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POINCARE DUALITY AND THE RING OF COINVARIANTS

RICHARD KANE

ABSTRACT. It is shown that, in characteristic zero, a finite subgroup of a general
linear group is generated by pseudo-reflections if and only if its ring of coinvariants
satisfies Poincaré duality.

1. Introduction. Let G C GL(V) be a finite subgroup where V is a finite dimen-
sional vector space over a field [ of characteristic 0. Let S = S(V) be the symmetric
algebra of V. The action of G on V extends to a multiplicative action on S. The ring of
invariants is given by

R=5S°={xeS|g-x=xforallg € G}.

If one lets
I = the graded ideal of S generated by R, = >" R’
i1

then one can also form the ring of coinvariants S /1. It is well known that the assertion
that G C GL(V) is a pseudo-reflection group (i.e. generated by its pseudo-reflections) is
equivalent to either of the following conditions

(1.1) Risapolynomial algebra

(1.2) Sisafree R module.
As a convenient reference for invariant theory and pseudo-reflection groups see Stan-
ley’s discussion in [1]. The main result of this note is to give another characterization of
pseudo-reflection groups, this time in terms of the ring of coinvariants. This characteri-
zation, as we will see, is a corollary of the work of Steinberg in [2]. This note is mainly
concerned with explaining how his criterion for G being a pseudo-reflection group can
be translated into one involving Poincaré duality.

It is a standard fact from invariant theory that, for any G, R is finitely generated as
an algebra and the extension R C S is finite. In other words, S is a finite R module or,
equivalently, S/1 is a finite dimensional algebra. A finite dimensional graded F algebra
A is said to satisfy Poincaré duality if there exists a positive integer N such that

(1.3) AY =F while A’ = 0 fori > N
AT AN T AN = F
X @Oy = x-y
The rest of this paper will be devoted to proving

(1.4) the pairing is nonsingular for each 0 <i < N.
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THEOREM 1.5. G C GL(V) is a pseudo-reflection group if and only if S /I satisfies
Poincaré duality.

In the next two sections we will study the harmonic elements of G C GL(V). In
particular, in §3, we will use the harmonic polynomials to prove the above theorem.
Throughout this paper we will assume that [ is a field of characteristic 0, V is a finite
dimensional vector space over [, and G C GL(V) is a finite group.

2. Differential operators. Let V* be the dual vector space of V. In order to define
the harmonic elements of S = S(V), we also need to introduce the symmetric algebra
S§* = S(V*) of V* and consider its relation to S. That will be done in this section. The
harmonics will be defined and studied in §3. We are going to think of both S and S* as
dual graded Hopf algebras. Regarding the algebra structure, both S and S* are polynomial

algebras. If {¢,,....,} is a basis of V then the monomials in {#,,...,7,} are an [ basis
of S, and we then write S = F[ty,...,¢,]. Similarly, for any basis {«/, ..., a,} of V*, we
can write S* = Flay, ..., a,]. The gradings on S and S* are determined by the stipulation

that the elements of V and V* have degree 1. The coalgebra structures A:S — S ® S
and A*: §* — §* @ §* are determined by stipulating that the elements of V and V* are
primitive i.e.

Ax) =x® 1+1®x forallxeV
A)=a@1+1Q@a forallac V.

So S and S* are primitively generated Hopf algebras. Moreover they are dual Hopf alge-
bras. The Kronecker pairing
LYEV'RV-FE

extends to a pairing

(, 288 —F
which relates the Hopf algebra structure of S* and S. Notably
2.1 (o,x-yy = (A"(a), x® y)

forany a € S*and x,y € S.

Besides thinking of $* as the dual Hopf algebra of S, we can also interpret $* as a Hopf
algebra of differential operators acting on S. For any o € §* we will use D,: S — S to
denote the corresponding linear operator. We begin with a relatively informal description
of the action §* @ § — S. For any « € V* the operator D,, is a derivation determined by

the rules:

Dy(x) = (o, x) forx eV

Da(xy) - Da(x)y +XD0((,V)~
For an arbitrary o € §* = Flay, ..., «,] one then defines D, by replacing {a,...,a,}
in @ = f(ay,...,q,) by the derivatives {Da],... ,Dy, }. In other words, multiplication
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in §* corresponds to composition of the associated differential operators. More formally,
the action $* ® S — § is determined by the two requirements that:

(2.2) forany o € V*and x € V, Dy(x) = (o, x)

(2.3) forany a € S* and x,y € Sif A*(a) = Y o) @ ! then

Dy(x-vy) = ZD(,:(X) D ().

This definition of D, agrees with the previous one. First of all, for « € V* we have
A*(a) = a®@ 1 +1 @ asoit follows from property (2.3) that D,, is a derivation. Secondly,
it follows from property (2.3) plus the identity A*(« - 3) = A"(a)A*(3) that DD 3 = D
forany o, 3 € S*.
The action of §* on § incorporates the pairing (, ): S* @ S — F. For it follows from

(2.1),(2.2) and (2.3) that

(2.4) forany a € S* and x € S¥, Dy(x) = (a, x).
There is a third way as well to define the operations D,,. For we can use the above defining
properties to deduce the following formula for D,,.

LEMMA 2.5. Given o € S* and x € Sif Ax) = Y x! @ x!" then Do (x) = S (o, x)x!.

PROOF.  Our proofis by inductionon the degree of «. First of all, suppose that o« € V*
i.e.deg(a) = 1. Write S = F[zy,...,t,]. Itsuffices to verify the formula for any monomial
£ = 1{"-- 1. By property 2.4 we have D,(#}) = (c,1;). By the derivation property of
D, we then have

D(,(IE) = Ze,-té'(a, fi> where E,‘ = (e1,er,...,¢; — 1, ei,...).

The coproduct A: § — § @ § satisfies

AEY= S (F.GOF @1

F+G=E
where T Ny
_ s+ gs)!
(F7 G) B IYI f\!gS' ’

One can reformulate the above identity as

Do(t") = Y (F,G){a,t" )¢
F+G=E
which is the desired formula.

Next pick k > 2 and suppose that the lemma holds in degree < k. In proving the
lemma in degree k, one can reduce to monomials. Every monomial « of degree & can be
decomposed o = o’a”, where deg(a’), deg(a”’) < k. In particular, the lemma holds for
Dy and D Pick x € S and write A(x) = > x! @ x!". Since (A @ 1)A = (1 © A)A we can
write

(A® DA = (1© AAW) = Y x @ x; @2
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where x; and x{’ are as above. We now have the identities
Do(x) = Dy Dy (x)
=Dy [Z(a", xf)x'/]
=2 (@ xi) (e i)
— Z<a//® O( A(X )> "
Z(a" o, xp)
=2 (X
| ]
Lastly, we want to observe that it follows from the above lemma that the action $* ®

S — S can be dualized in an appropriate sense so as to be equivalent to the product
S* ® §* — §*. The relationship is given by the following lemma.

LEMMA 2.6. Forany o, 3 € S*, x € S, (o, D3(x)) = (o - 3,x).

PROOF.
(a-B.x) = (@@ B,A"()
= <a®ﬁ ZX 029 ”>
= (a, Dﬁ,;(x)).
The last equality follows from the previous lemma. [

3. Harmonic elements. The invariants of S were introduced in §1. One can also
look at the invariants of S*. The action of G on V induces an action on V* by the rule

(prax) =(ap™" )
forany a € V*,x € Vand ¢ € G. The action of G on V* extends to an action on S* and
so one can consider R* = §*°.

DEFINITION. An element x € S is said to be harmonic if D,(x) = 0 for all « € R*.

REMARK. The term harmonic arises from the case of the Coxeter groups W(A, ) =
2, W(B,) = £,X(Z/2Z)" and W(D,) = £,X(Z/2Z)"~". When interpreted as reflection
groups, these groups act by permuting {fy,...,,} as well as by changing their signs. It
follows that £ +- - -+£2 is an invariant of each of them. Consequently, a harmonic element
in each of these cases must satisfy

Alx)=0
where A = ax’ +- a, is the usual Laplacian. This equation is the usual definition of a
harmonic function. The concept of a harmonic element is traditionally ascribed to Borel.
They were studied by Steinberg in [2] although he did not use the term harmonic.

We will let H C S denote the subspace of harmonic elements. Analogous to the ideal
I C S defined in §1, one can form the ideal I* C S* generated by R*. Observe that the
definition of H can be strengthened to assert
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LEMMA 3.1. x € H ifand only if Do(x) = 0 for all « € I".

There is also another approach to harmonics which will be useful in what follows.
Namely,

LEMMA 3.2.  The submodule H C S is dual to the quotient module S* — S*/I* for
any a € §*, 3 € R*. By Lemma 2.6 we have the identity

(o B,x) = (o, D3(x))  foranyx €.
Moreover

(o, Dy(x)) =0 forall o and 3 as above if and only if x € H.

As a final comment concerning Lemma 3.2, observe that since $*//* is a quotient
algebra it follows that H C §'is a subcoalgebra.

Next we can consider H as a $* module. For the action of $* on S via the maps D,,: S —
S leaves H invariant. For if x € H then for any « € S*, 3 € R*, D;D,(x) = DD 4(x) =
Dq(0) = 0. So Dy(x) € H. Recall that a S* module is cyclic if it is generated by a single
element. As a preliminary to proving Theorem 1.5, we next explain how an extension of
the arguments in [2] can be used to prove

THEOREM 3.3 (STEINBERG). G C GL(V) is a pseudo-reflection group if and only if
H is a cyclic S* module.

Steinberg’s paper actually deals with a slightly different situation. First of all, his
arguments deal with the case where the roles of S and S* are interchanged. He considers
S as an algebra of differential operators on S* rather than vice versa. So, from his vantage
point, the harmonic elements are located in S*. Secondly, he only works with F = C,
the complex numbers, and $* (= the polynomial functions V) is expanded to the larger
algebra $* of entire functions on V. The action of S on S* is extended to an action on §~,
and analogues in §* of the harmonics are then studied.

In this paper we are dealing with the action of S* on S. In analogy with Steinberg’s
strategy we will expand S to a larger algebra S. We pass from the polynomials S = S(V)
to the formal power series S((V)). Actually it suffices (and is convenient) to work with a
subalgebra Sc S((V)). For each x € V C § we have

et => x"/n!

n>0
in S((V)). Let
S = the algebra of S((V)) generated by S and {e* | x € V}.

The differential action of $* on S extends to an action of S* on $. Namely, we differentiate
¢* in the usual manner. For any o € §* we have

Dy (") = a(x)e'.

https://doi.org/10.4153/CMB-1994-012-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1994-012-3

POINCARE DUALITY AND COINVARIANTS 87

Here we are identifying S with the polynomial functions on V so that a(x) denotes
the value of the polynomial @ € $* on x € V. With the above alterations the proof of
Theorem 3.3 is now directly analogous to the arguments appearing in [2]. We will briefly
outline our version of these arguments. For more details consult [2].

First of all, assume that G C GL(V) is a pseudo-reflection group. Each pseudo-
reflection 5: V — V has a unique (up to scalar multiple) eigenvector a € V where s(a) =
¢- a for a primitive n-th root of unity ¢ = ¢, (n > 2). We can form the element 2 = [, a;
in S. It is straightforward to show that Q € H and, hence, DQ = {D(Q) | a € S*}
satisfies DQ C H. If one combines Lemma 3.1 with

LEMMA 3.4. Given a € §* of degree > 0 then Do(Q) = 0 if and only if o € I*.

then one obtains the equality DQ = H and, hence, H is cyclic. For a proof of Lemma 3.4
consult Steinberg’s proof of Theorem 1.3(b) in [2].

Secondly, assume that H is a cyclic $* module. For each x € V we can define an
analogue of the harmonic polynomials.

DEFINITION.  H, = {h € § | Do(h) = a(x)h for all « € R*}. Let d, = dimg H,.

A basic fact of invariant theory is that dim¢ S/1 > |G| and dimg S/1 = |G| if and
only if G is a pseudo-reflection group. So, to prove the proposition, it suffices to prove
dimg S/1 = |G|. One can prove

LEMMA 3.5.  Forany x, d, > dimg S/1.
LEMMA 3.6.  [fthe isotropy group G, of H, is trivial then d, < |G]|.

Putting together these lemmas we have, for the appropriate x,
|G| <dime S/1<d, <|G].

Thus dimg S/ = |G| as desired. The proof of Lemma 3.5 is analogous to that of
Lemma 4.3 in [2]. The proof of Lemma 3.6 is analogous to that of Theorem 1.2(b) in
[2].

As a remark, the hypothesis of H being cyclic is used in the proof of Lemma 3.5. If
one chooses a cyclic generator P € H then the element P, = ¢'P satisfies P, € H,. One
can show that Do(P,) € H, forall « € §* and that Do(Py) # 0 if o # 0 in §*/I*.

We now set about using Theorem 3.3 to prove Theorem 1.5.

PROOF OF THEOREM 1.5.  As explained at the beginning of this section, the inclusion
G C GL(V) induces, via duality, an inclusion G C GL(V*). We will prove the dual
assertion that
(3.7) G C GL(V*) is a pseudo-reflection group if and only if $* /I* satisfies Poincaré
duality.
To prove this equivalence it suffices to prove that
(3.8) Hisacyclic S* module if and only if §*/I* satisfies Poincaré duality.
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For it is straightforward that G C GL(V*) is a pseudo-reflection group if and only if G C
GL(V) is a pseudo-reflection group (pseudo-reflections dualize to pseudo-reflections).
So (3.7) follows from (3.8) by applying Theorem 3.3.

We now set about proving (3.8). It follows from Lemma 3.1 that we have an action
§*/I* © H — H. This action is dual to the product map S*/I* © §*/I* — §*/I*. For,
by Lemma 2.6 plus the duality established between S* /I* and H in Lemma 3.2, we have
the identity

(3.9) (o B,x) = (a,Dy(x)) forany o, 3 € S"/I", x € H.

This identity enables us to relate the two conditions appearing in (3.8). First, asserting
that H is cyclic with generator Q is equivalent to asserting that for every a € §*/I* we
can find 3 € §* /I* such that (o, D;(Q)) # 0. Here we are also using the duality between
H and S*/I". Secondly, asserting that §*/I* satisfies Poincaré duality is equivalent to
asserting that there exists € so that, for every a € §*/I*, we can find 3 € §*/I" such
that (o - 3,Q) # 0. n
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