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There is increasing evidence documenting gene-by-environment (G × E) interactions for
CVD related traits. However, the underlying mechanisms are still unclear. DNA methyla-
tion may represent one of such potential mechanisms. The objective of this review paper
is to summarise the current evidence supporting the interplay among DNA methylation,
genetic variants, and environmental factors, specifically (1) the association between SNP
and DNA methylation; (2) the role that DNA methylation plays in G× E interactions.
The current evidence supports the notion that genotype-dependent methylation may ac-
count, in part, for the mechanisms underlying observed G×E interactions in loci such as
APOE, IL6 and ATP-binding cassette A1. However, these findings should be validated
using intervention studies with high level of scientific evidence. The ultimate goal is to
apply the knowledge and the technology generated by this research towards genetically
based strategies for the development of personalised nutrition and medicine.

Genetics: Epigenetics: Nutrigenetics: CVD

CVD is the leading cause of total global mortality. The
WHO estimates that 17·3 million people died from
CVD in 2008, representing 30 % of all global deaths. In
the USA alone, the overall rate of death attributed to
CVD was 235·5 per 100 000 based on 2010 data(1).
Moreover, CVD are projected to remain the single lead-
ing cause of death worldwide.

With the goal to prevent and cure CVD, numerous
risk factors have been identified, including dyslipidaemia,
inflammation, obesity, hypertension, smoking, age and
diabetes(2). Dyslipidaemia refers to high concentrations
of TAG, total cholesterol and LDL cholesterol and low
concentration of HDL cholesterol. According to the
American Heart Association(3), the prevalence of adults
having high TAG (>150 mg/dl), high total cholesterol

(≥200 mg/dl), high LDL-cholesterol (≥130 mg/dl), and
low HDL-cholesterol (≤40 mg/dl) is 33, 44·4, 31·9 and
18·9 %, respectively. Also, inflammation is part of the
complex biological response to harmful stimuli, which
is common to a number of chronic diseases. However,
for the most part, both dyslipidaemia and inflammation
are preventable or reversible by having a healthy lifestyle.

Of the factors that define a healthy lifestyle, diet is one
of the most important components. Specifically, dietary
fatty acids (FA) are associated with risk factors for
CVD. For example, although it is still under debate, un-
saturated FA tend to increase HDL-cholesterol(4), reduce
TAG(5), and decrease IL-6(6) compared with SFA.
Although MUFA and PUFA differ in the magnitude
of these beneficial effects(7), anti-atherosclerosis effect
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has been demonstrated for n-3 not n-6 PUFA(8–18). In
addition, individuals exhibit different physiological
responses to dietary FA, reflecting, in part, the contribu-
tions of genetic variability(19).

The role of genetic factors in contributing to these
inter-individual differences in lipid responses to dietary
FA has been widely studied. Our group has found that
the association between dietary intake of total fat and
plasma HDL-cholesterol was modified by a genetic vari-
ant located within the hepatic lipase gene (LIPC)(20), and
that the association between dietary PUFA intake and
plasma fasting TAG is modified by the genetic variants
located within APOA5 gene(21). The effect of PUFA on
HDL may differ according to different genotypes of
several genes such as APOA5, APOA1IL6, NF-κ-light-
chain enhancer of activated B cells, TNF-α(22–25). In add-
ition, there is also a genetically based difference in TAG
response to n-3 PUFA(26,27). As a result of wide availabil-
ity of new genetic technologies such as genome-wide as-
sociation studies and next generation sequencing, an
enriched catalogue of common or rare SNP has been for-
mulated. However, the variation explained by all these
genetic variants only account for <20 %, indicating the
existence of other sources of variability, such as epigenet-
ic mechanisms.

Epigenetics has become a research area of intense inter-
est and growth. The definition of epigenetics underwent a
series of changes as biological knowledge expanded. In
1940, epigenetics was first defined as ‘. . . the interactions
of genes with their environment which bring the phenotype
into being. . .’ by developmental biologists(28). In the
1990s, epigenetics was described as the study of changes
in gene expression, which were not a result of changes in
the DNA sequence(29). Recently, inspired by genome-
wide technologies, a new term epigenomics has been
coined, targeting the study of all factors contributing to
changes in genome-wide chromatin structure including
DNA methylation, histone modification and chromatin
remodelling(30).

DNA methylation is the best-studied epigenetic mech-
anism and involves the addition of a methyl group direct-
ly onto DNA residues such as cytosine and adenine(31)

and the C5-methylcytosine modification is the most com-
mon in eukaryotes. DNA methylation can occur in dif-
ferent regions of the genome such as repetitive
sequences, gene body, promoter-related CpG island
and CpG island shore, which are located up to 2 kb up-
stream of the CpG island(30). DNA methylation patterns
in different regions present different functions. For ex-
ample, gene silencing is correlated with hypermethyla-
tion in promoter regions rather than in the gene
body(32). Also, cancer and ageing are correlated with
hypomethylation of repetitive elements, while this is
not the case for methylation of specific genes.
Considering the different functionalities of DNA methy-
lation in different regions, studies of DNA methylation
occurring in specific sites of specific genes could provide
more interpretable and meaningful explanations.

Similar to all the other epigenetic mechanisms, DNA
methylation may act as a biomarker of the effect of envir-
onmental factors on the genome. A wide array of factors

have been identified to affect DNA methylation patterns,
including ageing(33,34), dietary FA(35–37), malnutri-
tion(38–40), dietary protein(41,42), methyl-donors(43–45),
chemical pollutants(46–48), sun exposure(49) and smok-
ing(50,51). The connection of ageing with DNA methyl-
ation was first observed in the candidate tumour
suppressor genes, of which the methylation is increased
with age, leading to gene silencing(52). Later, it was
reported that the ageing effect on DNA methylation is
a prevalent phenomenon across the whole genome
based on studies with monozygotic and dizygotic twins,
which showed that the variation in DNA methylation
increases significantly with age(33,34). Also dietary FA
were suggested to regulate DNA methylation patterns.
The intervention of a high-fat diet was found to increase
the DNA methylation of a metabolically related gene,
PPARγ, coactivator 1α (PPARGC1A); however, after
the intervention was withdrawn, DNA methylation of
PPARGC1A returned back to its baseline level(53). The
methylation of this gene was also affected by palmitic
acid and oleic acid(36). Arachidonic acid and DHA
were shown to affect DNA methylation of FA desaturase
2 in mice liver(35). In addition, EPA was found to have a
demethylation effect on the tumour suppressor gene(37).

Besides the effects of environmental factors, DNA
methylation has been associated with different pheno-
types. For instance, DNA methylation has been pro-
posed as one mechanism of atherosclerosis(54). In ApoE
knockout mice, DNA methylation changes were shown
to precede any histological sign of atherosclerosis(55). In
addition, the same study also found associations between
global DNA hypermethylation and dyslipidaemia, char-
acterised by the atherogenic lipoproteins. An in vitro
oligonucleotide-binding assay found that a CG-rich
17-nucleotide sequence binds ApoA1(56), suggesting a re-
lationship between lipoproteins and DNA methylation
target sites, CpG dinucleotides. Besides affecting lipid
concentrations, DNA methylation is also involved in
inflammation. IL-6 is an acute phase protein induced
during inflammation that functions as an inducer of dif-
ferentiation of inflammatory helper T cells(57,58). DNA
methylation has been identified as one mechanism of
transcription regulation of IL6. For example, methyla-
tion of the promoter region in IL6 is negatively corre-
lated with gene expression(59) in peripheral blood
mononuclear cells and the DNA methyltransferase in-
hibitor 5-aza-2′-deoxycytidine induces IL6 transcrip-
tion(60) in cancer cells. This silencing of IL6 expression
may be due to the binding of methyl-CpG-binding pro-
tein 2 to the hypothetical binding sites in IL6 gene,
which is close to its transcription start site.

The significance of this knowledge relates to its even-
tual translation into public health. The traditional con-
cept of ‘one size fits all’ is limited, and the study of
epigenetics will facilitate knowledge to further the devel-
opment of personalised medical care. In this case, it is ne-
cessary to generate a more complete understanding of
both genetic and epigenetic mechanisms contributing to
the substantial inter-individual variations of response to
environmental challenges. Moreover, we will also expand
our knowledge of the molecular mechanism of gene–
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environment interaction and provide more solid evidence
to promote new dietary guidelines.

Epigenetics and DNA methylation

Overview of epigenetics

Epigenetics acts as the cross-talk between the genome
and environment, encompassing three major mechan-
isms: DNA methylation, histone modification, and chro-
matin remodelling. DNA methylation involves adding a
methyl group onto a DNA nucleotide such as cytosine
and adenine(31). With respect to histone modifications,
a wide array of modifications are introduced to the his-
tone tails, including methylation, acetylation, phosphory-
lation, ubiquitylation, sumoylation, ADP ribosylation,
deamination, proline isomerisation, crotonylation, pro-
pionylation, butyrylation, formylation, hydroxylation
and O-GlcNAcylation(61). In terms of the chromatin re-
modelling mechanism, ATP-dependent enzymes remodel
and control chromatin structure and assembly to make it
become active or inactive to the extrinsic stimulus(62).
These mechanisms play a critical role in development.

DNA methylation and DNA sequence

DNA methylation, CpG dinucleotides, CpG islands. In
mammalian cells, most DNA methylation occurs on
CpG dinucleotides(63). Regions enriched in CpG
dinucleotides are known as CpG islands. However, the
definitions of CpG islands have been evolving. In 1987,
Gardiner-Garden and Frommer(64) defined CpG island
as ‘a stretch of DNA sequence where moving average
of % G+C was >50, and the moving average of ratio
of the observed to expected CpG was greater than 0·6.’
These calculations are based on a 100 bp window and
sliding across the sequence at 1 bp intervals. However,
in regions rich in repetitive elements, this definition
results in an overestimation of its presence. Therefore,
Takai and Jones set up more stringent criteria for CpG
islands, including %G+C>55, ratio of observed to
expected CpG greater than 0·65 and sequence length
being ≥500 bp. With Takai and Jones’ criteria, a web
page service algorithm CpGIS was developed(65).
Furthermore, Ponger and Mouchiroud(66) extended
their criteria to estimate the transcription start sites
associated CpG islands with the algorithm CpGProD.
However, both criteria are subjective and
computationally inefficient for the analysis of the
genome-wide DNA sequences, so a new definition,
named CpGcluster(67), was proposed. This algorithm is
based on the distance between two consecutive CpG
and uses an integer arithmetic algorithm, which makes
it fast and computationally efficient compared to
previous methods. However, it has low sensitivity.
Recently, a new algorithm CpG_MI(68) was developed
to take into account more variability of the test such as
different locations of CpG dinucleotide among different
CpG islands. With the growing availability of the
experimental results of DNA methylation, the
prediction of DNA methylation based on machine

learning approach is possible. More specifically
speaking, EpiGRAPH(69) algorithm for prediction of
DNA methylation was trained by the wet-lab
experiments data, and then this algorithm could be
used to predict the methylation probability of another
stretch of DNA sequence.
DNA methylation and genetic variants. It has been

shown that proximal sequence elements are both necessary
and sufficient for regulating DNA methylation(70).
Moreover, SNP can regulate DNA methylation(71–77). For
example, the C allele of a SNP located within the promoter
region of matrix metalloproteinase 1 was shown to have
significantly higher DNA methylation status than the
corresponding T allele(71). Also, the G allele of one SNP
located within the potassium-chloride co-transporter 3
(KCC3, SLC12A6) was found to be methylated at the
adjacent C nucleotide(72).

Systematic analyses of the whole human genome have
identified an array of such genetic variants having regu-
latory effects on DNA methylation patterns, indicating
that genetic regulation on DNA methylation is prevalent
across the whole genome. For instance, a genomic survey
using methylation-sensitive SNP analysis based on a 50
and 250 K SNP genotyping platform showed that sixteen
SNP-tagged loci were confirmed to have allele-specific
DNA methylation events(77). Also, in brain samples, ap-
proximately 10 % of the CpG sites included in the ana-
lysis were found to be affected by the genotypes of the
SNP in cis-position, while 0·1 % of the analysed CpG
sites were regulated by the genotypes of the SNP in the
trans-position(74). Furthermore, it was suggested by stud-
ies with sixteen human pluripotent and adult cell lines
that approximately one-third (23–37 %) heterozygous
SNP in the human genome may regulate DNA methyla-
tion patterns(73), and a big proportion of the observed
loci with allele-specific DNA methylation events (38–
88 %) is dependent on the allele status of CpG-related
SNP, a type of SNP with one allele to disrupt and the
other allele to create CpG dinucleotides(73). Finally, the
effect of genetic variants outweighed the influence of
imprinting on DNA methylation, because it was shown
that the number of methylation loci affected by genetic
variants were way more than those loci influenced by
the sex of parent of origin(75) and there is convincing evi-
dence of the interesting interdependence between genetics
and epigenetics underlying diversity in the human
genome.(78)

DNAmethylation and gene function

DNA methylation hasdifferentgenetic functionsmostlyde-
pendingon location.For example,DNAmethylationwith-
in the promoter region is more likely to regulate gene
transcription(30,79), while DNA methylations within the
gene body tend to modify the alternative promoters and
splicing events(80–84).
DNA methylation within promoter regions and gene

transcription. The negative correlation between DNA
methylation and gene transcription is common to most
genetic regions across the whole genome with rare
exceptions(79,85). The first experiment indicating the
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transcription-regulatory effects of DNA methylation was
conducted by McGhee and Ginder(86). Since then, a
large body of evidence has accumulated supporting an
inverse correlation between DNA methylation and gene
transcription for most genes, including but not limited to
house-keeping genes(87), genes located on the inactive X
chromosome(88–90), imprinted genes(77,91), tumour
suppressor genes or oncogenes(92–94), cellular
differentiation and development-related genes(95–98),
metabolic genes(35,53,99–101) and inflammation-related
genes(59,102–105). However, in some instances, DNA
methylation has been positively correlated with gene
expression(106–110). Most of such transcriptional regulation
effects were related to DNA methylation within promoter
regions(30) by direct blocking the binding of transcriptional
activators or indirect recruitment of methyl-binding
proteins and co-repressor complexes to facilitate the
formation of heterochromatin in a cooperative way(111).

DNA methylation within gene bodies and alternative
promoter and splicing events. DNA methylation is also
found on CpG sites located within gene bodies(82,112–114),
suggesting a potential genetic function besides gene
transcription. By comparing differential DNA methylation
patterns on a genome-wide scale across different tissues
(brain, heart, liver and testis) and different developmental
stages of mice, approximately 16 % of the identified tissue
differential methylation regions or developmental stage
differential methylation regions were located within
intragenic regions(114). Also, it was found that the
majority of methylated CpG sites were located within
gene bodies(82,112,113,115). According to analysis with
human normal tissues (whole blood, monocyte,
granulocyte, skeletal muscle, spleen and brain), 15·4 % of
CpG islands located within the gene bodies were found to
be methylated, which is higher than the proportion of
methylated CpG islands within 5′ promoter region (7·8
%) and the whole gene region (10·6 %)(113). Using human
brain tissue, Maunakea et al. (82) generated
high-resolution methylome maps with dense coverage of
24·7 million of the 28 million CpG sites across the whole
genome. They found that 34 % of all intragenic CpG
islands were methylated, whereas only 2 % of the CpG
islands located within the 5′ promoter regions were
methylated, so they concluded that ‘DNA methylation
may serve a broader role in intragenic compared with 5′
promoter CpG islands in the human brain’. Again, the
altered DNA methylation in the immune system was
shown to occur predominantly at CpG islands within
gene bodies based on the analysis with both mouse cells
within haematopoietic lineage(112) and human B cells(115).

The methylation within gene bodies may be related to
alternative promoters(82) and alternative splicing
events(80,81,83,84). Based on methylome maps of human
brain tissues, differentially methylated intragenic CpG is-
lands may act as promoters, and novel transcripts have
been found to be initiated from these intragenic promo-
ters, indicating that intragenic methylation functions to
regulate cell context-specific alternative promoters in
gene bodies(82). With a computational analysis of
human chromosome 6, 20 and 22 based on datasets
from the Human Epigenome Project and the Human

Genome Project, hypermethylated CpG sites were
found to be prevalent in alternatively spliced sites, and
the frequency of methylation increases in loci harbouring
multiple putative exonic splicing enhancers(84).
According to the analysis of data from RNA-seq experi-
ments and methylome data with single nucleotide reso-
lution of human cell lines, DNA methylation was
found to be enriched in included alternatively spliced
exons, and inhibition of DNA methylation lead to aber-
rant splicing of alternatively spliced exons. Further, they
found that the alternative splicing may be because of the
alternative definitions of exons via recruitment of methy-
lated CpG site-binding protein 2 to the methylated CpG
sites(80). Another potential mechanism for the regulation
of DNA methylation on alternative splicing events may
be the fact that DNA methylation patterns affect chro-
matin structure(81). Finally, a DNA methylation related
protein, CCCTC-binding factor, was shown to promote
alternative splicing events on a genome-wide scale, pro-
viding potential links between DNA methylation and al-
ternative splicing events(83).

DNA methylation and environmental factors

DNA methylation and ageing. DNA methylation is
affected by ageing partially because of its intimate
relationship with development. DNA methylation
patterns change during each stage of development(116).
Before implantation, almost all DNA methylation
becomes erased except for those imprinting regions.
During implantation, the entire genome gets methylated
except for the CpG islands. After implantation,
pluripotency genes are de novo methylated and
tissue-specific genes are demethylated in the cell types for
their expression.

The correlations between ageing and DNA methyla-
tion were also suggested by in vitro studies. For example,
compared to immortal cell lines, normal diploid fibro-
blasts were found to have a dramatic decrease in their
5-methylcytosine contents during their growth in cul-
ture(117). Furthermore, the observation that the decrease
rate in mouse primary diploid fibroblasts was faster than
in hamsters and human subjects and the fact that mouse
has the shortest lifespan suggested that the rate of loss of
5-methylcytosine is positively correlated with growth po-
tential. Also, the treatment of human diploid fibroblasts
with DNA methylation inhibitors, azacytidine and aza-
deoxycytidine, were shown to inhibit the initial cellular
growth(118).

Recently, epidemiological analyses have indicated the
potential relationships between ageing and DNA methy-
lation patterns. A cross-sectional study with monozygot-
ic twins(33) found that younger twins have significantly
lower levels of 5-methylated cytosines than older twins,
and that the variance of DNA methylation of the older
twins was significantly greater than that of the younger
twins. The observed differences in DNA methylation
were consistent with the findings with gene expression
by showing that the 50-year-old twins had dramatically
different expression profiles while the 3-year-old twins
had almost identical ones. The observed discordance of

Y. Ma and J. M. Ordovas336

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665116000823 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665116000823


DNA methylation with age was consistent across differ-
ent tissues within the analysis, including lymphocytes,
epithelial mouth cells, intra-abdominal fat and skeletal
muscle biopsies. Later, another study with thirty-four
male monozygotic twins with age ranging from 21 to
55 years identified eighty-eight sites located within or
near eighty genes of which DNA methylation patterns
were significantly correlated with age(119). Three genes
from that list of eighty genes were further validated
and replicated with the analysis of their correlations
with age in a population-based sample of thirty-one
males and twenty-nine females with age ranging from
18 to 70 years, which are Edar-associated death domain,
target of myb1 (chicken)-like 1 and neuronal pentraxin
II. Interestingly, all of these three genes have been
reported to be associated with a wide array of age-related
phenotypes, such as wound healing(120), Parkinson dis-
ease(121), cancer(122,123), and loss of teeth, hair and
sweat glands(124). Also, a longitudinal study found that
DNA methylation differs by age because methylation
patterns of candidate genetic loci, such as the dopamine
receptor 4 gene, the serotonin transporter gene, and the
X-linked monoamine oxidase A gene, were shown to
change during the period when these children grew
from age 5 to 10 years(34).

Finally, changes in DNA methylation patterns have
been reported to be associated with a series of age-related
diseases. The evidence suggests that global hypomethyla-
tion and gene-specific promoter hypermethylation were
associated with different types of cancer. It was found
that the number of a subpopulation of cells in human co-
lonic mucosa increase with age, and the promoter of oes-
trogen receptor gene in this subpopulation of cells
becomes hypermethylated. This age-related hypermethy-
lation of oestrogen receptor was found in all cells in colo-
rectal tumours examined(125). Also, age-dependent
methylation of oestrogen receptor alpha was associated
with prostate cancer(126). The hypermethylation of sev-
eral tumour suppressor genes have been suggested as bio-
markers of lung cancer(127). Alzheimer’s disease was
correlated with DNA methylation of CpG sites located
near or within the genetic loci reported to harbour genet-
ic susceptible risk variants for Alzheimer’s disease(128).
Compared with the normal retinas, those of patients
with age-related macular degeneration were found to
have hypermethylation and gene repression of glutathi-
one S-transferase isoform mu1 and glutathione
S-transferase isoform mu5(129).

DNA methylation and fatty acids. FA affect
expressions of a wide array of genes by acting as ligands
for transcription factors, such as PPAR, the liver X
receptors (LXR), retinoid X receptor, hepatocyte NF 4,
sterol regulatory element-binding proteins (SREBP),
NF-κ-light-chain enhancer of activated B cells,
cyclooxygenase and lipoxygenase(130). PPAR and LXR
are members of the nuclear hormone receptor
superfamily of transcription factors, which bind to
specific motifs within the promoters of genes as
heterodimers with the retinoid X receptor(131). There are
three isoforms of PPAR, including PPARα, PPARβ and
PPARγ. In general, PPAR bind with both saturated and

unsaturated FA with a relatively more potent binding
with n-6 and n-3 PUFA and their derivatives to regulate
expressions of genes that control lipid and glucose
homeostasis and inflammation. Regarding LXR, there
are two family members, LXRα and LXRβ. As a sensor
of cholesterol in the nucleus, LXR can be activated by
increased intracellular cholesterol concentrations. Also,
the binding of long-chain FA to LXR(132) was shown to
regulate expression of genes involved in sterol and FA
metabolism(133), lipogenesis(134–137), carbohydrate
metabolism(138,139). Hepatocyte NF 4α is an orphan
member of the steroid hormone receptor superfamily and
functions by binding with the activated (CoA) form of
FA to regulate expression of genes participating in the
lipid, lipoprotein(140,141) and glucose metabolism(142,143).
SREBP have three isoforms, which are SREBP-1a,
SREBP-1c and SREBP-2, and all of them are
transcription factors playing a critical role in controlling
synthesis of FA, TAG and cholesterol(144). PUFA were
found to lower the mature form of the protein levels of
SREBP by raising cellular cholesterol levels or by
reducing SREBP mRNA stability and SREBP
transcription or by promoting degradation of SREBP
protein(145–148). Cyclooxygenase and lipoxygenase
function to convert n-6 and n-3 PUFA into pro- and
anti-inflammatory signalling molecules to regulate
activity of transcription factors of inflammation such as
NF-κ-light-chain enhancer of activated B cells(149).

The effect of FA on DNA methylation was also sug-
gested by a study with mice heterozygous for disruption
of cystathionine beta-synthase (Cbs+/−)(35), which could
be induced to have hyperhomocysteinaemia (HHcy),
providing an indirect evidence because of the potential
modifications on DNA methylation by homocysteine
through its participation in the C1 metabolism. In that
study, a dosage of HHcy (normal, mild and moderate)
was developed by treating the mice (Cbs+/+) with control
diet (normal), the mice (Cbs+/+) with diet to induce
HHcy (mild) and the mice (Cbs+/−) with diet to induce
HHcy (moderate). The potential relationship between
homocysteine and DNA methylation was supported by
the significantly inverse correlation between total homo-
cysteine levels and liver methylation capacity, measured
by the ratio of S-adenosylmethionine to S-adenosylho-
mocysteine. Correspondingly, mice with moderate
HHcy had higher methylation of candidate CpG sites
within the promoter region of FA desaturase 2 in liver,
leading to lower gene expression of FA desaturase 2
and lower protein activity of δ(6)-desaturase (encoded
by FA desaturase 2) in liver, compared with mice with
mild and normal HHcy. Also, mice with moderate
HHcy have lowest level of arachidonic acid and DHA
in total liver than those mice with mild and normal
HHcy.

Direct evidence for the link between FA and DNA
methylation were conducted with in vitro and in vivo
studies. Incubation of human skeletal muscle cells with
48 h treatment with free FA, such as palmitate and ole-
ate, can increase DNA methylation levels of the pro-
moter region of PPARγ coactivator-1α in primary
human skeletal cells, leading to suppression of its gene
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expression(36). Also, in vitro treatment of U937 leukemia
cells with EPA was found to decrease methylation of the
promoter regions of a myeloid lineage-specific transcrip-
tion factor CCAAT/enhancer-binding protein, a tumour
suppressor gene, resulting in an increased gene expres-
sion(37). One in vivo study with rats found that feeding
a diet high in n-3 PUFA, mainly with EPA and DHA
could significantly decrease global DNA methylation
levels(150).

A randomised control trial with high-fat overfeeding
in young adults with low or normal birth-weight sup-
ported a relationship between FA and DNA methyla-
tion. Having high-fat overfeeding (+50 % energy) for 5 d
increased DNA methylation in the promoter region of
PPARGC1A, measured in the skeletal muscle cells
extracted from healthy young men with low birth-
weight(53). The observed induction of DNA methylation
in PPARGC1A was found to be reversible because DNA
methylation returned to its baseline level after the high-
fat diets were withdrawn. Although DNA methylation
of PPARGC1A was not found to have significant correl-
ation with its gene expression, high-fat challenge in the
subjects with low birth-weight were shown to induce per-
ipheral insulin resistance and decrease gene expression of
PPARGC1A.

DNAmethylation and other environmental factors. Besides
ageing and dietary FA, DNA methylation patterns are
modifiable by several other environmental factors,
including global nutrition status, air pollution, weather
and smoking. In mice, supplementation of methyl donors
during gestation was shown to have a dose–response
relationship with the methylation of viable yellow agouti
(Avy) locus and browness of coat colour in the
offspring(45). Energy restriction in utero decreased the
overall methylation and changes in the methylation
patterns of imprinted loci in mice(151). Similarly in
human subjects, those subjects having experienced
famine prenatally because of their in utero exposure to
the Dutch Hunger Winter were shown to have less DNA
methylation of the imprinted gene, insulin-like growth
factor 2(39,40). Moreover, increased concentrations of
ozone and components of fine particle mass were
associated with hypomethylation of tissue factor (F3),
intercellular adhesion molecule 1 and toll-like receptor 2
and hypermethylation of interferon-γ and IL6(152) and
with decreases in global DNA methylation in whole
blood(153). A genome-wide analysis followed by an
independent replication study showed that smokers have
decreased level of DNA methylation of a single CpG site
located within the coagulation factor II (thrombin)
receptor-like 3 (F2RL3)(50). Also, methylation of tumour
suppressor genes, cyclin-dependent kinase inhibitor 2A
(p16) and death-associated protein kinase might lead to
lung cancer(51). Sun exposure was associated with the
phenotypic changes related with skin ageing by their
modifications of DNA methylation across the
genome(49). Finally, individuals with in utero exposure to
rainy season in rural Gambia were shown to increase
methylation of genetic regions contributing to the
dramatic and systemic inter-individual variations in
epigenetic regulation(38).

DNA methylation and CVD risk factors

DNA methylation and inflammation. Accumulating
evidence supports that DNA methylation patterns are
associated with inflammatory markers, such as
IL6(59,102,154–156), IL1β(102), and IL8(102) and high-
sensitivity C-reactive protein(157), vascular cell adhesion
molecule-1(158). A case–control study found that patients
with rheumatoid arthritis have lower DNA methylation
levels of a CpG site, which was located at−1099 bp to the
transcription start site of IL6, measured in peripheral
blood mononuclear cells. In the macrophages from
healthy control subjects, lower methylation of the
previously identified CpG site was in line with the higher
IL6 expression stimulated by lipopolysaccharide.
Experiments with electrophoretic mobility shift assay
provided potential mechanistic explanation for these
associations by identifying the methylation-dependent
affinity of protein–DNA interactions(59). In vitro treatment
of 5-aza-2′-deoxycytidine activated IL6 expression in
human pancreatic adenocarcinoma cell lines, indicating an
important role of DNA methylation at the IL6 genetic
locus(60). Also, chromatin immune-precipitation assays with
the same cell lines identified a potential response element to
the binding of methyl-CpG-binding protein 2, located from
−666 to −426 bp to the transcription start sites, providing
potentially a mechanistic explanation for the DNA
methylation of IL6(60). A cross-sectional study with blood
leucocyte found that workers living in an industrial area
had the lowest, whereas rural and urban residents had the
highest and intermediate methylation levels of the second
intron of IL6(154). Another cross-sectional study with
leucocytes found that a prudent diet, characterised by a
high intake of vegetables and fruit, was associated with
DNA methylation levels of the promoter region of IL6(155).
According to the analysis of DNA methylation patterns of
IL6 in periodontal tissues, patients with periodontitis were
found to have lower methylation and higher gene
expression(156). An in vitro study with cultured human lung
cells showed that the DNA methylation levels of promoter
regions of a panel of inflammation related genes (IL6, IL1β
and IL8) were higher in cancer cells than normal ones, and
the higher methylations went along with the lower gene
expressions(102). A study with patients with paediatric
obstructive sleep apnoea found that DNA methylation of
forkhead box P3 had a significantly positive correlation
with serum levels of high-sensitivity C-reactive protein(157).
A cross-sectional study with blood samples from 742
community-dwelling elderly individuals found that
hypomethylation of repetitive element LINE-1 was
associated with increased levels of serum vascular cell
adhesion molecule-11(158). Finally, a study with samples of
leucocytes from 966 African American identified that DNA
methylations of 257 CpG sites within 240 genes contribute
to serum levels of C-reactive protein (159).
DNA methylation and dyslipidaemia. DNA

methylation patterns have been related to
dyslipidaemia(55,56,160,161). After stimulation with
lipoproteins, the global levels of 5-methylated cytosines
within the differentiated human monocyte-macrophage
cell line THP-1 were significantly increased(55). According
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to a genome-wide DNAmethylation analysis with samples
of CD4+ cells from 991 individuals of the Genetics of
Lipid-lowering Drugs and Diet Network (GOLDN)
study, four CpG sites located within the intron 1 of
carnitine palmitoyltransferase 1A were found to be
associated with fasting levels of VLDL-cholesterol and
TAG. DNA methylation of the CpG site with top
findings was further found to be associated with carnitine
palmitoyltransferase 1A expression. The observed
association between DNA methylation, gene expression
and fasting TAG was replicated in the Framingham
Heart Study(160). Also, a higher methylation pattern of the
promoter region of ATP-binding cassette A1 (ABCA1) in
samples of whole blood was found to be associated with a
lower circulating HDL-cholesterol and HDL2-
phospholipid levels in ninety-seven patients with familial
hypercholesterolaemia(161). Similarly in patients with
familial hypercholesterolaemia, leucocyte DNA
methylations of lipoprotein lipase had positive
correlations with HDL-cholesterol and HDL particle size,
whereas DNA methylation of cholesteryl ester transfer
protein had a negative association with LDL-cholesterol
in all the participants and negative associations with
HDL-cholesterol, HDL-TAG levels, and HDL particle
size(162). Further, the methylations of lipoprotein lipase in
visceral adipose tissue extracted from thirty men with
severe obesity were found to have negative correlations
with HDL-cholesterol and gene expression of lipoprotein
lipase(162). The potential mechanism for the effects of
lipoproteins on DNA methylation is unknown. The
modifications of chromatin structure may account as one
potential mechanism, because it was found that ApoA1
can physically bind to a CG-rich oligonucleotide in vitro,
leading to the remodelling of chromatin structure(56).

Genetics and epigenetics integrate

The integration of genetics and epigenetics require large
datasets with deep and comprehensive phenotyping.
The proposed research in this subject has been facilitated
by our access to such rich resources, specifically the
GOLDN study and the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE)
consortium.

The GOLDN study was designed to identify genetic
determinants of lipid response to two interventions (a
high-fat meal challenge and fenofibrate treatment for 3
weeks)(163). The study ascertained and recruited families
from the Family Heart Study at two centres
(Minneapolis, MN and Salt Lake City, UT), who self-
reported to be white. Only families with at least two sib-
lings were recruited for a total of 1327 individuals.
Volunteers were required to withhold lipid-lowering
agents (pharmaceuticals or nutraceuticals) for at least 4
weeks before the initial visit to be eligible. A total of
1053 individuals met all eligibility requirements.

For methylation studies, DNA was extracted from
CD4+ T cells harvested from buffy coats with the use
of antibody-linked Invitrogen Dynabeads. CD4+ T cells
were selected for three reasons. First, DNA methylation

patterns are often tissue specific. For instance, studies of
whole blood samples reflect methylation variations with-
in each blood cell type that may act to confound epige-
nomic association results(164). Second, many key genes
involved in lipid metabolism are expressed in lympho-
cytes and other immune cells (e.g. PPAR)(165). In one
study, peripheral blood mononuclear cells gene expres-
sion profiles were demonstrated to reflect nutrition-
related metabolic changes. Responsive genes were
enriched for FA-metabolising enzymes, including carni-
tine palmitoyltransferase 1, ACAA2 and
SCL25A20(166). Therefore, this cell type should reflect
underlying epigenetic variation influencing blood lipids
while minimising potential confounding. Third, blood
collection is the most viable tissue collection method
among healthy individuals. We used the Illumina
Infinium Human Methylation450 Beadchip (Illumina
Inc, San Diego, CA) to interrogate approximately
470 000 autosomal CpG sites across the genome.

The CHARGE Consortium was formed to facilitate
genome-wide association studies meta-analyses and repli-
cation opportunities among multiple large population-
based cohort studies, which collect data in a standardised
fashion and represent the preferred method for estimat-
ing disease incidence. The initial design of CHARGE
included five prospective cohort studies from the USA
and Europe: the Age, Gene/Environment Susceptibility-
Reykjavik study, the Atherosclerosis Risk in
Communities study, the Cardiovascular Health study, the
Framingham Heart study and the Rotterdam study.
With genome-wide data on a total of about 38 000 indivi-
duals, these cohort studies have a large number of
health-related phenotypes measured in similar ways. For
each harmonised trait, within-cohort genome-wide associ-
ation study analyses are combined by meta-analysis. A
prospective meta-analysis of data from all five cohorts,
with a properly selected level of genome-wide statistical
significance, is a powerful approach to finding genuine
phenotypic associations with novel genetic loci.(167) Since
its creation, CHARGE has incorporated many other
cohorts, increasing significantly its sample size and the
ability to identify new and relevant associations and
interactions.

Genetic variants and methylation levels revisited

Using data from the GOLDN study, we revisited the
topic of the local correlation between genetic variants
and DNA methylation levels (cis-meQTL) and con-
ducted a cis-meQTL analysis. We found that over 80 %
of genetic variants at CpG sites (meSNP) are meQTL
loci (P < 10−9) and meSNP account for over two-thirds
of the strongest meQTL signals (P < 10−200). Beyond dir-
ect effects on the methylation of the meSNP site, the
CpG-disrupting allele of meSNP were associated with
lowered methylation of CpG sites located within 45 bp.
The effect of meSNP extends as far as 10 kb and can con-
tribute to the observed meQTL signals in the surround-
ing region, likely through correlated methylation
patterns and linkage disequilibrium. Therefore,
GOLDN supports previous findings showing that
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meSNP are behind a large portion of observed meQTL
signals and play a crucial role in the biological process
linking genetic variation to epigenetic changes.(168)

APOE gene variants, methylation and ageing

Common APOE gene variants are associated with
age-related diseases; however, the underlying mechan-
isms have not been entirely elucidated and DNA methy-
lation may be a significant contributor. To test this
possibility, we conducted an integrated analysis with
both population (GOLDN study) and in vitro studies
(Encyclopedia of DNA elements (ENCODE) consor-
tium) to systematically explore the relationships among
age, plasma lipids, DNA methylation patterns, sequence
variants and gene expression of APOE(169). We found
that APOE methylation was correlated with gene expres-
sion, associated with age, plasma total cholesterol and se-
quence variants, including both promoter variant
rs405509 and well-known APOE ε variants.
Furthermore, the association between APOE methyla-
tion patterns within the promoter region and age were
dependent on promoter variant rs405509. These associa-
tions suggest that APOE methylation may explain its
ageing effects.(169)

IL6 gene variants, methylation and dietary n-3

n-3 PUFA reduce IL6 gene expression, but their effects
on transcription regulatory mechanisms are not totally
elucidated. As in previous instances, we systematically
explore the relationships among n-3 PUFA, DNA
methylation, sequence variants, gene expression and pro-
tein concentration of IL6 by conducting an integrated
analysis of data from population (GOLDN study) and
in vitro studies (ENCODE consortium)(170). As a result,
methylation of IL6 promoter CpG site (cg01770232)
was positively associated with IL-6 plasma concentra-
tion, IL6 gene expression and more dosage of the A allele
of rs2961298, but negatively associated with circulating
total n-3 PUFA. Furthermore, there was significant inter-
action between rs2961298 and circulating total n-3
PUFA for cg01770232 methylation. Therefore, in
GOLDN, the association between n-3 PUFA and IL6
promoter methylation was not only negative but also de-
pendent on sequence variants.(170)

Genetic variation at lipid-related genes, methylation and
dietary fatty acids

Using data from CHARGE and ENCODE consortia, we
conducted another integrated analysis to explore whether
gene–diet interactions on blood lipids act through DNA
methylation(171). Based on predicted relations in FA,
methylation, and lipids, we selected seven candidate
SNP located within APOE, ABCA1, 3-hydroxy-3-
methylglutaryl-CoA reductase, APOA5, proprotein con-
vertase subtilisin/kexin-type 9 and hepatocyte NF-1
homeobox A. According to the meta-analysis of seven
cohorts in the CHARGE consortium, plasma
HDL-cholesterol was not only associated with genotypes
of ABCA1 rs2246293, but also positively associated with

circulating EPA, for which the association was further
dependent on genotypes of ABCA1 rs2246293. With
methylation data in GOLDN, we found that methylation
level of ABCA1 promoter CpG site cg14019050 was not
only associated with genotypes of rs2246293, but also
negatively associated with circulating EPA, for which,
again, the association was further modified by genotypes
of rs2246293. We further found that the correlation be-
tween methylation level of ABCA1 cg14019050 and
plasma HDL-cholesterol is negative in GOLDN. Using
data from ENCODE consortium, we identified a negative
correlation between methylation of cg14019050 and
ABCA1 expression. In order to validate the mediation ef-
fect of cg14019050 methylation in the pathway from
gene–EPA interaction to plasma HDL-cholesterol, we con-
ducted an additional mediation analysis, which was fur-
ther meta-analysed across the GOLDN study,
Cardiovascular Health study and the Multi-Ethnic
Study of Atherosclerosis. We did observe a mediation ef-
fect; however, the magnitude of the mediation effect did
not reach statistical significance. At APOE, although we
observed consistent significant interactions between pro-
moter SNP rs405509 and circulating α-linolenic acid for
both plasma TAG in CHARGE consortium and methy-
lation level of CpG site cg04406254 in GOLDN, there is
no evidence to support the mediation effect of APOE
methylation. Therefore, we obtained little evidence that
DNA methylation explains the gene–FA interactions
on blood lipids.(171)

Conclusions

Despite the extensive evidence for gene–environment
interactions and more specifically gene–diet interactions,
the underlying biological mechanisms are still unclear.
The current integrated studies of genetics and epigenetics
provide gene-specific preliminary evidence that DNA
methylation may act as one possible mechanism for
such interactions, which is consistent with the established
regulatory role of DNA methylation as the interface be-
tween ‘nature’ and ‘nurture’.

DNA methylation has been demonstrated to be deter-
mined by the local nucleotide sequence and almost all
of the methylation (99·98 %) in differentiated mamma-
lian cells occurs on the CpG dinucleotides(63).
Furthermore, the phenomenon of allele-specific DNA
methylation, suggested by observed associations be-
tween genetic variants and DNA methylation, is wide-
spread across the human genome. For example,
according to analysis of twin pairs and their parents,
>35 000 CpG sites were shown to have allele-specific
DNA methylation events(172).

Evidence has been accumulating in support of changes
to DNA methylation in response to different types of
environmental factors. Studies with monozygotic and di-
zygotic twins suggested the potential role of environmen-
tal factors in the regulation of DNA methylation(33,34).

Based on the current knowledge, there is clear genetic
contribution to DNA methylation as shown by signifi-
cant SNP–CpG pair associations for genes, including
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APOE, IL6 and ABCA(169–171). Moreover, there are sign-
ificant interactions between methylation-related SNP and
other environmental factors of interest, such as age and
circulating FA. We found significant interactions for
the promoter SNP of APOE, which interacted with age
and α-linolenic acid, the promoter SNP of IL6 with
EPA and DHA, and the promoter SNP of ABCA1
with EPA. These interactions were not only observed
for the CVD traits, but also for the DNA methylation
measurements of the corresponding genes. Furthermore,
the results from the correlations between methylation
and CVD traits and gene expression were in the same dir-
ection of the observed genetic associations and interac-
tions. Our integrated analysis of both genetics and
epigenetics provide preliminary evidence for the potential
and partial mechanistic role of DNA methylation to ex-
plain gene–environment interactions, and such role
maybe loci-specific.

With respect to clinical implications, the use of com-
mon SNP in the clinical setting for primary or secondary
prevention remains controversial. APOE is one example,
in that the ε4 variant was demonstrated to have a dosage
effect on the incidence of and on the age of onset of the
late-onset Alzheimer’s disease(173). However, debates per-
sist over whether the genotyping test for APOE ε4 is ne-
cessary or desirable, because there are no medications or
clinical strategies to counter the deleterious effect of the ε4
isoforms (174–176). However, the finding that ε4 is asso-
ciated with APOE methylation and expression suggest
that the deleterious effects of ε4 might be mitigated by ap-
plying appropriate lifestyle-based modifiers that reduce the
difference in methylation across different APOE isoforms.

There are many gaps and limitations that need to be
overcome. First, the evidence in human subjects comes
primarily from observational studies and a cause–effect
relationship cannot be established. Second, DNA methyla-
tion studies in human subjects are based primarily on
blood cells. Overall, we need intervention studies to in-
crease the level of evidence supporting the notion that
genotype-dependent epigenetic changes are an underlying
molecular mechanism for gene–environment interactions
with the objective of providing reliable evidence to advance
the development of more personalised approaches to nutri-
tion recommendations and medical care.
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