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DETERMINED BY THEIR RESTRICTION TO A SUBGROUP

by MARTIN R. PETTET
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The trivial observation that every automorphism of a group is determined by its
restriction to a set of generators suggests the converse question: if X is a subset of a group
G such that each automorphism of G is determined (or “almost” determined) by its
restriction to X, to what extent is the structure of G governed by that of the subgroup
which X generates? Is this subgroup in some sense necessarily “large’ in G? If the index
of the subgroup is used as a measure of largeness, then in the absence of additional
hypotheses, the answer to the second question is generally “no”, the additive group of
rationals with X = {1} being an obvious counterexample. (More confounding is the
existence of uncountable torsion-free abelian groups for which inversion is the only
non-trivial automorphism. See, for example, [2], (3], and [4].) However, under certain
finiteness assumptions, it seems that some positive conclusions are obtainable. One such
example will be considered here.

Recall first that a Cernikov group is one which contains an abelian subgroup of finite
index and satisfies the minimum condition on subgroups. For lack of a standard name, we
shall use the term aperiodic to refer to a group which has no non-trivial periodic
homomorphic image and we shall say that G is torsion-separable if there is a finite
subnormal series 1=G,<G,<...<G, =G such that each factor G;/G;_, is either
periodic or aperiodic. One motivation for working within this class of groups is the fact
that a torsion-separable abelian group is necessarily periodic (see (1.3)). So one might
reasonably hope to avoid the kind of pathology cited above.

If G is a group, Aut(G) and Inn(G) will denote, respectively, the full automorphism
group and the inner automorphism group of G. G/ will denote the finite residual of G, G’
the commutator subgroup, and Z(G) the center. If X is a subgroup of G, X is the
normal closure of X in G. We shall say that X is almost normal in G if it has only finitely
many G-conjugates (that is, if |G : Ng(X)] is finite).

If k is a cardinal, the assumption that each automorphism of G is determined up to k
possibilities by its restriction to a subgroup H is, of course, equivalent to the assumption
that H is fixed point-wise by at most k elements of Aut(G); that is, |Cawc)(H)| < k. The
main result here is the following.

THEOREM. Let G be a torsion-separable group and H be an almost normal C:’ernikov
subgroup of G. If C o c)(H) is countable and C,,,cy(H) is Cernikov, then G is Cernikov
and G/ = (HNC. In particular, |G : H®| is finite and, if H is actually finite, then G is finite.

CoroLLaRrY 1. Let G be a group which satisfies the minimum condition on subnormal
subgroups and H be a subnormal Cernikov subgroup of G. If C au(c)(H) is Cernikov,
then G is Cernikouv and |G : H®| is finite.
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CoroLLARY 2. Let G be a torsion-separable group and A be an abelian divisible-by-
finite subgroup of G. Suppose that each automorphism of G is uniquely determined by its
restriction to A. Then G = A X B for some subgroup B with |B|<2 and (|a|, |B|)=1 for
every acA.

Periodicity assumptions on G can sometimes be dispensed with altogether if the
hypotheses are extended to endomorphisms.

CoroLLARY 3. Let G be a group and H be a finite almost normal subgroup of G. If
each endomorphism of G is determined up to a finite number of possibilities by its
restriction to H, then G is finite.

CoroLLARY 4. Let G be a group and A be an abelian divisible-by-finite subgroup of
G. If each endomorphism of G is uniquely determined by its restriction to A, then G = A.

One final consequence of the theorem worth noting is that a central-by-éernikov
group whose automorphism group is countable is necessarily finite. This extends a result
of Baer [1, p. 529] that a periodic group with finite automorphism group is finite. See also

[7].
1. Torsion-separable groups. We begin with a few general observations about the
class of torsion-separable groups.

(1.1) Homomorphic images of torsion-separable groups are torsion-separable.

Proof. This is clear since homomorphic images of periodic (aperiodic) groups are
periodic (resp. aperiodic).

(1.2) If G satisfies the minimum condition on subnormal subgroups, then G is
torsion-separable.

Proof. If G satisfies min-sn, then among the normal subgroups N of G with G/N
periodic, there is a unique minimal element G*. G* also satisfies min-sn and so
G**(=(G*)*) exists. Then G**<JG (since G** is characteristic in G*) and G/G** is
periodic. So G*=G**. Hence, G is aperiodic-by-periodic and, in particular, is
torsion-separable. '

(1.3) (a) Every aperiodic group is perfect.
(b) Every solvable torsion-separable group is periodic.

Proof. For (a), we observe that if G is aperiodic with commutator subgroup G’,
then since G” = G for every positive integer n, G/G' is divisible abelian. By [8, 4.1.5],
G/G' is a direct sum of copies of the rationals and quasicyclic groups and, since both
types of summands have non-trivial periodic homomorphic images, G/G’ is trivial.
Statement (b) follows from (a) since, if G is solvable and torsion-separable, every
aperiodic factor in a torsion-separated series for G is trivial.

(1.4) If G is torsion-separable and NG such that GIN is periodic, then N is
torsion-separable. Any subgroup of finite index in G is torsion-separable.
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Proof. Let 1= GG, <. . .G, = G be a torsion-separated series for G. We will
show that if N;=NNG; for 0<i=<n, then 1=N<IN,...<N,=N is a torsion-
separated series for N.

Certainly N;/N;_, = N;G;_,/G;_, so that, if G;/G;_, is periodic, N;/N;_, is also. Suppose
now that G,/G,_, is aperiodic. Since G;/N;=NG;,/N<G/N, G;/N, is periodic, whence
(Gi/G;_)/(N;G;-/G;—1) = G;/N;G;_, is periodic. It follows that G;=N,G,_, and
N;/N;_,=G,/G;_, is aperiodic. This proves the first statement.

The second statement now follows immediately from the fact that any subgroup of
finite index in G contains a normal subgroup of G of finite index.

The last observation in this section represents a slight extension of another result of
Baer [1, p. 530].

(1.5) Let H be a Cernikov group and Inn(H) denote its group of inner
automorphisms. If A is any torsion-separable group of automorphisms of H, then
|A:A N Inn(H)| is finite (so that, in particular, A is Cernikov).

Proof. In the course of deriving this conclusion for periodic groups of automorph-
isms, Baer showed [1, pp. 534-535] that for any Cernikov group H, |Cauqn(H'): H| is
finite (where H is the subgroup of Inn(H) corresponding to the finite residual H' of H).
Thus it suffices to show that |4:C,(H/)| is finite. Since A/C,(H’) is isomorphic to a
torsion-separable subgroup of Aut(H') by (1.1), we need only to settle the case that
H=H',

We may also assume that A is periodic-by-aperiodic. For if A is necessarily finite in
this situation then, in the general case, the lowest aperiodic factor in any torsion-
separated series for A must be trivial and we can use induction on the minimal length of
such a series. Hence we assume that A contains a periodic normal subgroup B such that
A/B is aperiodic.

For each positive integer i, let H; be the subgroup of H(= H’) generated by the
elements of order p for some prime p. H; is a finite characteristic subgroup of H by [8,
4.2.11]. So A/C4(H,) is finite for every i. Therefore, A/C4(H;)B is finite. So, since A/B is
aperiodic, A = C,(H;)B for all i. In particular, |JA: C,(H;)| = |B: Cz(H,)| <|B|. Since B is
finite (by Baer’s theorem), it follows that there is a positive integer n such that
C.(H,)=C,(H;) for all i=n. But H is the union of the H’s. So we conclude that
C.(H,)=1, whence A = A/C,(H,) is finite, as required.

2. The theorem. Before proving the theorem, it is convenient to isolate two simple
lemmas, the first of which is a straightforward adaptation of Maschke’s theorem and the
second of which is a rather obvious device for extending automorphisms.

(2.1) Let V be an abelian normal subgroup of finite index n in G, and suppose that D
is a divisible subgroup of V with D<IG. Then there exists a subgroup E of V with EQG,
V*"=DE,and (DNE)"'=1.
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Proof. Let V =D X L (since D is divisible) and & be the corresponding projection
V — D. Define the endomorphism n*:V — D by

a*(w) =[] tw(t ve)e!

where the product is taken over a transversal for V in G. Then z*(g~'vg) =g~ 'n*(v)g
for all g € G, v € V and, in particular, ker(x*)<]G. If d € D, then x*(d) = d". So, for any
veV, a*(v"x*())=a*(v) "r*(v)"=1. It follows that V"< D ker(w*). So since
D=D"<V" V"=DE where E=V"Nker(x*). If ve DNE, then v"=x*(v)=1, so
that (DN E)* =1.

Note. Although the factorization of V" in (2.1) will suffice for our purposes, the
referee has pointed out that since V"/E =D/D N E is divisible, V/E = (V"*/E) x (W/E)
so that if E,={xeV:x"eE}, then E,<IG, V =DE,, and (DN E;)”=1. In fact, he
refers to a short cohomological argument [6, Lemma 10 (ii)] which yields G = XD with
(XnD)y'=1.lf E=VNXJG, we have V=DE and (DN E)' =1.

(2.2) Suppose G = AB where A<LIG. Let B denote the subgroup of Aut(A) induced
by conjugation by elements of B. If o is an element of C 5y a)(A N B) N Cayyay(B), then
the map o*: G — G defined by

o*(aby=o(a)b forall acA,beB
is an element of C sy c)(B). The map o~ o* is injective.

Proof. This is a routine calculation. Suffice it to say that the fact that oe
Caua)(A N B) ensures that o* is well-defined and injective, while the assumption that it
commutes with the action of B is required for o* to be an endomorphism.

Proof of the theorem. Let G be a torsion-separable group with a subgroup H which
satisfies the hypotheses of the theorem. By (1.4) and (1.1), Ng(H)/Cs(H) is isomorphic
to a torsion-separable group of automorphisms of H and hence, by (1.5), it is Cernikov
and Ng(H)/HCg(H) is finite. (This is the only point in the argument where the full force
of (1.5) is used. Henceforth, Baer’s version (for periodic automorphism groups) will
suffice.) Since |G:Ng(H)| is finite and Cg(H)/Z(G)= Cipnc)(H) is Cernikov,
|G:HCG(H)| is finite and G/Z(G) is Cernikov. It follows from (1.4) that Z(G) is
torsion-separable and from (1.3) that it is periodic; so G is locally finite. Also, by [S5,
Lemma 4.23], G’ is Cernikov so that, if K = HG', then K is Cernikov, K<IG and G/K
is abelian.

(1) Every divisible subgroup of Z(G) is contained in K.

If Z is a quasicyclic p-subgroup of Z(G), then ZK/K is divisible so that
G/K =(ZK/K) X (L/K) for some subgroup L. Thus, G=ZKL=ZL and ZKNL =K.
Since Z < Z(G), it follows from (2.2) that C,z(Z N L) is isomorphic to a subgroup of
Cauc)(L). Since Hs K<L, it follows that C,,z(ZNL) is countable. Because all
subgroups of a quasicyclic group are characteristic, Aut(Z)/C .z (Z N L) is isomorphic
to a subgroup of Aut(Z N L). But Aut(Z) is isomorphic to the group of p-adic units and
hence is uncountable. Thus, Z N L is not finite so that Z=ZNL<K.
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(2) G/K is reduced (that is, contains no non-trivial divisible subgroups).

Suppose that X/K is a quasicyclic subgroup of G/K. Because K is a normal Cernikov
subgroup of X, (1.5) implies that |X: KCX(K)| is finite. So X = KCyx(K) and Cx(K)/
Z(K)=X/K. Since Z(K) < Z(Cx(K)) and since every proper subgroup of a quasicyclic
group is cyclic, we conclude that Cx(K) is abelian. X (and hence Cx(K)) is Cernikov so
that Cy(K)=A x B, where A =Cy(KY is divisible and B is finite. Since A<G, (1.5)
yields that G/Cs(A) is finite. So from [5, Lemma 3.29.1],

A =[A4, G]C(G) =4, G] X (AN Z(G)).
Now [A, G]< G’ =<K and (1) implies that (A N Z(G)) <K, so that |A:A N K| is finite.
Since A is divisible, this forces A <K so that X = KCx(K)= KB and X/K=B/BNK.
This is absurd since B is finite.

(3) Every primary component of G/K is finite.

Suppose that R/K is the p-component of G/K for some prime p. If RNZ(G) is a
p'-group, then obviously RNZ(G)=<K so that R/K is a homomorphic image of
R/R N Z(G) = RZ(G)/Z(G) which is Cernikov. But by (2), R/K is also reduced so that it
must, in fact, be finite. We may, therefore, assume that R N Z(G) contains a subgroup V
of order p. R/KV is then a direct summand of G/KV and so

Hom(R/KV, V) = Hom(G/KV, V).

Now it is again a straightforward calculation to verify that if f e Hom(G/KV, V), then the
map o:G— G defined by

o(x)=xf(KVx) foreveryxeG

belongs t0 Caug)(KV). Thus, if R=R/KV, Hom(R/R?,V)=Hom(R, V) is countable.
Since R/RP is elementary abelian and since the functor Hom(-, V') takes direct sums to
direct products, R/R? must be finite, whence (R/K)/(R/K) is finite. But since R/K is
reduced, it is clear from [8, 4.3.11] that R/K must be finite.

(4) G is Cernikov.

In view of (3), it is enough to show that G/K has only finitely many non-trivial
primary components. Now by (1.5), |G:KCs(K)| is finite. So if F is generated by a
transversal for KCs(K) in G, then because G is locally finite, F is finite. Let 7 be the set
of prime divisors of orders of elements of FK, so that 7 is finite. C5(K)/Z(K) = KCs(K)/
K which is abelian. So Cs(K)/Z(K)=(S/Z(K)) x (T/Z(K)), where the factors are x-
and x'-groups respectively. Since Z(K)=<Z(T), T is nilpotent and thus is the direct
product of its Sylow z-subgroup Z(K) and a z’-group Q. Now O<1G, G = FKCg(K) =
FKSQ, and FKSN Q=1 (since FKS is a m-group) so that G = FKS X Q. Aut(Q) is,
therefore, isomorphic to a subgroup of C,y)(FKS) which is countable. But Aut(Q) is
an unrestricted direct product of the automorphism groups of the primary components of
0, so there are only finitely many non-trivial such components. It follows easily that G/K
has only finitely many non-trivial primary components.

(5) G’ = (H)C.
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Let D=(HNC. Since H' <G/, D<G’. Now since |G:Ng(H)| is finite and
|HD:D|=|H:HND|<|H:H|, it follows from Dicman’s lemma [8, 14.5.7] that
HCID =(HD/D)C is finite. Thus, (H°Y <D = (H')° < G’. So it suffices to show that
(HCY = G’. The upshot of this is that, replacing H by HC if necessary, we may assume
from now on that HG.

By (2.1), G/ = H’E for some E<JG with H/ N E bounded (and hence finite). Let F be
the finite subgroup generated by a transversal for G/ in G. Then |[FHNE:H/ NE|=<
|FH:H'| <|F| |H:H’| so that FH N E is finite.

Suppose that some primary component E, of E is unbounded. Then E, is a faithful
module over the ring of p-adic integers and multiplication by p-adic units induces an
uncountable subgroup A of Z(Aut(E,)). Since each subgroup of E, is invariant under A,
A/C,((FH N E),) is isomorphic to a subgroup of Aut((FH N E),). Since FH N E is finite,
we conclude that C,((FH N E),) is uncountable. Each element of C,((FH N E),) extends
to an automorphism of E (acting trivially on E,.), thence to an automorphism of
G/ =H'E (since HH NE<FHNE). The result is an uncountable subgroup A* of
Aut(G). Since FHNG'=FHNH'E=H/(FHNE)<H/E,(FHNE), we have
A*< Cpyn(FHN G’). Moreover, since H' and E are each normal in G, it is clear that
A* commutes with the conjugation action of G on G’. Since G = G’F = G’FH, (2.2)
implies that A* can be extended to produce an uncountable subgroup of Cauy(FH),
contradicting the assumption that C,,c)(H) is countable. 5

Thus, each primary component of E is bounded so that, since E is Cernikov, E is
finite. But then |G’ : H/| <|E| so that, since G’ has no proper subgroups of finite index,
G’/ = H/ as required.

3. The corollaries. Corollary 1 is an immediate consequence of (1.2) and an
observation of Robinson and Roseblade [8, 13.3.8] that if G satisfies the minimum
condition for subnormal subgroups, then every subnormal subgroup of G is almost
normal.

Proof of Corollary 2. By hypothesis, the inner automorphism of G induced by any
element of A is the identity, so that A < Z(G), whence Inn(G) < Cpug)(A) = 1. Thus, G
is abelian and the theorem yields that it is Cernikov and G/ = A/,

First we observe that it suffices to prove that A is a direct factor of G. For if
G =A x B, then clearly Aut(B) is trivial so that |B|<2. Moreover, (|a],|B])=1 for
every a € A, for otherwise B = (b) has order 2 and A contains an element a, of order 2.
But then the map

a—a forallaeA, b—aw

defines a non-trivial element of C,)(A), a contradiction.

If A=A XF, then A/F is divisible so that G/F =(A/F) x (C/F) for some finite
subgroup C. Then G =AC and AN C = F s0 that Cy,c)(F) is trivial. If C=F X B for
some B, then G =A X B and we are done. Thus we are reduced to the case that G is
finite and, in fact, a p-group for some prime p.
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The proof is completed by induction on |G|. Let a be an element of maximal order in
A, so that A = (a) X K for some K by [8, 4.2.7]. The map x — x"!*! defines an element of
Cauc)(A) so that, in fact, a has maximal order in G. If G = G/K, then G =(a) x L. So
G =(a) x L for some L. Then Cuu,(K) must be trivial so that, since |L|<|G|,
L =K X B for some B. Then G = A X B and the proof is complete.

Proof of Corollary 3. The hypotheses imply that Ng(H)/Cs(H) and C(H)/Z(G)
are finite. So G/Z(G) is finite. If n = |G : Z(G)|, the transfer homomorphism G — Z(G)
is just the map x+—x" [5, Theorem 4.11]. Therefore, if 4 is the exponent of H, then for
any integer k, the map x —x"* is an endomorphism of G whose kernel contains H.
Since, by hypothesis, there are only finitely many such endomorphisms, G must be
periodic and the theorem applies.

Proof of Corollary 4. As in the proof of Corollary 2, G is abelian, A = A/ X F for
some finite subgroup F, and G = AC for some C with A N C = F. An endomorphism of C
which fixes F extends, therefore, to one of G fixing A. If C=F then G = A, so that it
suffices to prove the corollary in the case A = F. In this case, Corollary 3 yields that G is
finite so that, by Corollary 2, G =A X B with |B|=<2. But the hypothesis forces the
projection map from G onto A to be the identity map, so that G = A as required.
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