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POWER ANALYSIS AND SAMPLE SIZE PLANNING IN ANCOVA DESIGNS

GWOWEN SHIEH

NATIONAL CHIAO TUNG UNIVERSITY

The analysis of covariance (ANCOVA) has notably proven to be an effective tool in a broad range
of scientific applications. Despite the well-documented literature about its principal uses and statistical
properties, the corresponding power analysis for the general linear hypothesis tests of treatment differences
remains a less discussed issue. The frequently recommended procedure is a direct application of the ANOVA
formula in combination with a reduced degrees of freedom and a correlation-adjusted variance. This article
aims to explicate the conceptual problems and practical limitations of the common method. An exact
approach is proposed for power and sample size calculations in ANCOVA with random assignment and
multinormal covariates. Both theoretical examination and numerical simulation are presented to justify the
advantages of the suggested technique over the current formula. The improved solution is illustrated with
an example regarding the comparative effectiveness of interventions. In order to facilitate the application
of the described power and sample size calculations, accompanying computer programs are also presented.
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1. Introduction

The analysis of covariance (ANCOVA) was originally developed by Fisher (1932) to reduce
error variance in experimental studies. Its essential nature and principal use were well explicated
by Cochran (1957) and subsequent articles in the same issue of Biometrics. The value and use of
ANCOVA have also received considerable attention in social science, for example, see Elashoff
(1969), Keselman et al. (1998), and Porter and Raudenbush (1987). Comprehensive introduction
and fundamental principles can be found in the excellent texts of Fleiss (2011), Huitema (2011),
Keppel and Wickens (2004), Maxwell and Delaney (2004), and Rutherford (2011). It is essential
to note that ANCOVA provides a useful approach for combining the advantages of two highly
acclaimed procedures of analysis of variance (ANOVA) and multiple linear regression. The exten-
sive literature shows that it is one of the major methods of statistical analysis in applied research
across many scientific fields.

The importance and implications of statistical power analysis in scientific research are well
demonstrated in Cohen (1988), Kraemer and Blasey (2015), Murphy et al. (2014), and Ryan
(2013), among others. Accordingly, it is of great practical value to develop theoretically sound
and numerically accurate power and sample size procedures for detecting treatment differences
within the context of ANCOVA. There are numerous published sources that address statistical
theory and applications of power analysis for ANOVA and multiple linear regression. Specifically,
various algorithms and tables for power and sample size calculations in ANOVA have been
presented in the classic sources of Bratcher et al. (1970), Pearson and Hartley (1951), Scheffe
(1961), and Tiku (1967, 1972). The corresponding results for multiple regression and correlation,
especially the distinct notion of fixed and random regression settings, were given in Gatsonis
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and Sampson (1989), Mendoza and Stafford (2001), Sampson (1974), and Shieh (2006, 2007).
However, relatively little research has attempted to address the corresponding issues for ANCOVA.

This lack of further discussion can partly be attributed to the simple framework and conceptual
modification of Cohen (1988) on the use of ANOVA method for power evaluation in ANCOVA
research. It is argued that the ANCOVA of original responses is essentially the ANOVA of the
regression-adjusted or statistically controlled measurements obtained from the linear regression
of unadjusted responses on the covariates that is common to all treatment groups. However, some
modifications are required to account for the number of covariate variables and the strength of
correlation between the response and covariate variables. Accordingly, both the error degrees of
freedom and variance component are reduced. Then, the power and sample size computations in
ANCOVA proceed in exactly the same way as in analogous ANOVA designs. The methodology
of Cohen (1988) has become common practice for power analysis in ANCOVA settings as repeat-
edly demonstrated in Huitema (2011), Keppel and Wickens (2004), Levin (1997), Maxwell and
Delaney (2004), and Yang et al. (1996).

It is well known that the ANOVA adopts the fundamental assumptions of independence, nor-
mality, and constant variance. The corresponding hypothesis testing and theoretical considerations
are valid only if these assumptions are satisfied. The consequences of violations of independence
assumption in ANOVA have been reported in Kenny and Judd (1986), Pavur and Nath (1984), and
Scariano and Davenport (1987), among others. An essential assumption underlying ANCOVA is
the regression coefficients associating the response variable with the covariate variables are the
same for each treatment group. Therefore, the regression adjustment in Cohen’s (1988, pp. 379—
380) covariance framework includes the common regression coefficient estimates derived from
the multiple regression between the response and covariate variables across all treatment groups.
Unlike the original responses, the adjusted responses are generally correlated and thus violate the
independence of observations assumption for ANOVA. Therefore, Cohen’s (1988) procedure is
intrinsically inexact, even with the technical considerations of a deflated degrees of freedom and
a correlation-adjusted variance. Consequently, this prevailing method only provides approximate
power and sample size calculations in ANCOVA designs. It should be stressed that no research
to date has acknowledged this crucial problem and the result has most likely been interpreted as
an exact solution.

Toward the goal of choosing the most appropriate methodology for ANCOVA studies, the
present article focuses on the Wald tests for the general linear hypothesis of treatment effects.
Under the two different assumptions of a priori specified covariate values and multinormal dis-
tributed covariate variables, the exact power functions of the Wald statistic are derived. The analytic
derivations for a general linear hypothesis require the involved operations of matrix algebra and
sophisticated evaluations of matrix ¢ variables that have not been reported elsewhere. Detailed
numerical investigations were conducted to evaluate the existing formulas for power and sample
size computations under a wide range of model settings, including non-normal covariate variables.
According to the analytic justification and empirical assessment, the suggested approach has a
decisive advantage over the conventional method. An applied example regarding the comparative
effectiveness of interventions is presented to illustrate the distinct features and practical usefulness
of the proposed techniques. Computer codes are also presented to implement the recommended
power calculation and sample size determination in planning ANCOVA studies.

2. General Linear Hypothesis

A one-way fixed-effects ANCOVA model with multiple covariates can be expressed as

P
Yij =Mi+ZinjBk+8ija ey
k=1
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where Y;; is the score of the jth subject in the ith treatment group on the response variable, ; is
the ith group intercept, Xy;; is the score of the jth subject in the ith treatment group on the kth
covariate, By is the slope coefficient of the kth covariate, and ¢;; is the independent N (0, 02) error
withi =1,...,G(>2),j=1,...,Nj,andk = 1,..., P (> 1). The least-square estimator for
the ith intercept |; is given by

P
=Y =Y Xuifr, )
k=1

_ Ni N A " G Ni _
where ¥; = Y Y;j/Ni, B = B1,....Bp)T = S};(SXY, Sxx = Y > Xij — X)X —
izl i=1j=1

_ G Ni _ _ B Ni
X)L Sxyy = X Y Xij — X — Y, Xij = Xuij.... Xpip), Xi = Y Xj/N; =
i=1j=1 j=1
_ _ _ Ni
Xty Xpi)T, and Xy = > Xiij/Ni. Accordingly, the least-squares estimators [i; of |;

j=1
have the following distributions:

i ~ N (i, 6*{1/N; + X835 Xi}) and Cov(ily, i) = o”X] Sy X 3)
fori #i’,iandi’ =1, ..., G. Because the covariances between regression-adjusted estimators
{1, ..., Lg} are generally not zero, they should not be treated as independent variables. For

notational simplicity, the prescribed properties are expressed in matrix form:
i~ No (. o*V), “)
wherefi = (A1, ..., i),k = (1, ..., k6) T,V = D+X"S X, D = Diag(1/Ni, ..., 1/Ng)

is the G x G diagonal matrix with diagonal elements {1/Ny, ..., 1/Ng}, and X = ()_(1, ..n XG).
The adjusted group means are the expected group responses evaluated at the grand covariate

means:
P
M?=P~i+ZXk--Bk fori=1,...,G, 5)
k=1
_ G Ni G
where Xi.. = > Y Xyij/Nr,k=1,..., P,and Ny = ) N;.Anatural and unbiased estimator
i=1j=1 i=1

of the adjusted group mean .} is

<

P P
AF =i+ Y X =Y =) Be(Xui — Xi). (©)
k=1 k=1

Then, the least-squares estimators (L} of the adjusted group means .} have the following distri-
butions:

W~ Nh, o*{1/N; + X = M)TS; 3 (X; — M)}
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and
Cov(ili, i) = 6> (X; — M) 'S\ (X — M), (7)
G Ni _ _
where M = ) > X;;/Nr = (X1.,..., Xp. )T fori #£i',iandi’ = 1,..., G. The vector of
i=1j=1
adjusted group mean estimators L* = ([}, ..., ;1*6)T has the distribution
¥ ~ Ng(p*, 6>V*), ®)

where W* = (uf, ..., u*G)T, Vi=D+(X-— MIE)TS;((X — Mlg), and 1 isa G x 1 column
vector of all 1’s.

To test the general linear hypothesis about treatment effects or adjusted mean effects in terms
of

Hp: Cp* = 0. versus Hy: Cp™ # 0., )

where C is a ¢ x G contrast matrix of full row rank and 0. is a ¢ x 1 null column vector, the Wald
test statistic is of the form

w* = (CAHTCVCHH(CR* /(G - 1)6%) (10)

G Ni _
where 6% = SSE/v, SSE = Y. " (¥;; — ¥)?> — Sk, SyxSxy, and v = Ny — G — P. Note
i=1j=1
that the contrast matrix is confined to satisfy Cl1g = 0.. Hence, the general linear hypothesis of
Ho: Cu* = 0, versus Hy: Cp* # 0, is equivalent to

Hp: Cp = 0, versus Hi: Cp # 0O, (11)
Also, the Wald test statistic can be rewritten as
w* = (CR)T(cveH I (CR) /(G — 1)5%). (12)

The Wald-type test has great practical and pedagogical appeal than the test procedure under the
full-reduced-model formulation. Because of its simplicity and generality, the associated properties
are derived and presented in the subsequent illustration. Under the null hypothesis with Cn = 0,
the test statistic W* has an F distribution

W* ~ F(c,v), (13)

where F(c,v) is an F distribution with ¢ and v degrees of freedom, v = Ny — G — P, and
G

Nr = Y N;. Hence, Hy is rejected at the significance level o if W* > F, o, where F,
i=1

is the upper (100 - a)th percentile of the F distribution F(c, v). For fixed covariate values of

{Xij,j=1,...,N;yandi =1, ..., G}, the test statistic W* has the general distribution

W* ~ F(c,v, A), (14)

where F(c, v, A)isanon-central F distribution with ¢ and v degrees of freedom and non-centrality
parameter
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A =Cwevehcew/o. (15)
The associated power function of the general linear hypothesis is readily obtained as

W(A) = P{F(c,v,A) > F¢ v o} (16)

3. Random Covariate Models

The prescribed statistical inferences about the general linear hypothesis are based on the
conditional distribution of the covariate outcomes. As noted in Gatsonis and Sampson (1989),
Mendoza and Stafford (2001), and Sampson (1974), the actual values of covariates cannot be
known in advance just as the primary responses. It is vital to treat the covariates as random
variables and to derive the distribution of the test statistic over possible values of the covariate
variables. Moreover, Elashoff (1969) and Harwell (2003) emphasized that the statistical assump-
tions underlying the ANCOVA include the random assignment of subjects to treatments and the
covariate variables are independent of the treatment effects. Moreover, the normal covariate set-
ting is commonly employed to provide a fundamental framework for analytical derivation and
theoretical discussion in ANCOVA studies as in Elashoff (1969) and Harwell (2003). Thus, it is
constructive to assume the covariates have independent and identical normal distribution

X;j ~ Np(0, X), "

where § is a P x 1 vector and X is a P x P positive-definite variance—covariance matrix for
i=1,...,G,and j =1,...,N;.

Under the multinormal distribution of {X;; ~ Np(0,X),j =1,...,N;andi =1,...,G},
it is straightforward to show (Gupta and Nagar 1999, Theorem 2.3.10 and Theorem 3.3.6) that
Z = XCT(CDCT)~!/2 has a matrix normal distribution and Sy x has a Wishart distribution

Z~Np.0,X®I)and Sxx ~ Wp(Nr — G, X), (18)

where I is an identity matrix of dimension c. Accordingly, both T = {Sxx + ZZ"}~!/2Z and
T* = T have an inverted matrix variate ¢-distribution (Gupta and Nagar 1999, Section 4.4):

T~ITpc(w+1,0Ip,1)and T* ~ ITp (v+1,0p,1p,T), (19)

where £ = (CDCT)~1/2(Cp)/o and T = £T¢ = (Cp)T(CDCT)~1(Cp)/02. Moreover, A* =
T T* / I has a matrix variate beta type I distribution (Gupta and Nagar 1999, Theorem 5.2.4) or
a Beta distribution

A* ~ BI(P/2, (v +1)/2) = Beta{P/2, (v + 1)/2}. (20)

Following these results, standard matrix algebra shows that non-centrality parameter A defined
in Equation 15 has the alternative form

A=E8"1I.—T'T)E = I'B*, (1)
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where B* = (1 — A*™) ~ Beta{(v + 1)/2, P/2}. In connection with the effect size measures in
ANOVA, the first component I' in A is rewritten as

I = Nry? (22)
where y? = 07/0, o7 = (Cp)"(CQCT) ! (Cp), Q = Diag(1/q1. - .. 1/46). gi = Ni/Nr for
i =1,...,G.Consequently, the non-centrality term A has a useful formulation

A = Npy?B*. (23)

It should be pointed out that Gupta and Nagar (1999) only provides the generic definition and ana-
Iytic properties of an inverted matrix variate 7-distribution. Their results are applied and extended
here to the context of ANCOVA. Accordingly, under the random covariate modeling framework,
the W* statistic has the two-stage distribution

W*|B* ~ F(c,v, A) and B* ~ Beta{(v + 1)/2, P/2}. (24)
The exact power function can be formulated as
VEe(A) = EB[P{F(c,v,A) > Fe v A}l (25)

where the expectation Ep is taken with respect to the distribution of B*.
Notably, the omnibus test of the equality of treatment effects is a special case of the general
linear hypothesis by specifying the contrast matrix as Cpp = 0(G—1) where

Cp = (Ig-1), —IG-1)) (26)

isa (G — 1) x G contrast matrix of full row rank. The component y? in the non-centrality term
A is simplified as

82 = o} /0, (27)

where 0% = ZiG=1 gi(ni — )% and L = ZiG=1 qiWi. The corresponding non-central component
A is expressed as

Ap = Nr§*B*. (28)
The power function of the omnibus F' test of treatment differences is simplified as

Ve(Ap) = EB[P{F(G —1,v,Ap) > FG-1),v,a}l- (29)

G G
Note that og reduces to the form 0% =Y (wi—f)?/Gwithit = > 1;/G wheng; = 1/G forall
i=1 i=1
i =1,...,G. Hence, 2 has the same form as the signal to noise ratio f 2 in ANOVA (Fleishman
1980) for balanced designs. Although the prescribed application of general linear hypothesis is
discussed only from the perspective of a one-way ANCOVA design, the number of groups G
may also represent the total number of combined factor levels of a multi-factor ANCOVA design.
Hence, using a contrast matrix associated with a specific designated hypothesis, the same concept
and process of assessing treatment effects can be readily extended to two-way and higher-order
ANCOVA designs.
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4. Sample Size Determination

Itis essential to note that the power function W g depends on the group intercepts {|L1, . .., LG}
and variance component o> through the non-centrality A or the effect size y2, but not the covariate
coefficients {f1,...,PBp} . Also, under the prescribed stochastic assumptions for the covariate
variables, the multivariate normal distribution leads to the unique conditional property on a beta
distribution in the general distribution of the test statistic W*. Due to the fundamental property
of the contrast matrix, the resulting distribution and power function do not depend on the mean
vector 6 and variance—covariance matrix X of the multinormal covariate distribution. To determine
sample sizes in planning research designs, the power functions Wg can be applied to calculate
the sample sizes {Ngi, ..., Ngg} needed to attain the specified power 1 — § for the chosen
significance level a, contrast matrix C, intercept parameters {11, ..., LG}, variance component
2, and the number of covariates P.

For an ANCOVA design with a priori designated sample size ratios {r{, ..., rg} with r; =
N;/Nifori =1, ..., G.Therequired computation is simplified to deciding the minimum sample
sizes Ng1 (with Ng; = Ngp -ri,i =2, ..., G) required to achieve the selected power level with
the power functions Wg. Using the embedded functions in popular software systems, optimal
sample sizes can be readily computed through an iterative process. The SAS/IML (SAS Institute
2017) and R (R Development Core Team 2017) programs employed to perform the suggested
power and sample size calculations are available as supplementary material. The proposed power
and sample size procedures for the general linear hypothesis tests of ANCOVA subsume the
results in Shieh (2017) for a single contrast test as a special case. Notably, the derivations and
manipulations of an inverted matrix variate ¢ are more involved than that of a Hotelling’s T2
distribution as demonstrated in Shieh (2017).

Alternatively, a simple procedure for the comparison of treatment effects has been described
in Cohen (1988, pp. 379-380). Unlike the proposed two-stage distribution, it is suggested that
W* has a simplified F distribution

W~ F(G—1,v,Ay), (30)
where A 4 = N782. The corresponding power function is of the form
Wa(Ag) =P{F(G—1,v,A4) > FG-1),v,a}- 31

It is easily seen from the model assumption given in Equation 1 that 0%, = Var(¥;;) = BT +o?
P
and p = Corr(Yij, Y. XkijPx) = BTZB/{o% - BT=B}"/2 where B = (B1,...,Bp)". Hence, the
k=1

advantage of ANCOVA over ANOVA in the reduction of error variance from 0% too? = (1— pz)cs%
by a factor (1 — p?). For ease of illustration, the power function of the omnibus F test of treatment
differences in ANOVA is also presented here:

VYo(Ag) = P{F(G —1,Nr —G,Ao) > F(G-1), Nr—G), a}> (32)

where Ap = (1 — p2)A 4. With the reduction of error variance from 0%, too? = (1 — pz)cs%, it
is evident that Ap < A 4. Hence, the computed power W is generally less than W4 when all
other factors are fixed despite the marginal difference between the two error degrees of freedom
Nr —Gandv=Ny —G— P.
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The prevailing procedure of Cohen (1988) provides a direct application of the ANOVA
formula in combination with a reduced degrees of freedom and a correlation-adjusted variance.
It is computationally simple because the simple formulation W4 depends only on a non-central F
distribution. On the other hand, one critical disadvantage of this method is that the F distribution
and the associated sample size formula do not fully take into account the distributional features
of covariates. A direct comparison of the two non-centrality components in Equations 28 and 30
reveals that Ap < Ay because 0 < B* < 1. This indicates that the power function W4 tends to
over-estimate the true power W and it also leads to an under-estimated sample size in attaining
a desired power level. Notably, the suggested exact procedure is of pedagogical importance and
involves a beta mixture of non-central F distributions. These theoretical examinations assure that
the proposed technique has analytical superiority over the current method of Cohen (1988). Their
practical accuracy will be demonstrated in the succeeding empirical assessments.

5. Numerical Assessments

To further demonstrate the contrasting features and practical consequences of the proposed
approach and existing methods, detailed empirical appraisals are conducted to examine their
performance in power and sample size calculations. For ease of comparison, the numerical illus-
tration considered in Maxwell and Delaney (2004, pp. 441-443) for sample size planning and
power analysis is utilized as the fundamental framework.

In particular, Maxwell and Delaney (2004) described an ANOVA design with G = 3,
group intercepts {1, 2, w3} = {400, 450, 500} , and error variance 0%, = 10, 000. Then, an
ANCOVA model is introduced with the inclusion of an influential covariate variable X with
p = Corr(X,Y) = 0.5 to partially account for the variance in the response variable Y. The cor-
responding unexplained error variance o> in ANCOVA is reduced as 0% = (1 — pz)cg, =17, 500.
To detect the treatment differences, they showed that the total sample sizes required to have a
nominal power of 0.80 are 63 and 48 for the balanced ANOVA and ANCOVA designs, respec-
tively. Thus, the ANCOVA design has the potential benefits to attain the same power with nearly
25% fewer subjects than an ANOVA. It should be noted that the power formulas W4 and Wp
given in Equations 31 and 32, respectively, were applied for sample size calculations in Maxwell
and Delaney (2004). To show a profound implication of the sample size procedures, extensive
simulation study was performed under a wide range of model configurations.

First, the number of covariates and the population correlation between the response and
covariate variables are extended to P = 1, ..., 10 and p = 0.1, 0.5, and 0.9. In each combined
case of P and p, the required total sample sizes N7o, N7, and Nrg are computed with the
power functions Wo, W4 and Wg for the ANOVA, approximate ANCOVA, and exact ANCOVA
methods, respectively. Throughout this numerical investigation, the significance level and nominal
power are chosen as o = 0.05, and 1 —f = 0.80, respectively. Note that the effect sizes associated
with p = 0.1, 0.5, and 0.9 are 82 = 0.1684, 0.2222, and 0.8772, respectively. Second, to assess
the potential impact of different and smaller effect sizes, the intercept parameters are modified
as {1, 2, n3} = {410, 450, 490} in the second set of numerical investigations. The resulting
effect sizes are 82 = 0.1077, 0.1422, and 0.5614 for p = 0.1, 0.5, and 0.9, respectively. Overall,
these considerations result in a total of 60 different combined configurations. For {1, 2, w3} =
{400, 450, 500} , the computed total sample sizes Ny are summarized in Tables 1, 2 and 3 for
p =0.1,0.5, and 0.9, respectively. On the other hand, the corresponding results of {11, 2, w3} =
{410, 450, 490} are presented in Tables 4, 5 and 6.

The sample size calculations presented in Tables 1, 2, 3, 4, 5 and 6 reveal that, as expected,
the computed sample sizes of the ANOVA procedure remain identical for different number of
covariates P when all other factors are fixed. In contrast, the sample size of the exact approach
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FIGURE 1.
Errors of power estimation for G = 3 and p = 0.1

increases with increase in the number of covariates P and with decrease in the effect size 3°
when all other configurations are held constant. Likewise, the total sample size produced by the
approximate procedure also increases with decrease in the effect size 82. However, the reported
sample sizes in Tables 1 and 2 do not vary with P, and the computed sample sizes marginally
increase with larger P for the other cases in Tables 3, 4, 5 and 6. More importantly, the total
sample sizes N1ro, Nt4, and Nrg associated with the ANOVA, approximate ANCOVA, and
exact ANCOVA procedures have a consistent order of N74 < Nro < Nrg for all the cases in
Tables 1 and 4 with p = 0.1. The order between the two sample sizes N7 and N7 is reversed for
large magnitudes of p = 0.5 and 0.9 with Ny 4 < Nrg < N for the situations in Tables 2, 3, 5
and 6. For ease of explication, the estimated powers for the three different sample size procedures
are also listed in Tables 1, 2, 3, 4, 5 and 6.

To justify the accuracy of sample size determination, Monte Carlo simulation studies were
performed for the prescribed 60 design settings. With the computed sample sizes, parameter
configurations, and nominal power, estimates of the true power were computed via Monte Carlo
simulation of 10,000 independent data sets. For each replicate, N7, N74, and Nrg normal
outcomes are generated with the ANCOVA models. Because the power function W is irrelevant
to the mean vector 0 and variance—covariance matrix X of the designated covariate distribution, the
covariates are assumed to have independent and identical multinormal distribution Np(0p, Ip)
where 0p is a P x 1 null column vector and Ip is an identity matrix of dimension P. The
regression coefficients are chosen as ; = ... = fp = B* and B* is a designated value so that the
resulting correlation p = 0.1, 0.5, and 0.9. Next, the Wald test statistic W* was computed and
the simulated power was the proportion of the 10,000 replicates whose test statistics W* exceed
the corresponding critical value F3, , 0.05. The simulated power and error are also summarized in
Tables 1, 2, 3, 4, 5 and 6 for all the ANCOVA designs. To illustrate the contrasting behavior of
the three contending techniques, the induced errors for p = 0.1, 0.5, 0.9 in Tables 1, 2 and 3 are
also plotted in Figs. 1, 2, and 3, respectively.
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Errors of power estimation for G = 3 and p = 0.5
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FIGURE 3.
Errors of power estimation for G = 3 and p = 0.9
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According to the power comparisons, the ANOVA method generally does not provide accurate
sample size calculations for an ANCOVA design. Unsurprisingly, the only exceptions occurred
when the number of covariates is small and the correlation between the covariates and the response
variable is close to zero as in Tables 1 and 4. The approximate ANCOVA method consistently gives
larger power estimate than the simulated power for all cases considered here. The discrepancy
noticeably increases with the number of covariates and the magnitude of effect size. The resulting
errors can be as large as 0.0845, 0.1105, and 0.3049 associated with the scenarios of P = 10
in Tables 1, 2 and 3, respectively. For the relative smaller effect sizes in Tables 4, 5 and 6, the
performance of the approximate ANCOVA formula has improved with the errors of 0.0506,
0.0628, and 0.2710 for the cases of P = 10. Consequently, the overestimation problem of the
power function W4 suggests that the computed sample sizes are generally inadequate to achieve
the designated power level.

Regarding the accuracy of the proposed exact ANCOVA approach, the corresponding results
in Tables 1, 2, 3, 4, 5 and 6 show that the differences between the estimated and simulated powers
are fairly small. The largest absolute error is 0.0106 for the two cases of P = 8 and 5 in Tables 2
and 5, respectively. All the other 58 cases in Tables 1, 2, 3,4, 5 and 6 have an absolute error less than
0.01. These numerical results imply that the proposed exact approach outperforms the ANOVA
method and the approximate ANCOVA procedure for all design configurations considered here.
Therefore, the suggested power and sample size calculations can be recommended for general
use.

6. An Example

A documented example of Maxwell and Delaney (2004) is presented and extended next to
demonstrate the usefulness of the suggested power and sample size procedures and accompanying
software programs for the omnibus test of treatment effects in ANCOVA designs.

Specifically, Maxwell and Delaney (2004, Table 9.7, p. 429) provided the data for assessing
the effectiveness of different interventions for depression. There are 10 participants with random
assignment in each of the three intervention groups of (1) selective serotonin reuptake inhibitor
(SSRI) antidepressant medication, (2) placebo, or (3) wait list control. The measurements are
the pretest and posttest Beck Depression Inventory (BDI) scores of depressive individuals. The
primary interest of the ANCOVA study is on the group differences of posttest BDI measurements
using the pretest BDI scores as covariates. The results show that the estimates of adjusted group
means and error variance are {{i}, 15, 13} = {7.5366, 11.9849, 13.9785} and 6% = 29.0898,
respectively. The omnibus F test statistic of treatment differences is W* = 3.73, which yields a
p-value of 0.0376. Therefore, the test result suggests that the intervention effects are significantly
different at o = 0.05. Although this is not the focus in the illustration of Maxwell and Delaney
(2004), it can be computed from an ANOVA of posttest scores that the variance estimate is
8% = 39.6185. Hence, the sample squared correlation between the posttest and pretest BDI
scores is p? = 1 — 6267 = 1 —29.0898/39.6185 = 0.2658. The observed value of the ANOVA
F test of group differences is F* = 3.03 with a p-value of 0.0647. At the significance level 0.05,
the omnibus test of no intervention group difference on the posttest BDI scores cannot be rejected.
Although null hypothesis significance testing is useful in various applications, it is important to
consult the recent articles of Wasserstein and Lazar (2016) and Wasserstein et al. (2019) for the
recommended principles underlying proper use and interpretation of statistical significance and
p-values.

In view of the prospective nature of advance research planning, the general guidelines suggest
published findings or expert opinions can offer reliable information for the vital characteristics
of future study. Accordingly, it is prudent to adopt a minimal meaningful effect size in order
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to enhance the generalizability of the result and the accumulation of scientific knowledge. For
illustration, the prescribed summary statistics of the three-group depression intervention study
are employed as population adjusted mean effects and variance component. The suggested power
procedure shows that the resulting power for the omnibus test of group differencesis Vg = 0.6145
when the significance level a equals to 0.05. Because the computed power is substantially smaller
than the common levels of 0.80 or 0.90, this implies that the group sample size N = 10 does
not provide a decent chance of detecting the potential differences between treatment groups.
To determine the proper sample size, the proposed sample size computations showed that the
balanced group sample sizes of 15 and 19 are required to attain the nominal power of 0.8 and
0.9, respectively. The total sample sizes Ny = 45 and 57 are substantially larger than 30 of the
exemplifying design. Essentially, it requires 50% and 90% increases of the sample size to meet the
common power levels of 0.80 and 0.90, respectively. These design configurations are presented in
the user specifications of the SAS/IML and R programs presented in the supplemental programs.
Researchers can easily identify these statements and then modify the input values in the computer
code to incorporate their own model characteristics.

7. Conclusions

ANCOVA provides a useful approach for combining the advantages of two widely established
procedures of ANOVA and multiple linear regression. Despite the close resemblance among the
three types of statistical analyses, their power computation and sample size determination are
still theoretically distinct when the stochastic properties of the continuous covariates or predictors
are taken into account. It is generally recognized that the use of ANCOVA may considerably
reduce the number of subjects required than an ANOVA design to attain the required precision
and power. For planning and evaluating randomized ANCOVA designs, an ANOVA-based sample
size formula has been proposed in Cohen (1988) to accommodate the reduced error variance and
degrees of freedom because of the use of effective and influential covariates. The procedure is
very appealing from a computational standpoint and has been implemented in some statistical
packages. However, no further analytical discussion and numerical evaluation are available to
validate the appropriateness and implications of Cohen’s (1988) method in the literature.

This article aims to address the potential limitation and approximate nature of the prevailing
method and to describe an alternative and exact approach for power and sample size calculations
in ANCOVA designs. It is demonstrated both theoretically and empirically that the seemly exact
technique of Cohen (1988) does not involve all of the covariate properties in ANCOVA. Exact
power and sample size procedures are described for the general linear hypothesis tests of treatment
effects under the assumption that the covariate variables have a joint multinormal distribution.
The simulation results reveal that the proposed technique is superior to the current method under a
wide range of ANCOVA designs. More importantly, additional numerical assessments show that
the suggested power function and sample size procedure preserve reasonably good performance
under various non-normal situations, such as exponential, Gamma, Laplace, Log normal, uni-
form, and discrete uniform distributions. Hence, the proposed two-stage distribution and power
function of the Wald statistic for the general linear hypothesis tests possess desirable robust prop-
erties and are also applicable to other continuous covariate distributions in various ANCOVA
designs. Consequently, the presented methodology expands the power assessment and sample
size determination of Shieh (2017) for contrast analysis in ANCOVA. To enhance the practical
values, computer algorithms are also provided to facilitate the recommended power calculations
and sample size determinations. With respect to the importance and implementation of random
sampling, the fundamental and standard sampling designs and estimation methods can be found in
Thompson (2012). Heterogeneity of variance is one of the unique and problematic factors known
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as detrimental to the statistical inferences in ANCOVA (Harwell 2003; Rheinheimer and Penfield
2011). A potential topic for future study is to develop proper power and sample size procedures
within the variance heterogeneity framework.
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