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POINCARE DUALITY AND THE RING OF COINVARIANTS 

RICHARD KANE 

ABSTRACT. It is shown that, in characteristic zero, a finite subgroup of a general 
linear group is generated by pseudo-reflections if and only if its ring of coinvariants 
satisfies Poincaré duality. 

1. Introduction. Let G C GL(V) be a finite subgroup where V is a finite dimen­

sional vector space over a field F of characteristic 0. Let S = S(V) be the symmetric 

algebra of V. The action of G on V extends to a multiplicative action on S. The ring of 

invariants is given by 

R = SG = {x e S | g • x = x for all g G G}. 

If one lets 

/ = the graded ideal of S generated by R+ — J ] R' 

then one can also form the ring of coinvariants S/I. It is well known that the assertion 

that G C GL(V0 is a pseudo-reflection group (i.e. generated by its pseudo-reflections) is 

equivalent to either of the following conditions 

(1.1) R is a polynomial algebra 

( 1.2) S is a free R module. 

As a convenient reference for invariant theory and pseudo-reflection groups see Stan­

ley's discussion in [ 1 ]. The main result of this note is to give another characterization of 

pseudo-reflection groups, this time in terms of the ring of coinvariants. This characteri­

zation, as we will see, is a corollary of the work of Steinberg in [2]. This note is mainly 

concerned with explaining how his criterion for G being a pseudo-reflection group can 

be translated into one involving Poincaré duality. 

It is a standard fact from invariant theory that, for any G, R is finitely generated as 

an algebra and the extension R C S is finite. In other words, S is a finite R module or, 

equivalently, S/1 is a finite dimensional algebra. A finite dimensional graded F algebra 

A is said to satisfy Poincaré duality if there exists a positive integer N such that 

(1.3) AN = F while A1 = 0 for / > /V 
A' (^ AN~l > AN — F 

( 1.4) the pairing v is nonsingular for each 0 < / < N. 
x (g) v i—> x • y 

The rest of this paper will be devoted to proving 
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THEOREM 1.5. G C GL(V) is a pseudo-reflection group if and only ifS/I satisfies 
Poincaré duality. 

In the next two sections we will study the harmonic elements of G C GL(V). In 
particular, in §3, we will use the harmonic polynomials to prove the above theorem. 
Throughout this paper we will assume that F is a field of characteristic 0, V is a finite 
dimensional vector space over F, and G C GL(V) is a finite group. 

2. Differential operators. Let V* be the dual vector space of V. In order to define 
the harmonic elements of S = S(V), we also need to introduce the symmetric algebra 
5* = S(V*) of V* and consider its relation to S. That will be done in this section. The 
harmonics will be defined and studied in §3. We are going to think of both S and S* as 
dual graded Hopf algebras. Regarding the algebra structure, both S and S* are polynomial 
algebras. If {t\,..., tfl} is a basis of V then the monomials in {t\,..., ttl} are an F basis 
of S, and we then write S = ¥[t\,... ,tn]. Similarly, for any basis {a\,... ,an} of V*, we 
can write S* = ¥[a\, ...,a„]. The gradings on S and S* are determined by the stipulation 
that the elements of V and V* have degree 1. The coalgebra structures À: S —> S (g> S 
and A* : S* —> 5* <g> S* are determined by stipulating that the elements of V and V* are 
primitive i.e. 

A(x) = x (8) 1 + 1 0 JC for all JC G V 

A*(a) = a 0 l + l 0 a for all a G V*. 

So 5 and S* are primitively generated Hopf algebras. Moreover they are dual Hopf alge­
bras. The Kronecker pairing 

(, ) : V * 0 ^ F 

extends to a pairing 
( , ) :S*<g)S->F 

which relates the Hopf algebra structure of 5"* and S. Notably 

(2.1) (<*,x-y) = (A*(a),x®y) 

for any a G S* and I J G 5. 
Besides thinking of S* as the dual Hopf algebra of S, we can also interpret S* as a Hopf 

algebra of differential operators acting on S. For any a G S* we will use Da: S —» 5 to 
denote the corresponding linear operator. We begin with a relatively informal description 
of the action S* 0 S —> S. For any a G V* the operator Da is a derivation determined by 
the rules: 

Da(x) = (a,x) for JC G V 

Z)a(xy) = Da(x)y + xDa(y). 

For an arbitrary a G S* = Ffai , . . . , aw] one then defines Da by replacing { a j , . . . , an} 
in a = f(oc\,..., ocn) by the derivatives {Da , . . . ,DW / |}. In other words, multiplication 
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in S* corresponds to composition of the associated differential operators. More formally, 
the action S* (g) S —» S is determined by the two requirements that: 

(2.2) for any a G V* and x G V, Dff(x) = (a, JC) 
(2.3) for any a G 5* and JC, y G 5 if A* (a) = £ arj 0 of then 

Da(x-y) = YlDAx)'Da>ï{y). 

This definition of Da agrees with the previous one. First of all, for a G V* we have 
A*(a) = a 0 1 + 1 (g) a so it follows from property (2.3) that Da is a derivation. Secondly, 
it follows from property (2.3) plus the identity A*(a • (3) = A*(cx)A*(/3) that D„Dj = Dffj 

for any a,/3 G S*. 
The action of 5* on S incorporates the pairing (, ): S* C8 S —* F. For it follows from 

(2.1), (2.2) and (2.3) that 
(2.4) for any a G S** and* G S*, D„(JC) = (a,;c). 

There is a third way as well to define the operations Da. For we can use the above defining 
properties to deduce the following formula for Da. 

LEMMA 2.5. Given a e S* andx G SifA(x) = £ JCJ ®JC" then Da{x) = £(a,x-)jc/
//. 

PROOF. Our proof is by induction on the degree of a. First of all, suppose that a G V* 
/.e. deg(a) = 1. Write 5 = F[fi,..., f„]. It suffices to verify the formula for any monomial 
tE — t\x • - • fn". By property 2.4 we have Da(ti) — (a, t[). By the derivation property of 
Da we then have 

A*(^) = Y.eif'^aji) where Ê, = (é?i,é?2,... , e , - - l,é?/+i,...). 

The coproduct A: 5 —-> 5 (£) S satisfies 

A(tE) = Y, (F,G)tF®tG 

F+G=E 

where 

.v Js-5s-

One can reformulate the above identity as 

A ^ ) = £ (F,G)(ajF)tG 

F+G=£ 

which is the desired formula. 
Next pick k > 2 and suppose that the lemma holds in degree < k. In proving the 

lemma in degree k, one can reduce to monomials. Every monomial a of degree k can be 
decomposed a = a'a", where deg(a'), deg(a") < k. In particular, the lemma holds for 
Da> and Da». Pick x G S and write AQc) = £ x[ ® x". Since (A (8) 1 )A = ( 1 (8) A)A we can 
write 

(A 0 1)A(JC) = ( 1 0 A)A(x) = £ * ; <8) •*(/ ® x'j 
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where x\ and x" are as above. We now have the identities 

Da{x) = DalDa„(x) 

= E^V'X0'''-*//)-*," 
= Z(a"®a',A(x'j))x'J' 

m 
Lastly, we want to observe that it follows from the above lemma that the action S* ® 

S —> S can be dualized in an appropriate sense so as to be equivalent to the product 
S* ® S* —> S*. The relationship is given by the following lemma. 

LEMMA 2.6. For any a, (5 G S*, x G S, (a9D^(x)) = (a • /?,*). 

PROOF. 
(a-/3,x) = (a®/3,A*(x)) 

= ( a , D ^ ) ) . 
The last equality follows from the previous lemma. • 

3. Harmonic elements. The invariants of S were introduced in §1. One can also 
look at the invariants of S*. The action of G on V induces an action on V* by the rule 

((f • a,x) = (a, (f~l • x) 

for any a G V*, x G V and ip G G. The action of G on V* extends to an action on S* and 
so one can consider R* = 5* \ 

DEFINITION. An element JC G S is said to be harmonic if Da(x) = 0 for all a G /?*. 

REMARK. The term harmonic arises from the case of the Coxeter groups W(An- i ) = 
!„, W(Bn) = E„ x (Z/2Z)W and W(DW) = !„ x (Z/2Z)"-1. When interpreted as reflection 
groups, these groups act by permuting {t\,..., tn} as well as by changing their signs. It 
follows that t\ + • —+% is an invariant of each of them. Consequently, a harmonic element 
in each of these cases must satisfy 

AU) = 0 

where A = Ĵ - + • • • + J^ is the usual Laplacian. This equation is the usual definition of a 
harmonic function. The concept of a harmonic element is traditionally ascribed to Borel. 
They were studied by Steinberg in [2] although he did not use the term harmonic. 

We will let H C S denote the subspace of harmonic elements. Analogous to the ideal 
I C S defined in §1, one can form the ideal /* C S* generated by /?*. Observe that the 
definition of H can be strengthened to assert 
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LEMMA 3.1. x G H if and only ifDa(x) = 0 for all a G /*. 

There is also another approach to harmonics which will be useful in what follows. 
Namely, 

LEMMA 3.2. The submodule H C S is dual to the quotient module S* —> S*/1* for 
any a G 5*, (3 G R*. By Lemma 2.6 we have the identity 

(a • j3, x) = (a, Dj(x)) for any x G S. 

Moreover 

(a, Dtf(x)) — 0 for all a and (3 as above if and only if x G H. 

As a final comment concerning Lemma 3.2, observe that since S*/I* is a quotient 
algebra it follows that H C S is a subcoalgebra. 

Next we can consider H as a S* module. For the action of 5* on S via the maps Da:S—+ 
S leaves / / invariant. For if x G // then for any a G S*, (3 G 7?*, DjDa(x) = DaDj(x) = 
Da(0) = 0. So Da(x) G //. Recall that a S* module is cyclic if it is generated by a single 
element. As a preliminary to proving Theorem 1.5, we next explain how an extension of 
the arguments in [2] can be used to prove 

THEOREM 3.3 (STEINBERG). G C GL(V0 is a pseudo-reflection group if and only if 
H is a cyclic S* module. 

Steinberg's paper actually deals with a slightly different situation. First of all, his 
arguments deal with the case where the roles of S and S* are interchanged. He considers 
S as an algebra of differential operators on S* rather than vice versa. So, from his vantage 
point, the harmonic elements are located in S*. Secondly, he only works with F — C, 
the complex numbers, and S* (= the polynomial functions V) is expanded to the larger 
algebra S* of entire functions on V. The action of S on S* is extended to an action on 5*, 
and analogues in S* of the harmonics are then studied. 

In this paper we are dealing with the action of 5* on S. In analogy with Steinberg's 
strategy we will expand S to a larger algebra S. We pass from the polynomials S — S(V) 
to the formal power series 5(( V)). Actually it suffices (and is convenient) to work with a 
subalgebra S C S((V)). For each x G V C ^ w e have 

ex = X>7>?! 

in 5((V)). Let 

S = the algebra of 5((V)) generated by S and {ex \ x G V}. 

The differential action of S* on S extends to an action of S* on S. Namely, we differentiate 
ex in the usual manner. For any a G 5* we have 

Da(e
x) - a(x)ex. 
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Here we are identifying S* with the polynomial functions on V so that a(x) denotes 
the value of the polynomial a G S* on x G V. With the above alterations the proof of 
Theorem 3.3 is now directly analogous to the arguments appearing in [2]. We will briefly 
outline our version of these arguments. For more details consult [2]. 

First of all, assume that G C GL(V) is a pseudo-reflection group. Each pseudo-
reflection s: V —>• V has a unique (up to scalar multiple) eigenvector a G V where s(a) = 
£• a for a primitive n-th root of unity £ = <̂  (n > 2). We can form the element Q = rL as 
in 5. It is straightforward to show that Q G // and, hence, DQ = {Da(Q) \ a G S*} 
satisfies Z)Q C //. If one combines Lemma 3.1 with 

LEMMA 3.4. Given a G 5* of degree > 0 f/ien A*(Q) = 0 if and only if a G /*. 

then one obtains the equality DQ — H and, hence, H is cyclic. For a proof of Lemma 3.4 
consult Steinberg's proof of Theorem 1.3(b) in [2]. 

Secondly, assume that H is a cyclic S* module. For each x G V we can define an 
analogue of the harmonic polynomials. 

DEFINITION. HX = {h G S | Dff(/i) = a(x)/i for all a G /?*}. Let 4c = dirrif Hx. 
A basic fact of invariant theory is that dimfS// > \G\ and dinif S/l = \G\ if and 

only if G is a pseudo-reflection group. So, to prove the proposition, it suffices to prove 
dimf S/I = | G\. One can prove 

LEMMA 3.5. For any x, dx > dimf S/L 

LEMMA 3.6. If the isotropy group Gx ofHx is trivial then dx < \G\. 

Putting together these lemmas we have, for the appropriate JC, 

\G\ <d\mS/l<dx < \G\. 

Thus dirrif 5 / / = \G\ as desired. The proof of Lemma 3.5 is analogous to that of 
Lemma 4.3 in [2]. The proof of Lemma 3.6 is analogous to that of Theorem 1.2(b) in 
[2]. 

As a remark, the hypothesis of H being cyclic is used in the proof of Lemma 3.5. If 
one chooses a cyclic generator P G H then the element Px = exP satisfies Px G Hx. One 
can show that Da(Px) G Hx for all a G S* and that Da(Px) ^ 0 if a ^ 0 in S*/F. 

We now set about using Theorem 3.3 to prove Theorem 1.5. 

PROOF OF THEOREM 1.5. As explained at the beginning of this section, the inclusion 
G C GL(V) induces, via duality, an inclusion G C GL(V*). We will prove the dual 
assertion that 

(3.7) G C GL(V*) is a pseudo-reflection group if and only if S*/I* satisfies Poincaré 
duality. 

To prove this equivalence it suffices to prove that 
(3.8) H is a cyclic S* module if and only if S*/I* satisfies Poincaré duality. 
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For it is straightforward that G C GL(V*) is a pseudo-reflection group if and only if G C 
GL(V) is a pseudo-reflection group (pseudo-reflections dualize to pseudo-reflections). 
So (3.7) follows from (3.8) by applying Theorem 3.3. 

We now set about proving (3.8). It follows from Lemma 3.1 that we have an action 
S*/I* ®H —• H. This action is dual to the product map 5*//* ® 5*//* —• 5*//*. For, 
by Lemma 2.6 plus the duality established between 5* //* and H in Lemma 3.2, we have 
the identity 

(3.9) (a ./3,JC) = (<z,Dd(jc)) for any a,/3 G S*//*, x G//. 

This identity enables us to relate the two conditions appearing in (3.8). First, asserting 
that H is cyclic with generator Q. is equivalent to asserting that for every a G S* /1* we 
can find (3 G 5*//* such that (a, D#(Q)) ŷ  0. Here we are also using the duality between 
H and 5*//*. Secondly, asserting that 5*//* satisfies Poincaré duality is equivalent to 
asserting that there exists Q so that, for every a G 5*//*, we can find (3 G 5*//* such 
that(a-/3,Q) ^ 0. • 
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