GROUPS WHOSE AUTOMORPHISMS ARE ALMOST DETERMINED BY THEIR RESTRICTION TO A SUBGROUP

by MARTIN R. PETTET

(Received 10 February, 1985)

The trivial observation that every automorphism of a group is determined by its restriction to a set of generators suggests the converse question: if X is a subset of a group G such that each automorphism of G is determined (or "almost" determined) by its restriction to X, to what extent is the structure of G governed by that of the subgroup which X generates? Is this subgroup in some sense necessarily "large" in G? If the index of the subgroup is used as a measure of largeness, then in the absence of additional hypotheses, the answer to the second question is generally "no", the additive group of rationals with $X = \{1\}$ being an obvious counterexample. (More confounding is the existence of uncountable torsion-free abelian groups for which inversion is the only non-trivial automorphism. See, for example, [2], [3], and [4].) However, under certain finiteness assumptions, it seems that some positive conclusions are obtainable. One such example will be considered here.

Recall first that a Černikov group is one which contains an abelian subgroup of finite index and satisfies the minimum condition on subgroups. For lack of a standard name, we shall use the term *aperiodic* to refer to a group which has no non-trivial periodic homomorphic image and we shall say that G is *torsion-separable* if there is a finite subnormal series $1 = G_0 \leq G_1 \leq \ldots \leq G_n = G$ such that each factor G_i/G_{i-1} is either periodic or aperiodic. One motivation for working within this class of groups is the fact that a torsion-separable abelian group is necessarily periodic (see (1.3)). So one might reasonably hope to avoid the kind of pathology cited above.

If G is a group, Aut(G) and Inn(G) will denote, respectively, the full automorphism group and the inner automorphism group of G. G^f will denote the finite residual of G, G' the commutator subgroup, and Z(G) the center. If X is a subgroup of G, X^G is the normal closure of X in G. We shall say that X is almost normal in G if it has only finitely many G-conjugates (that is, if $|G:N_G(X)|$ is finite).

If κ is a cardinal, the assumption that each automorphism of G is determined up to κ possibilities by its restriction to a subgroup H is, of course, equivalent to the assumption that H is fixed point-wise by at most κ elements of Aut(G); that is, $|C_{Aut(G)}(H)| \leq \kappa$. The main result here is the following.

THEOREM. Let G be a torsion-separable group and H be an almost normal Černikov subgroup of G. If $C_{Aut(G)}(H)$ is countable and $C_{Inn(G)}(H)$ is Černikov, then G is Černikov and $G^f = (H^f)^G$. In particular, $|G: H^G|$ is finite and, if H is actually finite, then G is finite.

COROLLARY 1. Let G be a group which satisfies the minimum condition on subnormal subgroups and H be a subnormal Černikov subgroup of G. If $C_{Aut(G)}(H)$ is Černikov, then G is Černikov and $|G:H^G|$ is finite.

Glasgow Math. J. 28 (1986) 87-93.

MARTIN R. PETTET

COROLLARY 2. Let G be a torsion-separable group and A be an abelian divisible-byfinite subgroup of G. Suppose that each automorphism of G is uniquely determined by its restriction to A. Then $G = A \times B$ for some subgroup B with $|B| \le 2$ and (|a|, |B|) = 1 for every $a \in A$.

Periodicity assumptions on G can sometimes be dispensed with altogether if the hypotheses are extended to endomorphisms.

COROLLARY 3. Let G be a group and H be a finite almost normal subgroup of G. If each endomorphism of G is determined up to a finite number of possibilities by its restriction to H, then G is finite.

COROLLARY 4. Let G be a group and A be an abelian divisible-by-finite subgroup of G. If each endomorphism of G is uniquely determined by its restriction to A, then G = A.

One final consequence of the theorem worth noting is that a central-by-Černikov group whose automorphism group is countable is necessarily finite. This extends a result of Baer [1, p. 529] that a periodic group with finite automorphism group is finite. See also [7].

1. Torsion-separable groups. We begin with a few general observations about the class of torsion-separable groups.

(1.1) Homomorphic images of torsion-separable groups are torsion-separable.

Proof. This is clear since homomorphic images of periodic (aperiodic) groups are periodic (resp. aperiodic).

(1.2) If G satisfies the minimum condition on subnormal subgroups, then G is torsion-separable.

Proof. If G satisfies min-sn, then among the normal subgroups N of G with G/N periodic, there is a unique minimal element G^* . G^* also satisfies min-sn and so $G^{**}(=(G^*)^*)$ exists. Then $G^{**} \leq G$ (since G^{**} is characteristic in G^*) and G/G^{**} is periodic. So $G^* = G^{**}$. Hence, G is aperiodic-by-periodic and, in particular, is torsion-separable.

(1.3) (a) Every aperiodic group is perfect.

(b) Every solvable torsion-separable group is periodic.

Proof. For (a), we observe that if G is aperiodic with commutator subgroup G', then since $G^n = G$ for every positive integer n, G/G' is divisible abelian. By [8, 4.1.5], G/G' is a direct sum of copies of the rationals and quasicyclic groups and, since both types of summands have non-trivial periodic homomorphic images, G/G' is trivial. Statement (b) follows from (a) since, if G is solvable and torsion-separable, every aperiodic factor in a torsion-separated series for G is trivial.

(1.4) If G is torsion-separable and $N \leq G$ such that G/N is periodic, then N is torsion-separable. Any subgroup of finite index in G is torsion-separable.

Proof. Let $1 = G_0 \leq G_1 \leq \ldots \leq G_n = G$ be a torsion-separated series for G. We will show that if $N_i = N \cap G_i$ for $0 \leq i \leq n$, then $1 = N_0 \leq N_1 \leq \ldots \leq N_n = N$ is a torsion-separated series for N.

Certainly $N_i/N_{i-1} \cong N_i G_{i-1}/G_{i-1}$ so that, if G_i/G_{i-1} is periodic, N_i/N_{i-1} is also. Suppose now that G_i/G_{i-1} is aperiodic. Since $G_i/N_i \cong NG_i/N \leq G/N$, G_i/N_i is periodic, whence $(G_i/G_{i-1})/(N_iG_{i-1}/G_{i-1}) \cong G_i/N_iG_{i-1}$ is periodic. It follows that $G_i = N_iG_{i-1}$ and $N_i/N_{i-1} \cong G_i/G_{i-1}$ is aperiodic. This proves the first statement.

The second statement now follows immediately from the fact that any subgroup of finite index in G contains a normal subgroup of G of finite index.

The last observation in this section represents a slight extension of another result of Baer [1, p. 530].

(1.5) Let H be a Černikov group and Inn(H) denote its group of inner automorphisms. If A is any torsion-separable group of automorphisms of H, then $|A:A \cap Inn(H)|$ is finite (so that, in particular, A is Černikov).

Proof. In the course of deriving this conclusion for periodic groups of automorphisms, Baer showed [1, pp. 534–535] that for any Černikov group H, $|C_{Aut(H)}(H^f): \hat{H}^f|$ is finite (where \hat{H}^f is the subgroup of Inn(H) corresponding to the finite residual H^f of H). Thus it suffices to show that $|A:C_A(H^f)|$ is finite. Since $A/C_A(H^f)$ is isomorphic to a torsion-separable subgroup of Aut(H^f) by (1.1), we need only to settle the case that $H = H^f$.

We may also assume that A is periodic-by-aperiodic. For if A is necessarily finite in this situation then, in the general case, the lowest aperiodic factor in any torsion-separated series for A must be trivial and we can use induction on the minimal length of such a series. Hence we assume that A contains a periodic normal subgroup B such that A/B is aperiodic.

For each positive integer *i*, let H_i be the subgroup of $H(=H^f)$ generated by the elements of order p^i for some prime *p*. H_i is a finite characteristic subgroup of *H* by [8, 4.2.11]. So $A/C_A(H_i)$ is finite for every *i*. Therefore, $A/C_A(H_i)B$ is finite. So, since A/B is aperiodic, $A = C_A(H_i)B$ for all *i*. In particular, $|A:C_A(H_i)| = |B:C_B(H_i)| \le |B|$. Since *B* is finite (by Baer's theorem), it follows that there is a positive integer *n* such that $C_A(H_n) = C_A(H_i)$ for all $i \ge n$. But *H* is the union of the H_i 's. So we conclude that $C_A(H_n) = 1$, whence $A = A/C_A(H_n)$ is finite, as required.

2. The theorem. Before proving the theorem, it is convenient to isolate two simple lemmas, the first of which is a straightforward adaptation of Maschke's theorem and the second of which is a rather obvious device for extending automorphisms.

(2.1) Let V be an abelian normal subgroup of finite index n in G, and suppose that D is a divisible subgroup of V with $D \leq G$. Then there exists a subgroup E of V with $E \leq G$, $V^n = DE$, and $(D \cap E)^n = 1$.

MARTIN R. PETTET

Proof. Let $V = D \times L$ (since D is divisible) and π be the corresponding projection $V \rightarrow D$. Define the endomorphism $\pi^* : V \rightarrow D$ by

$$\pi^*(v) = \prod_t t\pi(t^{-1}vt)t^{-1}$$

where the product is taken over a transversal for V in G. Then $\pi^*(g^{-1}vg) = g^{-1}\pi^*(v)g$ for all $g \in G$, $v \in V$ and, in particular, $\ker(\pi^*) \leq G$. If $d \in D$, then $\pi^*(d) = d^n$. So, for any $v \in V$, $\pi^*(v^{-n}\pi^*(v)) = \pi^*(v)^{-n}\pi^*(v)^n = 1$. It follows that $V^n \subseteq D \ker(\pi^*)$. So since $D = D^n \leq V^n$, $V^n = DE$ where $E = V^n \cap \ker(\pi^*)$. If $v \in D \cap E$, then $v^n = \pi^*(v) = 1$, so that $(D \cap E)^n = 1$.

NOTE. Although the factorization of V^n in (2.1) will suffice for our purposes, the referee has pointed out that since $V^n/E = D/D \cap E$ is divisible, $V/E = (V^n/E) \times (W/E)$ so that if $E_1 = \{x \in V : x^n \in E\}$, then $E_1 \leq G$, $V = DE_1$, and $(D \cap E_1)^{n^2} = 1$. In fact, he refers to a short cohomological argument [6, Lemma 10 (ii)] which yields G = XD with $(X \cap D)^n = 1$. If $E = V \cap X \leq G$, we have V = DE and $(D \cap E)^n = 1$.

(2.2) Suppose G = AB where $A \leq G$. Let \hat{B} denote the subgroup of Aut(A) induced by conjugation by elements of B. If σ is an element of $C_{Aut(A)}(A \cap B) \cap C_{Aut(A)}(\hat{B})$, then the map $\sigma^*: G \to G$ defined by

$$\sigma^*(ab) = \sigma(a)b$$
 for all $a \in A, b \in B$

is an element of $C_{Aut(G)}(B)$. The map $\sigma \mapsto \sigma^*$ is injective.

Proof. This is a routine calculation. Suffice it to say that the fact that $\sigma \in C_{Aut(A)}(A \cap B)$ ensures that σ^* is well-defined and injective, while the assumption that it commutes with the action of B is required for σ^* to be an endomorphism.

Proof of the theorem. Let G be a torsion-separable group with a subgroup H which satisfies the hypotheses of the theorem. By (1.4) and (1.1), $N_G(H)/C_G(H)$ is isomorphic to a torsion-separable group of automorphisms of H and hence, by (1.5), it is Černikov and $N_G(H)/HC_G(H)$ is finite. (This is the only point in the argument where the full force of (1.5) is used. Henceforth, Baer's version (for periodic automorphism groups) will suffice.) Since $|G:N_G(H)|$ is finite and $C_G(H)/Z(G) \cong C_{Inn(G)}(H)$ is Černikov, $|G:HC_G(H)|$ is finite and G/Z(G) is Černikov. It follows from (1.4) that Z(G) is torsion-separable and from (1.3) that it is periodic; so G is locally finite. Also, by [5, Lemma 4.23], G' is Černikov so that, if K = HG', then K is Černikov, $K \leq G$ and G/K is abelian.

(1) Every divisible subgroup of Z(G) is contained in K.

If Z is a quasicyclic p-subgroup of Z(G), then ZK/K is divisible so that $G/K = (ZK/K) \times (L/K)$ for some subgroup L. Thus, G = ZKL = ZL and $ZK \cap L = K$. Since $Z \leq Z(G)$, it follows from (2.2) that $C_{Aut(Z)}(Z \cap L)$ is isomorphic to a subgroup of $C_{Aut(G)}(L)$. Since $H \leq K \leq L$, it follows that $C_{Aut(Z)}(Z \cap L)$ is countable. Because all subgroups of a quasicyclic group are characteristic, $Aut(Z)/C_{Aut(Z)}(Z \cap L)$ is isomorphic to a subgroup of Aut $(Z \cap L)$. But Aut(Z) is isomorphic to the group of p-adic units and hence is uncountable. Thus, $Z \cap L$ is not finite so that $Z = Z \cap L \leq K$.

AUTOMORPHISMS DETERMINED BY RESTRICTION

(2) G/K is reduced (that is, contains no non-trivial divisible subgroups).

Suppose that X/K is a quasicyclic subgroup of G/K. Because K is a normal Černikov subgroup of X, (1.5) implies that $|X:KC_X(K)|$ is finite. So $X = KC_X(K)$ and $C_X(K)/Z(K) \cong X/K$. Since $Z(K) \le Z(C_X(K))$ and since every proper subgroup of a quasicyclic group is cyclic, we conclude that $C_X(K)$ is abelian. X (and hence $C_X(K)$) is Černikov so that $C_X(K) = A \times B$, where $A = C_X(K)^f$ is divisible and B is finite. Since $A \le G$, (1.5) yields that $G/C_G(A)$ is finite. So from [5, Lemma 3.29.1],

$$A = [A, G]C_A(G) = [A, G] \times (A \cap Z(G)).$$

Now $[A, G] \leq G' \leq K$ and (1) implies that $(A \cap Z(G))^f \leq K$, so that $|A:A \cap K|$ is finite. Since A is divisible, this forces $A \leq K$ so that $X = KC_X(K) = KB$ and $X/K \cong B/B \cap K$. This is absurd since B is finite.

(3) Every primary component of G/K is finite.

Suppose that R/K is the *p*-component of G/K for some prime *p*. If $R \cap Z(G)$ is a *p'*-group, then obviously $R \cap Z(G) \leq K$ so that R/K is a homomorphic image of $R/R \cap Z(G) \cong RZ(G)/Z(G)$ which is Černikov. But by (2), R/K is also reduced so that it must, in fact, be finite. We may, therefore, assume that $R \cap Z(G)$ contains a subgroup V of order *p*. R/KV is then a direct summand of G/KV and so

$$\operatorname{Hom}(R/KV, V) \subseteq \operatorname{Hom}(G/KV, V).$$

Now it is again a straightforward calculation to verify that if $f \in \text{Hom}(G/KV, V)$, then the map $\sigma: G \to G$ defined by

$$\sigma(x) = xf(KVx)$$
 for every $x \in G$

belongs to $C_{Aut(G)}(KV)$. Thus, if $\bar{R} = R/KV$, $Hom(\bar{R}/\bar{R}^p, V) = Hom(\bar{R}, V)$ is countable. Since \bar{R}/\bar{R}^p is elementary abelian and since the functor $Hom(\cdot, V)$ takes direct sums to direct products, \bar{R}/\bar{R}^p must be finite, whence $(R/K)/(R/K)^p$ is finite. But since R/K is reduced, it is clear from [8, 4.3.11] that R/K must be finite.

(4) G is Černikov.

In view of (3), it is enough to show that G/K has only finitely many non-trivial primary components. Now by (1.5), $|G:KC_G(K)|$ is finite. So if F is generated by a transversal for $KC_G(K)$ in G, then because G is locally finite, F is finite. Let π be the set of prime divisors of orders of elements of FK, so that π is finite. $C_G(K)/Z(K) \cong KC_G(K)/K$ which is abelian. So $C_G(K)/Z(K) = (S/Z(K)) \times (T/Z(K))$, where the factors are π and π' -groups respectively. Since $Z(K) \leq Z(T)$, T is nilpotent and thus is the direct product of its Sylow π -subgroup Z(K) and a π' -group Q. Now $Q \leq G$, $G = FKC_G(K) =$ FKSQ, and $FKS \cap Q = 1$ (since FKS is a π -group) so that $G = FKS \times Q$. Aut(Q) is, therefore, isomorphic to a subgroup of $C_{Aut(G)}(FKS)$ which is countable. But Aut(Q) is an unrestricted direct product of the automorphism groups of the primary components of Q, so there are only finitely many non-trivial such components. It follows easily that G/Khas only finitely many non-trivial primary components.

(5)
$$G^f = (H^f)^G$$
.

MARTIN R. PETTET

Let $D = (H^f)^G$. Since $H^f \leq G^f$, $D \leq G^f$. Now since $|G:N_G(H)|$ is finite and $|HD:D| = |H:H \cap D| \leq |H:H^f|$, it follows from Dicman's lemma [8, 14.5.7] that $H^G/D = (HD/D)^G$ is finite. Thus, $(H^G)^f \leq D = (H^f)^G \leq G^f$. So it suffices to show that $(H^G)^f = G^f$. The upshot of this is that, replacing H by H^G if necessary, we may assume from now on that $H \leq G$.

By (2.1), $G^f = H^f E$ for some $E \leq G$ with $H^f \cap E$ bounded (and hence finite). Let F be the finite subgroup generated by a transversal for G^f in G. Then $|FH \cap E : H^f \cap E| \leq |FH : H^f| \leq |F| |H : H^f|$ so that $FH \cap E$ is finite.

Suppose that some primary component E_p of E is unbounded. Then E_p is a faithful module over the ring of p-adic integers and multiplication by p-adic units induces an uncountable subgroup A of $Z(\operatorname{Aut}(E_p))$. Since each subgroup of E_p is invariant under A, $A/C_A((FH \cap E)_p)$ is isomorphic to a subgroup of $\operatorname{Aut}((FH \cap E)_p)$. Since $FH \cap E$ is finite, we conclude that $C_A((FH \cap E)_p)$ is uncountable. Each element of $C_A((FH \cap E)_p)$ extends to an automorphism of E (acting trivially on E_p), thence to an automorphism of $G^f = H^f E$ (since $H^f \cap E \leq FH \cap E$). The result is an uncountable subgroup A^* of $\operatorname{Aut}(G^f)$. Since $FH \cap G^f = FH \cap H^f E = H^f(FH \cap E) \leq H^f E_{p'}(FH \cap E)_p$, we have $A^* \leq C_{\operatorname{Aut}(G^f)}(FH \cap G^f)$. Moreover, since H^f and E are each normal in G, it is clear that A^* commutes with the conjugation action of G on G^f . Since $G = G^f F = G^f FH$, (2.2) implies that A^* can be extended to produce an uncountable subgroup of $C_{\operatorname{Aut}(G)}(FH)$, contradicting the assumption that $C_{\operatorname{Aut}(G)}(H)$ is countable.

Thus, each primary component of E is bounded so that, since E is Černikov, E is finite. But then $|G^f:H^f| \leq |E|$ so that, since G^f has no proper subgroups of finite index, $G^f = H^f$ as required.

3. The corollaries. Corollary 1 is an immediate consequence of (1.2) and an observation of Robinson and Roseblade [8, 13.3.8] that if G satisfies the minimum condition for subnormal subgroups, then every subnormal subgroup of G is almost normal.

Proof of Corollary 2. By hypothesis, the inner automorphism of G induced by any element of A is the identity, so that $A \leq Z(G)$, whence $Inn(G) \leq C_{Aut(G)}(A) = 1$. Thus, G is abelian and the theorem yields that it is Černikov and $G^f = A^f$.

First we observe that it suffices to prove that A is a direct factor of G. For if $G = A \times B$, then clearly Aut(B) is trivial so that $|B| \le 2$. Moreover, (|a|, |B|) = 1 for every $a \in A$, for otherwise $B = \langle b \rangle$ has order 2 and A contains an element a_0 of order 2. But then the map

$$a \mapsto a$$
 for all $a \in A$, $b \mapsto a_0 b$

defines a non-trivial element of $C_{Aut(G)}(A)$, a contradiction.

If $A = A^f \times F$, then A/F is divisible so that $G/F = (A/F) \times (C/F)$ for some finite subgroup C. Then G = AC and $A \cap C = F$ so that $C_{Aut(C)}(F)$ is trivial. If $C = F \times B$ for some B, then $G = A \times B$ and we are done. Thus we are reduced to the case that G is finite and, in fact, a p-group for some prime p.

The proof is completed by induction on |G|. Let *a* be an element of maximal order in *A*, so that $A = \langle a \rangle \times K$ for some *K* by [8, 4.2.7]. The map $x \mapsto x^{|a|+1}$ defines an element of $C_{Aut(G)}(A)$ so that, in fact, *a* has maximal order in *G*. If $\overline{G} = G/K$, then $\overline{G} = \langle \overline{a} \rangle \times \overline{L}$. So $G = \langle a \rangle \times L$ for some *L*. Then $C_{Aut(L)}(K)$ must be trivial so that, since |L| < |G|, $L = K \times B$ for some *B*. Then $G = A \times B$ and the proof is complete.

Proof of Corollary 3. The hypotheses imply that $N_G(H)/C_G(H)$ and $C_G(H)/Z(G)$ are finite. So G/Z(G) is finite. If n = |G:Z(G)|, the transfer homomorphism $G \to Z(G)$ is just the map $x \mapsto x^n$ [5, Theorem 4.11]. Therefore, if h is the exponent of H, then for any integer k, the map $x \mapsto x^{nhk}$ is an endomorphism of G whose kernel contains H. Since, by hypothesis, there are only finitely many such endomorphisms, G must be periodic and the theorem applies.

Proof of Corollary 4. As in the proof of Corollary 2, G is abelian, $A = A^f \times F$ for some finite subgroup F, and G = AC for some C with $A \cap C = F$. An endomorphism of C which fixes F extends, therefore, to one of G fixing A. If C = F then G = A, so that it suffices to prove the corollary in the case A = F. In this case, Corollary 3 yields that G is finite so that, by Corollary 2, $G = A \times B$ with $|B| \leq 2$. But the hypothesis forces the projection map from G onto A to be the identity map, so that G = A as required.

REFERENCES

1. R. Baer, Finite extensions of abelian groups with minimum conditions, *Trans. Amer. Math.* Soc. **79** (1955), 521–540.

2. A. L. S. Corner, Endomorphism algebras of large modules with distinguished submodules, J. Algebra 11 (1969), 155-185.

3. L. Fuchs, The existence of indecomposable abelian groups of arbitrary power, *Acta Math. Acad. Sci. Hungar.* **10** (1959), 453–457.

4. J. de Groot, Indecomposable abelian groups, Nederl. Akad. Wetensch. Proc. Ser. A 60 = Indag. Math. 19 (1957), 137-145.

5. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups I (Springer-Verlag, 1972).

6. D. J. S. Robinson, Splitting theorems for infinite groups, Symposia Mathematica, Vol. XVII (Academic Press, 1976), 441–470.

7. D. J. S. Robinson, A contribution to the theory of groups with finitely many automorphisms, *Proc. London Math. Soc.* (3) 35 (1977), 34-54.

8. D. J. S. Robinson, A Course in the Theory of Groups (Springer-Verlag, 1982).

Department of Mathematics University of Toledo Toledo Ohio 43606 U.S.A.