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Abstract. In this paper we introduce the notion of weak zip rings and investigate
their properties. We mainly prove that a ring R is right (left) weak zip if and only if
for any n, the n-by-n upper triangular matrix ring Tn(R) is right (left) weak zip. Let α

be an endomorphism and δ an α-derivation of a ring R. Then R is a right (left) weak
zip ring if and only if the skew polynomial ring R[x; α, δ] is a right (left) weak zip ring
when R is (α, δ)-compatible and reversible.
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1. Introduction. Throughout this paper R denotes an associative ring with unity,
α : R −→ R is an endomorphism and δ an α-derivation of R, that is, δ is an additive map
such that δ(ab) = δ(a)b + α(a)δ(b), for a, b ∈ R. We denote S = R[x; α, δ] as the Ore
extension whose elements are the polynomials over R; the addition is defined as usual
and the multiplication subject to the relation xa = α(a)x + δ(a) for any a ∈ R. Following
Rage and Chhawchharia [14], a ring R is said to be Armendariz in that whenever
polynomials f (x) = ∑m

i = 0 aixi and g(x) = ∑n
j = 0 bjxj in R[x] satisfy f (x)g(x) = 0, then

aibj = 0 for each i, j. Recall that a ring R is called

reduced if a2 = 0 ⇒ a = 0, for all a ∈R,

reversible if ab = 0 ⇒ ba = 0, for all a, b ∈R,

semicommutative if ab = 0 ⇒ aRb = 0, for all a, b ∈R.

The following implications hold:

Reduced ⇒ Reversible ⇒ Semicommutative.

In general, each of these implications is irreversible (see [13]).
According to Krempa [10], an endomorphism α of a ring R is called rigid if

aα(a) = 0 implies a = 0 for a ∈ R. We call a ring R α-rigid if there exists a rigid
endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism
and α-rigid rings are reduced rings by Hong et al. [7]. Properties of α-rigid rings have
been studied in Krempa [10], Hong [7] and Hirano [5]. Let α be an endomorphism
and δ an α-derivation of a ring R. Following Hashemi and Moussavi [4], a ring R is
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said to be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Moreover, R is called
δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both α-compatible and
δ-compatible, then R is said to be (α, δ)-compatible. A ring R is α-rigid if and only if R
is (α, δ)-compatible and reduced (see [6]).

For any subset X of a ring R, rR(X) denotes the right annihilator of X in R. Faith
[2] called a ring R right zip provided that if the right annihilator rR(X) of a subset X of
R is zero, then there exists a finite subset Y ⊆ X such that rR(Y ) = 0. R is zip if it is right
and left zip. The concept of zip rings was initiated by Zelmanowitz [16] and appeared
in various papers [1–3]. Zelmanowitz stated that any ring satisfying the descending
chain condition on right annihilators is a right zip ring, but the converse does not hold.
Extensions of zip rings were studied by several authors. Beachy and Blair [1] showed
that if R is a commutative zip ring, then the polynomial ring R[x] over R is a zip ring.
The authors in [9] proved that R is a right (left) zip ring if and only if R[x] is a right (left)
zip ring when R is an Armendariz ring. In [15], Wagner Cortes studied the relationship
between right (left) zip property of R and skew polynomial extensions over R by using
the skew versions of Armendariz rings and generalised some results of [9].

Motivated by the above, in this paper we introduce the notion of weak zip rings and
study the relationship between right (left) weak zip property of R and skew polynomial
extension R[x; α, δ] over R. We mainly prove that a ring R is right (left) weak zip if and
only if for any n, the n-by-n upper triangular matrix ring Tn(R) is right (left) weak zip.
Let α be an endomorphism and δ an α-derivation of a ring R. Then R is a right (left)
weak zip ring if and only if the skew polynomial ring R[x; α, δ] is a right (left) weak zip
ring when R is (α, δ)-compatible and reversible.

For a ring R, we denote by nil(R) the set of all nilpotent elements of R and by
Tn(R) the n-by-n upper triangular matrix ring over R.

2. Weak zip rings. Let R be a ring. A right (left) weak annihilator of a subset
X of R is defined by NrR(X) = {a ∈ R | xa ∈ nil(R) for all x ∈ X}(NlR(X) = {a ∈ R |
ax ∈ nil(R) for all x ∈ X}). We call a ring R right weak zip provided that NrR(X) ⊆ nil(R),
where X is a subset of R; then there exists a finite subset Y ⊆ X such that NrR(Y ) ⊆
nil(R). We define left weak zip rings similarly. If a ring is both left and right weak zip,
we say that the ring is a weak zip ring. Obviously, if a ring R is reduced, then R is a zip
ring if and only if R is a weak zip ring.

Let R be a ring. Then by C. Y. Hong [8], there exists an n × n upper triangular
matrix ring over a right zip ring which is not right zip for any n ≥ 2. But we have the
following result:

PROPOSITION 2.1. Let R be a ring and n ≥ 2. Then Tn(R) is a right (left) weak zip
ring if and only if R is a right (left) weak zip ring.

Proof. We will show the right case because the left case is similar. �

Assume that R is a right weak zip ring and X ⊆ Tn(R) with NrTn(R)(X) ⊆ nil(Tn(R)).
Let

Yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩aii ∈ R, |

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

...
0 0 · · · ann

⎞
⎟⎟⎟⎠ ∈ X

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , 1 ≤ i ≤ n.
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Then Yi ⊆ R, 1 ≤ i ≤ n. If b ∈ NrR(Yi), then⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

...
0 0 · · · ann

⎞
⎟⎟⎟⎠ · bEii ∈ nil(Tn(R))

for any ⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

...
0 0 · · · ann

⎞
⎟⎟⎟⎠ ∈ X,

where Eii is the usual matrix unit with 1 in the (i, i)-coordinate and zero elsewhere.
Thus, bEii ∈ NrTn(R)(X) ⊆ nil(Tn(R)) and so b ∈ nil(R). Hence NrR(Yi) ⊆ nil(R), 1 ≤
i ≤ n. Since R is a right weak zip ring, there exists a finite subset Y ′

i ⊆ Yi such that
NrR(Y ′

i ) ⊆ nil(R), 1 ≤ i ≤ n. For each c ∈ Y ′
i , there exists

Ac =

⎛
⎜⎜⎜⎝

c11 c12 · · · c1n

0 c22 · · · c2n
...

...
...

...
0 0 · · · cnn

⎞
⎟⎟⎟⎠ ∈ X

such that cii = c, 1 ≤ i ≤ n. Let X ′
i be a minimal subset of X such that Ac ∈ X ′

i for each
c ∈ Y ′

i . Then X ′
i is a finite subset of X . Let X0 = ⋃

1≤i≤n X ′
i . Then X0 is also a finite

subset of X . If

B =

⎛
⎜⎜⎜⎝

b11 b12 · · · b1n

0 b22 · · · b2n
...

...
...

...
0 0 · · · bnn

⎞
⎟⎟⎟⎠ ∈ NrTn(R)(X0),

then A′B ∈ nil(Tn(R)) for all

A′ =

⎛
⎜⎜⎜⎝

a′
11 a′

12 · · · a′
1n

0 a′
22 · · · a′

2n
...

...
...

...
0 0 · · · a′

nn

⎞
⎟⎟⎟⎠ ∈ X0.

Let

Ui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩a′

ii ∈ R |

⎛
⎜⎜⎜⎝

a′
11 a′

12 · · · a′
1n

0 a′
22 · · · a′

2n
...

...
...

...
0 0 · · · a′

nn

⎞
⎟⎟⎟⎠ ∈ X0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , 1 ≤ i ≤ n.

Clearly, Y ′
i ⊆ Ui for all 1 ≤ i ≤ n. So NrR(Ui) ⊆ NrR(Y ′

i ) ⊆ nil(R) for all 1 ≤
i ≤ n. Since A′B ∈ nil(Tn(R)) implies a′

iibii ∈ nil(R) for all 1 ≤ i ≤ n, we obtain
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bii ∈ NrR(Ui) ⊆ NrR(Y ′
i ) ⊆ nil(R). Thus bii ∈ nil(R) for all 1 ≤ i ≤ n, and hence

B ∈ nil(Tn(R)). Therefore NrTn(R)(X0) ⊆ nil(Tn(R)), and so Tn(R) is a right weak zip
ring.

Conversely, assume that Tn(R) is a right weak zip ring, and X ⊆ R with
NrR(X) ⊆ nil(R). Let Y = {aI|a ∈ X} ⊆ Tn(R), where I is the n × n identity matrix.
If

B =

⎛
⎜⎜⎜⎝

b11 b12 · · · b1n

0 b22 · · · b2n
...

... · · · · · ·
0 0 · · · bnn

⎞
⎟⎟⎟⎠ ∈ NrTn(R)(Y ),

then aI · B ∈ nil(Tn(R)) for all a ∈ X . Thus abii ∈ nil(R) for all 1 ≤ i ≤ n and all
a ∈ X . Therefore bii ∈ NrR(X), and so bii ∈ nil(R) for all 1 ≤ i ≤ n. Hence B ∈
nil(Tn(R)), and so NrTn(R)(Y ) ⊆ nil(Tn(R)). Since Tn(R) is a right weak zip ring, there
exists a finite subset Y0 = {a1I, a2I, . . . , amI} ⊆ Y such that NrTn(R)(Y0) ⊆ nil(Tn(R)).
Let X0 = {a1, a2, . . . , am} ⊆ X. If c ∈ NrR(X0), then akI · cE11 ∈ nil(Tn(R)) for all
k = 1, 2, . . . , m. Thus, cE11 ∈ NrTn(R)(Y0) ⊆ nil(Tn(R)) and so c ∈ nil(R). Therefore,
NrR(X0) ⊆ nil(R) and so R is right weak zip.

EXAMPLE 2.2. Let R be a domain; then R is a weak zip ring by definition. Based
on Proposition 2.1, any n × n upper triangular matrix ring over a domain is a weak zip
ring.

Given a ring R and a bimodule RMR, the trivial extension of R by M is the ring
T(R, M) = R ⊕ M with the usual addition and the multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrices
( r m

0 r

)
, where r ∈ R and m ∈ M and the

usual matrix operations are used.

COROLLARY 2.3. T(R, R) is right (left) weak zip if and only if R is right (left) weak
zip.

Proof. The proof is similar to that of Proposition 2.1. �
LEMMA 2.4 ([12)]. Let R be a semicommutative ring. The nil(R) is an ideal of R.

LEMMA 2.5. Let R be semicommutative. Then f (x) = a0 + a1x + · · · + anxn ∈ R[x]
is a nilpotent element of R[x] if and only if ai ∈ nil(R) for all 0 ≤ i ≤ n.

Proof. It is an immediate consequence of [12, Proposition 3.3] and [12,
Lemma 3.7]. �

In [1], it is shown that if R is a commutative zip ring, then the polynomial ring
R[x] over R is zip. As to weak zip rings, we have the following:

PROPOSITION 2.6. Let R be a semicommutative ring. Then R is right (left) weak zip
if and only if R[x] is right (left) weak zip.

Proof. Suppose that R[x] is right weak zip. Let Y ⊆ R with NrR(Y ) ⊆ nil(R).
If f (x) = a0 + a1x + · · · + anxn ∈ NrR[x](Y ), then bf (x) = ba0 + ba1x + · · · + banxn ∈
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nil(R[x]) for any b ∈ Y. Thus bai ∈ nil(R) by Lemma 2.5, and so ai ∈ NrR(Y ) for all 0 ≤
i ≤ n, and hence ai ∈ nil(R) for all 0 ≤ i ≤ n. Therefore f (x) ∈ nil(R[x]) by Lemma 2.5.
So NrR[x](Y ) ⊆ nil(R[x]). Since R[x] is right weak zip, there exists a finite subset
Y0 ⊆ Y such that NrR[x](Y0) ⊆ nil(R[x]). Therefore NrR(Y0) = NrR[x](Y0) ∩ R ⊆ nil(R),
and hence R is right weak zip. �

Conversely, assume that R is right weak zip. Let X ⊆ R[x] with NrR[x](X) ⊆
nil(R[x]). Now let Y be the set of all coefficients of elements in X . Then Y ⊆ R. If
a ∈ NrR(Y ), then ba ∈ nil(R) for any b ∈ Y . So for any f (x) = r0 + r1x + · · · + rnxn ∈ X,

we have ria ∈ nil(R) for all 0 ≤ i ≤ n. Hence f (x)a ∈ nil(R[x]) by Lemma 2.5 and so
a ∈ NrR[x](X) ⊆ nil(R[x]). Thus a ∈ nil(R) and so NrR(Y ) ⊆ nil(R). Since R is a right
weak zip ring, there exists a finite subset Y0 ⊆ Y such that NrR(Y0) ⊆ nil(R). For each
a ∈ Y0, there exists ga(x) ∈ X such that some of the coefficients of ga(x) is a. Let X0

be a minimal subset of X such that ga(x) ∈ X0 for each a ∈ Y0. Then X0 is a finite
subset of X . Let Y1 be the set of all coefficients of elements of X0. Then Y0 ⊆ Y1,
and so NrR(Y1) ⊆ NrR(Y0) ⊆ nil(R). If g(x) = b0 + b1x + · · · + bkxk ∈ NrR[x](X0), then
f (x)g(x) ∈ nil(R[x]) for any f (x) = a0 + a1x + · · · + atxt ∈ X0. Since

f (x)g(x) =
(

t∑
i=0

aixi

) ⎛
⎝ k∑

j=0

bjxj

⎞
⎠ =

t+k∑
s=0

⎛
⎝ ∑

i+j=s

aibj

⎞
⎠ xs ∈ nil(R[x]),

we have the following system of equations by Lemma 2.5:

�s =
∑

i+j=s

aibj ∈ nil(R), s = 0, 1, . . . , t + k.

We will show that aibj ∈ nil(R) by induction on i + j.
If i + j = 0, then a0b0 ∈ nil(R), b0a0 ∈ nil(R).
Now suppose that s is a positive integer such that aibj ∈ nil(R) when i + j < s. We

will show that aibj ∈ nil(R) when i + j = s. Consider the following equation:

(∗) : �s = a0bs + a1bs−1 + · · · + asb0 ∈ nil(R).

Multiplying (∗) by b0 from left, we have b0asb0 = b0�s − (b0a0)bs − (b0a1)bs−1 − · · · −
(b0as−1)b1. By induction hypothesis, aib0 ∈ nil(R) for all 0 ≤ i < s, and so b0ai ∈ nil(R)
for all 0 ≤ i < s. Thus b0asb0 ∈ nil(R) and so b0as ∈ nil(R), asb0 ∈ nil(R). Multiplying
(∗) by b1, b2, . . . , bs−1 from left side, respectively, yields as−1b1 ∈ nil(R), as−2b2 ∈
nil(R), . . . , a0bs ∈ nil(R) in turn. This means that aibj ∈ nil(R) when i + j = s. Therefore
by induction, we obtain aibj ∈ nil(R) for each i, j. Thus bj ∈ NrR(Y1) ⊆ nil(R) for
all 0 ≤ j ≤ k, and so g(x) ∈ nil(R[x]) by Lemma 2.5. Hence NrR[x](X0) ⊆ nil(R[x]).
Therefore R[x] is a right weak zip ring.

Similarly, we can show that if R is semicommutative, then R is left weak zip if and
only if R[x] is left weak zip.

3. Ore extensions over weak zip rings. Let α be an endomorphism of R and
δ : R −→ R an additive map of R. The application δ is said to be an α-derivation
if δ(ab) = δ(a)b + α(a)δ(b). The Ore extension S = R[x; α, δ] is the set of polynomials∑m

i = 0 aixi with the usual sum, and the multiplication rule is xa = α(a)x + δ(a). Let
f (x) = a0 + a1x + · · · + anxn ∈ R[x; α, δ]. We say that f (x) ∈ nil(R)[x; α, δ] if and only if
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ai ∈ nil(R) for all 0 ≤ i ≤ n. Let I be a subset of R. We denote by I [x; α, δ] the subset of
R[x; α, δ], where the coefficients of elements in I [x; α, δ] are in subset I , equivalently, for
any skew polynomial f (x) = a0 + a1x + · · · + anxn ∈ R[x; α, δ], f (x) ∈ I ]x; α, δ] if and
only if ai ∈ I for all 0 ≤ i ≤ n. If f (x) ∈ R[x; α, δ] is a nilpotent element of R[x; α, δ], then
we say f (x) ∈ nil(R[x; α, δ]). For f (x) = a0 + a1x + · · · + anxn ∈ R[x; α, δ], we denote by
{a0, a1, . . . , an} the set of coefficients of f (x). Let ai ∈ R, 1 ≤ i ≤ n; we also denote by
a1a2, . . . , an the product of all ai, 1 ≤ i ≤ n.

Let δ be an α-derivation of R. For integers i, j with 0 ≤ i ≤ j, f j
i ∈ End(R,+) will de-

note the map which is the sum of all possible words in α, δ built with i letters α and j − i
letters δ. For instance, f 0

0 = 1, f j
j = αj, f j

0 = δj and f j
j−1 = αj−1δ + αj−2δα + · · · + δαj−1.

The next Lemma appears in [11, Lemma 4.1].

LEMMA 3.1. For any positive integer n and r ∈ R, we have xnr = ∑n
i = 0 f n

i (r)xi in the
ring R[x; α, δ].

LEMMA 3.2 ([2]). Let R be an (α, δ)-compatible ring. Then we have the following:
(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n.
(2) If αk(a)b = 0 for some positive integer k, then ab = 0.
(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for all positive integers m, n.

LEMMA 3.3. Let δ be an α-derivation of R. If R is an (α, δ)-compatible ring, then
ab = 0 implies af j

i(b) = 0 for all j ≥ i ≥ 0 and a, b ∈ R.

Proof. If ab = 0, then aαi(b) = aδj(b) = 0 for all i ≥ 0 and j ≥ 0 because R is (α, δ)-
compatible. Then af j

i(b) = 0 for all i, j. �
LEMMA 3.4. Let δ be an α-derivation of R. If R is (α, δ)-compatible and reversible,

then ab ∈ nil(R) implies af j
i(b) ∈ nil(R) for all j ≥ i ≥ 0 and a, b ∈ R.

Proof. Since ab ∈ nil(R), there exists some positive integer k such
that (ab)k = 0. 0 = (ab)k = abab · · · ab ⇒ abab · · · abaf j

i(b) = 0 ⇒ af j
i(b)ab · · · ab = 0 ⇒

af j
i(b)ab · · · abaf j

i(b) = 0 ⇒ af j
i(b)af j

i(b)ab · · · ab = 0 ⇒ · · · ⇒ af j
i(b) ∈ nil(R). �

LEMMA 3.5. Let R be an (α, δ)-compatible ring. If aαm(b) ∈ nil(R) for a, b ∈ R, and
m is a positive integer, then ab ∈ nil(R).

Proof. Since aαm(b) ∈ nil(R), there exists some positive integer n such that
(aαm(b))n = 0. In the following computations, we use freely the condition that R is
(α, δ)-compatible.

(aαm(b))n = aαm(b)aαm(b) · · · aαm(b)︸ ︷︷ ︸
n

= 0

⇒ aαm(b)aαm(b) · · · aαm(b)ab = 0
⇒ aαm(b)aαm(b) · · · aαm(b)αm(ab) = 0
⇒ aαm(b)aαm(b) · · · aαm(b)aαm(bab) = 0
⇒ aαm(b)aαm(b) · · · aαm(b)abab = 0
⇒ · · · ⇒ ab ∈ nil(R). �

LEMMA 3.6. Let R be (α, δ)-compatible. If R is a reversible ring, then f (x) = a0 +
a1x + · · · + anxn ∈ nil(R[x; α, δ]) if and only if ai ∈ nil(R) for all 0 ≤ i ≤ n.
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Proof. (=⇒) Suppose f (x) ∈ nil(R[x; α, δ]). There exists some positive integer k
such that f (x)k = (a0 + a1x + · · · + anxn)k = 0. Then

0 = f (x)k = ‘lower terms’ + anα
n(an)α2n(an) · · · α(k−1)n(an)xnk.

Hence anα
n(an)α2n(an) · · · α(k−1)n(an) = 0, and α-compatibility and reversibility of

R gives an ∈ nil(R). So by Lemma 3.4, an = 1 · an ∈ nil(R) implies 1 · f j
i (an) =

f j
i (an) ∈ nil(R) for all 0 ≤ i ≤ j. Thus we obtain

(a0 + a1x + · · · + an−1xn−1)k = ‘lower terms’

+ an−1α
n−1(an−1) · · · α(n−1)(k−1)(an−1)x(n−1)k

∈ nil(R)[x; α, δ] since nil(R) is an ideal of R. Hence an−1α
n−1(an−1) · · · α(k−1)(n−1)(an−1)

∈ nil(R) and so an−1 ∈ nil(R) by Lemma 3.5. Using induction on n we obtain ai ∈ nil(R)
for all 0 ≤ i ≤ n. �

(⇐=) Suppose that ami
i = 0, i = 0, 1, . . . , n. Let k = ∑n

i = 0 mi + 1. We claim that
f (x)k = (a0 + a1x + · · · + anxn)k = 0. From

(
n∑

i = 0

aixi

)2

=
(

n∑
i = 0

aixi

) (
n∑

i=0

aixi

)

=
(

n∑
i=0

aixi

)
a0 +

(
n∑

i=0

aixi

)
a1x

+ · · · +
(

n∑
i=0

aixi

)
asxs + · · · +

(
n∑

i=0

aixi

)
anxn

=
n∑

i=0

aif i
0(a0) +

(
n∑

i=1

aif i
1(a0)

)
x + · · · +

(
n∑

i=s

aif i
s (a0)

)
xs

+ · · · +
(

n∑
i=n

aif i
n(a0)

)
xn +

(
n∑

i=0

aif i
0(a1) +

(
n∑

i=1

aif i
1(a1)

)
x

+ · · · +
(

n∑
i=n

aif i
n(a1)

)
xn

)
x + · · · +

(
n∑

i=0

aif i
0(as) +

(
n∑

i=1

aif i
1(as)

)
x

+ · · · +
(

n∑
i=n

aif i
n(as)

)
xn

)
xs + · · · +

(
n∑

i=0

aif i
0(an) +

(
n∑

i=1

aif i
1(an)

)
x

+ · · · +
(

n∑
i=n

aif i
n(an)

)
xn

)
xn

=
n∑

i=0

aif i
0(a0) +

(
n∑

i=1

aif i
1(a0)+

n∑
i=0

aif i
0(a1)

)
x+

(
n∑

i=2

aif i
2(a0)+

n∑
i=1

aif i
1(a1)

+
n∑

i=0

aif i
0(a2)

)
x2+ · · · +

( ∑
s+t=k

(
n∑

i=s

aif i
s (at)

))
xk + · · · + anα

n(an)x2n,
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it is easy to check that the coefficients of
(∑n

i=0 aixi
)k

can be written as sums of
monomials of length k in ai and f v

u (aj), where ai, aj ∈ {a0, a1, . . . , an} and v ≥ u ≥ 0 are
positive integers. Consider each monomial

ai1f t2
s2

(ai2 ) · · · f tk
sk

(aik )︸ ︷︷ ︸
k+1

,

where ai1 , ai2 , · · · aik ∈ {a0, a1, · · · , an}, and tj, sj(tj ≥ sj, 2 ≤ j ≤ k) are non-negative
integers. We will show that ai1f t2

s2
(ai2 ) · · · f tk

sk
(aik ) = 0. If the number of a0 in

ai1f t2
s2

(ai2 ) · · · f tk
sk

(aik ) is greater than m0, then we can write monomial ai1f t2
s2

(ai2 ) · · · f tk
sk

(aik )
as

b1
(
f t01
s01

(a0)
)j1 b2

(
f t02
s02

(a0)
)j2 · · · bv

(
f t0v

s0v
(a0)

)jv bv+1,

where j1 + j2 + · · · + jv > m0, 1 ≤ j1, j2, . . . , jv and bq(q = 1, 2, . . . , v + 1) is a product
of some elements choosing from {ai1, f t2

s2
(ai2 ), . . . , f tk

sk
(aik )} or is equal to 1. Since

aj1+j2+ ··· +jv
0 = 0 and R is reversible and (α, δ)-compatible, we have

0 = aj1+j2+ ··· +jv
0 = a0a0 · · · a0︸ ︷︷ ︸

j1+j2+ ··· +jv

⇒ a0a0 · · · (f t01
s01

(a0)
) = 0

⇒ (
f t01
s01

(a0)
)
a0 · · · a0 = 0

⇒ (
f t01
s01

(a0)
)j1 a0 · · · a0 = 0

⇒ · · ·
⇒ (

f t01
s01

(a0)
)j1(f t02

s02
(a0)

)j2 · · · (f t0v

s0v
(a0)

)jv = 0

⇒ b1
(
f t01
s01

(a0)
)j1 b2

(
f t02
s02

(a0)
)j2 · · · bv

(
f t0v

s0v
(a0)

)jv bv+1 = 0.

Thus ai1f t2
s2

(ai2 ) · · · f tk
sk

(aik ) = 0. If the number of ai in ai1f t2
s2

(ai2 ) · · · f tk
sk

(aik ) is greater than
mk, then similar discussion yields that ai1f t2

s2
(ai2 ) · · · f tk

sk
(aik ) = 0. Thus each monomial

appears in
(∑n

i = 0 aixi
)k

equal to 0. Therefore
∑n

i = 0 aixi ∈ R[x; α, δ] is a nilpotent
element.

Hirano observed relations between annihilators in a ring R and annihilators in R[x]
(see [6]). In this note we investigate the relations between right (left) weak annihilators in
a ring R and right (left) weak annihilators in skew polynomial ring S = R[x; α, δ]. Given
a ring R, we define NrAnnR(2R) = {NrR(U) | U ⊆ R}, NrAnnS(2S) = {NrS(V ) |
V ⊆ S}, NlAnnR(2R) = {NlR(U) | U ⊆ R}, NlAnnS(2S) = {NlS(V ) | V ⊆ S}. Given
a skew polynomial f (x) ∈ R[x; α, δ], let Cf denote the set of all coefficients of f (x),
and for a subset V of R[x; α, δ], let CV denote the set

⋃
f ∈ V Cf .

LEMMA 3.7. Let R be a reversible and (α, δ)-compatible ring. Then for any subset
U ⊆ R, we have the following:

(1) NrS(U) = NrR(U)[x; α, δ].
(2) NlS(U) = NlR(U)[x; α, δ].
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Proof. (1) Clearly, NrR(U)[x; α, δ] ⊆ NrS(U). For any skew polynomial f (x) = a0 +
a1x + · · · + anxn ∈ NrS(U), we have rf (x) = ra0 + ra1x + · · · + ranxn ∈ nil(S) for
any r ∈ U . So rai ∈ nil(R) for all 0 ≤ i ≤ n and all r ∈ U by Lemma 3.6,
and hence ai ∈ NrR(U) for all 0 ≤ i ≤ n. Thus f (x) ∈ NrR(U)[x; α, δ] and so
NrS(U) ⊆ NrR(U)[x; α, δ]. Therefore we obtain NrS(U) = NrR(U)[x; α, δ].

(2) For any f (x) = a0 + a1x + · · · + anxn ∈ NlR(U)[x; α, δ], air ∈ nil(R) for all 0 ≤
i ≤ n and any r ∈ U . Then aif t

s (r) ∈ nil(R) for 0 ≤ i ≤ n and all positive integers s and t
with t ≥ s by Lemma 3.4. Thus,

f (x)r = (a0 + a1x + · · · + anxn)r

=
m∑

i=0

aif i
0(r) +

(
m∑

i=1

aif i
1(r)

)
x + · · · +

(
m∑

i=s

aif i
s (r)

)
xs + · · · + anα

n(r)xn ∈ nil(S)

by Lemma 3.6, and so NlR(U)[x; α, δ] ⊆ NlS(U).
Conversely, assume that f (x) = a0 + a1x + · · · + anxn ∈ NlS(U). Then

f (x)r = (a0 + a1x + · · · + anxn)r

=
m∑

i=0

aif i
0(r) +

(
m∑

i=1

aif i
1(r)

)
x + · · · +

(
m∑

i=s

aif i
s (r)

)
xs + · · · + anα

n(r)xn

= �0 + �1x + · · · + �nxn ∈ nil(S)

for all r ∈ U . Then we have the following system of equations by Lemma 3.6:

(1) �n = anα
n(r) ∈ nil(R),

(2) �n−1 = an−1α
n−1(r) + anf n

n−1(r) ∈ nil(R),
...

(3) �s =
m∑

i=s

aif i
s (r) ∈ nil(R).

From equation (1), we obtain anr ∈ nil(R) by Lemma 3.5, and so anf t
s (r) ∈ nil(R)

by Lemma 3.4. From equation (2), we have an−1α
n−1(r) = �n−1 − anf n

n−1(r) ∈ nil(R)
and so an−1r ∈ nil(R). Continuing this procedure yields that air ∈ nil(R) for all 0 ≤
i ≤ n. Hence ai ∈ NlR(U) for all 0 ≤ i ≤ n, and so f (x) ∈ NlR(U)[x; α, δ]. Therefore
NlS(U) = NlR(U)[x; α, δ].

With the above Lemma 3.7, we have maps: φ : NrAnnR(2R) −→ NrAnnS(2S)
defined by φ(I) = I [x; α, δ] for every I ∈ NrAnnR(2R) and ψ : NlAnnR(2R) −→
NlAnnS(2S) defined by ψ(J) = J[x; α, δ] for every J ∈ NlAnnR(2R). Obviously, φ and
ψ are injective. �

THEOREM 3.8. Let R be a reversible and (α, δ)-compatible ring. Then we have the
following:

(1) φ : NrAnnR(2R) −→ NrAnnS(2S) defined by φ(I) = I [x; α, δ] for every
I ∈ NrAnnR(2R) is bijective.

(2) ψ : NlAnnR(2R) −→ NlAnnS(2S) defined by ψ(J) = J[x; α, δ] for every
J ∈ NlAnnR(2R) is bijective.

Proof. (1) It is only necessary to show that φ is surjective. Let
f (x) = ∑n

j = 0 bjxj ∈ NrS(V ) ∈ NrAnnS(2S). Then we have g(x)f (x) ∈ nil(S) for every
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g(x) = ∑m
i = 0 aixi ∈ V. Since

g(x)f (x) =
(

m∑
i=0

aixi

) ⎛
⎝ n∑

j=0

bjxj

⎞
⎠ =

(
m∑

i=0

aixi

)
b0 +

(
m∑

i=0

aixi

)
b1x

+ · · · +
(

m∑
i=0

aixi

)
bnxn

=
m∑

i=0

aif i
0(b0) +

(
m∑

i=1

aif i
1(b0)

)
x + · · · +

(
m∑

i=s

aif i
s (b0)

)
xs

+ · · · + amαm(b0)xm +
(

m∑
i=0

aif i
0(b1) +

(
m∑

i=1

aif i
1(b1)

)
x + · · ·

+
(

m∑
i=s

aif i
s (b0)

)
xs + · · · + amαm(b1)xm

)
x

+ · · · +
(

m∑
i=0

ai f i
0(bn) +

(
m∑

i=1

ai f i
1(bn)

)
x + · · · + am αm(bn)xm

)
xn

=
m∑

i=0

aif i
0(b0) +

(
m∑

i=1

aif i
1(b0) +

m∑
i=0

aif i
0(b1)

)
x + · · ·

+
( ∑

s+t=k

(
m∑

i=s

aif i
s (bt)

))
xk + · · · + amαm(bn)xm+n ∈ nil(S).

�
Then we have the following equations by Lemma 3.6:

(4) �m+n = amαm(bn) ∈ nil(R),
(5) �m+n−1 = amαm(bn−1) + am−1α

m−1(bn) + amf m
m−1(bn) ∈ nil(R),

(6) �m+n−2 = amαm(bn−2) +
m∑

i=m−1
aif i

m−1(bn−1) +
m∑

i=m−2
aif i

m−2(bn) ∈ nil(R),

...

(7) �k = ∑
s+t=k

(
m∑

i=s
aif i

s (bt)
)

∈ nil(R).

From equation (4) and Lemma 3.5, we obtain ambn ∈ nil(R), and so bnam ∈ nil(R). Now
we show that aibn ∈ nil(R) for all 0 ≤ i ≤ m. If we multiply equation (5) on the left side
by bn, then bnam−1α

m−1(bn) = bn�m+n−1 − (bnamαm(bn−1) + bnamf m
m−1(bn)) ∈ nil(R)

since the nil(R) of a reversible ring is an ideal. Thus by Lemma 3.5, we obtain
bnam−1bn ∈ nil(R), and so bnam−1 ∈ nil(R), am−1bn ∈ nil(R). If we multiply equation
(6) on the left side by bn, then we obtain bnam−2f m−2

m−2 (bn) = bnam−2α
m−2(bn) =

bn�m+n−2 − bnamαm(bn−2) − bnam−1f m−1
m−1 (bn−1) − bnamf m

m−1(bn−1) − bnam−1f m−1
m−2 (bn) −

bnamf m
m−2(bn) = bn�m+n−2 − (bnam)αm(bn−2) − (bnam−1)f m−1

m−1 (bn−1) − (bnam)f m
m−1(bn−1)

−(bnam−1)f m−1
m−2 (bn) − (bnam)f m

m−2 (bn) ∈ nil(R) since nil(R) is an ideal of R. Thus

https://doi.org/10.1017/S0017089509005151 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509005151


ORE EXTENSIONS OF WEAK ZIP RINGS 535

we obtain am−2bn ∈ nil(R) and bnam−2 ∈ nil(R). Continuing this procedure yields
that aibn ∈ nil(R) for all 0 ≤ i ≤ m, and so aif t

s (bn) ∈ nil(R) for any t ≥ s ≥ 0 and
0 ≤ i ≤ m by Lemma 3.4. Thus it is easy to verify that (

∑m
i=0 aixi)(

∑n−1
j=0 bjxj) ∈ nil(S).

Applying the preceding method repeatedly, we obtain that aibj ∈ nil(R) for all
0 ≤ i ≤ m, 0 ≤ j ≤ n. So bj ∈ NrR(CV ) and f (x) ∈ NrR(CV )[x; α, δ], and hence it is easy
to see that NrS(V ) = NrR(CV )[x; α, δ] = φ(NrR(CV )). Therefore φ is surjective.

(2) The proof of (2) is similar.

COROLLARY 3.9. Let R be reversible. Then we have the following:
(1) φ : NrAnnR(2R) −→ NrAnnR[x](2R[x]) defined by φ(I) = I [x] for every I ∈

NrAnnR(2R) is bijective.
(2) ψ : NlAnnR(2R) −→ NlAnnR[x](2R[x]) defined by ψ(J) = J[x] for every

J ∈ NlAnnR(2R) is bijective.

Proof. Let α = 1R be the identity endomorphism of R and δ = 0. Then R[x; α, δ] ∼=
R[x]. Hence we complete the proof by Theorem 3.8.

Actually, as to polynomial ring R[x], the condition that R is reversible in Corollary
3.9 can be replaced by that R is semicommutative. We have the following: �

COROLLARY 3.10. Let R be semicommutative. Then we have the following:
(1) φ : NrAnnR(2R) −→ NrAnnR[x](2R[x]) defined by φ(I) = I [x] for every I ∈

NrAnnR(2R) is bijective.
(2) ψ : NlAnnR(2R) −→ NlAnnR[x](2R[x]) defined by ψ(J) = J[x] for every

J ∈ NlAnnR(2R) is bijective.

Proof. (1) For any subset U ⊆ R, it is easy to see that NrR(U)[x] ⊆ NrR[x](U).
Also for any polynomial f (x) = a0 + a1x + · · · + anxn ∈ NrR[x](U), we have rf (x) =
ra0 + ra1x + · · · + ranxn ∈ nil(R[x]) for any r ∈ U . Then rai ∈ nil(R) for all 0 ≤ i ≤ n
by Lemma 2.5, and so ai ∈ NrR(U) for all 0 ≤ i ≤ n. Thus f (x) ∈ NrR(U)[x] and so
NrR[x](U) ⊆ NrR(U)[x]. Therefore NrR[x](U) = NrR(U)[x], which implies that φ is well
defined. Obviously, φ is injective. So it is necessary to show that φ is surjective. Let
f (x) = ∑n

j=0 bjxj ∈ NrR[x](V ) ∈ NrAnnR[x](2R[x]). Then we have g(x)f (x) ∈ nil(R[x]) for
every g(x) = ∑m

i=0 aixi ∈ V. Since

g(x)f (x) =
(

m∑
i=0

aixi

)⎛
⎝ n∑

j=0

bjxj

⎞
⎠ =

m+n∑
k=0

⎛
⎝ ∑

i+j=k

aibj

⎞
⎠ xk ∈ nil(R[x]),

similar to the proof of Proposition 2.6, we obtain aibj ∈ nil(R) for each i, j.
So bj ∈ NrR(CV ) and f (x) ∈ NrR(CV )[x], and hence NrR[x](V ) = NrR(CV )[x] =
φ(NrR(CV )). Therefore φ is bijective.

(2) Similarly we can proof (2). �
THEOREM 3.11. Let R be (α, δ)-compatible. If R is reversible, then the following

statements are equivalent:
(1) R is right (left) weak zip.
(2) S = R[x; α, δ] is right (left) weak zip.

Proof. We will show the right case because the left case is similar. �
(1) =⇒ (2) Suppose that R is right weak zip. Let X ⊆ S such that NrS(X) ⊆ nil(S).

For a skew polynomial f (x) = ∑n
i=0 aixi ∈ S, Cf denotes the set of coefficients of f (x),
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and for a subset V of S, CV denotes the set
⋃

f ∈ V Cf . Then CV ⊆ R. Now we show
that NrR(CX ) ⊆ nil(R). If r ∈ NrR(CX ), then ar ∈ nil(R) for any a ∈ CX . So for any
skew polynomial f (x) = ∑n

i=0 aixi ∈ X , we obtain air ∈ nil(R) and so aif t
s (r) ∈ nil(R)

by Lemma 3.4. Hence f (x)r ∈ nil(S) by Lemma 3.6 and so r ∈ NrS(X) ⊆ nil(S). Thus
r ∈ nil(R) and so NrR(CX ) ⊆ nil(R). Since R is right weak zip, there exists a finite
subset Y0 ⊆ CX such that NrR(Y0) ⊆ nil(R). For each a ∈ Y0, there exists ga(x) ∈ X
such that some of the coefficients of ga(x) are a. Let X0 be a minimal subset of X such
that ga(x) ∈ X0 for each a ∈ Y0. Then X0 is a finite subset of X . Let Y1 be the set of
all coefficients of elements of X0, then Y0 ⊆ Y1 and so NrR(Y1) ⊆ NrR(Y0) ⊆ nil(R).
If f (x) = a0 + a1x + · · · + akxk ∈ NrS(X0), then g(x)f (x) ∈ nil(S) for any g(x) = b0 +
b1x + · · · + btxt ∈ X0. Using the same method in the proof of Theorem 3.8, we obtain
biaj ∈ nil(R) for each i, j. Thus aj ∈ NrR(Y1) ⊆ nil(R) for 0 ≤ j ≤ k and so f (x) ∈ nil(S)
by Lemma 3.6. Hence NrS(X0) ⊆ nil(S). Therefore S = R[x; α, δ] is a right weak zip
ring.

Conversely, suppose that S = R[x; α, δ] is right weak zip. Let Y be a subset of
R such that NrR(Y ) ⊆ nil(R). If f (x) = a0 + a1x + · · · + anxn ∈ NrS(Y ), then ai ∈
NrR(Y ) ⊆ nil(R) for all 0 ≤ i ≤ n by Lemma 3.7, and so f (x) ∈ nil(S) by Lemma 3.6.
Hence NrS(Y ) ⊆ nil(S). Since S = R[x; α, δ] is right weak zip, there exists a finite set
Y0 ⊆ Y such that NrS(Y0) ⊆ nil(S). Hence NrR(Y0) = NrS(Y0) ∩ R ⊆ nil(R). Therefore
R is a right weak zip ring.

COROLLARY 3.12. Let R be reversible. Then we have the following:
(1) If R is α-compatible, then the skew polynomial ring R[x; α] is right (left) weak

zip if and only if R is right (left) weak zip.
(2) If R is δ-compatible, then the differential polynomial ring R[x; δ] is right (left)

weak zip if and only if R is right (left) weak zip.

Proof. By virtue of Theorem 3.9, we complete the proof. �
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