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The trivial observation that every automorphism of a group is determined by its
restriction to a set of generators suggests the converse question: if X is a subset of a group
G such that each automorphism of G is determined (or "almost" determined) by its
restriction to X, to what extent is the structure of G governed by that of the subgroup
which X generates? Is this subgroup in some sense necessarily "large" in G? If the index
of the subgroup is used as a measure of largeness, then in the absence of additional
hypotheses, the answer to the second question is generally "no", the additive group of
rationals with A"={1} being an obvious counterexample. (More confounding is the
existence of uncountable torsion-free abelian groups for which inversion is the only
non-trivial automorphism. See, for example, [2], [3], and [4].) However, under certain
finiteness assumptions, it seems that some positive conclusions are obtainable. One such
example will be considered here.

Recall first that a Cernikov group is one which contains an abelian subgroup of finite
index and satisfies the minimum condition on subgroups. For lack of a standard name, we
shall use the term aperiodic to refer to a group which has no non-trivial periodic
homomorphic image and we shall say that G is torsion-separable if there is a finite
subnormal series 1 = G Q ^ G , ^ . . .<]Gn = G such that each factor GjlGj_\ is either
periodic or aperiodic. One motivation for working within this class of groups is the fact
that a torsion-separable abelian group is necessarily periodic (see (1.3)). So one might
reasonably hope to avoid the kind of pathology cited above.

If G is a group, Aut(G) and Inn(G) will denote, respectively, the full automorphism
group and the inner automorphism group of G. G^will denote the finite residual of G, G'
the commutator subgroup, and Z(G) the center. If A' is a subgroup of G, XG is the
normal closure of X in G. We shall say that X is almost normal in G if it has only finitely
many G-conjugates (that is, if \G:NC{X)\ is finite).

If A: is a cardinal, the assumption that each automorphism of G is determined up to K
possibilities by its restriction to a subgroup / / i s , of course, equivalent to the assumption
that H is fixed point-wise by at most K elements of Aut(G); that is, |CAut(G)(//)| =s K. The
main result here is the following.

THEOREM. Let G be a torsion-separable group and H be an almost normal Cernikov
subgroup of G. If CAu,(C)(//) is countable and C|nn(G)(//) is Cernikov, then G is Cernikov
and Gf = {Hf)G. In particular, \G:HG\ is finite and, if H is actually finite, then G is finite.

COROLLARY 1. Let G be a group which satisfies the minimum condition on subnormal
subgroups and H be a subnormal Cernikov subgroup of G. If CAut(C)(//) is Cernikov,
then G is Cernikov and \ G: Hc \ is finite.
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COROLLARY 2. Let G be a torsion-separable group and A be an abelian divisible-by-
finite subgroup of G. Suppose that each automorphism of G is uniquely determined by its
restriction to A. Then G = A x B for some subgroup B with \B\ =£ 2 and (\a\, \B\) = 1 for
every a e A.

Periodicity assumptions on G can sometimes be dispensed with altogether if the
hypotheses are extended to endomorphisms.

COROLLARY 3. Let G be a group and H be a finite almost normal subgroup of G. If
each endomorphism of G is determined up to a finite number of possibilities by its
restriction to H, then G is finite.

COROLLARY 4. Let G be a group and A be an abelian divisible-by-finite subgroup of
G. If each endomorphism of G is uniquely determined by its restriction to A, then G = A.

One final consequence of the theorem worth noting is that a central-by-Cernikov
group whose automorphism group is countable is necessarily finite. This extends a result
of Baer [1, p. 529] that a periodic group with finite automorphism group is finite. See also
[7]-

1. Torsion-separable groups. We begin with a few general observations about the
class of torsion-separable groups.

(1.1) Homomorphic images of torsion-separable groups are torsion-separable.

Proof. This is clear since homomorphic images of periodic (aperiodic) groups are
periodic (resp. aperiodic).

(1.2) / / G satisfies the minimum condition on subnormal subgroups, then G is
torsion-separable.

Proof. If G satisfies min-sn, then among the normal subgroups N of G with G/N
periodic, there is a unique minimal element G*. G* also satisfies min-sn and so
G**( = (G*)*) exists. Then G**<1G (since G** is characteristic in G*) and GIG** is
periodic. So G* = G**. Hence, G is aperiodic-by-periodic and, in particular, is
torsion-separable.

(1.3) (a) Every aperiodic group is perfect.
(b) Every solvable torsion-separable group is periodic.

Proof. For (a), we observe that if G is aperiodic with commutator subgroup G',
then since G" = G for every positive integer n, GIG' is divisible abelian. By [8, 4.1.5],
GIG' is a direct sum of copies of the rationals and quasicyclic groups and, since both
types of summands have non-trivial periodic homomorphic images, GIG' is trivial.
Statement (b) follows from (a) since, if G is solvable and torsion-separable, every
aperiodic factor in a torsion-separated series for G is trivial.

(1.4) / / G is torsion-separable and /V<1G such that GIN is periodic, then N is
torsion-separable. Any subgroup of finite index in G is torsion-separable.
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Proof. Let 1 = G^G^. . .^iGn = G be a torsion-separated series for G. We will
show that if N, = NC\Gj for ()=£«=£«, then 1 = N0^N^. . .<!#„ = N is a torsion-
separated series for N.

Certainly A/,7A/(-_, = N,G,_,/G,_, so that, if GjlGj-.\ is periodic, A/1-/A/r,_1 is also. Suppose
now that GjlGi-\ is aperiodic. Since GjIN^NGilN^GIN, Gj/N, is periodic, whence
(G//G/_1)/(A/,-G,-_1/G/_,) = GI-/A/r;GI-_, is periodic. It follows that Gi = NiGi_i and
Nt/Nj^i = G,/G,_i is aperiodic. This proves the first statement.

The second statement now follows immediately from the fact that any subgroup of
finite index in G contains a normal subgroup of G of finite index.

The last observation in this section represents a slight extension of another result of
Baer [1, p. 530].

(1.5) Let H be a Cernikov group and Inn(//) denote its group of inner
automorphisms. If A is any torsion-separable group of automorphisms of H, then
\A :A n Inn(//)| is finite (so that, in particular, A is Cernikov).

Proof. In the course of deriving this conclusion for periodic groups of automorph-
isms, Baer showed [1, pp. 534-535] that for any Cernikov group H, \CAuX^H)(H

f):Hf\ is
finite (where Hf is the subgroup of Inn(H) corresponding to the finite residual Hf of H).
Thus it suffices to show that \A:CA(Hf)\ is finite. Since AICA(Hf) is isomorphic to a
torsion-separable subgroup of Aut(Hf) by (1.1), we need only to settle the case that
H = Hf.

We may also assume that A is periodic-by-aperiodic. For if A is necessarily finite in
this situation then, in the general case, the lowest aperiodic factor in any torsion-
separated series for A must be trivial and we can use induction on the minimal length of
such a series. Hence we assume that A contains a periodic normal subgroup B such that
AIB is aperiodic.

For each positive integer i, let Ht be the subgroup of H(-Hf) generated by the
elements of order p' for some prime p. Hi is a finite characteristic subgroup of H by [8,
4.2.11]. So AICA(Hj) is finite for every i. Therefore, A/CA(Hj)B is finite. So, since AIB is
aperiodic, A = CA(Hi)B for all i. In particular, \A: CA(H{)\ = \B: CB(H)\ =£ |fl|. Since B is
finite (by Baer's theorem), it follows that there is a positive integer n such that
CA(Hn) = CA(Hj) for all i^n. But H is the union of the #,'s. So we conclude that
CA(Hn) = 1, whence A = A/CA(Hn) is finite, as required.

2. The theorem. Before proving the theorem, it is convenient to isolate two simple
lemmas, the first of which is a straightforward adaptation of Maschke's theorem and the
second of which is a rather obvious device for extending automorphisms.

(2.1) Let V be an abelian normal subgroup of finite index n in G, and suppose that D
is a divisible subgroup of V with D^G. Then there exists a subgroup EofV with
V" = DE,and(DDE)n = l.
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Proof. Let V = D x L (since D is divisible) and n be the corresponding projection
V-*D. Define the endomorphism JI* :V—> D by

jt*(v) = Y\tJi(rlvt)r1

where the product is taken over a transversal for V in G. Then Ji*(g~lvg) = g~ln*(v)g
for all g e G, v e V and, in particular, ker(^*)^lG. If d e D, then n*(d) = d". So, for any
veV, JI*(V-"7Z*(V)) = n*(v)-"n*(v)" = 1. It follows that V" c D ker(;r*). So since
D = D" =£ V", V = D£ where £ = V" D ker(;r*). If u e D n £ , then v" = n*(v) = 1, so
that (Dr\E)" = l.

NOTE. Although the factorization of V" in (2.1) will suffice for our purposes, the
referee has pointed out that since VIE = DID D E is divisible, VIE = (VIE) x (W/E)
so that if El = {xeV:x"eE}, then £J<1G, V = D£l5 and (Dn£,)"2 = l. In fact, he
refers to a short cohomological argument [6, Lemma 10 (ii)] which yields G = XD with
(ATI D)n = 1. If £ = V n A<IG, we have V = DE and (D n £)" = 1.

(2.2) Suppose G = AB where A^G. Let B denote the subgroup of Aut(yl) induced

by conjugation by elements of B. If a is an element of CAul^(A D B) D CAut(/1)(6), r/ie«
f/ie map o*:G^>G defined by

o*(ab) = a(a)b for all aeA,beB

is an element of CAut (G)(B). The map o<-^o* is injective.

Proof. This is a routine calculation. Suffice it to say that the fact that o e
CAUI(A)(A n B) ensures that o* is well-defined and injective, while the assumption that it
commutes with the action of B is required for o* to be an endomorphism.

Proof of the theorem. Let G be a torsion-separable group with a subgroup H which
satisfies the hypotheses of the theorem. By (1.4) and (1.1), NC(H)/CG(H) is isomorphic
to a torsion-separable group of automorphisms of H and hence, by (1.5), it is Cernikov
and NG(H)/HCG(H) is finite. (This is the only point in the argument where the full force
of (1.5) is used. Henceforth, Baer's version (for periodic automorphism groups) will
suffice.) Since \G:NG(H)\ is finite and CG{H)/Z(G) = Clnn(G)(H) is Cernikov,
\G:HCG(H)\ is finite and G/Z(G) is Cernikov. It follows from (1.4) that Z(G) is
torsion-separable and from (1.3) that it is periodic; so G is locally finite. Also, by [5,
Lemma 4.23], G' is Cernikov so that, if K = HG', then K is Cernikov, K^G and G/K
is abelian.

(1) Every divisible subgroup of Z{G) is contained in K.

If Z is a quasicyclic p-subgroup of Z{G), then ZKIK is divisible so that
G/K = {ZKIK) x (UK) for some subgroup L. Thus, G = ZKL = ZL and ZKC\L = K.
Since Z=sZ(G), it follows from (2.2) that CAut(z)(Z D L) is isomorphic to a subgroup of
CAut(G)(L). Since H^K^L, it follows that CA u t ( z )(ZnL) is countable. Because all
subgroups of a quasicyclic group are characteristic, Aut(Z)/CAut(Z)(Z D L) is isomorphic
to a subgroup of Aut(Z n L). But Aut(Z) is isomorphic to the group of p-adic units and
hence is uncountable. Thus, Z D L is not finite so that Z = Z n L «£ K.

https://doi.org/10.1017/S0017089500006388 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006388


AUTOMORPHISMS DETERMINED BY RESTRICTION 91

(2) GIK is reduced {that is, contains no non-trivial divisible subgroups).

Suppose that XIK is a quasicyclic subgroup of GIK. Because K is a normal Cernikov
subgroup of X, (1.5) implies that \X:KCX(K)\ is finite. So X = KCX(K) and CX{K)I

tZ(K) = X/K. Since Z(K) =£Z(CX(K)) and since every proper subgroup of a quasicyclic
group is cyclic, we conclude that CX(K) is abelian. X (and hence CX(K)) is Cernikov so
that Cx(K) = AxB, where A = CX(KY is divisible and B is finite. Since A^lG, (1.5)
yields that G/CG(A) is finite. So from [5, Lemma 3.29.1],

A = [A, G]CA(G) = [/I, G] x (A n Z(G)).

Now [A, G ] « G' =£ K and (1) implies that (A D Z(G))f « #, so that \A :A n tf| is finite.
Since .4 is divisible, this forces A =£ K so that X = KCX(K) = KB and A7K s g/B n K.
This is absurd since B is finite.

(3) Every primary component of GIK is finite.

Suppose that RIK is the p-component of GIK for some prime p. If RC\ Z(G) is a
p'-group, then obviously RC\Z(G)^K so that RIK is a homomorphic image of
RIR n Z(G) = RZ(G)/Z(G) which is Cernikov. But by (2), RIK is also reduced so that it
must, in fact, be finite. We may, therefore, assume that R D Z(G) contains a subgroup V
of order p. R/KV is then a direct summand of G/KV and so

Hom(R/KV, V) c Hom(G/KV, V).

Now it is again a straightforward calculation to verify that if/ e Hom(G/KV, V), then the
map o:G^>G defined by

o(x) = xf(KVx) for every x e G

belongs to CAm(c)(KV). Thus, if R = R/KV, Hom(R/Rp, V) = Hom(i?, V) is countable.
Since RIRP is elementary abelian and since the functor Hom(-, V) takes direct sums to
direct products, R/R" must be finite, whence (R/K)/(R/K)P is finite. But since RIK is
reduced, it is clear from [8, 4.3.11] that RIK must be finite.

(4) G is Cernikov.

In view of (3), it is enough to show that GIK has only finitely many non-trivial
primary components. Now by (1.5), \G:KCC(K)\ is finite. So if F is generated by a
transversal for KCC(K) in G, then because G is locally finite, F is finite. Let n be the set
of prime divisors of orders of elements of FK, so that n is finite. CG(K)/Z(K) = KCC{K)I
K which is abelian. So Co(K)/Z(K) = (S/Z(K))x(T/Z(K)), where the factors are K-
and jr'-groups respectively. Since Z(K)^Z(T), T is nilpotent and thus is the direct
product of its Sylow ^-subgroup Z{K) and a jr'-group Q. Now Q^G, G = FKCC{K) =
FKSQ, and FKS DQ = 1 (since FKS is a ^-group) so that G = FKS x Q. Aut(Q) is,
therefore, isomorphic to a subgroup of CAut(C)(F/CS) which is countable. But Aut(Q) is
an unrestricted direct product of the automorphism groups of the primary components of
Q, so there are only finitely many non-trivial such components. It follows easily that GIK
has only finitely many non-trivial primary components.

(5) Gf
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Let D = (Hf)G. Since Hf^Gf, D^G?. Now since \G:NC(H)\ is finite and
\HD:D\ = \H:Hr\D\*z\H:Hf\, it follows from Dicman's lemma [8, 14.5.7] that
HC/D = (HD/D)C is finite. Thus, (HCY =s D = (Hf)c =£ Gf'. So it suffices to show that
(HCY = Gf. The upshot of this is that, replacing H by Hc if necessary, we may assume
from now on that //<]G.

By (2.1), Gf = HfE for some £<1G with Hf C\E bounded (and hence finite). Let F be
the finite subgroup generated by a transversal for Gf in G. Then \FH C\ E: Hf C\ E\ «£
|F// : / / ' | =£ |F| | # : //'I so that FH n £ is finite.

Suppose that some primary component £p of £ is unbounded. Then Ep is a faithful
module over the ring of /?-adic integers and multiplication by p-adic units induces an
uncountable subgroup A of Z(Aut(£p)). Since each subgroup of Ep is invariant under A,
A/CA((FH n E)p) is isomorphic to a subgroup of Aut((FH D E)p). Since FH D E is finite,
we conclude that CA((FH D £)p) is uncountable. Each element of CA((FH D £),,) extends
to an automorphism of £ (acting trivially on £,,•), thence to an automorphism of
Gf = HfE (since Hf f l£ =£ £// D £) . The result is an uncountable subgroup A* of
Aut(G-0. Since FH n Gf = FH n HfE = Hf(FH n E) *& HfEp(FH n E)p, we have
v4* ^ CAut(G/)(F// D GO- Moreover, since Hf and £ are each normal in G, it is clear that
A* commutes with the conjugation action of G on Gf. Since G = GfF = GfFH, (2.2)
implies that A* can be extended to produce an uncountable subgroup of CAut(c)(FH),
contradicting the assumption that CAut(G)(//) is countable.

Thus, each primary component of £ is bounded so that, since £ is Cernikov, £ is
finite. But then \Gf:Hf\ =£ |£ | so that, since Gf has no proper subgroups of finite index,
Gf = Hf as required.

3. The corollaries. Corollary 1 is an immediate consequence of (1.2) and an
observation of Robinson and Roseblade [8, 13.3.8] that if G satisfies the minimum
condition for subnormal subgroups, then every subnormal subgroup of G is almost
normal.

Proof of Corollary 2. By hypothesis, the inner automorphism of G induced by any
element of A is the identity, so that A =£ Z(G), whence Inn(G) ^ CAul(c)(A) = 1. Thus, G
is abelian and the theorem yields that it is Cernikov and Gf = Af.

First we observe that it suffices to prove that A is a direct factor of G. For if
G=AxB, then clearly Aut(B) is trivial so that |fl|«£2. Moreover, (|a|,|fl|) = l for
every a eA, for otherwise B - (b) has order 2 and A contains an element a0 of order 2.
But then the map

a i-> a for all a e A, b>-*aob

defines a non-trivial element of CAut(G)(y4), a contradiction.
If A=AfxF, then A/F is divisible so that GIF = {AIF)x{CIF) for some finite

subgroup C. Then G = AC and A n C = F so that CAut(c)(F) is trivial. If C = F x B for
some B, then G = A x B and we are done. Thus we are reduced to the case that G is
finite and, in fact, a p-group for some prime p.
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The proof is completed by induction on \G\. Let a be an element of maximal order in
A, so that A = (a) X K for some K by [8, 4.2.7]. The map Jt >-»;t'a'+1 defines an element of
CAut(c)(y4) so that, in fact, a has maximal order in G. If G = G//C, then G = (a) x L. So
G = (a) x L for some L. Then CAut(i,)(/C) must be trivial so that, since |L |< |G | ,
L = K x B for some B. Then G = ^ x B and the proof is complete.

Proof of Corollary 3. The hypotheses imply that NC{H)ICC{H) and CC{H)IZ{G)
are finite. So GIZ{G) is finite. If n = |G:Z(G)|, the transfer homomorphism G^Z{G)
is just the map x>->x" [5, Theorem 4.11]. Therefore, if h is the exponent of H, then for
any integer k, the map x*-*xnhk is an endomorphism of G whose kernel contains H.
Since, by hypothesis, there are only finitely many such endomorphisms, G must be
periodic and the theorem applies.

Proof of Corollary 4. As in the proof of Corollary 2, G is abelian, A =Af x F for
some finite subgroup F, and G = /1C for some C with /I D C = F. An endomorphism of C
which fixes F extends, therefore, to one of G fixing A. If C = F then G =>1, so that it
suffices to prove the corollary in the case A = F. In this case, Corollary 3 yields that G is
finite so that, by Corollary 2, G=AxB with |B|=s2. But the hypothesis forces the
projection map from G onto A to be the identity map, so that G = A as required.
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