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Characterizations of Continuous and
Discrete q-Ultraspherical Polynomials

Mourad E. H. Ismail and Josef Obermaier

Abstract. We characterize the continuous q-ultraspherical polynomials in terms of the special form of

the coefficients in the expansion DqPn(x) in the basis {Pn(x)}, Dq being the Askey–Wilson divided

difference operator. The polynomials are assumed to be symmetric, and the connection coefficients are

multiples of the reciprocal of the square of the L2 norm of the polynomials. A similar characterization

is given for the discrete q-ultraspherical polynomials. A new proof of the evaluation of the connection

coefficients for big q-Jacobi polynomials is given.

1 Introduction

The problem of characterizing classes of orthogonal polynomials is an old one and

has extensive literature. Al-Salam wrote an important survey article [1] covering the

literature on characterization theorems up to 1990, the date of its publication. Many

of these characterization theorems deal with the classical orthogonal polynomials of

Hermite, Laguerre, and Jacobi, and later the wider class of orthogonal polynomials

considered by Hahn; see [1]. The Hahn class contains the big q-Jacobi polynomials

that generalize Jacobi polynomials. The big q-Jacobi polynomials contain a symmet-

ric orthogonal polynomial sequence: the discrete q-ultraspherical polynomials. The

ultraspherical (Gegenbauer) polynomials are the spherical harmonics on Euclidean

spaces, [17].

Two noteworthy contributions from the 1970’s are the works [2, 3]. In the first,

Al-Salam and Chihara characterized orthogonal polynomials having a certain con-

volution property and discovered what has become known as the Al-Salam–Chihara

polynomials [13, 14]. The weight function for these polynomials was found later

in [9]. Another proof is in [10]. The second paper by Al-Salam and Chihara [3]

gives an interesting characterization of the q-Pollaczek polynomials, which was con-

jectured by Andrews and Askey.

Another important orthogonal polynomial sequence is the sequence of continu-

ous q-ultraspherical polynomials. It is a one parameter generalization of the spher-

ical harmonics. They first appeared in the work of L. J. Rogers in the 1890’s. He

used them to prove the Rogers–Ramanujan identities. They appeared in 1941 in
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the works of Feldheim [11] and Lanzewizky [15] who independently showed that

the only orthogonal polynomials in the Fejer class ([18]) are the ultraspherical and

q-ultraspherical polynomials. There weight function was found in [8]. They are also

special Askey–Wilson polynomials, so another proof follows from [10].

Recently Lasser and Obermaier observed that the ultraspherical polynomials, nor-

malized to be 1 at x = 1, have the property

(1.1)
d

dx
Pn(x) = σn

⌊(n−1)/2⌋
∑

k=0

hn−2k−1Pn−2k−1(x),

where σn is a constant depending on n and the hk’s come from the orthogonality

relation
∫

R

Pm(x)Pn(x)dµ(x) = δm,n/hn,

with orthogonality measure µ; see [16]. They showed that this property charac-

terizes the ultraspherical polynomials among symmetric orthogonal polynomials,

which satisfy a three term recurrence relation

xPn(x) = anPn+1 + cnPn−1, n ≥ 1,

with an + cn = 1. Since

σn =

∫

R

d

dx
Pn(x)Pn−2k−1(x)dµ(x), k = 0, 1, . . . , ⌊(n − 1)/2⌋,

this characterization is due to the constancy of the Fourier coefficients of d
dx

Pn(x). A

second characterization of the ultraspherical polynomials given in [16] is based on

the ratio of coefficients of the three term recurrence relation, namely on the property

(1.2)
cn

cn−1

=

n

2cn−1 + n − 1
=

sn

(sn+1 − sn−1)cn−1 + sn−1

, n ≥ 2,

where

d

dx
xn

= snxn−1.

Properties (1.1) and (1.2) are very curious, and we discovered that they are shared

by many other systems of orthogonal polynomials. In the present work we give two

q-analogues of the Lasser-Obermaier result. Section 2 contains all the notations and

preliminary results needed in our analysis.

Askey and Wilson solved the connection coefficient problem for the Askey–Wilson

polynomials in [10]. The big q-Jacobi polynomials are limiting cases of the Askey-

Wilson polynomials, [14, §3.5], so their connection coefficient can be found from

the Askey–Wilson result. In Section 3, however, we include a direct and indepen-

dent evaluation of the connection coefficients for big q-Jacobi polynomials, and then

identify the connection coefficients in the special case of the discrete q-ultraspherical

polynomials. The Askey–Wilson proof uses technical special functions, but our proof

is much simpler and is more elementary than the Askey–Wilson proof.
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2 Preliminaries

We shall follow the notation and terminology of q-series as in [7,12,13]. In particular

the q-shifted factorials are

(a; q)n =

n−1
∏

k=0

(1 − aqk), (a1, a2, . . . , am; q)n =

m
∏

j=1

(a j ; q)n.

Here n = 1, 2, . . . or ∞, when |q| < 1, which we shall always assume. Moreover,

(a; q)0 := 1. A basic hypergeometric function is

r+1φr

(

a1, a2, . . . , ar+1

b1, b2, . . . , br

∣

∣

∣
q, z

)

=

∞
∑

n=0

(a1, . . . , ar+1; q)n

(q, b1, . . . , br; q)n

zn.

We shall make use of two special sums, the q-analogue of the Chu–Vandermonde

theorem, [12, (II.6)],

(2.1) 2φ1(q−n, a; c; q) =

(c/a; q)n

(c; q)n

an,

and the Andrews terminating analogue of Watson’s theorem [4], [12, (II.17)],

(2.2) 4φ3

(

q−n, b2qn+1, c,−c

qb,−qb, c2

∣

∣

∣
q, q

)

=

{

0, if n is odd,
cn(q,b2q2/c2 ;q2)n/2

(q2b2,qc2;q2)n/2
, if n is even.

The q-difference operator is

(Dq f )(x) =

f (x) − f (qx)

x − qx
, x 6= 0.

The product rule for Dq is

(2.3) Dq( f g)(x) = f (x)Dqg(x) + g(qx)Dq f (x).

The q-integral is defined as an infinite Riemann sum, via

∫ a

0

f (x)dqx := (1 − q)a

∞
∑

n=0

qn f (aqn),

∫ b

a

f (x)dqx :=

∫ b

0

f (x)dqx −
∫ a

0

f (x)dqx.

When g(a/q) = g(b/q) = 0, the integration by parts for the q-integral is

q

∫ b

a

Dq f (x)g(x)dqx = −
∫ b

a

f (x)Dq−1 g(x)dqx,

[13, (11.4.6)].
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One special q-integral we shall use is ([12, (2.10.20)])

(2.4)

∫ b

a

(qt/a, qt/b; q)∞
(ct/a, dt/b; q)∞

dqt =

b(1 − q)(q, a/b, qb/a, cd; q)∞
(c, d, bc/a, ad/b; q)∞

.

Let x = (z + 1/z)/2 and set f (x) = f̆ (z). The Askey–Wilson divided difference

operator Dq is defined by

(Dq f )(x) =

f̆ (q1/2z) − f̆ (q−1/2z)

ĕ(q1/2z) − ĕ(q−1/2z)
, e(x) := x.

The Askey–Wilson operator is a degree reducing operator as can be seen from its

action on the Chebyshev polynomials of the first kind, namely

(2.5) DqTn(x) =

qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x).

Indeed (2.5) shows that, at least on polynomials, Dq → d
dx

as q → 1. Also note that

Dq is invariant under q → 1/q.

The product rule for the Askey–Wilson operator is

(2.6) Dq( f g) = Aq f Dqg + AqgDq f ,

where the averaging operator Aq is defined by

(Aq f )(x) =

1

2

(

f̆ (q1/2z) + f̆ (q−1/2z)
)

.

The operator Aq is a degree preserving operator as can be seen from

(2.7) AqTn(x) =

qn/2 + q−n/2

2
Tn(x).

The big q-Jacobi polynomials are defined by

Pn(x; a) = Pn(x; a1, a2; a3) = 3φ2

(

q−n, a1a2qn+1, x

qa1, qa3

∣

∣

∣

∣

q, q

)

,

where a stands for the vector (a1, a2, a3). They satisfy the orthogonality relation

[6, 12–14],

∫ qa1

qa3

Pm(x; a)Pn(x; a)
(x/a1, x/a3; q)∞
(x, a2x/a3; q)∞

dqx =

δm,n

hn(a)
,

1/hn(a) := a1q(1 − q)
(q, a1a2q2, a3/a1, qa1/a3; q)∞
(qa1, qa2, qa3, qa1a2/a3; q)∞

× (1 − qa1a2)

(1 − a1a2q2n+1)

(q, qa2, qa1a2/a3; q)n

(qa1, qa1a2, qa3; q)n

(−a1a3)nqn(n+3)/2,
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for qa1, qa2 ∈ (0, 1), a3 < 0.

The q-Chu–Vandermonde sum (2.1) shows that the values of a big q-Jacobi poly-

nomial at the end points qa1, qa3 are

Pn(qa1; a) = (−a3)nq(n+1
2 ) (qa1a2/a3; q)n

(qa3; q)n

,(2.8)

Pn(qa3; a) = (−a1)nq(n+1
2 ) (qa2; q)n

(qa1; q)n

.

Moreover, it is clear that Pn(1; a) = 1. The weight function is

(2.9) w(x; a) =

(x/a1, x/a3; q)∞
(x, xa2/a3; q)∞

.

The Rodrigues type formula is ([6, 13, 14])

w(x; a)Pn(x; a) =

(a1a3)nqn(n+1)(1 − q)n

(qa1, qa3; q)n

(Dq)nw(x; qna).

Moreover,

(2.10) Dq−1 Pn(x; a) =

q1−n(1 − qn)(1 − a1a2qn+1)

(1 − q)(1 − qa1)(1 − qa3)
Pn−1(x; qa).

The continuous q-ultraspherical polynomials are ([8], [13, §13.2–13.3]),

(2.11) Cn(cos θ; β|q) =

n
∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k

eiθ(n−2k).

The representation (2.11) is equivalent to the 2φ1 representation

(2.12) Cn(cos θ; β | q) =

(β; q)n einθ

(q; q)n
2φ1

(

q−n, β
q1−n/β

∣

∣

∣
q, qe−2iθ/β

)

.

The orthogonality relation of the continuous q-ultraspherical polynomials is [13,

§13.2],

∫ 1

−1

Cm(x; β | q)Cn(x; β | q)w(x |β) dx =

2π(β, qβ; q)∞
(q, β2; q)∞

(1 − β)(β2; q)n

(1 − βqn)(q; q)n

δm,n,

which holds for |β| < 1, with

(2.13) w(cos θ |β) =

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

(sin θ)−1.

When β > 1, point masses appear at x = ±(β1/2 + β−1/2)/2. We cannot find

the value of Cn(±1; β | q) for any β in closed form, but it is clear from (2.11) that
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|Cn(x; β | q)| ≤ Cn(1; β | q) for x ∈ [−1, 1]. The only points, other than x = 0, at

which the polynomials can be evaluated are x = ±(β1/2 + β−1/2)/2, which seem to

be the natural end points of the interval of orthogonality. At these points e−iθ
=

√
β,

the 2φ1 representation (2.12), and the q-Chu–Vandermonde sum (2.1) give

(2.14) Cn(±(β1/2 + β−1/2)/2; β|q) = (±1)nβ−n/2 (β2; q)n

(q; q)n

.

The action of the Askey–Wilson operator on Cn(x; β|q) is given by

(2.15) DqCn(x; β | q) = 2q−(n−1)/2 1 − β

1 − q
Cn−1(x; qβ | q).

The following connection coefficient problem was solved by L. J. Rogers in 1894:

(2.16) Cn(x; γ | q) =

⌊n/2⌋
∑

k=0

βk(γ/β; q)k(γ; q)n−k

(q; q)k(qβ; q)n−k

(1 − βqn−2k)

(1 − β)
Cn−2k(x; β | q).

See [13] and [10] for references and proofs.

If {Pn(x)}∞n=0 is a sequence of orthogonal polynomials with respect to a positive

Borel measure µ, then it will satisfy a three term recurrence relation of the form

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 0,

with bn ∈ R and an−1cn > 0, n > 0. The orthogonality implies

(2.17) anhn = cn+1hn+1,

where hn is defined through

(2.18) 1/hn =

∫

R

(Pn(x))2dµ(x).

The relationship (2.17) will be used repeatedly in the sequel.

3 Connection Relation for Big q-Jacobi Polynomials

In this section we give an explicit representation for the connection coefficients of the

big q-Jacobi polynomials.

Let

(3.1) Pn(x; b) =

n
∑

k=0

an,k(a, b)Pk(x; a).
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Then

an,k(a, b)/hk(a) =

∫ qa1

qa3

Pn(x; b)Pk(x; a)w(x; a) dqx

=

(a1a3)kqk(k+1)(1 − q)k

(qa1, qa3; q)k

∫ qa1

qa3

Pn(x; b)(Dq)kw(x; qka) dqx

=

(−a1a3)kqk2

(1 − q)k

(qa1, qa3; q)k

∫ qa1

qa3

(Dq−1)kPn(x; b)w(x; qka) dqx

=

(−a1a3)kq(k+1
2 )+k(k−n)(q; q)n(b1b2qn+1; q)k

(qa1, qa3; q)k(q; q)n−k(qb1, qb3; q)k

×
∫ qa1

qa3

Pn−k(x; qkb)w(x; qka) dqx.

We now evaluate the last integral. Clearly

∫ qa1

qa3

Pn−k(x; qkb)w(x; qka)dqx =

n−k
∑

s=0

(qk−n, b1b2qn+k+1; q)s

(q, qk+1b1, qk+1b3; q)s

qs

∫ qa1

qa3

(q−kx/a1, q−kx/a3; q)∞
(xqs, xa2/a3; q)∞

dqx.

Since the integrand vanishes at x = a1q j and x = a3q j , 0 ≤ j ≤ k, we conclude that

∫ qa1

qa3

(q−kx/a1, q−kx/a3; q)∞
(xqs, xa2/a3; q)∞

dqx

=

∫ qk+1a1

qk+1a3

(q−kx/a1, q−kx/a3; q)∞
(xqs, xa2/a3; q)∞

dqx

=

a1qk+1(1 − q)(q, a3/a1, qa1/a3, a1a2q2k+2+s; q)∞
(a3qk+s+1, qk+1a1a2/a3, a1qk+s+1, a2qk+1; q)∞

,

where we applied (2.4). Therefore

an,k(a, b)/hk(a) =

(q, a3/a1, qa1/a3, a1a2q2k+2; q)∞(b1b2qn+1; q)k

(a3qk+1, qk+1a1a2/a3, a1qk+1, a2qk+1; q)∞

× a1qk+1(1 − q)
(−a1a3)kq(k+1

2 )+k(k−n)(q; q)n

(q; q)n−k(aq1, qa3, qb1, qb3; q)k

× 4φ3

(

qk−n, b1b2qn+k+1, a1qk+1, a3qk+1

qk+1b1, qk+1b3, a1a2q2k+2

∣

∣

∣

∣

∣

q, q

)

.

This establishes the following theorem.
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Theorem 3.1 The connection coefficients for big q-Jacobi polynomials in (3.1) are

given by

(3.2) an,k(a, b) = qk(k−n) (q; q)n (qa1, qa3, b1b2qn+1; q)k

(q; q)n−k(q, qb1, qb3, qk+1a1a2; q)k

× 4φ3

( qk−n, b1b2qn+k+1, a1qk+1, a3qk+1

qk+1b1, qk+1b3, a1a2q2k+2

∣

∣

∣
q, q

)

.

Corollary 3.2 (Andrews and Askey [5]) The little q-Jacobi polynomials

pn(x; a, b) =

(qa; q)n

(q; q)n
2φ1(q−n, abqn+1; qa; q, qz)

have the connection relation

pn(x; b1, b2) =

n
∑

k=0

cn,k(a1, a2, b1, b2)pk(x; a1, a2),

where

cn,k(a1, a2, b1, b2) =

qk(k−n)(b1b2qn+1; q)k(qb1; q)n

(q; q)n−k(qb1, qk+1a1a2; q)k

× 3φ2

( qk−n, b1b2qn+k+1, a1qk+1

qk+1b1, a1a2q2k+2

∣

∣

∣
q, q

)

.

Proof It is clear that

pn(x; a1, a2) =

(qa1; q)n

(q; q)n

lim
a3→∞

Pn(qa3x; a1, a2, a3).

In (3.1) we take b3 = a3, replace x by qa3x and let a3 → ∞. The result follows

from (3.2).

The case of discrete q-ultraspherical polynomials is

Cn(x; α : q) = Pn(x; αq−1/2, αq−1/2,−αq−1/2).

The three term recurrence relation for the big q-Jacobi polynomials is

(x − 1)Pn(x; a) = AnPn+1(x; a) − (An + Bn)Pn(x; a) + BnPn−1(x; a),

where

An =

(1 − a1qn+1)(1 − a3qn+1)(1 − a1a2qn+1)

(1 − a1a2q2n+1)(1 − a1a2q2n+2)
,

Bn = −a1a3qn+1 (1 − qn)(1 − a2qn)(1 − (a1a2/a3)qn)

(1 − a1a2q2n)(1 − a1a2q2n+1)
.
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In the case of the discrete q-ultraspherical polynomials, the recurrence relation be-

comes

x(1 − α2q2n)Cn(x; α : q) =

(1 − α2qn)Cn+1(x; α : q) + α2qn(1 − qn)Cn−1(x; α : q).

Moreover, Cn(1; α : q) = 1 and the end point evaluations are

Cn(α
√

q; α : q) = αnqn2/2, Cn(−α
√

q; α : q) = (−1)nαnqn2/2.

In this case the orthogonality relation becomes

∫ α
√

q

−α
√

q

Cn(x; α : q)Cn(x; α : q)
(qx/α2; q2)∞

(x2; q2)∞
dqx =

δm,n

hn(α)
,

1

hn(α)
= α2nq(n+1

2 ) (1 − α2)(q; q)n

(1 − α2q2n)(α2; q)n

× 2α
√

q(1 − q)
(q2α2, q2; q2)∞

(qα2; q2)∞
.

Since the weight function is even, the connection coefficients an,k are zero when n−k

is odd. Thus

Cn(x; β : q) =

⌊n/2⌋
∑

k=0

bn,k(α, β)Cn−2k(x; α : q),

and the 4φ3 is summed by (2.2). The result is

bn,k(α, β) = q2k(2k−n) (q; q)n (qα2; q2)n−2k(β2qn; q)n−2k

(q; q)2k(q, α2qn−2k; q)n−2k(qβ2; q2)n−2k

× (αqn−2k+1/2)2k(q, β2/α2; q2)k

(β2q2n−4k+1, α2q2n−4k+2; q2)k

.

The above expression simplifies to

bn,k(α, β) = qkα2k (q; q)n(β2; q2)n−k(β2/α2; q2)k

(q2; q2)k(q; q)n−2k(q2α2; q2)n−k

(1 − α2q2n−4k)(α2; q)n−2k

(1 − α2)(β2; q)n

.

4 A Characterization of Discrete q-Ultraspherical Polynomials

To state our characterization of the discrete q-ultraspherical polynomials we need to

renormalize the polynomials to be equal to 1 at the right end point of the interval of

orthogonality and renormalize the weight function to have total mass 1. In view of

(2.8) and (2.9), we set

Pn(x; α : q) = α−nq−n2/2Cn(x; α : q),

w̃(x; α) =

1

2α
√

q(1 − q)

(qα2; q2)∞
(q2α2, q2; q2)∞

(qx/α2; q2)∞
(x2; q2)∞

,

https://doi.org/10.4153/CJM-2010-080-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-080-0


190 M. E. H. Ismail and J. Obermaier

so that

xPn(x; α : q) = anPn+1(x; α : q) + cnPn−1(x; α : q),

an = αqn+1/2 (1 − α2qn)

1 − α2q2n
, cn = αq1/2 (1 − qn)

(1 − α2q2n)
.

Note that an + cn = αq1/2. Now the orthogonality relation becomes

∫ αq1/2

−αq1/2

Pm(x; α : q)Pn(x; α : q)w̃(x; α)dqx =

δm,n

hn(α)
,

hn(α) = q(n
2)

(1 − α2q2n)(α2; q)n

(1 − α2)(q; q)n

.

Applying (2.10) we see that the connection relation becomes

Dq−1 Pn(x; α : q) = q−(n2+n−1)/2 (1 − α2qn)(q; q)n

α(1 − q)(qα2; q)n

(4.1)

×
⌊(n−1)/2⌋

∑

k=0

hn−2k−1(α) Pn−2k−1(x; α : q).

We next state a characterization theorem, which is the main result of this section.

Note that the hk’s are defined by (2.18).

Theorem 4.1 Let {Pn(x)}∞n=0 be a polynomial sequence orthogonal with respect to a

positive Borel measure µ. Assume that {Pn(x)}∞n=0 is recursively defined by P0(x) = 1

and

(4.2) xPn(x) = anPn+1(x) + cnPn−1(x), n ≥ 0,

with

0 < an + cn = A = αq1/2 < 1, c0 = 0, c1 = αq1/2 1 − q

1 − α2q2
,

where 0 < q < 1. Moreover, set Dq−1 (xn) = snxn−1, that is

sn = q1−n 1 − qn

1 − q
.

Then the following three statements are equivalent.

(i) For all n ∈ N we have

Dq−1 Pn(x) = σn

⌊(n−1)/2⌋
∑

k=0

hn−2k−1Pn−2k−1(x),

where the constant σn depends only on n.
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(ii) For all n ≥ 2 it holds that

cn

cn−1

=

q−1Asn

(sn+1 − sn−1)cn−1 + Asn−1

.

(iii) The polynomials {Pn(x)}∞n=0 are the discrete q-ultraspherical polynomials

{Pn(x; α : q)}∞n=0.

In this case the constants in (i) are given by σn =
sn

cnhn
.

Proof First we assume (iii). Then for n ≥ 2 we get

cn

cn−1

=

αq1/2(1 − qn)

cn−1(1 − α2q2n)
=

αq1/2(1 − qn)

cn−1(1 − q2 + q2 − α2q2n)

=

q−1Asn

(sn+1 − sn−1)cn−1 + Asn−1

.

This shows that (iii) implies (ii). Conversely, this also shows that (ii) implies (iii). We

derive (i) from (iii) by applying (4.1). Hence it remains to prove that (i) implies (ii).

We set

Dq−1 Pn(x) =

n−1
∑

k=0

ωn(k)Pk(x)hk.

Comparing the coefficients of xn−1 gives sn = ωn(n − 1)hn−1an−1. In other words

σn = ωn(n − 1) =

sn

an−1hn−1

=

sn

cnhn

.

Moreover, set

Pn(x) =

n
∑

k=0

ǫn(k)Pk(x)hk.

Applying the q-product rule (2.3) we get

Dq−1 (xPn(x)) = q−1xDq−1 Pn(x) + Pn(x).

Acting with Dq−1 on (4.2) results in

Dq−1 (xPn(x)) = anDq−1 Pn+1(x) + cnDq−1 Pn−1(x).

Thus

Dq−1 Pn+1(x) =
1
an

(Pn(x) + q−1xDq−1 Pn(x) − cnDq−1 Pn−1(x)).
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Again by comparing coefficients of Pk(x) one gets

ωn+1(k) =

1

an

(

ǫn(k) + q−1
(

akωn(k + 1) + ckωn(k − 1)
)

− cnωn−1(k)
)

.

If we assume (i), then σn+1 = ωn+1(n) = ωn+1(n − 2) for n ≥ 2. This yields

sn+1

anhn

=

ǫn(n − 2) + q−1(an−2ωn(n − 1) + cn−2ωn(n − 3)) − cnωn−1(n − 2)

an

=

1

an

(

A

q

sn

cnhn

− cn
sn−1

cn−1hn−1

)

.

Therefore

sn+1 =

Asn

qcn

− an−1sn−1

cn−1

,

which gives

cn−1sn+1 + (A − cn−1)sn−1

cn−1

=

Asn

qcn

,

and finally yields

cn

cn−1

=

q−1Asn

(sn+1 − sn−1)cn−1 + Asn−1

.

This proves that (i) implies (ii), and the proof is complete.

Let {Pn(x)}∞n=0 be a sequence of symmetric orthogonal polynomials with respect

to a positive Borel measure µ. Moreover, assume that {Pn(x)}∞n=0 is generated by

P0(x) = 1 and (4.2), with 0 < an + cn = A < 1, c0 = 0 and c1 < A. Then the

assumptions of Theorem 4.1 are fulfilled with

q =

A − c1

A − A2c1

and α = Aq−1/2.

5 A Characterization of Continuous q-Ultraspherical Polynomials

To state our characterization of the continuous q-ultraspherical polynomials we need

to renormalize the polynomials to be equal to 1 at the point (β1/2 + β−1/2)/2 and

renormalize the weight function to have total mass 1. In view of (2.14) and (2.13) we

set

Pn(x; β | q) =

(q; q)n

(β2; q)n

βn/2Cn(x; β | q),

w̃(x; β) =

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

(β2, q; q)∞
(β, βq; q)∞

1

2π
√

1 − x2
, x = cos θ,
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so that

xPn(x; β | q) = anPn+1(x; β | q) + cnPn−1(x; β | q),

an =

1 − β2qn

2β1/2(1 − βqn)
, cn =

β1/2(1 − qn)

2(1 − βqn)
.

Note that an + cn =
β1/2+β−1/2

2
. Now the orthogonality relation becomes

∫ 1

−1

Pm(x; β | q)Pn(x; β | q)w̃(x; β)dx =

δm,n

hn(β)
,

hn(β) =

(β2; q)n(1 − βqn)

(q; q)n(1 − β)
β−n.

Applying (2.15) and (2.16) we see that the connection relation becomes

DqPn(x; β | q) = 2β(2n−1)/2q(1−n)/2 1 − β

1 − q

(q; q)n

(β2; q)n

(5.1)

×
⌊(n−1)/2⌋

∑

k=0

hn−2k−1(β) Pn−2k−1(x; β | q).

The proof of our characterization of the continuous q-ultraspherical polynomials

relies on the following lemma.

Lemma 5.1 Let {Pn(x)}∞n=0 be an orthogonal polynomial sequence initially defined

by P0(x) = 1 and generated by a three term recurrence relation of the form

(5.2) xPn(x) = anPn+1(x) + cnPn−1(x), n ≥ 0,

where c0 = 0. Moreover, let

(5.3) AqPn(x) =

n
∑

k=0

αn(k)Pk(x)hk.

Then we have

αn(n) =

qn/2 + q−n/2

2hn

, and

αn(n − 2) =

(1 − q)(q(n−2)/2 − q−n/2)

2hn−2

2−2n −
∑n−1

k=1 ak−1ck

an−2an−1

.(5.4)

Proof Recall that Aq acts as a multiplier operator on the Chebyshev polynomials of

the first kind Tn(x); see (2.7). It holds T0(x) = 1, T1(x) = x, and it is easily seen by

induction that

Tn(x) = 2n−1xn − 2n−3nxn−2 + · · · , n ≥ 2.
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We next expand Pn in the Chebyshev polynomials {Tn(x)} then act with Aq on the

result. Set

Pn(x) =

xn

a0a1 · · · an−1

+ dn,2xn−2 + · · · .

Substituting Pn(x) in (5.2) and comparing coefficients of xn−1 results in

a0a1 · · · an−1dn,2 = a0a1 · · · andn+1,2 + an−1cn,

which yields by induction

dn,2 =

−
∑n−1

k=1 ak−1ck

a0a1 · · · an−1

.

Now set

Pn(x) =

21−n

a0a1 · · · an−1

Tn(x) + en,2Tn−2(x) + · · · .

Comparing coefficients of xn−2 yields

dn,2 = 2n−3en,2 −
2−2n

a0a1 · · · an−1

, or en,2 = 23−n 2−2n −
∑n−1

k=1 ak−1ck

a0a1 · · · an−1

.

Finally set

AqPn(x) =

qn/2 + q−n/2

2
Pn(x) + fn,2Pn−2(x) + · · · .

Since

AqPn(x) =

qn/2 + q−n/2

2

21−n

a0a1 · · · an−1

Tn(x) +
q(n−2)/2 + q(2−n)/2

2
en,2Tn−2(x) + · · ·

and

Tn(x) = 2n−1a0a1 · · · an−1Pn(x) − 2n−1a0a1 · · · an−1en,2Tn−2(x) + · · · ,

comparing coefficients of Pn−2(x) results in

fn,2 =

( q(n−2)/2 + q(2−n)/2

2
− qn/2 + q−n/2

2

)

en,22n−3a0a1 · · · an−3

=

(1 − q)(q(n−2)/2 − q−n/2)

2

2−2n − ∑n−1
k=1 ak−1ck

an−2an−1

,

and the proof is complete.
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The following characterization theorem is the main result of this section. Note

that the hk’s are defined by (2.18).

Theorem 5.2 Let {Pn(x)}∞n=0 be an orthogonal polynomial sequence with respect to a

positive Borel measure µ. Assume that {Pn(x)}∞n=0 is recursively defined by P0(x) = 1

and

(5.5) xPn(x) = anPn+1(x) + cnPn−1(x), n ≥ 0,

with

an + cn = B =

β1/2 + β−1/2

2
> 1,(5.6)

c0 = 0, c1 =

β1/2(1 − q)

2(1 − βq)
< B,(5.7)

where 0 < q < 1 and 0 < β. Moreover, set DqTn(x) = snUn−1(x), that is

sn = q−(n−1)/2 1 − qn

1 − q
.

Then the following three statements are equivalent.

(i) For all n ∈ N we have

DqPn(x) = σn

⌊(n−1)/2⌋
∑

k=0

hn−2k−1Pn−2k−1(x),

where the constant σn depends only on n.

(ii) For all n ≥ 2 it holds that

cn

cn−1

=

β1/2q−1/2+β−1/2q1/2

2
sn

(sn+1 − sn−1)cn−1 + Bsn−1

.

(iii) The polynomials {Pn(x)}∞n=0 are the continuous q-ultraspherical polynomials

{Pn(x; β | q)}∞n=0.

In this case the constants in (i) are given by σn =
sn

cnhn
.

Proof Since {Pn(x)}∞n=0 is an orthogonal polynomial sequence with respect to a pos-

itive Borel measure µ, it holds that a0c1 > 0. Thus a0 = B > 1 implies c1 > 0.

Therefore (5.7) implies β < q−1/2. Furthermore, (5.6) yields β 6= 1. Thus our

setting implies 0 < β < q−1/2 and β 6= 1.
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First we assume (iii). Then for n ≥ 2 we get

cn

cn−1

=

β1/2(1 − qn)

2(1 − βqn)cn−1

=

β1/2q−1/2

2
sn

q−n/2

1−q
(1 − βqn)cn−1

=

β1/2q−1/2+β−1/2q1/2

2
sn

q−n/2

1−q
(1 − βqn)cn−1

β+q
β

=

β1/2q−1/2+β−1/2q1/2

2
sn

sn−1
1−βqn

q−βqn

β+q

2β1/2

=

β1/2q−1/2+β−1/2q1/2

2
sn

sn−1(1 +
1−q

q−βqn )(B +
q−1

2β1/2 )
=

β1/2q−1/2+β−1/2q1/2

2
sn

(sn+1 − sn−1)cn−1 + Bsn−1

.

This shows that (iii) implies (ii). This also shows that (ii) implies (iii). We derive (i)

from (iii) by applying (5.1). Hence it remains to prove that (i) implies (ii).

We set

DqPn(x) =

n−1
∑

k=0

ωn(k)Pk(x)hk.

Representing both sides in terms of Chebyshev polynomials of the second kind and

comparing coefficients of Un−1(x) gives sn = ωn(n − 1)hn−1an−1. In other words

σn = ωn(n − 1) =

sn

an−1hn−1

=

sn

cnhn

.

Applying the product rule (2.6) for the Askey–Wilson operator we get

Dq(xPn(x)) =

q1/2 + q−1/2

2
xDqPn(x) + AqPn(x).

Acting by Dq on (5.5) results in

Dq(xPn(x)) = anDqPn+1(x) + cnDqPn−1(x).

Thus

DqPn+1(x) =

1

an

(AqPn(x) +
q1/2 + q−1/2

2
xDqPn(x) − cnDqPn−1(x)).

Comparing coefficients of Pk(x) one gets

ωn+1(k) =

1

an

(

αn(k) +
q1/2 + q−1/2

2

(

akωn(k + 1) + ckωn(k − 1)
)

− cnωn−1(k)
)

,
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where αn(k) is defined by (5.3). If we assume (i), then σn+1 = ωn+1(n) = ωn+1(n− 2)

for n ≥ 2. This yields

sn+1

anhn

=

1

an

(

αn(n − 2) +
q1/2 + q−1/2

2
B

sn

cnhn

− cn
sn−1

cn−1hn−1

)

.

Then

sn+1cn−1 + sn−1an−1

cn−1

= hnαn(n − 2) +
q1/2 + q−1/2

2
B

sn

cn

.

Applying (5.4) and hn/hn−2 = (an−2an−1)/(cn−1cn) we get

cn

cn−1

=

hncnαn(n − 2) +
q1/2+q−1/2

2
Bsn

(sn+1 − sn−1)cn−1 + Bsn−1

=

1−q
2cn−1

(q(n−2)/2 − q−n/2)(2−2n − ∑n−1
k=1 ak−1ck) +

q1/2+q−1/2

2
Bsn

(sn+1 − sn−1)cn−1 + Bsn−1

.

Due to the first equality of the proof it remains to show that ck =

β1/2(1−qk)

2(1−βqk)
, k =

1, . . . , n − 1, implies

1 − q

2cn−1

(q(n−2)/2 − q−n/2)(2−2n −
n−1
∑

k=1

ak−1ck) +
q1/2 + q−1/2

2
Bsn =

β1/2q−1/2 + β−1/2q1/2

2
sn.

A simple induction results in

n−1
∑

k=1

ak−1ck =

(n − 1) − nq + qn + β(1 − nqn−1 + (n − 1)qn)

4(1 − βqn−1)(1 − q)
.

Therefore

1 − q

2
(q(n−2)/2 − q−n/2)

2−2n − ∑n−1
k=0 ak−1ck

cn−1

=

(q(n−2)/2 − q−n/2)
(1 − q)(1 − β)(1 − qn)

4β1/2(1 − q)(1 − qn−1)
=

(q − 1)(1 − β)

4β1/2q1/2
sn,

which finally yields the desired relationship. This proves that (i) implies (ii), and the

proof is complete.
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Let {Pn(x)}∞n=0 be a symmetric sequence of polynomials orthogonal with respect

to a positive Borel measure µ. Moreover assume that {Pn(x)}∞n=0 is generated by

P0(x) = 1 and (5.5), with an + cn = B > 1, c0 = 0 and c1 < B. Then there exist two

solutions of (5.6) with respect to β, namely

β1 = 2B(B −
√

B2 − 1) − 1 < 1, and β2 = 2B(B +
√

B2 − 1) − 1 > 1.

Furthermore, there exists one solution of (5.7) with respect to q, that is

q =

√
β − 2c1√
β − 2βc1

.

Then the assumptions of Theorem 5.2 are fulfilled if

0 < c1 <

√
β1

2
, β = β1, q =

√
β1 − 2c1√

β1 − 2β1c1

or

√
β2

2
< c1 < B, β = β2, q =

√
β2 − 2c1√

β2 − 2β2c1

.
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pure mathematics, Birkhäuser, Basel, 1983, pp. 55–78.

[9] , Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math.
Soc. 49(1984), no. 300, 108 pp.

[10] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi
polynomials. Mem. Amer. Math. Soc. 54(1985), no. 319, 55 pp.
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