 2 𝑗 . This shows that F is a linear combination
of the functions �̃�∞,𝑖, 𝑝,𝑘 together with the constant 1, with coefficients that are polynomials in (𝑧, 𝑡) of
degree at most 2 𝑗 , that is,

F (𝑧, 𝑦, 𝑡) = 𝐾0(𝑧, 𝑡) +
∑
𝑞

𝐾𝑞 (𝑧, 𝑡)𝐻𝑞 (𝑦), (4.370)

where 𝐾0(𝑧, 𝑡), 𝐾𝑞 (𝑧, 𝑡) are polynomials of degree at most 2 𝑗 , and 𝐻𝑞 (𝑦) are functions pulled back
from the fiber Y that lie in H, the fiberwise span of the functions �̃�∞,𝑖, 𝑝,𝑘 , 1 � 𝑖 � 𝑗 , 1 � 𝑝 � 𝑁𝑖,𝑘 .

Following the argument in deriving [21, (4.330)] (which holds verbatim here), for each fixed 𝑡 � 0,
we obtain

�̃�∗
∞,𝑖, 𝑝,𝑘 (𝑡) =

∫
{𝑧 }×𝑌

�̃�∞,𝑖, 𝑝,𝑘Δ𝜔𝑃

����̃�∞, 𝑗 ,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�∞,𝑘

(
�̃�∗
∞,𝑖, 𝑝,𝑘 , �̃�∞,𝑖, 𝑝,𝑘

)���𝜔𝑛
𝑌

−
𝑖−1∑
𝑞=1

𝑁𝑞,𝑘∑
𝑝=1

Φ̃2𝑘+2,𝑖, 𝑝,𝑘 (�̃�∞,𝑞, 𝑝,𝑘 ) � D2𝑘+2 �̃�∗
∞,𝑞, 𝑝,𝑘 ,

(4.371)

where each quantity is evaluated at 𝑡 � 0. For notational convenience, we denote

𝑢(𝑧, 𝑦, 𝑡) = �̃�∞, 𝑗 ,𝑘 +
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�∞,𝑘

(
�̃�∗
∞,𝑖, 𝑝,𝑘 , �̃�∞,𝑖, 𝑝,𝑘

)
, (4.372)

which thanks to (4.366) satisfies
(
𝜕𝑡 − Δ𝜔𝑃

)
𝑢 = F , and so given any 𝑝, 𝑞 � 0 with 𝑝 + 2𝑞 = 2 𝑗 + 2,

and given 𝑣1, . . . , 𝑣𝑝 tangent vectors to C𝑚, from (4.369), we see that(
𝜕𝑡 − Δ𝜔𝑃

)
D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 𝑢 = 0, (4.373)

while, thanks to (4.144), (4.145) and (4.185), we also have thatD𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 𝑢 = 𝑂 (𝑟𝛼), where 𝑟 = |𝑧 |+

√
|𝑡 |.

Since 𝜔𝑃 is of Ricci-flat, we can apply the Liouville Theorem in [11, Proposition 2.1] for ancient
solutions of the heat equation, and conclude that D𝑝

𝑣1 · · ·𝑣𝑝𝜕
𝑞
𝑡 𝑢 is a constant in space and time. Since this

is true for arbitrary 𝑝, 𝑞 with 𝑝 + 2𝑞 = 2 𝑗 + 2, and for arbitrary 𝑣1, . . . , 𝑣𝑝 , this means that for every
given 𝑦 ∈ 𝑌 , the function 𝑢(𝑧, 𝑦, 𝑡) is a (parabolic) polynomial in (𝑧, 𝑡) of degree at most 2 𝑗 + 2. Thus,
(𝜕𝑡𝑢) (𝑧, 𝑦, 𝑡) is a polynomial in (𝑧, 𝑡) of degree at most 2 𝑗 ; hence, the fiber integration∫

{𝑧 }×𝑌
�̃�∞,𝑖, 𝑝,𝑘 (𝜕𝑡𝑢) (𝑧, 𝑦, 𝑡)𝜔𝑛

𝑌 (𝑦) (4.374)
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is also polynomial of degree at most 2 𝑗 . Thus, if we insert (4.366) into (4.371), we obtain

�̃�∗
∞,𝑖, 𝑝,𝑘 (𝑡) = −

𝑖−1∑
𝑞=1

𝑁𝑞,𝑘∑
𝑝=1

Φ̃2𝑘+2,𝑖, 𝑝,𝑘 (�̃�∞,𝑞, 𝑝,𝑘 ) � D2𝑘+2 �̃�∗
∞,𝑞, 𝑝,𝑘 +𝑄𝑖, 𝑝 , (4.375)

where 𝑄𝑖, 𝑝 is a (parabolic) polynomial on C𝑚 × (−∞, 0] of degree at most 2 𝑗 . We can then use this to
show by induction on 0 � 𝑖 � 𝑗 that �̃�∗

∞,𝑖, 𝑝,𝑘 = 0 for all 𝑖, 𝑝. Indeed, in the base case of the induction
𝑖 = 1, the last term in (4.375) is not present, and so �̃�∗

∞,1, 𝑝,𝑘 is a polynomial of degree at most 2 𝑗 , but
since it also has vanishing 2 𝑗-jet at (0, 0), it must be identically zero. The induction step is then exactly
the same.

Next, since we have shown that �̃�∗
∞,𝑖, 𝑝,𝑘 ≡ 0 for all 𝑖, 𝑝, from (4.357) and (4.372), we see that

𝑢 = �̃�∞, 𝑗 ,𝑘 , which by (4.371) satisfies∫
{𝑧 }×𝑌

�̃�∞,𝑖, 𝑝,𝑘Δ𝜔𝑃𝑢𝜔
𝑛
𝑌 = 0, (4.376)

for all 𝑧, 𝑖, 𝑝 i.e., we have

Δ𝜔𝑃𝑢 ∈ H⊥, (4.377)

the fiberwise 𝐿2 (𝜔𝑌 )-orthogonal space to H. Thanks to (4.366) and (4.369), we also have(
𝜕𝑡 − Δ𝜔𝑃

)
𝑢 = F ∈ H. (4.378)

We then claim that we have 𝑢 ≡ 0. To show this, we apply a trick from [11, Claim 3.2]. We define
a function v on C𝑚 × 𝑌 × (−∞, 0] as the fiberwise 𝐿2 (𝜔𝑌 )-orthogonal projection of u onto H⊥.
Recalling that |𝑢 | = 𝑂 (𝑟2 𝑗+2+𝛼), where 𝑟 = |𝑧 | +

√
|𝑡 |, we claim that v satisfies the same growth bound

|𝑣 | = 𝑂 (𝑟2 𝑗+2+𝛼). To see this, it suffices to prove this bound for the fiberwise 𝐿2 (𝜔𝑌 )-orthogonal
projection of u onto H, which equals

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

(∫
{𝑧 }×𝑌

𝑢(𝑧, ·, 𝑡)�̃�∞,𝑖, 𝑝,𝑘𝜔
𝑛
𝑌

)
�̃�∞,𝑖, 𝑝,𝑘 (𝑦), (4.379)

and whose supremum on 𝐵𝑟 (0) × (−𝑟2, 0] is clearly bounded by 𝐶 sup𝐵𝑟 (0)×(−𝑟2 ,0] |𝑢 | � 𝐶𝑟2 𝑗+2+𝛼, as
claimed.

Projecting (4.378) onto H⊥, and using (4.377), we see that

𝜕𝑡𝑣 − Δ𝜔𝑃𝑢 = 0. (4.380)

Given 𝑅 > 1, which later will be taken sufficiently large, we define a function on C𝑚 ×𝑌 × (−∞, 0] by

𝜙𝑅 (𝑧, 𝑦, 𝑡) := 𝑒−
|𝑧 |
𝑅 + 𝑡

𝑅 (4.381)

and consider the weighted 𝐿2 energy

𝐸𝑅 (𝑡) :=
∫
C𝑚×𝑌

𝑣2𝜙𝑅𝜔
𝑚+𝑛
𝑃 , (4.382)

which is finite since |𝑣 | = 𝑂 (𝑟2 𝑗+2+𝛼) and 𝜙𝑅 decays fast at spatial and time infinity. Differentiating 𝐸𝑅

in time and using (4.380), we get
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𝐸 ′
𝑅 (𝑡) =

∫
C𝑚×𝑌

(
2𝑣𝜙𝑅Δ𝜔𝑃𝑢 +

1
𝑅
𝑣2𝜙𝑅

)
𝜔𝑚+𝑛
𝑃 . (4.383)

Since v is a fiberwise 𝐿2-projection of u, we have
∫
𝑌
𝑣2𝜔𝑛

𝑌 �
∫
𝑌
𝑢2𝜔𝑛

𝑌 . Using this, together with (4.377),
we can estimate

𝐸 ′
𝑅 (𝑡) � (𝑚 + 𝑛)!

∫
C𝑚

𝜙𝑅

(∫
{𝑧 }×𝑌

(
2𝑣Δ𝜔𝑃𝑢 +

1
𝑅2 𝑢

2
)
𝜔𝑛
𝑌

)
𝜔𝑚
C𝑚

= (𝑚 + 𝑛)!
∫
C𝑚

𝜙𝑅

(∫
{𝑧 }×𝑌

(
2𝑢Δ𝜔𝑃𝑢 +

1
𝑅2 𝑢

2
)
𝜔𝑛
𝑌

)
𝜔𝑚
C𝑚

=
∫
C𝑚×𝑌

(
2𝑢𝜙𝑅Δ𝜔𝑃𝑢 +

1
𝑅2 𝑢

2𝜙𝑅

)
𝜔𝑚+𝑛
𝑃

�
∫
C𝑚×𝑌

(
−2|∇𝑢 |2𝑔𝑃𝜙𝑅 + 2𝑢 |∇𝑢 |𝑔𝑃 |∇𝜙𝑅 |𝑔𝑃 + 1

𝑅2 𝑢
2𝜙𝑅

)
𝜔𝑚+𝑛
𝑃

�
∫
C𝑚×𝑌

(
−|∇𝑢 |2𝑔𝑃𝜙𝑅 + 𝐶

𝑅2 𝑢
2𝜙𝑅

)
𝜔𝑚+𝑛
𝑃 ,

(4.384)

where the integration by part is justified by the growth bound of u and the fast decay of 𝜙𝑅. Since u has
fiberwise average zero, the Poincaré inequality on (𝑌, 𝜔𝑌 ) implies∫

C𝑚×𝑌
𝑢2𝜙𝑅𝜔

𝑚+𝑛
𝑃 = (𝑚 + 𝑛)!

∫
C𝑚

𝜙𝑅

(∫
{𝑧 }×𝑌

𝑢2𝜔𝑛
𝑌

)
𝜔𝑚
C𝑚

� 𝐶
∫
C𝑚

𝜙𝑅

(∫
{𝑧 }×𝑌

|∇𝑌 𝑢 |2𝑔𝑌𝜔
𝑛
𝑌

)
𝜔𝑚
C𝑚
� 𝐶

∫
C𝑚×𝑌

|∇𝑢 |2𝑔𝑃𝜙𝑅𝜔
𝑚+𝑛
𝑃 ,

(4.385)

where the constant C is independent of R; hence, for all 𝑡 � 0, we have

𝐸 ′
𝑅 (𝑡) �

∫
C𝑚×𝑌

(
−

(
1 − 𝐶

𝑅

)
|∇𝑢 |2𝑔𝑃𝜙𝑅

)
𝜔𝑚+𝑛
𝑃 � 0, (4.386)

provided we choose R sufficiently large. Thus, for any 𝑠 < 𝑡 � 0, we have 𝐸𝑅 (𝑡) � 𝐸𝑅 (𝑠), but if we
let 𝑠 → −∞, then since u grows at most polynomially while 𝜙𝑅 has exponential decay, we see that
lim𝑠→−∞ 𝐸𝑅 (𝑠) = 0, and so 𝐸𝑅 (𝑡) ≡ 0 for all 𝑡 � 0, which implies that 𝑣 ≡ 0. From (4.378), we then
see that Δ𝜔𝑃𝑢 ≡ 0, so u is harmonic on C𝑚 ×𝑌 and |𝑢 | = 𝑂 (𝑟2 𝑗+2+𝛼), so [20, Proposition 3.12] implies
that for any fixed 𝑡 � 0, the function 𝑢(·, 𝑡) is the pullback of a polynomial on C𝑚 of degree at most
2 𝑗 + 2, and since it also has fiberwise average zero, it vanishes identically.

To summarize, we have thus proved that 𝑑−2 𝑗−𝛼
ℓ �̃�ℓ, 𝑗,𝑘 , 𝑑−2 𝑗−𝛼

ℓ 𝜕𝑡 �̃�
∗
ℓ , 𝑑−2 𝑗−𝛼

ℓ 𝑖𝜕𝜕 �̃�∗ℓ , 𝑑
−2 𝑗−𝛼
ℓ �̃�∗

ℓ,𝑖, 𝑝,𝑘

all go to zero locally uniformly in the appropriate topologies, which when 𝑗 � 1 shows that the RHS of
(4.132) goes to zero, and gives a contradiction. As for the case 𝑗 = 0, by definition, we have

𝑖𝜕𝜕�̃�ℓ = 𝑖𝜕𝜕�̃�ℓ,0,𝑘 + 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�∗ℓ + 𝑒

−𝑑2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�♯ℓ , (4.387)

and we have just shown that 𝑑−𝛼ℓ 𝑖𝜕𝜕�̃�ℓ,0,𝑘 and 𝑑−𝛼ℓ 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�∗ℓ both go to zero locally uniformly, so

using also (4.279), we see that the RHS of (4.110) also converges to zero, contradiction. This concludes
Subcase B.

4.14. Subcase C: 𝜺ℓ → 0

In this subcase, using repeatedly [21, Lemma 2.6], thanks to (4.144) and (4.145) we have that
𝑑
−2 𝑗−𝛼
ℓ �̃�ℓ, 𝑗,𝑘 converges to zero in 𝐶

2 𝑗+2+𝛽, 𝑗+1+𝛽/2
loc . Also, using (4.194), we see that 𝑑

−2 𝑗−𝛼
ℓ 𝜂◦ℓ, 𝑗,𝑘
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converges in 𝐶
2 𝑗+𝛽, 𝑗+𝛽/2
loc to a (1, 1)-form 𝜂◦∞, 𝑗 ,𝑘 on C𝑚 × 𝑌 × (−∞, 0] which is weakly closed. The

bounds in (4.153) give us that 𝑑−2 𝑗−𝛼
ℓ 𝜕𝑡 �̃�

∗
ℓ and 𝑑

−2 𝑗−𝛼
ℓ 𝑖𝜕𝜕 �̃�∗ℓ converge in 𝐶2 𝑗+𝛽, 𝑗+𝛽/2

loc for all 0 < 𝛽 < 𝛼

to a function 𝑢∞ ∈ 𝐶
2 𝑗+𝛼, 𝑗+𝛼/2
loc and to a (1, 1) form 𝜂∞ ∈ 𝐶

2 𝑗+𝛼, 𝑗+𝛼/2
loc , respectively, on C𝑚 × (−∞, 0],

and again 𝜂∞ is weakly closed, and these satisfy (4.356) when 𝑗 � 1. Using again (4.153), we also
have that 𝑑−2 𝑗−𝛼

ℓ 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡𝜕𝑡 �̃�

∗
ℓ → 𝑢∞ in 𝐶

2 𝑗+𝛽, 𝑗+𝛽/2
loc and 𝑑

−2 𝑗−𝛼
ℓ 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 𝑖𝜕𝜕 �̃�∗ℓ = 𝑑

−2 𝑗−𝛼
ℓ 𝜂♦ℓ → 𝜂∞ in

𝐶
2 𝑗+𝛽, 𝑗+𝛽/2
loc . From (4.160) and (4.203), we see that �̃�♯

ℓ → 𝜔C𝑚 locally smoothly, and in particular, (as in
[21, (4.345)]) this implies that

𝑑
−2 𝑗−𝛼
ℓ 𝔇2 𝑗

bt Δ �̃�
♯
ℓ

�̃�∗ℓ = 𝑑
−2 𝑗−𝛼
ℓ 𝔇2 𝑗

bt Δ𝜔C𝑚 �̃�
∗
ℓ + 𝑜(1), (4.388)

locally uniformly, and so

𝑑
−2 𝑗−𝛼
ℓ 𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡𝔇2 𝑗

bt Δ �̃�
♯
ℓ

�̃�∗ℓ → tr𝜔C𝑚 𝜂∞, (4.389)

locally uniformly. Thanks to (4.170), we also have that for all −1 � 𝜄 � 2𝑘 ,

𝜀 𝜄ℓ𝑑
−2 𝑗−𝛼
ℓ ‖𝔇2 𝑗+2+ 𝜄 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑅 ,�̃�ℓ (0) → 0, (4.390)

so when 𝑗 = 0, from (4.110) (using also (4.160)) we see that

1 � 𝐶𝑑−𝛼ℓ |𝑖𝜕𝜕�̃�ℓ,0,𝑘 (𝑥ℓ , 0) − P�̃�′
ℓ
�̃�ℓ 𝑖𝜕𝜕�̃�ℓ,0,𝑘 (𝑥 ′ℓ , 𝑡

′
ℓ) |�̃�ℓ (0) + 𝐶𝑑

−𝛼
ℓ |𝜂♦ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝜂

♦
ℓ (𝑥

′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

+ 𝐶𝑑−𝛼ℓ |𝜂‡ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝜂
‡
ℓ (𝑥

′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

� 𝐶𝑑−𝛼ℓ |𝜂♦ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝜂
♦
ℓ (𝑥

′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0) + 𝑜(1),

(4.391)

while when 𝑗 � 1, from (4.132), we see that

(1 + 𝑜(1)) = 𝑑
−2 𝑗−𝛼
ℓ |𝔇2 𝑗𝑖𝜕𝜕 �̃�∗ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝔇

2 𝑗𝑖𝜕𝜕 �̃�∗ℓ (𝑥
′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

+ 𝑑−2 𝑗−𝛼
ℓ |𝔇2 𝑗𝜕𝑡 �̃�

∗
ℓ (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ𝔇

2 𝑗𝜕𝑡 �̃�
∗
ℓ (𝑥

′
ℓ , 𝑡

′
ℓ) |�̃�ℓ (0)

+ 𝑑−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

𝜀−2
ℓ

(
|𝔇2 𝑗 �̃�∗

ℓ,𝑖, 𝑝,𝑘 (𝑥ℓ , 0) − P�̃�′ℓ �̃�ℓ (𝔇
2 𝑗 �̃�∗

ℓ,𝑖, 𝑝,𝑘 (𝑥
′
ℓ , 𝑡

′
ℓ)) |�̃�ℓ (0)

)
.

(4.392)

We can then invoke (4.219), and use again the estimates (4.144) and (4.145), and see that

𝑑
−2 𝑗−𝛼
ℓ

[
𝔇2 𝑗

bt

( (
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�ℓ + 𝑑2

ℓ𝜆
−2
ℓ �̃�ℓ

)]
𝛼,𝛼/2,base,�̃�𝑅 ,�̃�ℓ (0)

= 𝑜(1), (4.393)

where we have set

�̃�ℓ := 𝑒−𝑑
2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑝=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖, 𝑝,𝑘 , �̃�ℓ,𝑖, 𝑝,𝑘 ). (4.394)

First, we dispose of the case 𝑗 = 0. Again in this case from (4.268), we see that 𝑢∞ is a constant in
space-time, hence identically zero, and as in subcase B, we see that 𝜂∞ is time-independent (using the
argument in (4.364)). Then from (4.393), using also (4.157), we see that the quantity

𝑑−𝛼ℓ

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

)
�̃�ℓ (4.395)
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is becoming asymptotically independent of the base and time directions, and so from (4.389), we
conclude that

tr𝜔C𝑚 𝜂∞ = (const.), (4.396)

and since 𝜂∞ vanishes at (0, 0), we actually have tr𝜔C𝑚 𝜂∞ = 0. As in Subcase B, we can write
𝜂∞ = 𝑖𝜕𝜕𝑣∞, where 𝑣∞ ∈ 𝐶2+𝛼

loc (C𝑚) is time-independent and Δ𝜔C𝑚 𝑣∞ = 0, so 𝑣∞ is smooth and
|𝑖𝜕𝜕𝑣∞| = 𝑂 (|𝑧 |𝛼). The Liouville Theorem applied to each component of 𝑖𝜕𝜕𝑣∞ then implies that 𝜂∞
has constant coefficients; hence, it vanishes identically since its value at (0, 0) vanishes. This means
exactly that the RHS of (4.391) converges to zero, which gives us a contradiction when 𝑗 = 0.

In the remainder of this section, we thus assume that 𝑗 � 1. Given any 𝑝, 𝑞 � 0 with 𝑝 + 2𝑞 = 2 𝑗 + 2,
and given 𝑣1, . . . , 𝑣𝑝 tangent vectors to C𝑚, from (4.393), recalling (4.157) and (4.181), we see that the
quantity

𝑑
−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡

(
𝜕𝑡 − Δ

�̃�
♯
ℓ

) (
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ +

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖,𝑟 ,𝑘 , �̃�ℓ,𝑖,𝑟 ,𝑘 )

)
(4.397)

is asymptotically independent of the base and time directions. Recall then that from (4.193), we have

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

𝑑
−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 Δ �̃�

♯
ℓ

�̃�𝑡 ,𝑘 ( �̃�∗
ℓ,𝑖,𝑟 ,𝑘 , �̃�ℓ,𝑖,𝑟 ,𝑘 )

= 𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

tr
�̃�
♯
ℓ

(
𝑖𝜕𝜕 (ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘

)
ff
D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 + 𝑜(1)

= 𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

tr𝜀2
ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹

(
𝑖𝜕𝜕(ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘

)
ff
D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 + 𝑜(1)

= 𝜀−2
ℓ 𝑑

−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

�̃�ℓ,𝑖,𝑟 ,𝑘D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 + 𝑜(1),

(4.398)

where in the second equality, we could exchange tr
�̃�
♯
ℓ

(𝑖𝜕𝜕)ff with tr𝜀2
ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹

(𝑖𝜕𝜕)ff with only a 𝑜(1)

error since 𝑑
−2 𝑗−𝛼
ℓ ‖𝔇2 𝑗 �̃�∗

ℓ,𝑖, 𝑝,𝑘 ‖∞,�̃�𝑅 ,�̃�ℓ (0) � 𝐶𝜀2
ℓ by (4.170) and ‖𝜂†ℓ ‖∞,�̃�𝑅 ,�̃�ℓ (0) = 𝑜(1) by (4.200).

Similarly, from (4.186), we see that

𝑑
−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞+1
𝑡

(
𝑗∑

𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

�̃�𝑡 ,𝑘

(
�̃�∗
ℓ,𝑖,𝑟 ,𝑘 , �̃�ℓ,𝑖,𝑟 ,𝑘

))
= 𝑑

−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

(ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞+1
𝑡 �̃�∗

ℓ,𝑖,𝑟 ,𝑘 + 𝑜(1),

(4.399)

while (4.388) implies that

𝑑
−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 Δ �̃�

♯
ℓ

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
= 𝑑

−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 Δ𝜔C𝑚

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
+ 𝑜(1), (4.400)

and plugging (4.398), (4.399) and (4.400) into (4.397), we conclude that

𝑑
−2 𝑗−𝛼
ℓ

(
𝜕𝑡 − Δ𝜔C𝑚

)
D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
+ 𝑑−2 𝑗−𝛼

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

(
(ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞+1
𝑡 �̃�∗

ℓ,𝑖,𝑟 ,𝑘 − 𝜀−2
ℓ �̃�ℓ,𝑖,𝑟 ,𝑘D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘

)
(4.401)
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is asymptotically independent of the base and time directions. Observe that the first line in (4.401) is
a function pulled back from C𝑚, while the second line has fiberwise average zero. Thus, taking the
fiberwise average of (4.401), we see that

𝑑
−2 𝑗−𝛼
ℓ D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡

(
𝜕𝑡 − Δ𝜔C𝑚

) (
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
(4.402)

is approaching a (time-independent) constant locally uniformly on C𝑚 × (−∞, 0]. Recalling that
𝑑
−2 𝑗−𝛼
ℓ 𝜕𝑡

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
→ 𝑢∞ in 𝐶

2 𝑗+𝛽, 𝑗+𝛽/2
loc and 𝑑

−2 𝑗−𝛼
ℓ Δ𝜔C𝑚

(
𝑒−𝑑

2
ℓ𝜆

−2
ℓ 𝑡 �̃�∗ℓ

)
→ tr𝜔C𝑚 𝜂∞ in

𝐶
2 𝑗+𝛽, 𝑗+𝛽/2
loc , passing to the limit in (4.402) shows that 𝑢∞ − tr𝜔C𝑚 𝜂∞ is a parabolic polynomial on
C
𝑚 × (−∞, 0] of degree at most 2 𝑗 , and since by jet subtraction the parabolic 2 𝑗-jets of 𝑢∞ and 𝜂∞

vanish at (0, 0), we conclude that

𝑢∞ − tr𝜔C𝑚 𝜂∞ = 0, (4.403)

on C𝑚 × (−∞, 0]. Since 𝑗 � 1, we can differentiate (4.403) with respect to t, and use (4.356) to see that

𝜕𝑡𝑢∞ = trC𝑚 𝜕𝑡𝜂∞ = trC𝑚 𝑖𝜕𝜕𝑢∞ = ΔC𝑚𝑢∞, (4.404)

so 𝑢∞ solves the heat equation on (−∞, 0] × C𝑚, and |𝔇 𝜄𝑢∞| = 𝑂 (𝑟2 𝑗+𝛼− 𝜄) for 0 � 𝜄 � 2 𝑗 by (4.153).
By applying Liouville Theorem for ancient heat equation to𝔇2 𝑗𝑢∞, we see that 𝑢∞ must be a space-time
polynomial of degree at most 2 𝑗 , and hence, 𝑢∞ ≡ 0 since its parabolic 2 𝑗-jet at (0, 0) vanishes. Going
back to (4.356), it then follows that 𝜂∞ is time-independent, and it is clearly of the form 𝜂∞ = 𝑖𝜕𝜕𝑣∞ for
some time-independent function 𝑣∞ ∈ 𝐶

2 𝑗+2+𝛽
loc (C𝑚). From (4.403), we see that 𝑣∞ is harmonic. Since

|D2 𝑗𝜂∞| = 𝑂 (|𝑧 |𝛼), the Liouville Theorem in [20, Proposition 3.12] then shows that the coefficients of
𝜂∞ are polynomials of degree at most 2 𝑗 , and since these coefficients have vanishing 2 𝑗-jet at the origin,
this implies that 𝜂∞ vanishes identically. This kills the first two terms on the RHS of (4.392).

At this point, we return to (4.401), and subtracting its fiber average, we see that

𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

(
(ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞+1
𝑡 �̃�∗

ℓ,𝑖,𝑟 ,𝑘 − 𝜀−2
ℓ �̃�ℓ,𝑖,𝑟 ,𝑘D

𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘

)
(4.405)

is asymptotically independent of the base and time directions. Let us then define a function 𝑢ℓ on
�̃�𝑅𝑑−1

ℓ
by

𝑢ℓ (𝑧, �̃�, 𝑡) := 𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

(ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{�̃�}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 , (4.406)

so that (4.405) is equivalent to the statement that

(𝜕𝑡 − Δ 𝜀2
ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{·}×𝑌 )𝑢ℓ (4.407)

is asymptotically independent of the base and time directions.
Our next goal is to show that 𝑢ℓ itself is asymptotically constant in the base and time directions. Fix

any two points 𝑧, 𝑧′ ∈ C𝑚 and times 𝑡, 𝑡 ′ ∈ (−∞, 0] and consider

𝑣ℓ ( �̃�, 𝑡) = 𝑢ℓ (𝑧, �̃�, 𝑡 + 𝑡) − 𝑢ℓ (𝑧′, �̃�, 𝑡 ′ + 𝑡), (4.408)
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so that in 𝐿∞
loc (𝑌 ), we have(

(𝜕𝑡 − Δ 𝜀2
ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )𝑣ℓ

)
( �̃�, 0)

=
(
(𝜕𝑡 − Δ 𝜀2

ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )𝑢ℓ

)
(𝑧, �̃�, 𝑡) −

(
(𝜕𝑡 − Δ 𝜀2

ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )𝑢ℓ

)
(𝑧′, �̃�, 𝑡 ′)

=
(
Δ 𝜀2

ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 − Δ 𝜀2

ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧′}×𝑌

)
𝑢ℓ (𝑧′, �̃�, 𝑡 ′) + 𝑜(1),

(4.409)

and we can schematically estimate the difference of Laplacians by

𝜀−2
ℓ

(
𝑔ff
𝐹 (𝑑ℓ𝜆

−1
ℓ 𝑧, �̃�) − 𝑔ff

𝐹 (𝑑ℓ𝜆
−1
ℓ 𝑧′, �̃�)

)
(𝑖𝜕𝜕𝑢ℓ)ff (𝑧′, �̃�, 𝑡 ′), (4.410)

and since

(𝑖𝜕𝜕𝑢ℓ)ff (𝑧′, �̃�, 𝑡 ′) = 𝑑
−2 𝑗−𝛼
ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

(
𝑖𝜕𝜕 (ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧′}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘

)
ff
D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 , (4.411)

we can use (4.163) with 𝜄 = 2 𝑗 to estimate | (𝑖𝜕𝜕𝑢ℓ)ff | � 𝐶𝜀2
ℓ , and so (4.410) can be estimated by

𝐶
��𝑔ff
𝐹 (𝑑ℓ𝜆

−1
ℓ 𝑧, �̃�) − 𝑔ff

𝐹 (𝑑ℓ𝜆
−1
ℓ 𝑧′, �̃�)

�� � 𝐶𝑑ℓ𝜆−1
ℓ |𝑧 − 𝑧′| = 𝑜(1), (4.412)

so that (4.409) shows that

(𝜕𝑡 − Δ 𝜀2
ℓ
Θ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )𝑣ℓ = 𝑜(1), (4.413)

locally uniformly. So the functions 𝑣ℓ are approximate solutions of a fiberwise heat equation, with time
parameter 𝑡 ∈ (−∞, 0]. We then employ another energy argument on the given fiber {𝑧} × 𝑌 . First,
observe that (4.163) with 𝜄 = 2 𝑗 implies

|𝜀−2
ℓ 𝑣ℓ | � 𝐶. (4.414)

For notational convenience, we denote by 𝜔𝑌 := Θ∗
ℓΨ

∗
ℓ𝜔𝐹 |{𝑧 }×𝑌 and consider then the energy

𝐸ℓ (𝑡) = 𝜀−4
ℓ

∫
𝑌
𝑣2
ℓ 𝜔

𝑛
𝑌 , (4.415)

which satisfies 𝐸ℓ (𝑡) � 𝐶 for all 𝑡 � 0, and denote by

𝜎ℓ :=
���(𝜕𝑡 − Δ 𝜀2

ℓ
𝜔𝑌

)
𝑣ℓ

���
∞,�̃�2𝑅

, (4.416)

where 𝑅 > 0 is fixed so that (𝑧, 𝑡), (𝑧′, 𝑡 ′) ∈ 𝑄2𝑅. Thanks to (4.413), we have 𝜎ℓ → 0. We can then
compute, using the Poincaré inequality on (𝑌, 𝜔𝑌 ) (recall that 𝑣ℓ has fiberwise average zero),

𝑑

𝑑𝑡
𝐸ℓ = −2𝜀−6

ℓ

∫
𝑌
|∇𝑌 𝑣ℓ |2𝑔𝑌 𝜔

𝑛
𝑌 + 2𝜀−4

ℓ

∫
𝑌
𝑣ℓ

(
𝜕𝑡 − Δ 𝜀2

ℓ
𝜔𝑌

)
𝑣ℓ 𝜔

𝑛
𝑌

� −2𝐶−1𝜀−2
ℓ 𝐸ℓ (𝑡) + 2𝜎ℓ𝜀−4

ℓ

∫
𝑌
𝑣ℓ𝜔

𝑛
𝑌

� −2𝐶−1𝜀−2
ℓ 𝐸ℓ (𝑡) + 𝐶𝜎ℓ𝜀−2

ℓ 𝐸ℓ (𝑡)
1
2 ,

(4.417)
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and using the Young inequality 𝜎ℓ𝐸ℓ (𝑡)
1
2 � 𝐶−1𝐸ℓ (𝑡) + 𝐶𝜎2

ℓ , we can bound

𝑑

𝑑𝑡
𝐸ℓ � −𝐶−1𝜀−2

ℓ 𝐸ℓ + 𝐶𝜎2
ℓ 𝜀

−2
ℓ . (4.418)

We will compare 𝐸ℓ with the real-variable function 𝐹ℓ which solves the ODE

𝐹 ′
ℓ = −𝐶−1𝜀−2

ℓ 𝐹ℓ + 𝐶𝜎2
ℓ 𝜀

−2
ℓ , 𝐹 ′

ℓ (−𝑅
2) = 𝐴, (4.419)

which is given explicitly by

𝐹ℓ (𝑡) = 𝐴𝑒−𝐶
−1𝜀−2

ℓ (𝑅2+𝑡) + 𝐶2𝜎2
ℓ

(
1 − 𝑒−𝐶

−1 𝜀−2
ℓ (𝑅2+𝑡)

)
, (4.420)

and if we choose A large enough so that 𝐸ℓ (𝑡) � 𝐴 for all 𝑡 � 0 (which is possible, as shown above),
then we conclude that for all 𝑡 ∈ [−𝑅2, 0], we have

𝐸ℓ (𝑡) � 𝐹ℓ (𝑡) = 𝐴𝑒−𝐶
−1𝜀−2

ℓ (𝑅2+𝑡) + 𝐶2𝜎2
ℓ

(
1 − 𝑒−𝐶

−1𝜀−2
ℓ (𝑅2+𝑡)

)
, (4.421)

and hence in particular 𝐸ℓ (0) → 0 as ℓ → +∞. This means that the functions 𝜀−2
ℓ 𝑣ℓ (·, 0), which are

defined on Y and are uniformly bounded by (4.414), converge to 0 in 𝐿2 (𝑌, 𝜔𝑛
𝑌 ). Recalling the definitions

(4.406), (4.408), this means that the function of �̃� given by

𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧, �̃�) (D𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧, 𝑡)

− 𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧′}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧′, �̃�) (D𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧

′, 𝑡 ′)

(4.422)

converges to zero in 𝐿2 (𝑌, 𝜔𝑛
𝑌 ). However, we have

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧′}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧′, �̃�) = ((Δ𝜔𝐹 |{𝑑ℓ𝜆−1
ℓ
𝑧′}×𝑌

)−1𝐺ℓ,𝑖,𝑟 ,𝑘 ) (𝑑ℓ𝜆−1
ℓ 𝑧′, �̃�)

= ((Δ𝜔𝐹 |{𝑑ℓ𝜆−1
ℓ
𝑧}×𝑌

)−1𝐺ℓ,𝑖,𝑟 ,𝑘 ) (𝑑ℓ𝜆−1
ℓ 𝑧, �̃�) +𝑂 (𝑑ℓ𝜆−1

ℓ )

= ((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧, �̃�) +𝑂 (𝑑ℓ𝜆−1
ℓ ),

(4.423)

where in the second equality we used that since 𝐺ℓ,𝑖,𝑟 ,𝑘 is a smooth function on the total space with
fiberwise average zero, the function (Δ𝜔𝐹 |{·}×𝑌 )−1𝐺ℓ,𝑖,𝑟 ,𝑘 is also smooth on the total space (by standard
Schauder theory fiber-by-fiber, with continuous dependence on the base variables). Using (4.423)
together with the bound 𝑑

−2 𝑗−𝛼
ℓ 𝜀−2

ℓ |D𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 | � 𝐶, which comes from (4.163) with 𝜄 = 2 𝑗 , we

see that

𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧′}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧′, �̃�) (D𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧

′, 𝑡 ′)

= 𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 ) (𝑧, �̃�) (D𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧

′, 𝑡 ′) + 𝑜(1),

(4.424)
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so from (4.422), we see that

𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

𝑗∑
𝑖=1

𝑁𝑖,𝑘∑
𝑟=1

((ΔΘ∗
ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )

−1�̃�ℓ,𝑖,𝑟 ,𝑘 )(𝑧, �̃�)
(
(D𝑝

𝑣1 · · ·𝑣𝑝𝜕
𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 )(𝑧, 𝑡) − (D𝑝

𝑣1 · · ·𝑣𝑝𝜕
𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 )(𝑧

′, 𝑡 ′)
)

(4.425)

also converges to zero in 𝐿2 (𝑌, 𝜔𝑛
𝑌 ). Now, the functions {(ΔΘ∗

ℓ
Ψ∗
ℓ
𝜔𝐹 |{𝑧}×𝑌 )−1�̃�ℓ,𝑖,𝑟 ,𝑘 }𝑖,𝑟 are fiberwise

linearly independent (since so are {�̃�ℓ,𝑖,𝑟 ,𝑘 }𝑖,𝑟 ), and the function in (4.425) along the fiber {𝑧} × 𝑌
is expressed as a linear combination of these functions with coefficients (which are constants on Y)
given by

𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ

(
(D𝑝

𝑣1 · · ·𝑣𝑝𝜕
𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧, 𝑡) − (D𝑝

𝑣1 · · ·𝑣𝑝𝜕
𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 ) (𝑧

′, 𝑡 ′)
)
. (4.426)

Since the 𝐿2 norm of (4.425) is going to zero, these coefficients must be going to zero too, which means
that the functions

𝑑
−2 𝑗−𝛼
ℓ 𝜀−2

ℓ D
𝑝
𝑣1 · · ·𝑣𝑝𝜕

𝑞
𝑡 �̃�

∗
ℓ,𝑖,𝑟 ,𝑘 (4.427)

are approximately constant (in space and time) as ℓ → +∞. This kills the last term on the RHS of
(4.392) and gives the final contradiction, thus completing the proof of Subcase C and of Theorem 4.2.

5. Proof of the main theorem

In this final section, we give the proof of our main Theorem 1.3; namely, we prove Conjectures 1.1 and
1.2. The asymptotic expansion in Theorem 4.2 will play a crucial role.

5.1. Higher order estimates

To prove the higher order estimates in Conjecture 1.1 from the expansion in Theorem 4.2, we follow the
arguments in [21, Proof of Theorem A], but since our estimate (4.16) is weaker than the corresponding
[21, (4.12)], we will have to deal with some new difficulties. As explained in the Introduction, in this
section we work locally on the base (away from the image of the singular fibers), and the Kähler-Ricci
flow that we analyze thus lives on 𝐵 × 𝑌 × [0, +∞) (with a non-product complex structure) for some
Euclidean ball 𝐵 ⊂ C𝑚. For brevity, in this section, all norms and seminorms will be tacitly taken on
𝐵 ×𝑌 × [𝑡 − 1, 𝑡] (or 𝐵 × [𝑡 − 1, 𝑡] for objects that live on the base), without making this explicit in the
notation. The ball B and the interval [𝑡−1, 𝑡] will also be shrunk slightly every time we use interpolation.

Given an even integer 𝑘 � 2, we want to show that 𝜔•(𝑡) is uniformly bounded in 𝐶𝑘 (𝑔𝑋 ). Applying
Theorem 4.2 with 𝑗 := 𝑘

2 , up to shrinking B, we can write

𝜔•(𝑡) = 𝜔♮ (𝑡) + 𝛾0 (𝑡) + 𝛾1,𝑘 (𝑡) + · · · + 𝛾 𝑘
2 ,𝑘

(𝑡) + 𝜂 𝑘
2 ,𝑘

(𝑡), (5.1)

and in this decomposition, 𝜔♮ (𝑡) is clearly bounded in 𝐶𝑘 (𝑔𝑋 ), 𝛾0 (𝑡) has a similar bound by (4.12),
𝜂 𝑘

2 ,𝑘
(𝑡) is bounded in the shrinking 𝐶𝑘 norm by (4.9) (hence in the regular 𝐶𝑘 (𝑔𝑋 ) norm by

[21, Lemma 2.6]), so we are left with dealing with the terms 𝛾𝑖,𝑘 (𝑡), 1 � 𝑖 � 𝑘
2 . By definition and

using (3.1), we have

𝛾𝑖,𝑘 (𝑡) = 𝑖𝜕𝜕

𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡Φ 𝜄,𝑟 (𝐺𝑖, 𝑝,𝑘 ) � D 𝜄𝐴𝑖, 𝑝,𝑘 (𝑡), (5.2)
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and so, as in [21, (5.10)], for 0 � 𝑞 � 𝑘 ,

𝔇𝑞𝛾𝑖,𝑘 =
𝑁𝑖,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑞+1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

𝑒−𝑟𝑡 (D𝑞+1−𝑠𝐽) � D𝑖1Φ 𝜄,𝑟 (𝐺𝑖, 𝑝,𝑘 ) �𝔇𝑖2+ 𝜄𝐴𝑖, 𝑝,𝑘 , (5.3)

and using the fixed metric 𝑔𝑋 , we can estimate |D𝑖1Φ 𝜄,𝑟 (𝐺𝑖, 𝑝,𝑘 ) |𝑔𝑋 � 𝐶 and | (D𝑞+1−𝑠𝐽) |𝑔𝑋 � 𝐶, while
from (4.16), we see that |𝔇𝑖2+ 𝜄𝐴𝑖, 𝑝,𝑘 | = 𝑜(1) when 𝑖2 + 𝜄 � 𝑘 + 2 and from (4.17) that |𝔇𝑖2+ 𝜄𝐴𝑖, 𝑝,𝑘 | =
𝑜(𝑒 (𝑖2+ 𝜄−𝑘−2) 𝑡2 ) when 𝑘 + 2 < 𝑖2 + 𝜄 � 𝑘 + 2 + 2𝑘 , and so

|𝔇𝑞𝛾𝑖,𝑘 |𝑔𝑋 � 𝑜(1) + 𝑜(1)
∑

𝑖1+𝑖2�𝑞+2

2𝑘∑
𝜄=𝑘+3−𝑖2

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡𝑒 (𝑖2+ 𝜄−𝑘−2) 𝑡2

� 𝑜(1) + 𝑜(𝑒 (𝑞−𝑘)
𝑡
2 )

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 � 𝑜(1) + 𝑜(𝑒 (𝑞−𝑘)

𝑡
2 ) = 𝑜(1),

(5.4)

since 𝑖2 � 𝑞 + 2 and 𝑞 � 𝑘 . This completes the proof of Conjecture 1.1.

5.2. Ricci curvature bounds

Next, we prove Conjecture 1.2 – namely, the Ricci curvature bound for 𝜔•(𝑡) on compact subsets of
𝑋\ 𝑓 (𝑆), which in our setting translates to

sup
𝐵×𝑌

|Ric(𝜔•(𝑡)) |𝑔• (𝑡) � 𝐶. (5.5)

The argument is similar to [21, Proof of Theorem B], but there are some crucial differences coming
from the time evolution in the Monge-Ampère equation, and from the fact that the bounds in (4.16) are
worse than those in [21, (4.12)].

We will use the expansion (4.8) with 𝑗 = 1 and 𝑘 � 4 (arbitrary), and with 𝛼 close to 1, and our first
task is to improve the estimates (4.16), (4.17). These give us

|𝔇𝑖𝐴1, 𝑝,𝑘 | �
{
𝐶𝑒−(2+𝛼) (1− 𝑖

4+𝛼 ) 𝑡2 , 0 � 𝑖 � 4,
𝑜(𝑒−(4−𝑖) 𝑡2 ), 5 � 𝑖 � 4 + 2𝑘,

(5.6)

and we can interpolate between |𝐴1, 𝑝,𝑘 | � 𝑒−(2+𝛼)
𝑡
2 and [𝔇2𝐴1, 𝑝,𝑘 ]𝐶𝛼 � 𝐶𝑒−𝑡 from (4.18) and get

|𝔇𝑖𝐴1, 𝑝,𝑘 | � 𝐶𝑒−𝑡
(
𝑒−

𝛼
2 𝑡

)1− 𝑖
2+𝛼

, 0 � 𝑖 � 2, (5.7)

so in particular, we have | �𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−𝑡 ). The next claim is that

|𝛾1,𝑘 |𝑔𝑋 = 𝑜(𝑒−𝑡 ). (5.8)

Indeed, using the decomposition in (5.3),

|𝛾1,𝑘 |𝑔𝑋 � 𝐶
2∑

𝑖2=0

𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

2∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡 |D𝑖2+ 𝜄𝐴1, 𝑝,𝑘 |, (5.9)

and we bound the RHS of (5.9) by 𝑜(𝑒−𝑡 ) by considering the possible values of 𝑖2 + 𝜄 ∈ {0, . . . , 2𝑘 + 2}:
if 𝑖2+ 𝜄 = 0, 1, 2, then (5.7) in particular gives |D𝑖2+ 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−𝑡 ), which is acceptable. If 𝑖2+ 𝜄 = 3, 4,
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then necessarily 𝜄 � 1 and so 𝑟 � 1, while (5.6) in particular gives |D𝑖2+ 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(1) so the RHS of
(5.9) is again 𝑜(𝑒−𝑡 ). And if 𝑖2 + 𝜄 � 5, then we use (5.6) exactly as in (5.4) to bound the RHS of (5.9) by

𝑜(𝑒−𝑡 ) + 𝑜(1)
2∑

𝑖2=0

𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=5−𝑖2

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡𝑒 (𝑖2+ 𝜄−4) 𝑡2 � 𝑜(𝑒−𝑡 ) + 𝑜(𝑒−𝑡 )
2𝑘∑
𝜄=3

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 = 𝑜(𝑒−𝑡 ),

(5.10)

since 𝑖2 � 2, which concludes the proof of (5.8). Next, we want to show that

(𝛾1,𝑘 )ff =
𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝜕f𝜕f (Δ𝜔𝐹 |{·}×𝑌 )−1𝐺1, 𝑝,𝑘 + 𝑜(𝑒−2𝑡 ), (5.11)

where the 𝑜(𝑒−2𝑡 ) is in 𝐿∞
loc (𝑔𝑋 ). Indeed from (5.2), we can write

(𝛾1,𝑘 )ff =
𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡𝜕f𝜕fΦ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) � D 𝜄𝐴1, 𝑝,𝑘 , (5.12)

and we can estimate each term as follows. For 𝜄 � 4, we have |D 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−(4− 𝜄) 𝑡2 ) from (5.6),
and so

𝑒−𝑟𝑡 |𝜕f𝜕fΦ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) � D 𝜄𝐴1, 𝑝,𝑘 |𝑔𝑋 � 𝑜(1)𝑒−2𝑡𝑒−(𝑟−
𝜄
2 )𝑡 = 𝑜(𝑒−2𝑡 ), (5.13)

since 𝑟 � 𝜄
2 . For 𝜄 = 3, we have 𝑟 � 2 and |D 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(1) from (5.6), so the term is again 𝑜(𝑒−2𝑡 ).

For 𝜄 = 1, 2, we have 𝑟 � 1 and |D 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−𝑡 ) from (5.7), so the term is again 𝑜(𝑒−2𝑡 ). And for
𝜄 = 0, let us first look at the terms with 𝑟 � 1. For these, we have |𝐴1, 𝑝,𝑘 | = 𝑂 (𝑒−(2+𝛼) 𝑡2 ), and so when
multiplied by 𝑒−𝑟𝑡 , 𝑟 � 1, these terms are indeed 𝑜(𝑒−2𝑡 ). So we are only left with the terms where
𝜄 = 𝑟 = 0 which equal

𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝜕f𝜕f (Δ𝜔𝐹 |{·}×𝑌 )−1𝐺1, 𝑝,𝑘 , (5.14)

since Φ0,0(𝐺) = (Δ𝜔𝐹 |{·}×𝑌 )−1𝐺 by (3.2), thus proving (5.11). In particular, using the bound (5.6) in
(5.11) gives

| (𝛾1,𝑘 )ff |𝑔𝑋 � 𝐶𝑒−
2+𝛼

2 𝑡 , (5.15)

while tracing (5.11) fiberwise gives

tr𝜔𝐹 |{·}×𝑌 (𝛾1,𝑘 )ff =
𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝐺1, 𝑝,𝑘 + 𝑜(𝑒−2𝑡 ). (5.16)

Before we continue with the proof of (5.5), recall that from [12, p.110] (see also [39, Lemma 5.13])
we know that

sup
𝐵×𝑌

|𝜑(𝑡) − 𝜑(𝑡) | � 𝐶𝑒−𝑡 , (5.17)
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for all 𝑡 � 0. The argument in [43, Lemma 3.1 (iv)] then allows one to deduce from this that

sup
𝐵×𝑌

| �𝜑(𝑡) − �𝜑(𝑡) | � 𝐶𝑒−
𝑡
2 . (5.18)

As a consequence of our asymptotic expansion, we can now improve both of these:

Proposition 5.1. On 𝐵 × 𝑌 , we have

|𝜑(𝑡) − 𝜑(𝑡) | = 𝑜(𝑒−𝑡 ), | �𝜑(𝑡) − �𝜑(𝑡) | = 𝑜(𝑒−𝑡 ). (5.19)

Proof. Recall that by definition, we can write

𝜑 − 𝜑 = 𝜓1,𝑘 +
𝑁1,𝑘∑
𝑝=1

𝔊𝑡 ,𝑘 (𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ), (5.20)

and we want to bound the 𝐿∞ norm of the two terms on the RHS of (5.20) and their time derivatives.
For 𝜓1,𝑘 , from (4.9), we have

|𝑖𝜕𝜕𝜓1,𝑘 |𝑔 (𝑡) � 𝑒−(1+
𝛼
2 )𝑡 , (5.21)

so restricting this to a fiber {𝑧} × 𝑌 gives

|𝑖𝜕𝜕𝜓1,𝑘 |{𝑧 }×𝑌 |𝑔𝑌 � 𝑒−(2+
𝛼
2 )𝑡 , (5.22)

and since 𝜓1,𝑘 has fiberwise average zero, applying Moser iteration on {𝑧} ×𝑌 (with constant that does
not depend on 𝑧 ∈ 𝐵) gives

|𝜓1,𝑘 | � 𝐶𝑒−(2+
𝛼
2 )𝑡 . (5.23)

Arguing similarly for �𝜓, which by (4.9) satisfies (since 𝑘 � 4)

|𝑖𝜕𝜕 �𝜓1,𝑘 |𝑔 (𝑡) � 𝑒−
𝛼
2 𝑡 , (5.24)

we get

| �𝜓1,𝑘 | � 𝐶𝑒−(1+
𝛼
2 )𝑡 . (5.25)

As for the term 𝔊𝑡 ,𝑘 (𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ), using again (5.2), we can write it as

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡Φ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) � D 𝜄𝐴1, 𝑝,𝑘 , (5.26)

and using (5.6) and (5.7), we can argue similarly to the proof of (5.8) and bound

|𝔊𝑡 ,𝑘 (𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ) | � 𝐶
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡 |D 𝜄𝐴1, 𝑝,𝑘 |, (5.27)

by 𝑜(𝑒−𝑡 ) by considering the possible values of 𝜄 ∈ {0, . . . , 2𝑘}: if 𝜄 = 0, then (5.6) in particular gives
|𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−𝑡 ), which is acceptable. If 1 � 𝜄 � 4, then necessarily 𝑟 � 1, while (5.6) in particular
gives |D 𝜄𝐴1, 𝑝,𝑘 | = 𝑜(1) so the RHS of (5.27) is again 𝑜(𝑒−𝑡 ). And if 𝜄 � 5, then we use (5.6) to bound
the RHS of (5.27) by
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𝑜(𝑒−𝑡 ) + 𝑜(1)
𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=5

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡𝑒 ( 𝜄−4) 𝑡2 � 𝑜(𝑒−𝑡 ) + 𝑜(𝑒−2𝑡 )
2𝑘∑
𝜄=5

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 = 𝑜(𝑒−𝑡 ) + 𝑜(𝑒−2𝑡 ),

(5.28)

and so

𝔊𝑡 ,𝑘 (𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ) = 𝑜(𝑒−𝑡 ). (5.29)

Similarly,

𝔊𝑡 ,𝑘 ( �𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ) =
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡Φ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) � D 𝜄 �𝐴1, 𝑝,𝑘 , (5.30)

and we argue as above to show that this is 𝑜(𝑒−𝑡 ): if 𝜄 = 0, then (5.7) in particular gives | �𝐴1, 𝑝,𝑘 | = 𝑜(𝑒−𝑡 ),
which is acceptable. If 1 � 𝜄 � 2, then 𝑟 � 1, while (5.6) in particular gives |D 𝜄 �𝐴1, 𝑝,𝑘 | = 𝑜(1) so the
RHS of (5.30) is again 𝑜(𝑒−𝑡 ). And if 𝜄 � 3, then we use (5.6) to bound the RHS of (5.30) by

𝑜(𝑒−𝑡 ) + 𝑜(1)
𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=3

𝑘∑
𝑟= � 𝜄2 �

𝑒−𝑟𝑡𝑒 ( 𝜄−2) 𝑡2 � 𝑜(𝑒−𝑡 )
2𝑘∑
𝜄=3

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 = 𝑜(𝑒−𝑡 ), (5.31)

and so

𝔊𝑡 ,𝑘 ( �𝐴1, 𝑝,𝑘 , 𝐺1, 𝑝,𝑘 ) = 𝑜(𝑒−𝑡 ). (5.32)

Combining (5.20) with (5.23), (5.25), (5.29) and (5.32) we see that (5.19) holds. �

Remark 5.2. If we use the stronger bounds (5.55), (5.56) for derivatives of 𝐴1, 𝑝,𝑘 , which will be
established below, we can then repeat the proof of Proposition 5.1, and we get the better bounds

|𝜑(𝑡) − 𝜑(𝑡) | � 𝐶𝑒−2𝑡 , | �𝜑(𝑡) − �𝜑(𝑡) | � 𝐶𝑒−(1+
𝛾
2 )𝑡 , (5.33)

where 𝛾 = 𝛼
4+𝛼 > 0.

Now that (5.19) is established, we can use it to prove the next claim, which is the analog of [21, (5.26)]:

Proposition 5.3. We have

|𝐴1, 𝑝,𝑘 | � 𝐶𝑒−2𝑡 . (5.34)

Proof. First, observe that thanks to (4.9), we have

|𝜂1,𝑘 |𝑔 (𝑡) � 𝑒−(2+𝛼)
𝑡
2 , (5.35)

which implies that

|𝜂1,𝑘 |𝑔𝑋 = 𝑜(𝑒−𝑡 ), | (𝜂1,𝑘 )ff |𝑔𝑋 = 𝑜(𝑒−2𝑡 ), (5.36)

and combining this with (5.8) and (5.15), we get

|𝑒𝑡𝛾1,𝑘 + 𝑒𝑡𝜂1,𝑘 |𝑔𝑋 = 𝑜(1), | (𝑒𝑡𝛾1,𝑘 + 𝑒𝑡𝜂1,𝑘 )ff |𝑔𝑋 = 𝑂 (𝑒−𝛼
𝑡
2 ). (5.37)
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The Monge-Ampère equation (4.1) that describes the flow can be written as

𝑒𝜑 (𝑡)+ �𝜑 (𝑡)𝑒−𝑛𝑡
(
𝑚 + 𝑛
𝑛

)
𝜔𝑚

can ∧ 𝜔𝑛
𝐹 = (𝜔can + 𝑒−𝑡𝜔𝐹 + 𝑖𝜕𝜕𝜑(𝑡) + 𝛾1,𝑘 (𝑡) + 𝜂1,𝑘 (𝑡))𝑚+𝑛, (5.38)

and multiplying this by 𝑒𝑛𝑡

(𝑚+𝑛
𝑛 ) , expanding it out, and using that 𝑖𝜕𝜕𝜑(𝑡) is small in 𝐶2 by (4.12), as well

as (5.36), (5.37), we see that

𝑒𝜑+ �𝜑𝜔𝑚
can ∧ 𝜔𝑛

𝐹 = (𝜔can + 𝑖𝜕𝜕𝜑)𝑚 ∧ (𝜔𝐹 + 𝑒𝑡𝛾1,𝑘 + 𝑒𝑡𝜂1,𝑘 )𝑛ff
+ 𝑚

𝑛 + 1
𝑒−𝑡 (𝜔can + 𝑖𝜕𝜕𝜑)𝑚−1 ∧ (𝜔𝐹 + 𝑒𝑡𝛾1,𝑘 + 𝑒𝑡𝜂1,𝑘 )𝑛+1 +𝑂 (𝑒−2𝑡 )

= (𝜔can + 𝑖𝜕𝜕𝜑)𝑚 ∧ 𝜔𝑛
𝐹 + 𝑛(𝜔can + 𝑖𝜕𝜕𝜑)𝑚(𝜔𝐹 )𝑛−1

ff (𝑒𝑡𝛾1,𝑘 )ff

+
(
𝑛

2

)
(𝜔can + 𝑖𝜕𝜕𝜑)𝑚(𝜔𝐹 )𝑛−2

ff (𝑒𝑡𝛾1,𝑘 )2
ff + 𝑚

𝑛 + 1
𝑒−𝑡𝜔𝑚−1

can ∧ 𝜔𝑛+1
𝐹 + 𝑜(𝑒−𝑡 ),

(5.39)

where the error terms 𝑜(𝑒−𝑡 ) are in 𝐿∞
loc(𝑔𝑋 ). We used here that 𝛼 > 2

3 , so that | (𝑒𝑡𝛾1,𝑘 ) 𝑝ff | = 𝑜(𝑒−𝑡 ) for
𝑝 � 3 by (5.15). As in [21, (5.29)], we define a function S by

𝑚

𝑛 + 1
𝜔𝑚−1

can ∧ 𝜔𝑛+1
𝐹 = S𝜔𝑚

can ∧ 𝜔𝑛
𝐹 , (5.40)

so that dividing (5.39) by the volume form 𝜔𝑚
can ∧ 𝜔𝑛

𝐹 and multiplying by 𝑒−𝑡 gives

𝑒−𝑡𝑒𝜑+ �𝜑 =

(
𝑒−𝑡 + tr𝜔𝐹 |{·}×𝑌 (𝛾1,𝑘 )ff + 𝑒−𝑡

(𝑛
2
)
(𝜔𝐹 )𝑛−2

ff (𝑒𝑡𝛾1,𝑘 )2
ff

(𝜔𝐹 )𝑛ff
+ 𝑒−2𝑡S

)
(1 + 𝑜(1)base) + 𝑜(𝑒−2𝑡 ),

(5.41)

and subtracting from (5.41) its fiber average (the two terms with 𝛾1,𝑘 have fiberwise average zero since
𝛾1,𝑘 is 𝜕𝜕-exact) and using (5.16) gives

𝑒−𝑡 (𝑒𝜑+ �𝜑 − 𝑒𝜑+ �𝜑) = ���
𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝐺1, 𝑝,𝑘 + 𝑒−𝑡
(𝑛
2
)
(𝜔𝐹 )𝑛−2

ff (𝑒𝑡𝛾1,𝑘 )2
ff

(𝜔𝐹 )𝑛ff
+ 𝑒−2𝑡 (S − S)��� (1 + 𝑜(1)base) + 𝑜(𝑒−2𝑡 ).

(5.42)

To bound the LHS of (5.42), use the Taylor expansion of the exponential, together with Lemma 4.1 (ii)
and (5.19) to bound

𝑒−𝑡 |𝑒𝜑+ �𝜑 − 𝑒𝜑+ �𝜑 | � 𝐶𝑒−𝑡 |𝜑 + �𝜑 − 𝜑 + �𝜑| = 𝑜(𝑒−2𝑡 ), (5.43)

while on the RHS of (5.42), we can bound

𝑒−𝑡

�����
(𝑛
2
)
(𝜔𝐹 )𝑛−2

ff (𝑒𝑡𝛾1,𝑘 )2
ff

(𝜔𝐹 )𝑛ff

����� � 𝐶𝑒−𝑡 | (𝑒𝑡𝛾1,𝑘 )2
ff | � 𝐶𝑒

−(1+𝛼)𝑡 , (5.44)

by (5.15). Thus, going back to (5.42), we learn that

𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝐺1, 𝑝,𝑘 = 𝑂 (𝑒−(1+𝛼)𝑡 ), (5.45)
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and taking the fiberwise 𝐿2 inner product with each 𝐺1, 𝑝,𝑘 , we see that

𝐴1, 𝑝,𝑘 = 𝑂 (𝑒−(1+𝛼)𝑡 ), (5.46)

which improves over the bound 𝐴1, 𝑝,𝑘 = 𝑂 (𝑒−(1+ 𝛼
2 )𝑡 ) from (5.6). We can then go back to (5.11) and

see that

| (𝛾1,𝑘 )ff |𝑔𝑋 � 𝐶𝑒−(1+𝛼)𝑡 , (5.47)

which allows us to improve (5.37) to

| (𝑒𝑡𝛾1,𝑘 + 𝑒𝑡𝜂1,𝑘 )ff |𝑔𝑋 = 𝑂 (𝑒−𝛼𝑡 ), (5.48)

and so as long as we choose 𝛼 > 1
2 , we see that

| (𝑒𝑡𝛾1,𝑘 )2
ff |𝑔𝑋 = 𝑜(𝑒−𝑡 ), (5.49)

and so in (5.42), we have

𝑒−𝑡

�����
(𝑛
2
)
(𝜔𝐹 )𝑛−2

ff (𝑒𝑡𝛾1,𝑘 )2
ff

(𝜔𝐹 )𝑛ff

����� � 𝐶𝑒−𝑡 | (𝑒𝑡𝛾1,𝑘 )2
ff | = 𝑜(𝑒−2𝑡 ), (5.50)

and returning to (5.42) again, we see that

𝑁1,𝑘∑
𝑝=1

𝐴1, 𝑝,𝑘𝐺1, 𝑝,𝑘 = 𝑂 (𝑒−2𝑡 ), (5.51)

and again taking the fiberwise inner product with each 𝐺1, 𝑝,𝑘 concludes the proof of (5.34). �

Next, observe that from (4.9) we have in particular

|𝔇𝑖𝜂1,𝑘 |𝑔 (𝑡) � 𝐶𝑒
𝑖−2−𝛼

2 𝑡 , 0 � 𝑖 � 2. (5.52)

We want to show a similar estimate for 𝛾1,𝑘 which is only slightly worse:

Proposition 5.4. We have

|𝔇𝑖𝛾1,𝑘 |𝑔 (𝑡) � 𝐶𝑒
𝑖−2

2 𝑡 , 0 � 𝑖 � 2, (5.53)

and also

| �𝛾1,𝑘 |𝑔 (𝑡) � 𝐶𝑒−𝛾
𝑡
2 , (5.54)

where 𝛾 = 𝛼
4+𝛼 > 0.

Proof. The first step is to use (5.34) to improve the estimates in (5.6), by interpolating it with
[𝔇4𝐴1, 𝑝,𝑘 ]𝐶𝛼 � 𝐶 from (4.18) and get

|𝔇𝑖𝐴1, 𝑝,𝑘 | � 𝐶𝑒−(4−𝑖+𝑖
𝛼

4+𝛼 )
𝑡
2 �

{
𝐶𝑒−2𝑡 , 𝑖 = 0,
𝐶𝑒−

4−𝑖+𝛾
2 𝑡 , 1 � 𝑖 � 4,

(5.55)

https://doi.org/10.1017/fmp.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10


Forum of Mathematics, Pi 95

where 𝛾 = 𝛼
4+𝛼 > 0. As for higher order derivatives of 𝐴1, 𝑝,𝑘 , given 1 � 𝜄 � 2𝑘 , we interpolate between

|𝔇4𝐴1, 𝑝,𝑘 | � 𝐶𝑒−
𝛾
2 𝑡 from (5.55) and [𝔇4+ 𝜄𝐴1, 𝑝,𝑘 ]𝐶𝛼 � 𝐶𝑒

𝜄
2 𝑡 from (4.18) and letting 𝑖 = 4 + 𝜄, we get

|𝔇𝑖𝐴1, 𝑝,𝑘 | � 𝐶𝑒−
4−𝑖+𝛾

2 𝑡 , 5 � 𝑖 � 4 + 2𝑘. (5.56)

Finally, using (5.55) and (5.56), we can bound |𝔇𝑖𝛾1,𝑘 |𝑔 (𝑡) , 0 � 𝑖 � 2, by going back to (5.3) and
bounding

|𝔇𝑖𝛾1,𝑘 |𝑔 (𝑡) �
𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑖+1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

𝑒−𝑟𝑡 | (D𝑖+1−𝑠𝐽) |𝑔 (𝑡) |D𝑖1Φ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) |𝑔 (𝑡) |𝔇𝑖2+ 𝜄𝐴1, 𝑝,𝑘 |𝑔 (𝑡) ,

(5.57)

and using also |D𝑖1Φ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) |𝑔 (𝑡) � 𝐶𝑒𝑖1
𝑡
2 , |D 𝜄𝐽 |𝑔 (𝑡) � 𝐶𝑒 𝜄

𝑡
2 , we get

|𝔇𝑖𝛾1,𝑘 |𝑔 (𝑡) � 𝐶
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑖+1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

𝑒−𝑟𝑡𝑒 (𝑖1+𝑖2+𝑖+1−𝑠+ 𝜄−4) 𝑡2 � 𝐶𝑒 (𝑖−2) 𝑡2
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 � 𝐶𝑒 (𝑖−2) 𝑡2 ,

(5.58)

for 0 � 𝑖 � 2, which proves (5.53). As for (5.54), using (5.3) again, we can bound

| �𝛾1,𝑘 |𝑔 (𝑡) �
𝑁1,𝑘∑
𝑝=1

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

𝑒−𝑟𝑡 | (D1−𝑠𝐽) |𝑔 (𝑡) |D𝑖1Φ 𝜄,𝑟 (𝐺1, 𝑝,𝑘 ) |𝑔 (𝑡) |𝔇𝑖2+ 𝜄 �𝐴1, 𝑝,𝑘 |𝑔 (𝑡)

� 𝐶
2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

1∑
𝑠=0

∑
𝑖1+𝑖2=𝑠+1

𝑒−𝑟𝑡𝑒 (𝑖1+𝑖2+1−𝑠+ 𝜄−2−𝛾) 𝑡2 � 𝐶𝑒−𝛾
𝑡
2

2𝑘∑
𝜄=0

𝑘∑
𝑟= � 𝜄2 �

𝑒−(𝑟−
𝜄
2 )𝑡 � 𝐶𝑒−𝛾

𝑡
2 .

(5.59)

�

After these preparations, we can finally give the proof of the Ricci curvature bound (5.5). For this,
we take 𝑖𝜕𝜕 log of the Monge-Ampère equation (4.1) and get

Ric(𝜔•(𝑡)) = −𝑖𝜕𝜕 log det 𝑔•(𝑡)
= −𝑖𝜕𝜕 log(𝜔𝑚

can ∧ 𝜔𝑛
𝐹 ) − 𝑖𝜕𝜕 (𝜑(𝑡) + �𝜑(𝑡))

= −𝜔can − 𝑖𝜕𝜕 (𝜑(𝑡) + �𝜑(𝑡))
= −𝜔•(𝑡) + 𝑒−𝑡𝜔𝐹 − 𝑖𝜕𝜕 �𝜑(𝑡),

(5.60)

where we used the known relation−𝑖𝜕𝜕 log(𝜔𝑚
can∧𝜔𝑛

𝐹 ) = −𝜔can (see, for example, [39, Proposition 5.9]).
Since 𝜔•(𝑡) is uniformly equivalent to 𝜔♮ (𝑡) (by Lemma 4.1 (i)), it suffices to bound |Ric(𝜔•(𝑡)) |𝑔♮ (𝑡)
on compact subsets of 𝑋\𝑆. We can then work on 𝐵 × 𝑌 as before, where we may assume that we have
the expansion (4.8) with 𝑗 = 1 and 𝑘 � 4,

𝜔•(𝑡) = 𝜔♮ (𝑡) + 𝛾0 (𝑡) + 𝛾1,𝑘 (𝑡) + 𝜂1,𝑘 (𝑡). (5.61)

Using (4.12), (5.52) and (5.53), we thus see that

|𝜔•(𝑡) − 𝜔♮ (𝑡) |𝑔♮ (𝑡) = 𝑜(1). (5.62)
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Taking a time derivative of (5.61), we obtain

𝑖𝜕𝜕 �𝜑 = 𝑖𝜕𝜕 �𝜑 + �𝛾1,𝑘 + �𝜂1,𝑘 , (5.63)

and using (4.12), (5.52), (5.54), we see that

|𝑖𝜕𝜕 �𝜑|𝑔♮ (𝑡) = 𝑜(1). (5.64)

Thus, going back to (5.60), we can write

Ric(𝜔•(𝑡)) = −𝜔•(𝑡) + 𝑒−𝑡𝜔𝐹 − 𝑖𝜕𝜕 �𝜑(𝑡)

= −𝜔can +
(
−𝜔•(𝑡) + 𝜔♮ (𝑡) − 𝑖𝜕𝜕 �𝜑(𝑡)

)
,

(5.65)

where thanks to (5.62) and (5.64), we have���−𝜔•(𝑡) + 𝜔♮ (𝑡) − 𝑖𝜕𝜕 �𝜑(𝑡)
���
𝑔♮ (𝑡)

= 𝑜(1), (5.66)

and since we clearly have |𝜔can |𝑔♮ (𝑡) � 𝐶, the Ricci bound |Ric(𝜔•(𝑡)) |𝑔♮ (𝑡) � 𝐶 follows.
Observe that (5.65) and (5.66) give us very detailed information about the Ricci curvature of 𝜔•(𝑡)

(on compact subsets of 𝑋\𝑆), showing that it is asymptotic to −𝜔can in a strong sense.

Remark 5.5. Since 𝜔can is pulled back from the base, and since 𝜔•(𝑡) → 𝜔can locally uniformly (from
Lemma 4.1 (i), (iii)), it follows that

tr𝜔• (𝑡) 𝜔can → tr𝜔can 𝜔can = 𝑚, (5.67)

locally uniformly on 𝑋\𝑆. Thus, taking the trace of (5.65) with respect to 𝜔•(𝑡), we see that

𝑅(𝜔•(𝑡)) + 𝑚 → 0, (5.68)

in 𝐶0
loc (𝑋\𝑆), which recovers the main theorem of [22].

Remark 5.6. Continuing the above arguments along the lines of [21, (5.37)–(5.86)], one can also
identify the first nontrivial term in the expansion (4.8) of 𝜔•(𝑡), whose shape is identical to the one in
the elliptic setting; see [21, Theorem B]. For the sake of brevity, we leave the straightforward proof to
the interested reader.
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