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Abstract. In this paper we introduce the notion of weak zip rings and investigate
their properties. We mainly prove that a ring R is right (left) weak zip if and only if
for any n, the n-by-n upper triangular matrix ring 7,(R) is right (left) weak zip. Let «
be an endomorphism and § an «-derivation of a ring R. Then R is a right (left) weak
zip ring if and only if the skew polynomial ring R[x; «, 8] is a right (left) weak zip ring
when R is («, §)-compatible and reversible.

2000 MR Subject Classification. Primary 16S36, Secondary 16S99.

1. Introduction. Throughout this paper R denotes an associative ring with unity,
a : R —> Risanendomorphism and § an e-derivation of R, thatis, § is an additive map
such that §(ab) = 8(a)b + a(a)s(b), for a, b € R. We denote S = R[x;«, 8] as the Ore
extension whose elements are the polynomials over R; the addition is defined as usual
and the multiplication subject to the relation xa = a(a)x + §(a) for any a € R. Following
Rage and Chhawchharia [14], a ring R is said to be Armendariz in that whenever
polynomials f(x) = 37/, a;x" and g(x) = >/_ b;¥/ in R[x] satisfy f(x)g(x) =0, then
a;b; =0 for each i, j. Recall that a ring R is called

reduced if a2 =0= a =0, for all a € R,
reversible if ab =0 = ba =0, for all a, b€ R,
semicommutative if ab =0 = aRb =0, for all a, b € R.

The following implications hold:
Reduced = Reversible = Semicommutative.

In general, each of these implications is irreversible (see [13]).

According to Krempa [10], an endomorphism « of a ring R is called rigid if
aa(a) = 0 implies a=0 for a € R. We call a ring R «-rigid if there exists a rigid
endomorphism « of R. Note that any rigid endomorphism of a ring is a monomorphism
and «-rigid rings are reduced rings by Hong et al. [7]. Properties of «-rigid rings have
been studied in Krempa [10], Hong [7] and Hirano [5]. Let o be an endomorphism
and § an a-derivation of a ring R. Following Hashemi and Moussavi [4], a ring R is
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said to be a-compatible if for each a, b € R, ab=0 < aa(b) =0. Moreover, R is called
3-compatible if for each a, b€ R, ab=0 = ad(h)=0. If R is both a-compatible and
8-compatible, then R is said to be («, §)-compatible. A ring R is «-rigid if and only if R
is (a0, §)-compatible and reduced (see [6]).

For any subset X of a ring R, rg(X) denotes the right annihilator of X in R. Faith
[2] called a ring R right zip provided that if the right annihilator rg(X) of a subset X of
Ris zero, then there exists a finite subset ¥ € X such that rg(Y)=0. Riszip if it is right
and left zip. The concept of zip rings was initiated by Zelmanowitz [16] and appeared
in various papers [1-3]. Zelmanowitz stated that any ring satisfying the descending
chain condition on right annihilators is a right zip ring, but the converse does not hold.
Extensions of zip rings were studied by several authors. Beachy and Blair [1] showed
that if R is a commutative zip ring, then the polynomial ring R[x] over R is a zip ring.
The authors in [9] proved that R is a right (left) zip ring if and only if R[x]is a right (left)
zip ring when R is an Armendariz ring. In [15], Wagner Cortes studied the relationship
between right (left) zip property of R and skew polynomial extensions over R by using
the skew versions of Armendariz rings and generalised some results of [9].

Motivated by the above, in this paper we introduce the notion of weak zip rings and
study the relationship between right (left) weak zip property of R and skew polynomial
extension R[x; «, 8] over R. We mainly prove that a ring R is right (left) weak zip if and
only if for any #n, the n-by-n upper triangular matrix ring 7,,(R) is right (left) weak zip.
Let o be an endomorphism and § an w-derivation of a ring R. Then R is a right (left)
weak zip ring if and only if the skew polynomial ring R[x; «, §] is a right (left) weak zip
ring when R is («, §)-compatible and reversible.

For a ring R, we denote by nil(R) the set of all nilpotent elements of R and by
T,,(R) the n-by-n upper triangular matrix ring over R.

2. Weak zip rings. Let R be a ring. A right (left) weak annihilator of a subset
X of R is defined by Nrr(X)={ae€ R | xa € nil(R) for all xe X}(NIzr(X)={aeR|
ax € nil(R) forall x € X}). Wecall aring Rright weak zip provided that Nrg(X) C nil(R),
where X is a subset of R; then there exists a finite subset ¥ C X such that Nrg(Y) C
nil(R). We define left weak zip rings similarly. If a ring is both left and right weak zip,
we say that the ring is a weak zip ring. Obviously, if a ring R is reduced, then R is a zip
ring if and only if R is a weak zip ring.

Let R be a ring. Then by C. Y. Hong [8], there exists an # x n upper triangular
matrix ring over a right zip ring which is not right zip for any n > 2. But we have the
following result:

PROPOSITION 2.1. Let R be a ring and n > 2. Then T,(R) is a right (left) weak zip
ring if and only if R is a right (left) weak zip ring.

Proof. We will show the right case because the left case is similar. ]

Assume that Ris a right weak zip ringand X C T,,(R) with Nrz,(z)(X) € nil(T,(R)).

Let
ap app - dip
0 an -+ ay ‘
Yi=Ja;eR, || . ) . D leXpl<i<n
0 0 Ay
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Then Y;CR, 1 <i<n.Ifbe Nrg(Y;), then

apy app .- dap
0 an - ay ,
] - bE; € nil(T,(R))
0 0 Ay
for any
ay ap - diy
0 an - ay
e X,
0 0 coc A

where Ej; is the usual matrix unit with 1 in the (i, /)-coordinate and zero elsewhere.
Thus, bE;; € Nrr,r)(X) Cnil(T,(R)) and so b € nil(R). Hence Nrg(Y;) Cnil(R), 1 <
i < n. Since R is a right weak zip ring, there exists a finite subset Y/ C Y; such that
Nrgr(Y])Cnil(R), 1 < i < n. For each ¢ € Y/, there exists

il Ci2 v Cly
0 cn -+ ¢

Ac = . . . . eX
0 0 - ¢y

such that ¢; = ¢, 1 <i < n. Let X] be a minimal subset of X such that 4. € X] for each
ce Y. Then X] is a finite subset of X. Let Xp = (J,-,, X]. Then Xj is also a finite
subset of X. If

b b -+ b
0 by -+ by

B=1 . : : .| €Nrr,@(Xo),
0 0 --- by,

then A’B € nil(T,(R)) for all

ay dyp o4,
A = ai” “n € Xo.
0 0 a,,
Let

ay dy oo 4,

! PR !

U=1{d,eR | (_) @ Ol oy U ician

0O 0 ... &

Clearly, Y;CU; for all 1<i<n. So Nrr(U)ZS Nrr(Y/))Cnil(R) for all 1<
i <n. Since A'Benil(T,(R)) implies a;;b; € nil(R) for all 1 <i<n, we obtain
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bii € Nrr(U) € Nrp(Y/) Cnil(R). Thus b; € nil(R) for all 1 <i<n, and hence
B enil(T,(R)). Therefore Nrr,r)(Xo) € nil(7,,(R)), and so T,(R) is a right weak zip
ring.

Conversely, assume that T,(R) is a right weak zip ring, and X C R with
Nrr(X)Cnil(R). Let Y ={alla € X} C T,(R), where I is the n x n identity matrix.

If
b b -+ b
0 by -+ by
B= . . GNI’Tn(R)(Y),
0 0 --- by,

then al - B € nil(T,(R)) for all ae X. Thus ab; €nil(R) for all 1 <i<n and all
a€ X. Therefore b;; e Nrr(X), and so b;enil(R) for all 1 <i<n. Hence Be
nil(7,(R)), and so Nrz,g)(Y) S nil(T,(R)). Since T,(R) is a right weak zip ring, there
exists a finite subset Yo={ail, a>1, ..., ay,l} € Y such that Nrr,r(Yo) € nil(T,(R)).
Let Xo={ai,a,...,a,} S X. If ce Nrg(Xy), then ail-cEy; €nil(T,(R)) for all
k=1,2,...,m. Thus, cE; € Nrr,w(Yo) €nil(T,(R)) and so ¢ € nil(R). Therefore,
Nrg(Xp) Cnil(R) and so R is right weak zip.

EXAMPLE 2.2. Let R be a domain; then R is a weak zip ring by definition. Based
on Proposition 2.1, any n x n upper triangular matrix ring over a domain is a weak zip
ring.

Given a ring R and a bimodule g Mg, the trivial extension of R by M is the ring
T(R, M)= R & M with the usual addition and the multiplication

(r1, my)(ra, ma) = (1172, rimo + myr).

This is isomorphic to the ring of all matrices (6 ;ﬂ ), where r € R and m € M and the

usual matrix operations are used.
COROLLARY 2.3. T(R, R) is right (left) weak zip if and only if R is right (left) weak
zip.
Proof. The proof is similar to that of Proposition 2.1. O
LEMMA 2.4 ([12)]. Let R be a semicommutative ring. The nil(R) is an ideal of R.

LEMMA 2.5. Let R be semicommutative. Then f(x) = ap + ajx + - - - + a,x" € R[x]
is a nilpotent element of R[x] if and only if a; € nil(R) for all 0 < i < n.

Proof. It is an immediate consequence of [12, Proposition 3.3] and [12,
Lemma 3.7]. O

In [1], it is shown that if R is a commutative zip ring, then the polynomial ring
R[x] over R is zip. As to weak zip rings, we have the following:

PROPOSITION 2.6. Let R be a semicommutative ring. Then R is right (left) weak zip
if and only if R[x] is right (left) weak zip.

Proof. Suppose that R[x] is right weak zip. Let ¥ C R with Nrg(Y) Cnil(R).
If f(x)=ap+aix+---+a,x" € Nrgy(Y), then bf(x)=bay + baix+ ---+ ba,x" €
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nil(R[x]) for any b € Y. Thus ba; € nil(R) by Lemma 2.5, and so a; € Nrg(Y) for all 0 <
i < n, and hence ¢; € nil(R) for all 0 < i < n. Therefore f(x) € nil(R[x]) by Lemma 2.5.
So Nrgp(Y) Snil(R[x]). Since R[x] is right weak zip, there exists a finite subset
Yo € Y such that Nrgpq(Yo) € nil(R[x]). Therefore Nrg(Yo) = Nrgp(Yo) N R S nil(R),
and hence R is right weak zip. ]

Conversely, assume that R is right weak zip. Let X C R[x] with Nrg(X)C
nil(R[x]). Now let Y be the set of all coefficients of elements in X. Then Y C R. If
ae€ Nrg(Y), then baenil(R) foranybe Y. Soforany f(x)=ro +rix+---+r,x"€X,
we have r;a e nil(R) for all 0 < i < n. Hence f(x)a € nil(R[x]) by Lemma 2.5 and so
a € Nrpp(X) Cnil(R[x]). Thus a e nil(R) and so Nrg(Y) Cnil(R). Since R is a right
weak zip ring, there exists a finite subset Yy C Y such that Nrg(Yy) Cnil(R). For each
a € Yy, there exists g,(x) € X such that some of the coefficients of g,(x) is a. Let Xj
be a minimal subset of X such that g,(x) € Xy for each a€ Yy. Then X is a finite
subset of X. Let Y; be the set of all coefficients of elements of X;. Then Y, C Y1,
and so Nrg(Y1) € Nrr(Yo) C nil(R). If g(x) =bg + b1x + - - - + bpx* € Nrgy(Xo), then
f(x)g(x) € nil(R[x]) for any f(x)=ao + a;x + - - - + a;x" € Xp. Since

k t+k
F(x)g(x) = (Z a x) b | =" D aiby | X e nil(R[x)),
j=0 s=0 \itj=s

we have the following system of equations by Lemma 2.5:

Ay= ) abjenil(R), s=01,....1+k
i+j=s

We will show that a;b; € nil(R) by induction on i + .

If i +j = 0, then ayby € nil(R), boay € nil(R).

Now suppose that s is a positive integer such that ¢;b; € nil(R) when i +j < 5. We
will show that a;b; € nil(R) when i 4 j = s. Consider the following equation:

(%) 1 Ay = apby + ayby_1 + - - - + a;by € nil(R).

Multiplying (*) by bo from left, we have boasbo = b()AS — (boao)bs — (b()al)bs_l — e =
(boas—1)by. By induction hypothesis, a;by € nil(R) for all 0 < i < s, and so bya; € nil(R)
for all 0 < i < 5. Thus byagby € nil(R) and so bya, € nil(R), azby € nil(R). Multiplying
(%) by by, by, ..., b, from left side, respectively, yields a,_1b; € nil(R), a;_»b; €
nil(R), ..., apbs € nil(R) in turn. This means that a;b; € nil(R) when i 4 j = 5. Therefore
by induction, we obtain g;b; e nil(R) for each i,j. Thus b; € Nrp(Y;) Cnil(R) for
all 0 <j <k, and so g(x)enil(R[x]) by Lemma 2.5. Hence Nrgyq(Xp) € nil(R[x]).
Therefore R[x] is a right weak zip ring.

Similarly, we can show that if R is semicommutative, then R is left weak zip if and
only if R[x] is left weak zip.

3. Ore extensions over weak zip rings. Let ¢ be an endomorphism of R and
8 : R —> R an additive map of R. The application § is said to be an «a-derivation
if §(ab) = 8(a)b + a(a)d(b). The Ore extension S = R[x; «, §] is the set of polynomials
Y yaix' with the usual sum, and the multiplication rule is xa=a(a)x + §(a). Let
f(x)=ay+ aix+ - -+ a,x" € R[x; «, §]. We say that f(x) € nil(R)[x; «, §] if and only if
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a; €nil(R) for all 0 < i < n. Let I be a subset of R. We denote by I[x; «, §] the subset of
R[x;a, §], where the coefficients of elements in /[ x; «, §] are in subset /, equivalently, for
any skew polynomial f(x)=ay + a1x + - - - + a,x" € R[x; a, 8], f(x) € I]x; e, 8] if and
onlyifa; e Iforall0 <i < n.Iff(x) € R[x; «, §]is a nilpotent element of R[x; ¢, §], then
wesay f(x) € nil(R[x; «, 8]). Forf(x)=ap + a;x + - - - + a,X" € R[x;a, §], we denote by
{ag, ai, ..., a,} the set of coefficients of f(x). Let ¢; € R, 1 < i < n; we also denote by
ayay, . .., a, the product of all ¢;, 1 <i <n. .

Let 6 be an a-derivation of R. For integers i, j with 0 < i < j, // € End(R, +) will de-
note the map which is the sum of all possible words in «, § built with i letters o and j — i
letters 8. For instance, fy = l,ff =/, f) =8 and fj{l =/ 18+ o/ 2B+ -+ 80/
The next Lemma appears in [11, Lemma 4.1].

LEMMA 3.1. For any positive integer n and r € R, we have xX"r=Y_"7_ f7(r)x" in the
ring R[x;a, §].

LEMMA 3.2 ([2]). Let R be an («, §)-compatible ring. Then we have the following:
(1) If ab=0, then ax"(b) = a”(a)b =0 for all positive integers n.

(2) If a*(a)b =0 for some positive integer k, then ab=0.

(3) If ab=0, then o"(a)8"(b) = 0= 358" (a)a"(b) for all positive integers m, n.

LEMMA 3.3. Let § be an a-derivation of R. If R is an («, §)-compatible ring, then
ab =0 implies af(b)=0 forallj > i> 0and a,be R.

Proof. If ab=0, then aa'(h) = a8/ (b) =0 for all i > 0 and j > 0 because R is («, §)-
compatible. Then af’(b) =0 for all i, ;. O

LEMMA 3.4. Let § be an a-derivation of R. If R is («, §)-compatible and reversible,
then ab € nil(R) implies af/(b) € nil(R) for allj > i > 0 and a, b € R.

Proof.  Since abenil(R), there exists some positive integer k& such
that (ab)k=0.0 = (ab)k = abab - --ab = abab - - - abaf(b) =0 = afj(b)ab---ab=0 =
afi(b)ab - - - abaf(b)=0 = afi(b)afi(b)ab---ab=0 = --- = af/(b) € nil(R). O

LEMMA 3.5. Let R be an («, §)-compatible ring. If aw™(b) € nil(R) for a, b € R, and
m is a positive integer, then ab € nil(R).

Proof. Since aa™(b) € nil(R), there exists some positive integer n such that
(aa™(b))" =0. In the following computations, we use freely the condition that R is
(o, 8)-compatible.

(aa™(b))" = aa(b)ac™ (b) - - - aa™(b) = 0

= aa(byaa(b) - - - aa”(b)ab = 0

= aa™(b)ac™(b) - - - aa™(b)a(ab) = 0

= aa(b)aa™ (D) - - - aa™(b)aa (bab) = 0

= aa(b)aa™ (D) - - - aa™(b)abab = 0

= .- = abenil(R). O

LEMMA 3.6. Let R be («a, §)-compatible. If R is a reversible ring, then f(x)=ay +
a1x+ -+ a,x" € nil(R[x; «, 8]) if and only if a; € nil(R) for all 0 < i < n.

https://doi.org/10.1017/5S0017089509005151 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509005151

ORE EXTENSIONS OF WEAK ZIP RINGS 531

Proof. (=) Suppose f(x) € nil(R[x;«a, §]). There exists some positive integer k
such that f(x)* = (ap + a;x + - - - + a,x")¥ =0. Then

0=/ (x)" = ‘lower terms’ + a,a"(a,)a>"(ay) - - - «* D (a,)x"*.

Hence a,a"(a,)a?(ay)---a*D"(a,)=0, and a-compatibility and reversibility of
R gives a, € nil(R). So by Lemma 3.4, a,=1-a,€enil(R) implies 1-f/(a,)=
f!(ay,) €nil(R) for all 0 < i < j. Thus we obtain
(ap+ajx+---+ an_lx”‘l)k = ‘lower terms’
a0 (@) @D g, )
e nil(R)[x; o, 8] since nil(R) is an ideal of R. Hence a,_1a" (a,_;) - - - a*D"=D(q,_)
€ nil(R) and so a,,_; € nil(R) by Lemma 3.5. Using induction on # we obtain a; € nil(R)

forall0 <i<n. O

(<) Suppose that /=0, i=0,1,...,n. Let k= >'_,m; + 1. We claim that

i

fx)F=(ap + arx + - - + a,x"y* =0. From

(Xn: afxi) ap + (2”: aixi> a|x

i=0 i=0

4.+ (Z a,-x’) ax’ + - + (i aixi) apx"
i=0

i=0
= afiao) + (Z a/{(ao)> X4 o+ (Z aJ;‘(aO)) x*
i=0 i=1 i=s
T <Z aifn"(ao)> X"+ (Z aifalar) + (Z ai/‘f(al)> X
i=n i=0 i=1
4Ll 4+ (Z aif,f(ﬁ)) xﬂ) X4 oo+ (Z aifa(as) + (Z aiﬁ(as)> X
i=n i=0 i=1

4+ 4+ (Z ad‘nl(as)) xn) X4 (Z aU’é(a,,) + (Z aifli(a”)> X

i=n i=0 i=1

4+ <Z alﬂ(an)) x”) x"

=Y afila) + (Z aif{(ao)+y aif&(al)) x+ (Z afi(ao)+y _ aifi(ar)
i=0 i1 i=0 i— i1
+2 "iﬂf(“ﬁ) g +< ) (Z au’;‘(at))) ot g
i=0 s+i=k \i=s
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. . Kk .
it is easy to check that the coefficients of (}i_ja;x’)" can be written as sums of
monomials of length k in ¢; and [} (a;), where a;, aj € {ao, a1, ..., a,} and v > u > 0 are
positive integers. Consider each monomial

anfi(ay) - fi(aq,),

k+1

where a;, a;,, ---a, €{aog, a1, ---, a,}, and ¢, 5;(¢; > 5,2 < j < k) are non-negative
integers. We will show that a;f*(a;)---fj*(a;)=0. If the number of ap in
apfiai) - - - fi(a;,) is greater than myg, then we can write monomial a1 £ (a;,) - - - fi*(a;,)
as

b1 (f (@0))" b2 (1 (@0))* - - - by (f1 (a0)) " b1,

whereji +j+ -+ +jy > mo, 1 <j1,jo,....Jvand by (g=1,2,..., v+ 1)isa product

of some ;:lements choosing from {a;,f?(a;,), ..., f{*(a;)} or is equal to 1. Since
al """ =0 and R is reversible and («, §)-compatible, we have
0 — a61+]2+...+]u = apay - - - do
~————
Jibiat

= agag -+ (/' (ap)) = 0

501

= (flo (ao))a() ceap =0

S01

= (fo (a()))j] ay---ay=0

501

= 5’(?11 (aO))Jl si)ozz (a‘)))jz T Sz(?: (a‘)))jv =0
= bi( (@) ba (£ (@) -+ by (1 (a0)) b1 = 0.

Thus a;\f>(as,) - - - f{*(a; ) = 0. If the number of @; in a; />(a;,) - - - ;¥ (a;,) is greater than
my., then similar discussion yields that a;1f{?(a;,) - - - f{*(a;,) = 0. Thus each monomial
appears in (Z;’:o aixi)k equal to 0. Therefore Y 7_,a;x' € R[x;a, §] is a nilpotent
element.

Hirano observed relations between annihilators in a ring R and annihilators in R[x]
(see[6]). In this note we investigate the relations between right (left) weak annihilators in
aring R and right (left) weak annihilators in skew polynomial ring S = R[x; «, §]. Given
a ring R, we define NrAnngz(2R) = (Nrg(U) | U C R}, NrAnng(2%) = {Nrg(V) |
V' €S}, NIAnng(2R®) = {Nix(U) | U< R}, NIAnng(2%) = {Nig(V)| V< S}. Given
a skew polynomial f(x) € R[x;«, é], let C; denote the set of all coefficients of f(x),
and for a subset V' of R[x; e, 8], let Cy denote the set U, . C;-

LEMMA 3.7. Let R be a reversible and («, 8)-compatible ring. Then for any subset
U C R, we have the following:

(1) Nrs(U)=Nrg(U)lx; o, 8].

(2) NIs(U)=NIg(U)[x; e, 8].
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Proof. (1) Clearly, Nrgr(U)[x; o, 8] € Nrs(U). For any skew polynomial f(x) = ay +
ax+ --- +a,x" € Nrs(U), we have 1f(x)=rag+ rajx+ --- + ra,x" enil(S) for
any reU. So ra;enil(R) for all 0<i<n and all reU by Lemma 3.6,
and hence «@; € Nrg(U) for all 0 <i<mn. Thus f(x)e Nrgr(U)[x;a,8] and so
Nrs(U) € Nrr(U)[x; a, §]. Therefore we obtain Nrg(U) = Nrgr(U)[x; a, §].

(2) Forany f(x)=ay + a1x + - -+ + a,xX" € NIg(U)[x;a, §], a;r € nil(R) for all 0 <
i <nand any re U. Then a;f!(r) € nil(R) for 0 < i < n and all positive integers s and ¢
with ¢ > s by Lemma 3.4. Thus,

f(x)r = (a() +a1x+ --- + anxn)r
— Zaiﬁ:(lﬂ) + (Z aif{(")) X+ - + (Z aifsi(r)> X4+ ana"(l’)xn c nil(S)
i=0

i=1 i=s

by Lemma 3.6, and so NIz(U)[x;a, §] S Nis(U).
Conversely, assume that f(x) =ap + ajx + - -+ + a,x" € NIs(U). Then

SO = (a+arx+ - +ax")r

= > afir)+ (Z af{(r)) X+ o+ (Z aff(r)) X 4 aua ()X

i=0 i=1 i=s

=Ag+ Aix+ -+ + AX" enil(S)
for all r € U. Then we have the following system of equations by Lemma 3.6:

1) A, =a,d(r) enil(R),
() At = a1 () + /T (r) €nil(R),

m

() A=) afi(r)enil(R).

i=s

From equation (1), we obtain a,r€nil(R) by Lemma 3.5, and so a,f/(r) € nil(R)
by Lemma 3.4. From equation (2), we have a,_1a"~'(r) = A,y — a,/™ ,(r) € nil(R)
and so a,_;r € nil(R). Continuing this procedure yields that a;r € nil(R) for all 0 <
i <n. Hence a; € NIg(U) for all 0 <i < n, and so f(x) € Nig(U)[x; a, §]. Therefore
Nis(U)=NIg(U)[x;a, §].

With the above Lemma 3.7, we have maps: ¢ : NrAnng(28) — NrAnng(25)
defined by ¢(I)=I[x;a, 8] for every Ie NrAnng(2%) and v : NIAnngz(2®) —
NIAnng(2%) defined by ¥ (J) = J[x; , 8] for every J € NIAnng(2R). Obviously, ¢ and
Y are injective. O

THEOREM 3.8. Let R be a reversible and («, §)-compatible ring. Then we have the
following:
(1) ¢ : NrAnng(2®) — NrAnng(25) defined by ¢(I)=1I[x;a,8] for every
I € NrAnng(2R) is bijective.
(2) ¥ : NlAnng(2R) — NlAnns(2%) defined by (J)=J[x;a,8] for every
J € NlAnng(2R) is bijective.

Proof. (1) Tt is only necessary to show that ¢ 1is surjective. Let
f=237_, bjx¥' € Nrs(V) € NrAnng(2%). Then we have g(x)f(x) € nil(S) for every

https://doi.org/10.1017/5S0017089509005151 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509005151

534 LUNQUN OUYANG

g(x)=Y""" ya;x' € V. Since

g(x)f(x) = (i a,»x’) (Xn: b.ij) = (Xm: aixl) by + (i aixi) b x
i=0 j=0 ; N

+ <2’”: aixi> bux
i—0

=D afi(bo) + (Z az‘ﬁi(bo)) X+ A+ (Z az’fsi(bo)) x

i=0 i=1 i=s

e @™ (bo)X" + (Z aifi(b) + (Z aifi(by )) X4 e
i=1

i=0

+ (Z an@o)) X4 +amam(b1)xm> x

i=s

ot <Zalfo<b ) + (Z alfl(b,»)x +oo +ay a’”(bn)xm)x"

i=0 i=1

= > afy(bo) + (Z aif{(bo) + ai/’g(bl)) X

i=0 i=1 i=0

+ ( 2 (Z aﬂ(b»)) Wb e (B € mil(S).

s+i=k

Then we have the following equations by Lemma 3.6:

(@) Apin = ama™(by) € nil(R),
(5) Apgn—1 = ama"(by—1) + am 1" l(bn) + arﬂfnn: 1(bn) € nil(R),

m

(6) Ain+n 2 —amam(bn 2)+ Z a; m 1(bn 1)+ Z alfnl7 Z(b”)enll(R)

i=m—1 i=m—2

M A=Y (Z azﬂ‘(bt)) e nil(R).
s+t=k \i=s
From equation (4) and Lemma 3.5, we obtain a,,,b, € nil(R), and so b, a,, € nil(R). Now
we show that a;b, € nil(R) for all 0 < i < m. If we multiply equation (5) on the left side
by b,, then bnamflam_l(bn) = bpAmin-1 — (bpamao (by—1) + bnamf;zl_l(bn)) €nil(R)
since the nil(R) of a reversible ring is an ideal. Thus by Lemma 3.5, we obtain
bnay,—1b, €nil(R), and so b,a,,_ € nil(R), a,,_1b, € nil(R). If we multiply equation
(6) on the left side by b, then we obtain b, of" 5 (bn) = byam—2a"*(b,) =
bnAin+n—2 — bpap " (by—2) — byt Lfm l(bn 1)—b amf,:,n l(bn 1) — bty ]J{m 2(bn) -
buamf (bu )— b nDmin—2 — (bnap ) (by—2) — (by, am—l)f,:'_l1 (bn—1) — (bnam)f,,’;_l(bn—l)

m—2

—(bpam—1)f;, (bn) (bnan)f;, (by) € nil(R) since nil(R) is an ideal of R. Thus
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we obtain a,,_»b, €nil(R) and b,a,,_» € nil(R). Continuing this procedure yields
that a;b, € nil(R) for all 0 <i <m, and so a;f!(b,) €nil(R) for any ¢t > s> 0 and
0 < i < m by Lemma 3.4. Thus it is easy to verify that (}_i" a,-x")(Z;?;ol b;x') € nil(S).
Applying the preceding method repeatedly, we obtain that «;b; enil(R) for all
0<i<m0=<j<nSobjeNrr(Cy)andf(x)e Nrr(Cy)[x;a, 8], and hence it is easy
to see that Nrg(V) = Nrr(Cy)lx; «, 8] = ¢(Nrr(Cy)). Therefore ¢ is surjective.

(2) The proof of (2) is similar.

COROLLARY 3.9. Let R be reversible. Then we have the following:

(1) ¢ : Nrdnng(2®) — NrAnnR[x](ZR[x]) defined by ¢(I) = I[x] for every I €
NrAnng(2R) is bijective.

(2) ¥ : NlAnng(2R) — NlAnngp(RQ®)  defined by ¥(J) = J[x] for every
J € NlAnng(2R) is bijective.

Proof. Let @ = 1g be the identity endomorphism of Rand § = 0. Then R[x;«, §] =
R[x]. Hence we complete the proof by Theorem 3.8.

Actually, as to polynomial ring R[x], the condition that R is reversible in Corollary
3.9 can be replaced by that R is semicommutative. We have the following: ]

COROLLARY 3.10. Let R be semicommutative. Then we have the following:

(1) ¢ : NrAnng(2R) — NrAnngq2R™) defined by ¢(I) = I[x] for every I €
NrAnng(2R) is bijective.

(2) ¥ : NldAnng(2®) — NlAnnR[x](ZR[x]) defined by (J)=J[x] for every
J € NlAnng(2R) is bijective.

Proof. (1) For any subset U C R, it is easy to see that Nrr(U)[x] S Nrppq(U).
Also for any polynomial f(x) = ao + a1x+ -+ + a,x" € Nrgy(U), we have if (x) =
rag + rajx + -+ - + ra,x" € nil(R[x]) for any r€ U. Then ra; enil(R) for all 0 <i <n
by Lemma 2.5, and so a; € Nrg(U) for all 0 < i < n. Thus f(x) € Nrg(U)[x] and so
Nrrpg(U) € Nrr(U)[x]. Therefore Nrpq(U) = Nrg(U)[x], which implies that ¢ is well
defined. Obviously, ¢ is injective. So it is necessary to show that ¢ is surjective. Let
Sx) =Y bj¥' € Nrgq(V) € NrAnng(2RM). Then we have g(x)f (x) € nil(R[x]) for
every g(x) = > ', a;x" € V. Since

m n m-+n
g)f (x) = (Z a,-x’) Do [ =) D aiby | ¥ e nil(R[x)),
i=0 j=0 k=0 \it+j=k

similar to the proof of Proposition 2.6, we obtain a;b; €nil(R) for each i, j.
So bjeNrp(Cy) and f(x)e Nrr(Cy)lx], and hence Nrgg(V)= Nrr(Cy)lx] =
¢(Nrgr(Cy)). Therefore ¢ is bijective.

(2) Similarly we can proof (2). 0

THEOREM 3.11. Let R be («a, §)-compatible. If R is reversible, then the following
statements are equivalent:

(1) Risright (left) weak zip.

(2) S = R[x;«a, 8] is right (left) weak zip.

Proof. We will show the right case because the left case is similar. [

(1) = (2) Suppose that R is right weak zip. Let X C S such that Nrg(X) C nil(S).
For a skew polynomial f(x) = "% a;x' € S, Cs denotes the set of coefficients of f(x),
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and for a subset V' of S, Cy denotes the set (J, .y Cy. Then Cy € R. Now we show
that Nrr(Cy) Cnil(R). If re Nrr(Cy), then ar € nil(R) for any a € Cy. So for any
skew polynomial f(x) = Y7 a;x' € X, we obtain a; € nil(R) and so a;f!(r) € nil(R)
by Lemma 3.4. Hence f(x)r € nil(S) by Lemma 3.6 and so r € Nrg(X) Cnil(S). Thus
renil(R) and so Nrgr(Cyx)Cnil(R). Since R is right weak zip, there exists a finite
subset Yy € Cy such that Nrg(Yy) Cnil(R). For each a e Y, there exists g,(x) € X
such that some of the coefficients of g,(x) are a. Let X, be a minimal subset of X such
that g,(x) € Xy for each a€ Y. Then Xj is a finite subset of X. Let Y; be the set of
all coefficients of elements of X, then Yy C Y; and so Nrr(Y1) C Nrg(Yy) € nil(R).
If f(x) = ap + a1x + - - - + axx* € Nrs(Xp), then g(x)f (x) € nil(S) for any g(x) = by +
bix+ -+ + bx' € Xj. Using the same method in the proof of Theorem 3.8, we obtain
bja; e nil(R) for each i, j. Thus a; € Nrg(Y1) Cnil(R) for 0 <j < k and so f(x) € nil(S)
by Lemma 3.6. Hence Nrg(Xy) C nil(S). Therefore S = R[x;«, 8] is a right weak zip
ring.

Conversely, suppose that S = R[x;«, §] is right weak zip. Let Y be a subset of
R such that Nrg(Y)Cnil(R). If f(x) =ay+a1x+ --- +a,x" € Nrg(Y), then a; €
Nrgr(Y)Cnil(R) for all 0 < i < n by Lemma 3.7, and so f(x) € nil(S) by Lemma 3.6.
Hence Nrs(Y) C nil(S). Since S = R[x; «, 8] is right weak zip, there exists a finite set
Yy € Y such that Nrg(Yy) € nil(S). Hence Nrr(Yy) = Nrs(Yp) N R C nil(R). Therefore
R is a right weak zip ring.

COROLLARY 3.12. Let R be reversible. Then we have the following:

(1) If R is a-compatible, then the skew polynomial ring R[x;«] is right (left) weak
zip if and only if R is right (left) weak zip.

(2) If R is 8-compatible, then the differential polynomial ring R[x; 8] is right (left)
weak zip if and only if R is right (left) weak zip.

Proof. By virtue of Theorem 3.9, we complete the proof. O
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