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Abstract

The utilization of remote sensing in agriculture has great potential to change the methods of
field scouting for weeds. Previous remote sensing research has been focused on the ability to
detect and differentiate between species. However, these studies have not addressed weed den-
sity variability throughout a field. Furthermore, the impact of changing phenology of crops and
weeds within and between growing seasons has not been investigated. To address these research
gaps, field studies were conducted in 2016 and 2017 at the Horticultural Crops Research Station
near Clinton, NC. Two problematic weed species, Palmer amaranth (Amaranthus palmeri
S. Watson) and large crabgrass [Digitaria sanguinalis (L.) Scop.], were planted at four densities
in soybean [Glycine max (L.) Merr.]. Additionally, these weed densities were grown in the pres-
ence and absence of the crop to determine the influence of crop presence on the detection and
discrimination of weed species and density. Hyperspectral data were collected over various phe-
nological time points in each year. Differentiation between plant species and weed density was
not consistent across cropping systems, phenology, or season. Weed species were distinguish-
able across more spectra when no soybean was present. In 2016, weed species were not distin-
guishable, while in 2017, differentiation occurred at 4 wk after planting (WAP) and 15 WAP
when weeds were present with soybean. When soybean was not present, differentiation
occurred only at 5 WAP in 2016 and at 3 WAP through 15 WAP in 2017. Differentiation
between weed densities did occur in both years with and without soybean present, but weed
density could be differentiated across more spectra when soybean was not present. This study
demonstrates that weed and crop reflectance is dynamic throughout the season and that spec-
tral reflectance can be affected by weed species and density.

Introduction

With a growing global population to feed, increasing pressure is being placed on agricultural
land to be more productive. Despite a steady increase in the global hectarage of arable land since
the early 1960s, a sharp decline in the arable land per person has occurred over the same period
(FAO 2018). This decline requires increased productivity of arable land. To raise land produc-
tivity, negative factors impacting yields must be minimized to meet the population demands for
food. A significant contributor to crop yield loss is competition with weeds. Weeds can reduce
yield in agronomic crops that contribute to the world food and fiber supply: 79% in soybean
[Glycine max (L.) Merr.] (Bensch et al. 2003), 91% in corn (Zea mays L.) (Massinga et al.
2003), 90% in cotton (Gossypium hirsutum L.) (Rowland et al. 1999), and 29% in sorghum
[Sorghum bicolor (L.) Moench] (Cramer and Burnside 1982).

With the introduction of herbicide-resistant crops and the lack of rotation of herbicide
chemistries, the agricultural ecosystem in production fields is changing due to increasing
anthropogenic selection pressures on weed populations (Clements and Jones 2021; Owen
2008). This pressure over time has resulted in the selection of weed biotypes that are resistant
to herbicides. Globally there are more than 515 species with resistance to at least one herbicidal
mode of action (Heap 2021). Someweed species have developed resistance tomultiple herbicidal
modes of action, making them difficult to control and allowing increased weed competition with
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crops. With resistance on the rise, weeds are often more difficult to
control, and growers need to be able to monitor fields, identify
weed species and densities, and determine the fluctuation of these
weed populations between years. Collecting the aforementioned
data on fields will allow growers to implement appropriately timed
weed control measures and minimize crop loss due to weed inter-
ference. Crop losses associated with weed interference are esti-
mated at $17 billion for soybean and $27 billion for corn,
roughly 50% of the yield for each of these crops in the United
States and Canada (Soltani et al. 2016, 2017). Recent surveys have
indicated that Palmer amaranth (Amaranthus palmeri S. Watson)
was in the top three most troublesome weeds in soybean, with large
crabgrass [Digitaria sanguinalis (L.) Scop.] being a common weed
throughout several other broadleaf cropping systems (Van
Wychen 2019). Amaranthus palmeri is an erect, multibranched
annual weed growing up to 2-m tall, producing greater biomass,
and leaf area than other Amaranthus species (Bryson and
DeFelice 2009; Horak and Loughlin 2000). Digitaria sanguinalis
is a prostrate to spreading summer annual with a height of 0.7
m (Bryson and DeFelice 2009; Holm et al. 1991). Both species have
high levels of fecundity and competition in cropping systems
(Basinger et al. 2019; Norsworthy et al. 2016; Peters and Dunn
1971). Concerns from the public about weed resistance, environ-
mental impacts of pesticides, and possible restrictions on herbicide
use may force new management strategies for weeds.

To minimize direct or indirect crop loss to weeds, weed man-
agement is critical. One approach to weed management is the use
of site-specific weed management. Site-specific weed management
is designed to control weeds only where they are present and to
reduce the environmental impacts of herbicide applications and
tillage. Site-specific management can reduce herbicide inputs, soil
compaction, energy consumption, and off-target herbicide
application (Brown and Noble 2005; Coleman et al. 2019;
Fernandez-Quintanilla et al. 2018). Site-specific management
requires accurate scouting of fields to determine whether weed
management is needed or to accurately detect and identify weeds
(Hunter et al. 2019; Li et al 2021). In agronomic crops, weed man-
agement must take place early in the season to minimize the inter-
ference weeds have in the crops. To do so, scouting for weeds must
be done at targeted timings to determine the appropriate time for
the implementation of weed control. Recommendations resulting
from a scouting exercise are frequently tied to the quality of the
scouting data, and accurate scouting can be time-consuming.
Remote sensing may provide a solution for accurate and timely
scouting of agricultural fields. Remote sensing has been utilized
in agriculture to predict yield and biomass (Chen et al. 2018;
Yue et al. 2021), determine crop nutrient or water stress (Basso
et al. 2016; Bellvert et al. 2014; Mahajan et al. 2017) and crop–weed
competition (Ronay et al. 2021), and detect the presence of insects
or plant disease (Abudulridha et al. 2020; Franke and Menz 2007;
Rhodes et al. 2022). Remote sensing for weed detection has been
attempted since the early 1980s (Menges et al. 1985; Richardson
et al. 1985). These attempts at weed detection, along with later
attempts (Brown et al. 1994; Everitt et al. 1987, 1992; Medlin
et al. 2000; Yang and Everitt 2010), were successful in discriminat-
ing weeds but unable to connect discrimination to management
decisions.

Research focused on remote sensing of weeds and invasive spe-
cies has used satellite data or data collected using aerial sensors
(Hunt et al. 2007; Menges et al. 1985). These methods often lack
the spatial and temporal resolution to detect weeds intermixed
with crops. Some of these limitations have been overcome through

the use of unmanned aerial vehicles (UAVs); however, there are
still limitations to this technology (Huang et al. 2018).
Additionally, many studies have been conducted using spectrally
limited sensors and may only contain wavelengths in the visible
(VIS) or shortwave portions of the near-infrared (NIR) spectrum.
The use of hyperspectral remote sensing has allowed for discrimi-
nation of weed species (Gray et al. 2009) and detection of herbicide
drift (Huang et al. 2016; Suarez et al. 2017) in agricultural settings.
Hyperspectral data provide greater spectral resolution and could
allow for the detection of differences between crop and weed spe-
cies while also detecting biophysical differences. Research utilizing
hyperspectral data that account for weed density and crop/weed
phenology as a means of weed detection is limited. Studies exam-
ining reflectance spectra often are conducted in only a single year
(Koger et al. 2004b) or have limited temporal data-collection dates
(Goel et al. 2003; Hunt et al. 2007).

Recent approaches have begun to bridge the gaps between data
collection, weed discrimination, and management decisions
through the aggregation of technologies. The implementation of
UAVs and other technologies for the discrimination of weeds must
rely on in situ data collection to ground-truth UAV data (Huang
et al 2016; Shafian et al. 2018; Suarez et al 2017) and elucidate rela-
tionships not detected by sensors on a UAV. The integration of the
information from these technologies not only improves the dis-
crimination of weeds from crops but allows for the implementation
of real-time control measures (Hu et al. 2020; Hunter et al. 2019).
Despite the best efforts to integrate these technologies, research
using in situ remote sensing is needed to continue to improve
the accuracy of current and future hyperspectral UAV and
ground-based weed management systems. These systems could
be greatly improved by identifying novel reflectance regions that
could be leveraged for species discrimination and detection.
Thus, the objectives of this study are to determine (1) whether
weed species can be differentiated in situ, (2) the effect of soybean
and weed phenology on differentiation, (3) the effect of weed spe-
cies and density on hyperspectral reflectance, and (4) the effect of
crop presence on weed detection and density differentiation.

Materials and Methods

Field studies were conducted on ‘AG6536’ soybean in 2016 and
2017 at the Horticultural Crops Research Station near Clinton,
NC (35.0242°N, 78.2828°W). The studies were conducted on a
Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic
Kandiudults) with 0.31% humic matter and pH 5.9 and an
Orangeburg loamy sand (fine-loamy, kaolinitic, thermic Typic
Kandiudults) with 0.47% humic matter and pH 5.9 in 2016 and
2017, respectively.

Experimental Design and Treatments

‘AG6536’ soybeanwas planted at a seeding rate of 321,000 seeds ha−2

(10-cm in-row spacing) using a four-row vacuum planter on June 9,
2016, and June 12, 2017. Treatments were combinations of crop
presence or absence, weed species (A. palmeri or D. sanguinalis),
and weed density (1, 2, 4, 8 and 1, 2, 4, and 16 plants m−2, respec-
tively) arranged in a randomized complete block design with three
replications. Plots consisted of 4 rows, each 30-cm wide by
5-m long. The day following crop planting, designated plots were
seeded by hand with each weed species. In plots designated as no
crop, soybean was pulled upon emergence. Amaranthus palmeri
at approximately 8-cm tall and D. sanguinalis at two expanded
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leaves were thinned to 1, 2, 4, 8 and 1, 2, 4, and 16 plantsm−2, respec-
tively, then maintained weekly using hand removal. Additionally, a
plot containing noweeds served as a weed-free check plot, and a plot
containing no crops and no weeds was utilized as a bare-ground
treatment.

Data Collection

Spectral data were collected across five dates in 2016 and six dates
in 2017 to determine the effect of phenology on spectral variability
and for detection of weed species and density. Spectral measure-
ments were collected using a spectrometer (PSM-2500, Spectral
Evolution, 1 Canal Street, Lawrence, MA 01840) with fiber optic
capable of a 44-rad field of view (0.44 m−2 ground field of view
for each reading), between 1000 and 1400 hours, in full sunlight.
Spectra were collected and graphed at the time of collection using
data-acquisition software (Darwin SP, Spectral Evolution). The
spectrometer has a spectral resolution of 3.5 nm at 700 nm,
22 nm at 1,500 nm, and 22 nm at 2,100 nm. Data output is in
1-nm increments, resulting in 2,151 bands reported. To account
for environmental and atmospheric variability during each data-
collection date, the sensor was calibrated every 15 min using a
white reflectance panel (Spectralon, Labsphere, 231 Shaker St,
North Sutton, NH 03260). Spectrometer measurements were taken
at nadir. A meter stick was placed at the apex of the average plant
height in the plot to ensure that all measurements were taken 1 m
over the plot canopy. Five measurements were taken for each plot
to capture crop and weed variability across the plot area, including
soil background, with a plot with no soybean and no weeds serving
as a bare-ground plot for soil reference. The bare-ground plot
served as a negative control to ensure that spectra from crops,
weeds, mixed spectra of crops, and weeds were able to be differen-
tiated from the soil. Crop and weed phenology and heights were
determined based on methods by Meier (2018) at each spectral
data collection.

Data Processing

Hyperspectral data for each plot and date were graphed using the
GGPLOT2 package in R software (v. 3.4.2) (Wickham 2013). Visual
quality control was performed for each graph, and data contain-
ing interference or noise as noted in field notes were removed.
Reflectance spectra were then grouped by date, weed type, and
the presence or absence of crop. Each subset of data was subjected
to the Kruskal-Wallis test to determine overall groupwise
differences at each of the 2,151 bands reported (Corder and
Foreman 2009). Comparisons were made by wavelength band
to determine species differentiation. To determine differences
within each subset of data, differences at each reported band were
tested using the Mann-Whitney U-test (Corder and Foreman
2009; Schmidt and Skidmore 2003). The null hypothesis being
tested states that median reflectance for each reported band is
not different between weed species or density. Levels of signifi-
cance were set at P ≤ 0.1 due to limits in sample size and to
explore a range in which additional wavelengths may provide
confidence in the differentiation of weed species and density.
P-values are reported as a continuous variable for each wave-
length, where P ≤ 0.1. In an agricultural setting like the one in
which this study was conducted, outcomes of misidentification
would result in mistaking a crop plant for weed or vice versa.
If site-specific weed management is the goal, discrimination of
weeds at a P ≤ 0.1 level would prove beneficial for use in a weed
control program.

Results and Discussion

Differentiation of All Treatments

Throughout the rest of this paper, results for spectra will be dis-
cussed corresponding to the following spectral regions: visible
(VIS = 350 to 700 nm), near-infrared (NIR= 700 to 1,300 nm),
shortwave-infrared region 1 (SWIR1 =1,500 to 1,900 nm), and
shortwave-infrared region 2 (SWIR2 = 1,900 to 2,500 nm). The
shortwave-infrared spectral region was subdivided into SWIR1
and SWIR2 to provide more meaningful results given the large
spectral range of the SWIR region.

Groupwise differentiation including all combinations of weed
species, weed density, and crop presence or absence were com-
pared with one another (Figures 1 and 2). Spectral reflectance
was different across years and the varying crop and weed pheno-
logical time points at which the spectra were collected. Therefore,
data are presented by year and weeks after planting (WAP). In
2016, differentiation between weed species, density, and crop pres-
ence was most prevalent across spectra at 5 WAP. The differentia-
tion at this timing was when there was the greatest difference in
vegetation cover between the plots containing soybean and the
plots containing only weeds. Plots containing lower weed densities
at this timing were more spectrally similar to the bare-ground
plots. At this point in the season, weeds canopies were not large
enough to fill the entirety of the plots as they did late season.
For plots containing soybean or higher weed densities, spectra were
more similar due to greater amounts of vegetation when compared
with the bare-ground and lower weed density plots. This trend was
similar in 2017 at 3, 4, and 5 WAP (Figure 2).

Other spectral differences in 2016 were seen at 4, 7, and 11
WAP and were confined to spectral reflectance and absorption
magnitude differences in the VIS (Figure 1). This was due to the
inclusion of the bare-ground treatment, for which differences were
observed in spectral magnitude in the VIS and SWIR1 and SWIR2.
In 2017, however, differences were seen across the VIS and both
SWIR1 and SWIR2 from 3 WAP to 15 WAP. At 15 WAP, addi-
tional spectra of interest were noted in the NIR region (Figure 2).
Early-season differentiation was not possible between weeds and
bare ground at 2 and 3 WAP in 2016 and 3 WAP in 2017. At this
time point, weeds are at an optimal stage for control using chemical
or mechanical control measures due to their small size (<10 cm).
During both years, there were differences in spectral magnitude
that are associated with changes in the type (weed species vs. crop)
and amount (weed density) of vegetation present. Furthermore,
spectral reflectance curves were not constant between reading
dates, as these curves change in magnitude and shape with chang-
ing plant phenology, crop presence, and weed species and density

Differentiation of Weed Species

In 2016, weed species could not be differentiated from one
another regardless of species or weed density in the presence
of soybean (Figure 3). Soybean reduced weed biomass
(Basinger et al. 2019), which could have affected the ability to
have spectral differences between both weed species and weed
density. Similar results were seen without soybean present; only
a few spectra in the blue range at 5 WAP showed differences
between weed species (Figure 4). When compared with bare
ground, all of the plots containing weeds at any density had
greater absorbance in the blue region. The blue region of the spec-
trum is associated with greater amounts of chlorophyll a and
chlorophyll b as well as β-carotene (Jensen 2006; Mahlein et al.
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2015), which would not be present in a plot with no vegetation. In
2017, results showed differences between weed species with soy-
bean in blue spectra at 4 WAP and in the VIS and SWIR2 at 15
WAP (Figure 5). Differences in SWIR2 could be related to leaf
water content or caused by competition within and between

species, as greater reflectance could be a result of lower relative
water content (Carter 1991). Without soybean present,
differences between species were detected across more spectra
in the VIS at 3 to 15 WAP and in the SWIR1 and SWIR2 at 8
to 15 WAP (Figure 6). These late-season differences in the

Figure 1. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities with (SB) and without soybean at the Horticultural Crops Research Station,
Clinton, NC, 2016. Bare ground (No SB BG) and weed-free soybean (SB WF) were grouped by weeks after planting (WAP).

Figure 2. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities with (SB) and without soybean at the Horticultural Crops Research Station,
Clinton, NC, 2017. Bare ground (No SB BG) and weed-free soybean (SB WF) were grouped by weeks after planting (WAP).
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SWIR regions are tied to differences between the bare-ground
plots and weed species and density due to the increased presence
of foliage.

Results from this study show that spectral differentiation can
occur between weed species and weed density. Successful

discrimination of species in both agricultural and nonagricultural
environments has previously been reported (Henry et al. 2004;
Koger et al. 2004a; Santos et al. 2011; Schmidt and Skidmore
2003; Ustin et al. 2009). However, the inconsistency of spectral dif-
ferentiation across years and phenological time points complicates

Figure 3. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after
planting (WAP), at the Horticultural Crops Research Station, Clinton, NC, 2016.

Figure 4. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities without soybean as a bare-ground control (No SB) grouped by weeks after
planting (WAP), at the Horticultural Crops Research Station, Clinton, NC, 2016.
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discrimination between species. Differences in environmental con-
ditions from year to year may alter phenology, and spectra may not
be uniform from year to year (Table 1). These differences may have
caused spectral variation due to variable rainfall or other environ-
mental changes between seasons.

Weed species differentiation had limited spectra for weed spe-
cies separation when in the presence of a crop and was not success-
ful at low weed densities. The lack of differentiation at lower
densities is likely due to the mixture of crop and limited weed spe-
cies canopy. Weed biomass was lower when crops were present,

Figure 5. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after
planting (WAP), at the Horticultural Crops Research Station, Clinton, NC, 2017.

Figure 6. Spectral reflectance for all Amaranthus palmeri (PA) and Digitaria sanguinalis (LC) densities without soybean as a bare-ground control (No SB BG) grouped by weeks
after planting (WAP), at the Horticultural Crops Research Station, Clinton, NC, 2017.
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and weed species at low densities often had limited canopy cover-
age over the crop, limiting their spectral contribution to the mixed
spectra. (Basinger et al. 2019). Greater weed densities had higher
biomass per square meter and contributed more to the mixed spec-
tra. At the highest weed density, each species was more readily dif-
ferentiated compared with the lower densities, due to increased
weed canopy reflectance. Differentiation of weed species occurred
later than would be acceptable for implementing chemical control
of A. palmeri, but control options for D. sanguinalis would still be
available.

Weed Density

Weeds with Soybean
The four densities ofD. sanguinalis in the presence of soybean were
not spectrally different from one another in 2016, except for only a
few spectra in the NIR at 4WAP (Figure 7). It would not be too late
to control D. sanguinalis in soybean at 4 WAP (Van Acker et al.
1993). However, this difference at 4 WAP was not consistent
between years and could not be relied on for making a manage-
ment decision. In 2017, differences of D. sanguinalis with soybean
were different at 4 WAP in the blue region of the VIS, and at 15
WAP throughout the VIS and in portions of the SWIR2
(Figure 8). The differences in blue regions at this time were likely
tied to chlorophyll content at this time of the season (Jensen 2006;
Mahlein et al 2015) However, the differences seen at 15WAP were
due toD. sanguinalis completing its life cycle and beginning to sen-
esce and plant desiccation occurring while soybean was not physio-
logically mature. If D. sanguinalis was not detected, interference at
the densities in this study could result in yield losses of up to 38% at
16 plants m−2 (Basinger et al. 2019).

Weed density with soybean present wasmore easily detected for
A. palmeri than for D. sanguinalis. In 2016, in the presence of soy-
bean, densities of A. palmeri were only different at limited spectra
in the NIR at 4WAP (Figure 9). All plots containingA. palmeri had
greater reflectance in the NIR, which likely resulted from greater
overall vegetation coverage at this point in the season (Table 2).
In 2017, with soybean, spectral differences only occurred at 4
and 15 WAP in the VIS (Figure 10); differences at 15 WAP were
likely due to the presence of reproductive structures in the plots
containingA. palmeri and the beginning of senescence of the weeds
in the plots. At 15 WAP, pairwise comparisons between the weed-
free treatment and all weedy treatments regardless of density
showed differences within the VIS (data not shown). In a previous
study, the yield loss due to the presence of A. palmeri at these

densities resulted in up to 37% yield loss at 8 plants m−2

(Basinger et al. 2019). Unfortunately, by 15 WAP, A. palmeri
had begun to senesce, contributing seeds to the soil seedbank,
and no control measure would be efficacious during this time dur-
ing the season (Spaunhorst et al. 2018).

Weed biomass reduction in soybean is likely the reason for poor
discrimination of weed species and density (Basinger et al. 2019).
This study showed that weed biomass tended to be significantly
greater when not grown with soybean and tended to increase with
increasing density. This is likely to be a significant contributing fac-
tor to the limited spectral differences seen in the present study.
Furthermore, increased leaf layers due to the multi-scaffold
branched trifoliate leaves produce many leaf layers, increasing
radiative transfer for soybean. This type of structure is similar to
that of A. palmeri, making the differentiation of the two species
difficult. Amaranthus palmeri was detected in this system when
the canopy became established more quickly than soybean and
was detectable in the VIS and NIR. Amaranthus palmeri was more
readily detected at low densities due to a quickly establishing tall
broadleaf canopy that was present above the soybean canopy.
However, once the soybean canopy became established, determi-
nation of A. palmeri density became more difficult due to the
increased leaf area of the crop.

Digitaria sanguinaliswas difficult to detect in soybean, and soy-
bean did not allow for large numbers of D. sanguinalis leaves to
emerge through the soybean canopy. Detection of D. sanguinalis
occurred during the onset of this weed’s reproductive structures,
which were able to protrude through the soybean canopy
(Figure 11).

Estimation of plant density using hyperspectral remote sensing
has been successful (Shafian et al. 2018; Thorp et al. 2008).
Detection of A. palmeri occurred early in the season due to rapid
biomass accumulation, as seen in previous research (Horak and
Loughlin 2000). Digitaria sanguinalis was slower establishing a
canopy, which made it more difficult to detect early season.
Density differentiation between weed-free and lower weed den-
sities has been demonstrated in soybean by others (Koger et al.
2004b). However, these differences were not detectable in the pres-
ence of soybean in large regions of spectra.

Weeds without Soybean
Detection of weed density without a crop present was more con-
sistent in identifying large portions of spectra that allowed for den-
sity discrimination. Detection of both weeds, when compared with
the bare-ground control, occurred earlier for both species when
density was highest. In 2016, when soybean was not present,
D. sanguinalis had more spectra distinguishable based on density
at 5 to 11 WAP (Figure 12). Interestingly, it was not until 5 WAP
that D. sanguinalis could be distinguished from bare ground, and
then only in the VIS regions. Furthermore, for spectral reflectance
in the VIS, SWIR1, and SWIR2, the only regions where differences
were detectable, reflectance magnitude was related to D. sanguina-
lis density, with greater densities (4 and 16 plants m−2) having
greater spectral absorbance from 7 to 11 WAP. This is somewhat
problematic, as the D. sanguinalis plants were quite large at 20-cm
tall, having at least 3 internodes visible (Table 2), making it chal-
lenging to control at this size. In 2017, when soybean was not
present, differences in D. sanguinalis density were noted at 3
WAP on the red edge and the SWIR2 (Figure 13). However, more
spectra were differentiable at 4 and 5 WAP and in the blue and
longer SWIR spectra. At 3 to 8 WAP, the trend of greater absorb-
ance with greater density was similar to that seen in 2016,

Table 1. Mean monthly temperature, growing degree days (GDD), and
precipitation for Clinton Horticultural Crops Research Station, Clinton, NC,
from June to November for 2016 and 2017.

Average
monthly

temperature GDD Precipitation

Year Year Year

Month 2016 2017 2016 2017 2016 2017

C base 10 C mm
June 25 24 473 437 93 150
July 28 27 568 527 154 86
August 27 26 538 493 107 125
September 24 23 437 393 287 132
October 18 18 274 272 281 53
November 12 11 93 74 20 31
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Figure 7. Spectral reflectance for all Digitaria sanguinalis (LC) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after planting (WAP), at the
Horticultural Crops Research Station, Clinton, NC, 2016.

Figure 8. Spectral reflectance for all Digitaria sanguinalis (LC) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after planting (WAP), at the
Horticultural Crops Research Station, Clinton, NC, 2017.
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indicating that there were greater differences in plant biomass dur-
ing this period when compared with the bare-ground plots. By 8
and 15WAP, VIS, SWIR1, and SWIR2 regions had greater absorp-
tion than bare-ground plots due to the presence of D. sanguinalis
biomass. By 15 WAP, the magnitude between spectra decreased
because of the onset of senescence in D. sanguinalis at this reading
date.

Amaranthus palmeri detection occurred at a similar timing to
that of D. sanguinalis for each year. In 2016, differences in
A. palmeri density were only noted at 5 WAP (VIS and SWIR2)
and 11 WAP (VIS, SWIR1, and SWIR2) (Figure 14). In 2017,
differences occurred earlier in the season (3WAP) and across more
spectra (Figure 15). Many of the differences between A. palmeri
density were in the VIS, with late-season (8 and 15 WAP)
differences occurring across most spectra in the SWIR1 and
SWIR2 regions.

Weed and Crop Phenology
The phenology of crop and weed species was not affected by crop
presence/absence and weed density, as phenological differences
between densities were not noted (Table 2). Annual differences in
phenological timing were different between years as defined by
Meier (2018). At the earliest data-collection dates across years
and cropping systems, weed species and density did not have estab-
lished canopies and could not be differentiated from either weed-
free or bare-ground treatments. Rapid establishment of weed species
canopies, especially withA. palmeri, leads to increased absorption in
VIS early in the season. Similarly, early detection of D. sanguinalis
was due to increased canopy coverage of higher-density treatments.
The establishment of weed canopy was critical to the differentiation
between crop species and density.

Weed species phenology did not differ between densities, but
overall weed biomass and height did change due to interspecific
competition with each crop and intraspecific competition due to
increased weed density (Basinger et al. 2019). Higher weed density
tended to fill out a canopy more quickly, but individual plants
tended to be smaller overall than at lower weed densities.
Lower-density weed species toward the end of the season in each
year tended to have greater canopy density per plant but were sim-
ilar overall at higher plant densities. Higher densities of weed spe-
cies tended to have greater absorption in the VIS, SWIR1, and
SWIR2 earlier in the season. As canopies of lower-density treat-
ments became established, differences between weed densities were
observed at fewer SWIR1 and SWIR2 spectra but continued in the
VIS region. Plant phenology is important for the differentiation
and detection of weed species. Phenology is not often considered
in studies using remote sensing for species discrimination (Santos
et al. 2016; Schmidt and Skidmore 2003), but spectral reflectance
does change with changing crop phenology (Basinger et al. 2020;
Vina et al. 2004). Phenology and biophysical characteristics are
inherently linked with one another and are correlated with hyper-
spectral reflectance (Lausch et al. 2015). Changing plant phenology
can have effects on internal leaf structure and chlorophyll concen-
tration, which could explain some of the overall changes in spectra
during each growing season (Poorter et al. 2009; Slaton et al. 2001)
High temporal data collection in the early season is important for
the detection of weed species, as plant phenology changes rapidly
during this time. Early-season detection is also important in agri-
cultural systems, because weed management strategies are most
effective when weeds are small.

This study aimed to elucidate spectral changes in a soybean
crop with varying densities of two weed species across several

Figure 9. Spectral reflectance for all Amaranthus palmeri (PA) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after planting (WAP), at the
Horticultural Crops Research Station, Clinton, NC, 2016.
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phenological time points. The study showed that spectral reflec-
tance is dynamic throughout the season and between seasons, with
the magnitude and shape of each spectrum changing in some parts
of the measured spectra, while other spectra were similar across
observation dates despite differences in treatments (bare ground,
weed-free soybean, density of D. sanguinalis or A. palmeri).
These variations in absorbance, reflectance, and magnitude
changes over the season could be used as targets to assess plant
phenology and/or plant density. Spectral changes were seen more
when there were differences in the amount of vegetation present,
indicating that areas of greater weed populations could be spec-
trally distinguished from lower-density areas of the same species.
Furthermore, plants that aremore phenologically separate in terms
of biomass production and reproduction and overall canopy struc-
ture can provide opportunities for spectral differentiation.

Given that much of the spectral differentiation in this study
was in the VIS region, there is a significant opportunity to lever-
age these differences using standard RGB photographs coupled
with machine learning to assist in the differentiation of crop
and weed species. However, there are several spectral in the

SWIR1 and SWIR2 regions that could be further utilized for dif-
ferentiation of species and weed density. Leveraging these addi-
tional spectra may provide opportunities to further improve the
discrimination of plant species using artificial intelligence.
Furthermore, understanding the impact of variations in magni-
tude of absorbance and reflectance of certain spectra as plant phe-
nology changes could provide additional insight into building
more accurate algorithms and sensor platforms for use in agricul-
tural systems.

In this study, plant phenology was important in the detection
and differentiation of weed species, and it should be incorporated
in future studies. Additional challenges of identification of site-spe-
cific weed management include the development of an appropriate
threshold to determine when weed management is necessary and
the methods to be used to control weeds. This study focused on the
detection and differentiation of individual weed species that were
not part of a weed species complex but utilized reflectance spectra
to differentiate between crops and weeds. The weed species com-
plex should be considered, as this situationmore accurately reflects
the natural occurrence of weeds in agricultural systems.

Table 2. Weeks after planting (WAP), date when spectral measurements were taken, growing degree days (GDD), mean plant phenology, andmean plant height across
treatments in soybean in 2016 and 2017 at Horticultural Crops Research Station, Clinton, NC.

Plant phenologya Plant height

WAP Date GDDb Soybean
Digitaria
sanguinalis Amaranthus palmeri Soybean

Digitaria
sanguinalis

Amaranthus
palmeri

————————————————————————2016———————————————————————

cm
0 WAP June 6, 2016 0 Seed Seed Seed 0 0 0
3 WAP June 29,

2016
358 Trifoliate leaf on the

second node
unfolded

2 true leaves 4 true leaves 8 3 5

4 WAP July 7, 2016 503 Trifoliate leaf on the
fifth node unfolded

Fifth true leaf
expanded

2 side shoots visible 12 13 15

5 WAP July 15, 2016 562 Trifoliate leaf on the
seventh node
unfolded

Third internode
visible

5 side shoots visible 20 28 40

7 WAP July 28, 2016 801 First flowers opened First awns visible Full flowering: 50% of
flowers open, first
petals may have fallen

26 40 75

11 WAP August 26,
2016

819 End of flowering with
pods visible

Caryopsis watery
ripe

Nearly all fruits have
reached final size

48 82 140

————————————————————————2017———————————————————————

cm
0 WAP June 12,

2017
0 Seed Seed Seed 0 0 0

2 WAP June 28,
2017

266 Trifoliate on the
second node
unfolded

2 true leaves visible 4 true leaves visible 8 3 5

3 WAP July 6, 2017 429 Trifoliate on the third
node unfolded

3 tillers visible 4 side shoots visible 13 13 15

4 WAP July 13, 2017 551 Third side shoot of
first order visible

Fifth internode
extended

9 or more extended
internodes

20 28 40

5 WAP July 19, 2017 671 First flower buds
visible

Flag sheath just
visibly swollen

First individual flowers
visible, but still closed

26 53 75

8 WAP August 10,
2017

1,038 About 60% of flowers
open

Full flowering: 50%
of flowers open

Nearly all fruits have
reached final size

49 82 143

15 WAP September
13, 2017

1,536 About 30% of pods
have reached final
length (15–20 mm)

Beginning of
ripening or seed
coloration/
desiccation;
fruit fully ripe

Seeds are fully ripe/
beginning of leaf fall

90 83 143

aPlant phenology based on the BBCH scale (Meier 2018).
bGrowing Degree Day (GDD) calculated using a base temperature of 10 C.
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Figure 10. Spectral reflectance for all Amaranthus palmeri (PA) densities with soybean (SB) and a weed-free control (SB WF), grouped by weeks after planting (WAP), at the
Horticultural Crops Research Station, Clinton, NC, 2017.

Figure 11. Visual representation of plant structure and growth of weeds with and without soybean: (A) bare ground, (B) Amaranthus palmeri, (C) Digitaria sanguinalis, (D) soybean,
(E) soybean and A. palmeri, (F) soybean and D. sanguinalis. All pictures with weeds represent the highest weed density of each species tested.
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Figure 12. Spectral reflectance for all Digitaria sanguinalis (LC) densities without soybean (No SB) and a bare ground control (No SB BG), grouped by weeks after planting (WAP),
at the Horticultural Crops Research Station, Clinton, NC, 2016.

Figure 13. Spectral reflectance for all Digitaria sanguinalis (LC) densities without soybean (No SB) and a bare-ground control (No SB BG), grouped by weeks after planting (WAP),
at the Horticultural Crops Research Station, Clinton, NC, 2017.
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Figure 14. Spectral reflectance for all Amaranthus palmeri (PA) densities without soybean (No SB) and a bare-ground control (No SB BG), grouped by weeks after planting (WAP),
at the Horticultural Crops Research Station, Clinton, NC, 2016.

Figure 15. Spectral reflectance for all Amaranthus palmeri (PA) densities without soybean (No SB) and a bare-ground control (No SB BG), grouped by weeks after planting (WAP),
at the Horticultural Crops Research Station, Clinton, NC, 2017.
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