Canad. Math. Bull. Vol. 62 (3), 2019 pp. 479-489
http://dx.doi.org/10.4153/S0008439518000097
© Canadian Mathematical Society 2018

The Quotient Problem for Entire Functions
Ji Guo

Abstract. Let {F(n)},eny and {G(n)},en be linear recurrence sequences. It is a well-known
Diophantine problem to determine the finiteness of the set N of natural numbers such that their ratio
F(n)/G(n) is an integer. In this paper we study an analogue of such a divisibility problem in the com-
plex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire
functions) for two sequences F(n) = ag + aif" +--- + a;f]' and G(n) =bo +big +---+bmgh,
where the f; and g; are nonconstant entire functions and the a; and b; are non-zero constants except
that a¢ can be zero. We will show that the set )N of natural numbers such that F(n)/G(n) is an entire
function is finite under the assumption that f,--- fl” g+~ g is not constant for any non-trivial
index set (i1, ..., [ jis...» jm) € ZH,

Introduction

A sequence of complex numbers {G(n)},cy is called a linear recurrence if there
exist complex numbers ¢y, ..., cx_; (k > 1) such that G(n + k) = ¢¢G(n) +--- +
ck-1G(n + k —1) for all n € N. This is equivalent to a unique expression

G(n) =) gi(n)al, forallneN,
i=1

with nonzero polynomials g; € C[X] and distinct nonzero «; € C*. The recurrence is
called simple when all the g;(n) are constant. The “Hadamard-quotient theorem", a
conjecture of Pisot, was solved by van der Poorten. (See [7,9] for a detailed argument
and see [2,12] for an overview of the existing improvements.) We now state a simple
version of the theorem: if F(n) and G(n) are linear recurrences such that their ratio
F(n)/G(n) is an integer for all large n € N, then F(n)/G(n) is itself a linear recurrence.
In particular, it implies that: given integers a,b > 1, if a” — 1 divides b" — 1 for all
large positive integers n, then b is a power of a. The following recent result can be
viewed as an analogue in the complex situation, while a non-Archimedean analogue
was established in [6].

Theorem 1.1 ([4]) Let f and g be entire functions on C. Then Ty(r) x Ty(r), and
there exists an infinite set N of positive integers such that g" —1|f" —1 for eachn e N
if and only if f = & g%, where € is a positive integer and & is a d-th root of unity with
d=gcd{n:n>2andneN}.

Here, Tf(r) denotes the Nevanlinna characteristic function (see Section 2). The
notation Ty(r) < Ty(r) means that there exist positive numbers a,b such that
aTy(r) < Tg(r) < bTy(r) for r sufficiently large.

Received by the editors May 8, 2018; revised October 8, 2018.

Published online on Cambridge Core April 17, 2019.

AMS subject classification: 30D30, 32H30, 11J97.

Keywords: quotient problem, entire functions, second main theorem, linear recurrence.

https://doi.org/10.4153/50008439518000097 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000097

480 J. Guo

Our purpose is to show a multi-variable version of the above theorem as follows.

Theorem 1.2 Let I,m > 1 be two positive integers. Let fi,..., fand &,...,gm be
nonconstant entire functions such that

i=L..,l 7 j=lL..,

Let
F(n)=ao+afi"+--+aif’ and G(n)=by+big + - +bmgn

where ag € Cand ay,...,a;,by,..., b, € C*.

(i) If the ratio F(n)/G(n) is an entire function for infinitely many n € Z*, or
(ii) fi,...,frand g1, ..., gm are all units, i.e., entire functions without zero, and if the
ratio F(1)/G(1) is an entire function,

then f]'--- li’gfl...gf,j” € C for some (it ..., i1 jise-sjm) # (0,...,0) € ZI*™,

Remark  This growth condition is essential as, for part (ii), there are examples sat-
isfying g —1|f — 1, such as g(z) = exp(27v/~1z) and f(z) = exp(27n\/~1p(z)), where
p(z) is a polynomial of degree at least 2 with coefficients in Z, while lim, ... Tf(r)/
Ty (r) = oo.

g

One can also view this as a complex analogue of the Hadamard quotient theorem.
Indeed, our proof is inspired by the article [2], where Corvaja and Zannier proved a
stronger version of the Hadamard quotient theorem with a sophisticated application
of Schmidt’s subspace theorem. However, their methods applied to the complex case
via Vojtas dictionary of Diophantine geometry and Nevanlinna theory ([11] or [8])
can only cover the case where the f; and g; are units, i.e., they are entire functions
with no zeros. Moreover, a stronger statement, with the aid of Borel’s lemma, can be
formulated in this situation as the second part of Theorem 1.2. To deal with the more
general situation; i.e., allowing the entire functions f; and g; having zeros, we need to
use a general version of the Navanlinna second main theorem (see Theorem 2.5) with
a ramification term to derive an estimate with truncated counting function. This part
of the argument only works for the complex case, since the corresponding result in the
number field situation is a special case of the yet to be proven Vojta’s conjecture ([11]).

2 Preliminaries

Now let us recall some notation, definitions, and basic results in Nevanlinna theory.
Refer to [5] or [8] for details.
Let f be a meromorphic function, and let z € C be a complex number. Denote

vo(f) = ordo(f),  vi(f) = max{0,v:(f)}, v (f):=-min{0,v-(f)}.

Let ny( o0, r) denote the number of poles of f in {z : |z| < r}, counting multiplicity.
The counting function of f at co is defined by
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r ) — ,0
Nf(oo,r)::f0 ny (oo )tnf(oo )dt+nf(oo,0)logr

= 3 va()log|Z| + g (f)logr.

0<|z|<r

Then the counting function N¢(a, r) for a € C is defined as

Ny(a,r) = Nyj(s-a) (00, 7).
The proximity function m (oo, r) is defined by

R TNLL
my(oo,r) = [ log" |f(re)|
where log” x = max{0,logx} for x > 0. For any a € C, the proximity function
my(a,r) is defined by
mpg(a,r) = my(s_qy(o0,7).
The characteristic function is defined by
Ty(r) := mg(oo,r) + Ny(oo,r).

It satisfies the inequalities Tfg(r) < Ty(r) + Ty(r) + O(1) and Ty, o(r) < T(r) +
T,(r) + O(1) for any entire functions f and g. It also satisfies the First Main Theorem
as follows.

Theorem 2.1 Let f be a non-constant meromorphic function on C. Then for every
a € C and for any positive real number r,

mg(a,r) + Ny(a,r) = Ts(r) + O(1),
where O(1) is independent of r.

The above theorem can be deduced from the following version of Jensen’s formula.

Theorem 2.2  Let f be a meromorphic function on {z : |z| < r} that is not the zero
function. Then

2 i0 do
fo log|f(re ”E = Ng(r,0) = Ng(r, 00) +log|eyl,
where cy is the leading coefficient of f expanded as Laurent seriesinz, i.e., f = cpz™ +---
with cg # 0.

For aholomorphic map f : C - P"(C), we take a reduced form of f = (fp, ..., f);
ie, fo,..., fy are entire functions on C without common zeros. The Nevanlinna—
Cartan characteristic function T¢(r) is defined by

2 on, dO
Ti(r) = [ log€(re®)| T,

where ||f(z)| = max{|fy(2)|...,|fu(2)|}. This definition is independent, up to an
additive constant, of the choice of the reduced representation of f. From the definition
of the characteristic functions, we can derive the following proposition.
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Proposition 2.3 ([8, Theorem A3.1.2]) Letf = (fo,....fn) : C = P*"(C) bea
linearly non-degenerate holomorphic curve (i.e., the image of f is not contained in any
proper linear subspaces) of a reduced form. Then

Ty/(1) + 0(1) € Te(r) < 3. Ty (1) + O(1).
j=0

Let H be a hyperplane in P*(C)(n > 0) and let agXp + --- + a,X, be a linear
form defining it. Let P = [xg : -+ : x,,] € P"(C) \ H be a point. The Weil function
A : P"(C) N\ H - Ris defined as

An(P) = -1 |agxo + -+ + anxy|
H(P) = —

max{|xo|, ... |xn|}

This definition depends on ay, .. ., a,, but only up to an additive constant and is in-
dependent of the choice of homogeneous coordinates for P. The proximity function
of f with respect to H is defined by

me(H,r) = f f(re’e)

Letn¢(H, ) (resp. an) (H,r)) be the number of zeros of ag fo + - - - + a, f, in the disk
|z] < r, counting multiplicity (resp. ignoring multiplicity blgger than Q € N). The
integrated counting function with respect to H is defined by

Ne(H, ) = [Or ne(H, t) —t n¢(H,0)

dt+n¢(H,0)logr,

and the Q-truncated counting function with respect to H is defined by

N(Q)(H r) = [ an)(H t) -

The following general second main theorem with ramification term is due to Vojta
([10, Theorem 1]).

(Q)
H,0
n (H.0) . n{¥ (H,0)

logr.
; ogr

Theorem 2.4 Letf : C — P"(C) be a holomorphic curve whose image is not
contained in any proper subspaces and let (fy, ..., f,) be a reduced form of f. Let
H,,...,H, be arbitrary hyperplanes in P"(C). Denote by W(f) the Wronskian of
fo>- s fu. Then for any € > 0, we have

f2 max ) )LHk(f(re’o)) — + Ny (£)(0,7) Sexc (n+1+&)Te(r),

0 K kex
where the maximum is taken over all subsets K of {1, ..., q} such that Hy (k € K) are in
general position and <.y means the estimate holds except for r in a set of finite Lebesgue
measure.

We also need the following inequality with truncated counting functions.
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Lemma 2.5 ([8, Lemma A3.2.1]) Letf:C — P"(C) be a holomorphic curve whose
image is not contained in any proper subspaces and let (fo, ..., f,) be a reduced form
off. Let Hy, ..., H, be the hyperplanes in P" in general position. Then

q q
S Ne(Hjur) = Nyey (0,7) < SN (Hj, ).
j:] ]:1

Finally, we recall the following results of Green [3] (or see [5, Chapter VII, Theo-
rem 4.1]) and Borel [1] (or see [5, Chapter VII, Theorem 1.1]).

Lemma 2.6 Let foy, ..., f. be entire functions with no common zeros satisfying

S g
Suppose none of the f; is 0. Define an equivalence relation: i ~ j iff fi/ f; is constant. If
k > n?, then for each equivalence class S, we have

R

ieS
Lemma 2.7 Let fo, ..., fu be units satisfying

fo+:+ fu=0.

Define an equivalence relation: i~ j iff fi/f; is constant. Then for each equivalence
class S, we have
> fi=

ieS
3 Proof of the Main Theorem

Our proof is based on the method used to show [2, Proposition 2.1]. As mentioned in
the introduction, we need extra work in order to cover the non-units case.

Proof of Theorem1.2 Assumethatfy,..., f;, £, ..., gm are entire functions such that
fir. fl”g{' - ]"' is not constant for any non-trivial index set (i1, ..., if, ji,- - -» jm) €
ZH™ . Suppose that

F(n) _ ag+aif" +---+arfl

G(n)  bo+bigl+--+bugh

q(n) =

is an entire function for infinitely many n. Since

max Ty(r) 2 max Ty, (1),

there exist two positive constants a, b such that

a max T, ()>mafo( )>bmaxT (r).

1<j<m

By the pigeonhole principle, there exists a subset R of R, of infinite Lebesgue mea-
sure, such that maxicjcp Tg;(r) = Ty, (r) for r € R and for some k € {1,...,m}. By
rearranging the indices, we can assume that k = 1. Thus,

< i =
Ty (r) < max Tr(r)<a 1121'2)14(1 Ty, (r) = aTg(r)
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for1< i <[ andr e R. Without loss of generality, we can assume that a > 1. Then for
r € R,

(3.1) Ts(r) <aTy(r),1<i<I, and Ty (r) < aTy (r), 1< j< m.
Fix two positive integers s, t that will be determined later. Let
Gi(n) =G(n) - big.
Then

62 Graln = (S (2)otnHCog)) + oy atn.

k=0

We will use the following notation throughout the proof. Denote
C:= (Cz, ey Cm) € (Zzo)m_l and d:= (dl, ey dm) € (Zzo)m.

Let|c|:=c+---+cpyand |d| = d; +--- + d,,. We use the graded lexicographic order to
arrange the index sets ¢ € (Z59)™ ' and d € (Zxo)™; i.e., ¢; > ¢; ifand onlyif [¢;| > |¢;]

or |¢;| = |¢j| and the left-most nonzero entry of ¢; — ¢; is positive. Let g;--- gi‘" be
abbreviated to a/(n)¢ and g --- g4 to B(n)4. For each ¢; with |¢;| < ¢, we define

G g (G0 - T 600 b)) )

k=0

Note that the number of such ¢, is
(m -1+t )
M= .
m-—1
Observe that every ¢, is a linear combination of a(n)°q(n) where || < ¢t + s and of

the forms ﬁ(n)dfi” with |d| < s+ tand 0 < i < I (letting fy = 1). Thus the number of
such forms a(n)q(n) is
Ny = (m—1+t+s)'

m-—1
Suppose that the number of d with |[d| < t + s — 1 is N,. Denote N := Nj + (I + 1)N,.
Define x;(n) = a(n)<q(n) for i = 1,...,N; and xn,+in,+j(n) = f/'B(n)% for
i=0,...,01,and j=1,..., N,. Since G(n) has a non-zero constant term, the graded
lexicographic order imposed on d implies that d; = (0,...,0) € Z". Then the x;(n)
can be expressed as

(3.4) x(n):=(xi(n),...,xn(n))
= (a(m)q(n), ..., a(n)™q(n),1, B(n)", ..., B(n) ™,
FS AR, S () ).

We note that x(#) is a holomorphic map from C to PN~ and (x;(n),...,xyx(n)) is
areduced form, since x;(n), ..., xy(n) are entire functions and xy,,1(n) = 1. More-
over, we claim that this map is not contained in any proper linear subspace if n is
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sufficiently large. If the claim does not hold for a large enough #, there exist constants
Ui, ... UNy» Yo,15 V0,2 - - -» VI,N, in C that are not all zero such that

Zu a(n)q(n) + Z Zv,,]/)’(n)dffl

i=0 j=1
and hence
Ny
(3.5) Yuia(n)i(ao+arfi' +---+aif]')
i=1
I N, .
(2w B £7) (bo + big] + -+ bughh) = 0.
i=0 j=1
If vo1,..., v N, are all zero, then by Lemma 2.6, for n > (I + 1)2N7, there exist two
distinct terms f*a(#n)% and fa(n)" such that their quotient
fi”ﬁ(”)cj :f."f;noc(l’l)cj_cj’
fra(me T
is a constant, which contradicts the assumption that f"--- l” g{l gl is not con-

stant for any non-trivial index set (i1,..., i1, ji,.. > jm) € Z!*™  Therefore, the set
{d : vj # 0for some 0 < i < [} is non-empty and it contains a maximal ele-
ment with respect to the graded lexicographic order, denoted by d. Then v, # 0
for some 0 < i < I. Expanding (3.5), we find the coefficient offi”g(n)dkgl" isv;r #0.
By Lemma 2.6 again, there exists another term with nonzero coefficient in (3.5), say

firB(n)% g% or fiia(n), such that

fiB(n) gt o fiB(n)%gr

fuB(n)d g, fira(n)ew
is a constant for n > n; = (I +1)2(N; + Ny(m +1))%. However, the first quotient
is not constant, since the graded lexicographic order associated with the index set of
B(n)% gl is bigger than the one with (1) g}; the second quotient is not constant
either, since a(n)¥ is a product of powers of g5, ..., g-

We will now construct a set of hyperplanes in order to apply Theorem 2.4. We first
let

H,-::{X,-_1:0} forizl,...,N

be the coordinate hyperplanes in PV~!, Next we observe that, as G;(n) = by + b, g% +
bsgl + -+ b g, with by # 0, the graded lexicographic order imposed on the ¢ and
the choice of the x;(n) give the following expression of ¢, for1 < i < M:

(36) Pe; = bf)xi(n) + Ai,i+1xi+1(n) + -0+ A,»,NxN(n)
for some Aj ,...,Ap.n € C. Then we let

(37) Hy,i: bi)Xi—l + A,"H_IX,' +oee+ Ai,NXN—l =0, fori= L,...,.M

https://doi.org/10.4153/50008439518000097 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439518000097

486 J. Guo

be hyperplanes according to the expression (3.6) of ¢, It is clear that the hyperplanes
Hpti1s ... » Hyyar in PN7!are in general position. In addition, (3.2) and (3.3) implies
that

(3.8) e, = (=bigr' ) q(m)a(n)® = (=b1)*xi(n)g"

fori=1,..., M.

Now we can apply Theorem 2.4, the general second main theorem, to the linearly
non-degenerate map x(n) with the hyperplanes Hy,...,Hnsym. Then for any € > 0,

(3.9) [02 m]axz;)LH (x(n)(re\r9)) + Nw(0,7) Sexc (N + &) Ty (1),
]E

where J runs over the subsets of {1,..., N + M} such that the hyperplanes H;(j € J)
are in general position and W is the Wronskian of the reduced form of x(n) in (3.4).

We now proceed to derive a lower bound for the left-hand side of (3.9). For any
meromorphic function &, denote

180 = |E(reY ™).

For the holomorphic map x(#) and the hyperplanes Hy, . . . , Hy M, we claim that the
following inequality holds:

N

V=160 -
(3.10) m;wx;lm-(x(n)(re )) = Mlog" F |r9 * s

+ Nlogx(n)| e +O(1),

where ] runs over the subsets of {1,..., N + M} such that the hyperplanes H;(j € J)
are in general position and

[x(r)[r6 := max{|xi(n)l0}.
1<i<N

For 6 € S} := {0 : |g|,.¢ > 1}, we consider

;AH,.(xwxre”)) Zlog ()| + Nlog [x(1)]].6-

Since Hj, ..., Hy are in general position and log" (1/|g1|,,¢) = 0 for 6 € S/, it implies
(3.10). For 8 € S, := {6 : |g|,.9 < 1}, we consider

(3.11) iAHM+i (x(n)(re¥™1%))

HX(n)Hre Z gIIX(n)Hre

|§0c,|r0 i=M+ |x (m)lr6
A |x (n)lr,0
=2 + ) log ———— + Nlog [x(n)|,.
2 pel g, <n>|r,e
N

Mlog" W + 2, log n )|r + Nlog|x(n) | + O(1),

i=1
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where the last equality follows from (3.8). Since the hyperplanes Hys41, . . ., Hy+m are
in general position, (3.11) implies the inequality (3.10) as well. Integrating (3.10) over
d0 from 0 to 27, we derive from Theorem 2.2 and the definition of the proximity and
characteristic functions that

2
(3.12) fo m]axZ)tHj(x(n))g

jel

N
> Mmgfn(O, T) - Zin(") (0, 7’) + NTX(,,)(T’) + O(l)
i=1
N
= MTgon(r) = MNgen (0,7) = 3" Ny, () (0,7) + NTy(y (r) + O(1)
i=1

N
= MTgin(l’) - ZNx(n)(HMH)r) + NTX(,,)(T) + O(l),

i=1

where the second equation follows by Theorem 2.1, and the last one is due to the
identification

Ngf" (0> l’) + in(n)(0> l’) = Nx;(n)gf" (0> r) = Nx(n)(HN+i) T)
by (3.6), (3.7), and (3.8) for i = 1,..., M. We now use Lemma 2.5 to obtain the fol-
lowing inequality:
N N (N-1)
(3.13) > Ny (Hysirt) = Nw(0,7) + 0(1) < Ny (Hasin1).
i=1 i=1
Putting together (3.9), (3.12), and (3.13), we conclude that

N
(3.14) MTgon (1) = YNV (Hatis 1) Sexe €Ty (r) + O(1).
i=1

Since the inequality holds except for r € R* in a set of finite Lebesgue measure, we
can assume that it holds for all r € R by shrinking R. By the property of characteristic
function, it is easy to obtain

Ty,(ny (1) S a(s+t) Tgn(r) + Ty(uy(r) for1<i< Ny,
Ty,(ny(r) < a(s+t+1)Tgn(r) for Ny+1<i<N.

Then by Proposition 2.3, (3.1), and (3.4), for r € R, we have

N
(3-15) Tx(n)(r) < Z ij(n)(r)
j=1

< N(S +1f+ l)aTg{«(r) + NI(TF(n) + TG(n)) + O(l)
SN(s+t+1)aTe(r) + Nia(l+m)Ten(r) + O(1)
=a(N(s+t+1)+ Ny (I +m))Ten(r) + O(1).
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On the other hand, for r € R, we have

N
(316) YN (Hreivr)
i=1
1 m
<N(N - 1)( SN (0,7) + 3N, (0, r)) + NiNy(y(0,7) + O(1)
i=1 j=1

1 m
NN =D T3 (1) + ) T, (1)) + NiNeuy (0,7) + O(1)
i=1 j=1

< N(N =1)a(l +m)Tg, (r) + Ny Tp(ny (r) + O(1)
N(N-1)(I+m)a
< n Tg

f(r) + Nl(Tfln(r) et Tfln(r)) +0(1)

< (aNil + N(N - 132(1 * m)“) Ty (r) + O(1).

Combining (3.14), (3.15), and (3.16), for r € R, we have

(3.17) (Ms ~ Nyal - T () Sexc

ea(N(s+t+1) + Ni(I+m))Tg(r) + O(1).

N(N—l)(l+m)a)

Finally, we will choose our s, ¢, and ¢ to derive a contradiction from the above in-
equality. First, we fix s > al. Since

-1+t
Ms:s(m N ): o t" o™
m-1 (m-1)!
and
-1+t )
Nyal = al(m y ”) L S
m-1 (m-1)!

can be regarded as polynomials in ¢, both with degrees m -1, and in which the leading
coefficient of Ms is larger than the one for aN; [, there exists a sufficiently large integer
t such that Ms > Njal. Then we can choose ¢ satisfying
< Ms —aN;l
€ .
a(N(s+t+1)+ Ny(I +m))

0<

Consequently, since g; is nonconstant, Ty () is not bounded, and we can deduce
from (3.17) that

~ N(N-1)(I+m)a
- Ms—aNyl —ea(N(s+t+1)+ Ny (Il +m))’

n<ng:

In conclusion, if
i ip j jm
'f‘lll e llgll e gm
is not constant for any non-trivial index set (iy, ..., i, ji,..., jm) € Z*™, then the
ratio F(n)/G(n) is not an entire function for n > max{nq, n, }, where n; = (I +1)*

(N; + Ny(m +1))?% is the number to assure that x(#) is linearly non-degenerate for
n 2 n. ]
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For the second part of Theorem 1.2, we first notice that the expression for x(1) in
(3.4) is not contained in any proper linear subspace, by Borel's lemma (Lemma 2.7) if
fir--o5 f1> 815 - - . » gm are units. Next, the condition that f;,..., fi, g1, . .., gm are units
implies that the counting function in (3.16) is just zero. In this case, (3.17) becomes

(3.18) MsTy, (1) Sexc €a(N(s+t+1) + Ni(I +m)) T, (r) + O(L).
Finally, let ¢ satisfy
Ms
€< .
a(N(s+t+1)+ Ny(I + m))
Since g; is nonconstant, for all r large enough, we have
MsTy, (r) > ea( N(s+t+1) + Ni(I + m)) T, (r) + O(1),
which contradicts (3.18).

0<
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