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Notwithstanding a great number of hypotheses, suggested for explaining 
superpositions of the light- and of the velocity variations of the (3 Canis 
Majoris stars, no one of these does it satisfactorily. Possibly it is due to an 
inadequate elaboration of the non-linearly oscillation theory. Analysis and 
critical evaluation of the existing hypotheses are given by Mel'nikov and 
Popov (1970). Our explanation consists in existence of close frequencies cor­
responding to various oscillation modes which are non-linearly interacting. 

Equations of motion of an ideal incompressible fluid under condition of 
preserving the equilibrium figure symmetry with respect to the equatorial 
plane (lateral oscillations) have the form (Baranov 1988): 

dH dH 
9l,2 = « , Pl,2 = ~ « , (1) 

OPl,2 Oqi<2 

where variable q\ and 92 are in the following way connected with semi-axes 
a and b of ellipsoid (the variable connected with the remaining semi-axis c 
of an ellipsoid has been already eliminated from the equation of motion): 
exp(gi)2) = a ±b, the Hamiltonian H = H(qi,q2,Pi,P2,t), where t is time. 
We remind that the variables describing orientation of the figure don't enter 
into the Hamiltonian since impulses conjugated by it are combinations of 
invariants of motion: ps,4 = ±(C ^ L)/2, where C and L are values of 
circulation and the moment of motion quantity. Aside from the indicated 
integrals of motion, the equations (1) allow the energy integral. It is also 
necessary to take into account the condition of the mass constancy. 

Although the system of equations has a canonical form this circumstance 
is, in fact, not utilized. Nevertheless theorems of existence and uniqueness 
are almost automatically extended on our problem. 

Now substitute into equation (1) expansions of coordinates and impulses 
from equilibrium state for which are assumed ellipsoids of revolution. The 
detailed calculations are omitted since they are given by Baranov (1988). 

In the case of a stationary state (pure rotation) the equations (1) lead to 
the known Maclaurin formula. 

In linearized approximation the equations (1) are again easily solved. 
Finally, we compare the terms, containing e2 - the squares of devia­

tions from equilibrium state in both parts of equations (1). Here we have 
to consider the difference of the true oscillations period from that of the 
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linearized oscillations. To this we introduce the new variable r so that 
t = (1 + s2h + .. .)r, where quantity h is introduced so that in terms of 
r functions describing oscillations have a constant period. Such refinement 
of the calculation is not influencing all previous calculations. 

The equations of motion (1) after some transformations are reduced to 
the form: 

Q" = -a2
pQ + X,A2 + A2, (2) 

where A2 = C(l + esinT)/J, a and ap are frequencies of lateral and pul­
sating oscillations, C is an amplitude of lateral oscillations, T = ar, e is 
eccentricity of the meridian cross-section of an ellipsoid, J = 2-Bn — fi2/2, 
in this connection we used in accordance with Chandrasekhar (1969) the 
notation 

ds R f°° ds 
Jo A(af + $)(aj + s)(af. + s)... 

(A2 = {a\ + s)(al + s)(al + s), ai = a, a2 = b, a3 = c). 

Q. is the angular velocity of a figure rotation. Values of the constants Aj and 
A2 are presented by Baranov (1988). 

The equation (2) may be solved in a general form 

Q = A2/ a2 + U(T) + (Qi cos avr + Q2 sin <JPT, 

where u(r) is solution of the equation 

Q" + a2
pQ = \iA2, (3) 

possessing the same period as the quantity A. Since we consider purely 
lateral oscillations then assume Qi = Q2 = 0. The function U{T) is sought 
in the form 

U(T) = a\ + a2 sin ar (4) 

where a\ and a2 are still unknown functions. Substituting expression (4) 
into equation (3) after transformations which are omitted here, find: 

XiC XiCe 
a2

pJ J(oj - a2) 

The case ap ^ a was studied (Baranov 1988). 
Phenomenon of various modes oscillations resonance for an ellipsoids of 

revolution explains a superposition of the light variation harmonics and the 
radial velocity of the 0 Canis Majoris stars. Equality of frequencies in the 
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linearized problem is due to common properties of spherically symmetric 
problems (Bhagavantam and Venkatarayudu 1951, Vilenkin 1965) having as 
a consequence 2n + 1 - multiple degeneration of frequencies (n is a principal 
index of a spherical harmonics as an angular part of the equation of os­
cillations). Various modes originate from one another by turns and a linear 
superposition. If the linearity is disturbed a superposition is no longer a law­
ful operation in physical sense. On the other hand, various modes influence 
each other and loose independence. Therefore, in non-linear analysis there 
appear typical resonance terms. The situation is in a certain degree analo­
gous to the case of the asteroidal commensurability 1:1 if the asteroid orbit 
is a quasi-circular but is inclined to Jupiter's orbit. Let it be emphasized 
that in a non-linear case frequencies of oscillations slightly deviate from 
predicted values of linear theory at the expense of the final amplitude. If 
there exist synchronously some oscillation modes then the above mentioned 
displacement is, generally speaking, different for each of the modes. 

Considerations of a qualitative pattern described is connected with one 
of the interesting and important properties of self-oscillating systems - the 
phenomenon of a forced synchronization which is sometimes called a ca-
puture. At sufficiently small difference between a proper frequency of the 
system (frequency of lateral oscillations in this paper) and a frequency of 
an external force (whose role belongs here to pulsating oscillations) a stable 
periodic motion acquires the frequency of the latter. If in such manner, the 
difference av — a is sufficiently small, then there takes place a synchroniza­
tion of frequencies. The main problem of the theory is finding the value of 
the capture interval i.e. the value of that largest difference of frequencies 
at which capture still occurs, where as by further increase of difference be­
tween frequencies the capture does not take place and there appears a special 
regime related to presence in the system of quasiperiodic motion with two 
main frequencies which the one is the frequency of pulsating oscillations and 
the other - more or less changed frequency of lateral oscillations (regime of 
beats). 

It is clear that possible is the superposition of the greater number of 
frequencies which in absence of the simple resonance correlations between 
these leads to the oscillations having still less regularities. Multifrequency 
oscillations in many aspects remind the stochastic processes in the sense that 
prediction of the further course of evolution encounters if not with principal 
then with substantial difficulties. In the above aspect the synchronization 
phenomenon and that of stochasticity are contrary. Emergence of synchro­
nism leads to suppression of stochasticity and on the contrary development 
of stochasticity implies the lesser degree of the oscillations synchronism of 
separate parts of the system. 

Emphasize the principal difference of our hypothesis from the point of 
view expressed elsewhere on an independent origin of various frequencies met 
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in the model of oscillations of the /? Canis Majoris stars (Chandrasekhar and 
Lebovitz 1962). On the contrary in our scheme one considers the oscillation 
frequencies in the linearized problem which differ in orientation only and 
therefore synchronous by their character. 

We remind that we have considered the homogeneous case only but it 
clarifies many features of more general and complex structural models since 
degeneration with respect to symmetry does not depend upon the concrete 
law of a density change. 
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