Journal of Glaciology, Vol. 44, No. 148, 1998

Stress and velocity fields in glaciers: Part II. Sliding and
basal stress distribution

Hevz BrarTer,' Garry K. C. CLARKE,” JacQUEs CoLINGE
'Geographisches Institut, Eidgenissische Technische Hochschule, CH-8057 Lirtch, Switzerland
Department of Earth and Ocean Sciences, University of Brilish Columbia, Vancowver, British Columbia V6'I 174, Canada
3 Département de Mathématiques, Université de Genéve, CH-1211 Genéve 24, Swilzerland

ABSTRACT. Numerical methods are used to examine the interaction between the
spatial distribution of the basal shear traction and the corresponding basal velocity for
an inclined slab geometry. In our improved treatment, we reject the common assumption
that basal velocity is a simple function of local variables in favour of a non-local treatment
that includes normal deviatoric stress and takes basal velocity to be an integrated response
to spatially varying influences. Computationally, one must either iterate the basal velocity
with a friction parameterization that relates basal shear traction to basal velocity or, alter-
natively, prescribe the basal shear traction that results from bed decoupling and substrate
deformation.

The average of basal shear traction over the entire bed of the ice mass is invariant
under changes in sliding distribution and thus constitutes a useful reference; any local re-
lative reduction of traction leads to basal movement, either sliding over the bed or moving
with a deforming subglacial layer. The local stress reduction is accompanied by a concen-
tration of traction up- and down-glacier of the moving base. Growth, decay and possible
migration of basal stress concentrations may be closely related to short-lived sliding events
and to surges.

1. INTRODUCTION the micro-scale, a Coulomb-type sliding (Lliboutry, 1968)
. ) . ) ) ) occurs with a more or less velocity-independent friction co-
I'hermomechanical modelling of glaciers and ice sheets has efficient. Sub-grid variability of the friction coeflicient and
become an indispensable tool for the interpretation of field resistance to sliding due to .N'.lll)-gl'itl topographic variations,
observations. Although thermal conditions, strain rate and or both together, must be parameterized for cach gridpoint.
the general behaviour of an ice mass can be modelled to ac- However, such sub-grid patterns may be unlimited in their
('('[)l_ab]v AECULREY: the flow c()mrihutio'n of sliding Sfm variety and, thus far, only a few simplified situations have
awaits satisfactory treatment. Most studies that deal with been investigated theoretically in detail (Gudmundsson,

sliding have concentrated on the micr:.)-scal(: for example, 1997a. b; and references therein),
bed P‘"“‘“I“‘l'a“ﬂ‘-‘i ‘ﬂ‘“(] lhvrlnt:(h;'narmc% (Weertman, 1979; For [rictionless sliding acting on the true base, a periodic
alnd 1'0[("1‘(‘13(‘(‘5 therein), bed waviness with or \\-"i(hnul par- topographic variation with sinusoidal shape seems (o give a
tial r;l\'l_lalm]l and water pr('ssurc.flkcn, 1981; Gudmunds—‘ power-law relation hetween average basal velocity and
son, 1997a. b; and references therein). Common to most ol average basal shear traction (Gudmundsson, 1997h), For
these studies i1s the assumption that the representative ;

i 5 e this type of sliding parameterization, both sliding velocity
roughness clement is spatially periodic. :

and basal shear traction are non-locally defined variables

The application of friction laws in the shallow-ice ap-
proximation ohscures the crucial point that in glaciers the
local flow and basal velocity is not locally defined. Friction
laws can be applied in higher-order flow models, but the
higher-order equations must be applied to new and cor-
rected basal houndary conditions that must be iteratively
met. The application of a friction law also feeds back to the
stress field and thus must be included in the iteration
(Hutter, 1983, chapter 4). Such friction laws constitute a
functional relation between basal velocity and other basal
conditions, such as stresses, water pressure and roughness
clements with or without cavitation.

The treatment of sliding in a numerical model faces the
problem that sliding is determined by different processes
which act on various spatial scale lengths. A numerical model
with a given grid size must handle average basal conditions
that are not defined by the microscopic sliding law alone. On
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in the sense that both depend not only on local basal condi-
tions but also on the conditions in neighbouring and more
remote areas.

Sediment beds may be smoother than rock beds and
may be flat on a scale length of modeled grideells. In such
cases, the variability of the Coulomb friction defines the
sub-grid parameterization of sliding. Friction coeflicients
arc then not dependent on the basal velocity but may vary
spatially and temporally with changing basal roughness
and hydraulic conditions. In these cases, basal shear trac-
tion is locally defined by local conditions but the basal
velocity is still a non-local variable.

Iriction and sliding laws themselves are not the wopic of
the present paper. This study investigates the relation
between the spatial pattern of basal shear traction and the
spatial pattern of basal and internal shear — with emphasis
on“spatial pattern” for topographically flat beds having spa-

157


https://doi.org/10.3189/S0022143000001970

Journal of Glaciolagy

tial variations in the friction coefficient. The results demon-
strate the important influence of deviatoric stress gradients
on glacier flow in general and on the sliding pattern in par-
ticular. The range of influence of spatial inhomogeneities at
the bed is of the same order of magnitude as the horizontal
extent of average valley glaciers. This shows that local meas-
urements of sliding must be interpreted with a view to the
mechanics of the entire glacier.

This paper makes explicit use of methods presented by
Colinge and Blatter (1998).

2. TEMPORAL AND SPATIAL VARIABILITY OF
ICE-BED COUPLING

Temporal variability in glacier-flow rate occurs at time-
scales that range from seconds to centuries (Forbes, 1831;
Meier and Post, 1969; Lken, 1981). Temporal variation in sub-
glacial water pressure is the usual suspected agent of this
variability.

Spatial wvariability is more challenging to observe,
because it originates at the bed and is diffusively projected
on to the upper boundary (Budd, 1971; MacAyeal, 1992; Mac-
Ayeal and others, 1995). Recent subglacial measurements of
water pressure (Murray and Clarke, 1993), sliding (Blake
and others, 1994), ploughing (Fischer and others, submitted
to fournal of Glaciology) and subglacial detormation (Iverson
and others, 1995; Hooke and others, 1997) confirm that spa-
tial variability is significant over length scales down to or
below ~1 m. Figure 1, showing subglacial observations from
Trapridge Glacier, Canada, illustrates this point. Figure la
shows summer 1992 water-pressure measurements from four
sensors that have a typical spatial separation of ~5 m. Sen-
sor 92P06 is situated in a hydraulically connected hole and
registers a strong diurnal cycle with peak water pressure oc-
curring in late afternoon. The water-flotation level in this
region of the glacier is roughly 63 m, so that several of the
most pronounced peaks correspond to pressures sufficient
to cause artesian outflow from the subglacial water system.
Nearby sensor 91P14 displays the same diurnal oscillations
as 92P06 but with attenuated amplitude. In contrast, sensor
91P13, which is situated in a region of the bed that is not hy-
draulically connected to 92P06, shows water-pressure fluc-
tuations of opposite polarity to those for 91P14 and 92P06;
sensor 92P09, which seems to represent an intermediate
case, alternates between in-phase and out-of-phase res-
ponse. An explanation of this behaviour, involving the
transfer of the ice-overburden support from one point to an-
other, has been proposed by Murray and Clarke (1995). The
main lesson, however, is that pronounced spatial and tem-
poral variations in subglacial water pressure can occur.

Because ice—bed coupling is strongly influenced by sub-
glacial water pressure, it 1s no surprise that the sliding and
subglacial deformation rates are also spatially heteroge-
neous. Figure 1b shows the summer 1996 measured sliding
rate at two contiguous sites at the bed of Trapridge Glacier.
Again, the spatial separation is ~3m and a diurnal cycle
can be discerned. The most striking feature of these graphs
is that for several cases the peak sliding rate for 965L0I cor-
responds to the minimum sliding rate for 96SL02. The ob-
vious interpretation is that reduced ice bed coupling (and
thus a large sliding rate) at one site is compensated by
increased ice—bed coupling at other sites in order to main-
tain overall stress balance. Simultaneous measurements of

-
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Fig. 1. Evidence for spatial heterogeneity of subglacial water
pressure, sliding rate and subglacial deformation rate for
Trapridge Glacier, Canada. (a) Measured subglacial
water-pressure records al four contiguous siles. { b) Measured
sliding rate at two contiguous sites. (c) Measured subglacial
strain rate at two contiguous sites.

subglacial sediment deformation rates at nearby sites lead
to similar conclusions. Figure lc shows results from tilt cells
96BG03 and 96B05, which are located within the same
array as the sliding sensors. Diurnal variability is present
but there is no correspondence between peak deformation
rates for the two sensors. In summary, the observations
beneath Trapridge Glacier reinforce the central theme of
this paper: that the stress field in the vicinity of the ice—bed
contact is markedly heterogeneous and that this heteroge-
neity adds unwelcome complications to sliding mechanics.

3. BASAL STRESS AND VELOCITY
3.1. Governing equations and boundary conditions

In this section, we develop the relation between basal shear
traction, sliding velocity and the spatial extent of soft spots in
the simplest case ofa parallel-sided slab of isothermal homo-
geneous ice. The derivations and discussion of the force-
balance equations and stress—strain rate relations have been
presented in Part I of this study (Colinge and Blatter, 1998).
The geometry of the ice slab is defined by the upper free
surface S = H and the basal surface B = 0 in Cartesian co-
ordinates (z, z), with the z axis aligned with the surface
slope. The z axis and the direction of gravity include an
angle . The non-dimensional force-balance equation and
stress—strain rate relations have been presented by Colinge
and Blatter (1998), but here we only summarize the relevant
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equations corresponding to the first-order approximation,
which are

or o
= —2——1.
0z i (1)
du -
— = 2A,F7T. 2
a3 )Y i ( )
ot o P
O - 5; = A(i}‘ T (3)
with the flow law
F=74+&8+1 (4)

where 7, 0 and u are the shear stress, deviatoric normal
stress and the longitudinal \'clocigf component, respectively,
the constant rate factor Ay, and ¢, is proportional to the in-
verse of the viscosity (= fluidity) at vanishing effective
stress. The surface-boundary condition is 7, = 0 and at the
base a sliding law must be imposed.

The foregoing scaling reduces the number of free para-
meters for a homogeneous slab to two, namely f,l, and Ag.
The rate factor Ay is simply a multiplier for the veloeity field
and the stress field is independent of Ag, as long as A is
homogeneous over the whole domain. This permits normal-
ization of the velocity ficld for different choices of {; and
makes Ag a function oft‘.a, rt‘duci}_}g the number of free para-
meters to the single parameter ¢, In all examples, we take
fU = 0.1 and Ay =5/3 such that the asymptotic surface
velocity

_ 1 -
Uso = Ag (3+tj) = L. (5)

The asymptotic stress and velocity profiles are defined as
the solution for the entirely non-sliding slab, i.e. the solution
in the absence of or far away from any sliding perturbations.
With this assumption, the only freedom rests in the choice of
the basal stress pattern over a chosen sliding area. In most of
the subsequent examples, the basal shear traction was set to
zero within the sliding zone. This is the most extreme case
and all other possible distributions of shear traction within
the sliding area are intermediate between this extreme case
and the non-sliding case. In this way, the relevant patterns
of basal velocity and stress can be summarized with a rela-
tively small number of model computations.

To solve Equations (1)(3), we used the numerical
method presented in Paper I for a parallel-sided slab. Anin-
finitely long plane slab is simulated by connecting the lower
end of the finite-model domain of the slab with its upper
end. With uniform basal boundary conditions, this produces
a homogeneous solution for the entire slab; with non-uni-
form boundary conditions, this yields a (non-uniform) per-
iodic pattern with wavelength of the finite domain length in
the longitudinal direction of the infinite slab. If the influence
of some internal inhomogeneity decays to zero towards the
end of the domain the model approximates an infinitely
long slab. This is the case if the distance of the sliding part
from the boundary of the computed domain exceeds
roughly five times the ice thickness.

In Colinge and Blatter (1998) we recognized that the
closure of the boundary-value problem is related to the basal
sliding problem. The simplest basal boundary condition is
the non-slip condition @y, = 0. In the following paragraphs,
we investigate the relation between the spatial distribution
of basal shear traction and the resulting spatial distribution
of basal and interior ice flow. Only flat-bed situations with-
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out any sub-grid topographic variations are considered,
Such situations may occur in fast-sliding ice streams and
under glaciers sliding over sediment heds. In these cases,
spatial variations in the friction coefficient may occur due
to variations in basal hydraulics and local qualities of the
sediment itself.

3.2. Flow over a single sliding spot

Although the englacial stress field is affected by the distribu-
tion of basal movement, there is no possibility from surficial
observations alone of distinguishing whether this move-
ment stems from sliding of the ice sole over the bed, from
dragging an underlying layer of deformable material or
both together. However, for convenience, the terms “slid-
ing” and “non-sliding” are used in the sense of “presence of
basal movement” and “absence of basal movement”, respec-
tively. The term “basal” refers to the sole of the ice, however
sharply this can be defined.

In an initial series of numerical experiments, we cal-
culated the stress and velocity conditions in the vicinity of
an isolated sliding spot in an otherwise homogeneous non-
sliding slab. Within the sliding region, we prescribe a re-
duced basal shear traction
D= g 13 (6)

note that 7}, .o = 1 in the homogeneous non-sliding part.
The reduction factor g = g(&) of the basal shear traction is
a function of position in the sliding area and it represents the

TH, = q 7‘:I'L)g-

decoupling between ice and bed.

Only a small sample of situations is presented and these
have been selected to illustrate essential features of the stress
and velocity fields across sliding spots. The sliding condi-
tions are specified at seven gridpoints (Fig. 2), for which per-
fect slip, i.e. vanishing basal shear traction is prescribed.
Thus, the total width of the sliding zone is about 7Az and
the associated spatial patterns for stress and velocity are re-
solved with seven gridpoints.

surface FA_X, s
1
>
base mi 2 & c 382 1 mh X
& ———y
non-sliding b —  non-sliding

sliding

Fig. 2. Illustration of the vertical gridiines and the correspond-
ing labels in the sliding part of the slab, for which velocity and
stress profiles are shown in Figures 3 and 4.

The vertical profiles of longitudinal velocity 7 are shown
int Figure 3 for AF =01, AF= 0.25.and A% =0:5. The
profiles along the vertical gridlines from the edge to the
centre of the sliding spot are compared with the asymptotic
profile. The example with the smallest spot size clearly
demonstrates a bridging effect across the sliding spot due to
‘normal stresses. Even with complete uncoupling of the ice
from the bed, when 7, =0, the sliding velocity remains
strongly limited. With growing spot size, the bridging
diminishes and the sliding velocity increases. Figure 4 shows
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Fig. 3. Vertical profiles of longitudinal velocily above a sliding
arvea in an otherwise non-sliding ice slab, as shown in Figure 2,
together with the asymplotic velocity profile. The local reduc-
tion factors of basal shear traction are 0.5 at the gridlines
labelled I and 0.0 at all ather gridlines within the sliding zone.
The line labelled a shows the asymplotic velocity profile.
Three examples are shown corresponding to grid sizes
AT =01 A =025 and AT = 0.5 measured in units of
one slab thickness. The dashed profiles correspond to the last
non-sliding position (labelled mv in Figure 2) adjacent to the
sliding area; the dash—dotted, dash—triple dotled, long-
dashed and solid lines correspond lo the positions labelled 1,
2, 3 and ¢, respectively.

Ny

0.5

I L

YIRS R B T I T A )

Fig. 4. Vertical profiles of shear stress in the sliding zone for
AT =0.5. The curves correspond to the gridlines labelled in
Figure 2: m (dotted line), 2 ( dashed line), ¢ (dash dotled
line ) and to the asymptotic profile ( solid line ).

the corresponding vertical profiles of shear stress in the slid-
ing arca and in the transition zone between sliding and non-
sliding in comparison with the asymptotic profile for
A7 = 0.5. The sliding velocity with 7y, = (is the largest pos-
sible for a given geometric pattern of sliding. Any larger
value of basal velocity would result in negative basal shear
traction, i.e. a shear stress acting to oppose the driving stress
and produce inverse velocity profiles. Such a situation would
be difficult to explain. These examples also demonstrate the
extent to which the vertical profiles of deformation velocity
and shear stress are changed by spatially variable sliding.
The longitudinal gradients within the transition zone
between sliding and non-sliding are limited. These transition
zones suffer the largest stresses in the basal layer and are
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Fig. 5. Longitudinal profiles of scaled hasal normal deviatoric
stress o ( dolled lines ), basal shear traction T ( dashed lines)
and basal effective stress Toge ( solid lines) for Az = 0.1 0.2,
0.3, 04 and 0.5. The profiles for T and T are symmelrical
and the profiles for & are anti-symmetrical with respect lo the
centre of the sliding area.

therefore prone to structural failure, such as basal crevassing
under high static pressure. Figure 5 shows the longitudinal
profiles for @, 7 and the effective stress 7o = V6° + 72 for
the five cases Az = 0.1, 0.2, 0.3, 0.4 and 0.5. In all five
cases, the basal shear traction is set to drop to zero over
one mesh size. The weak dependence of the stress compo-
nents on A suggests an approximate similarity rule: if the
geometric patterns of basal shear traction in sliding arcas
are similar, then the resulting stress components and stress
gradients in the transition between sliding and non-sliding
are only weakly dependent on the spatial extent (rep-
resented by the grid size AF) of the sliding areas. The result-
ing velocity gradients grow with the stress components
according to the assumed flow law; thus, the velocity com-
ponents themselves grow with increasing A.

The scaled driving stress (Whillans, 1987) is 7y =1
everywhere along the base of the slab. This driving stress is
a measure of the total longitudinal force of gravity per unit
area acting on a column of ice. Driving stress only depends
on the geometry of the ice mass and thus is independent of
the fields of shear stress and normal stress. The resistive
force acting against basal driving stress is the basal shear
traction. However, these forces are not balanced locally but
must balance over the entire bed. The average of the basal
shear traction over the entire hed equals the average of the
basal driving stress over the entire bed, and thus is an invar-
iant that only depends on the geometry of the glacier.

This relation was used to test the accuracy of the numer-
ical solutions for which we found that the average shear
traction, which should average to unity, generally matched
this value to within 2%. Accordingly, the longitudinal aver-
age of the normal deviatoric stress must vanish. This clearly
shows the interplay between shear stress and normal stress.
Within sliding arcas, shear stress is reduced; however, the
normal stress transfers the driving forces to the transition
zone between sliding and non-sliding. Just outside the slid-
ing arcas, additional large shear stress is built up. This de-
monstrates the pulling and pushing strength of the interior
layers that enables the sliding velocity in one area to respond
to the presence of neighbouring non-sliding areas and to
other more remote sliding areas.
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Fig. 6. Ratio of the diffevence between maximum surface
veloctty and asymplotic suyface velocity to the maximum basal
velocity as a function of the size of the sliding area L for
various area fraclions cv.

The fraction of sliding velocity that is transferred to the
surface also depends on the spot size. We define this fraction
by
fom Uy ~u'h.'X. (7)

Uy,

where 1y, and 1y are the sliding and surface velocity in the
centre of the shding area, respectively, and 1, is the
asymptotic surface velocity (= 1), This fraction takes values
fi =0.13,0.36 and 069 for AF = (.1, 0.25 and 0.5, respec-
tively, and [ approaches unity for large A%, This result re-
minds us to be cautious in interpreting observed scasonal
variations in the surface velocity of glaciers. The difference
between lowest and peak velocities only indicates changes
in basal velocity somewhere nearby. The sliding does not ne-
cessarily occur helow the position of the observation and the
changes in sliding velocity may be as large as or even larger
than the observed peak velocity itself,

3.3. Spatially periodic series of sliding spots

In a second series of numerical experiments, we assume a
spatially periodic pattern of sliding and non-sliding zones.
In the sliding parts, basal shear traction is set to zero at all
corresponding gridpoints to yield a totally uncoupled bed.
The pattern is defined by the length of the sliding zone L
and the areal fraction of sliding e, i.c. the ratio of the length
of the sliding zone to the total length of the periodically re-
peating region,

In these experiments, the extent of the sliding arca was
always taken as ten gridpoints, with an areal fraction of slid-
ing a = 10/ N, where N is the total number of gridpoints in
one period. The length of the sliding zone thus becomes
L = 10AZ. The sliding patterns are presented for the do-
main in the parameter space {(a. L) | 0.1 < o < 0.67 and
1.0 < L < 5.0}.

The ratio between the difference of maximum surface
velocity 1t ax and minimum surface velocity iy, within
a given spatially periodic region and the maximum basal
velocity i, .5 15 denoted by

. ﬂf:s.mnx - ﬁ.\'.min
fo= = — (8)

Uy max
it represents the maximum sliding velocity expressed as a
fraction of the variation of the surface velocity. Figure 6 de-
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o = 0.2 and length of the sliding avea L = 2.5 ( dotted line ),
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Fig. 8. Basal velocily in the centre of the sliding area as a func-
tion of the size af the sliding area for the spatially periodic
pattern and various area fractions c.

picts the dependence of f, on o and L. The strength of the
local sliding signal clearly fades as areal fractions ev and the
sliding area L become smaller. The bridging becomes stron-
ger with smaller scale length of the hasal patchiness, and
one can again anticipate that the information on the distri-
bution of basal conditions is substantially diffused and effec-
tively lost at the ice surface,

Inone series of numerical experiments, the coupling fac-
tor ¢ (Equation (6)) between ice and bed in the sliding arca
was varied between zero (total uncoupling) and unity (non-
sliding). The consequent sliding-velocity variation is closcly
proportional to 1 — g for all computed cases (Fig. 7). This
result provides an additional justification for limiting the in-
vestigation of sliding patterns to the extreme case of (otal
uncoupling, g = 0, since all other cases are intermediate
between the total uncoupling and total non-sliding condi-
tions.

Figures 810 present results for the case of total uncou-
pling and give the sliding and stress patterns as functions of
L and . Iigure 8 shows the dependence of the sliding
velocity in the center of the sliding area on the size of the
sliding spot for a sample of areal fractions a. As expected,
the sliding velocity inereases with increasing size of the af-
feeted avea. With smaller e, the distance between adjacent
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sliding arcas grows and thus the bridging between sliding
spots becomes weaker and sliding velocities are reduced.

Figures 9 and 10 explore the basal stress concentration in
the transition area. The square of the effective stress 7% (see
Fig. 9) is a measure of the strain softening of the ice, and ad-
ditionally indicates the possibility for fracturing (c.g. by
assuming a failure criterion). For n = 3, the fourth power
of the basal shear traction (Fig, 10) is indicative of the order
of magnitude of basal strain heating. These stress values
increase with growing areal fraction a. This is consistent
with the previously discussed invariance of the longitudinal
average of the basal shear traction. In a periodic pattern,
this average is unity over one period. With increasing o,
the area available for the compensation of the zero traction
in the sliding part becomes smaller and therefore must sup-
port a larger traction than for small c. The weak depen-
dence of the stresses on L again reflects the above-
mentioned approximate similarity rule.

3.4. Haut Glacier d’Arolla

A numerical experiment was conducted with the two-di-
mensional (longitudinal section) geometry of Haut Glacier
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Fig. 9. Maximum of the square of effective stress in the (rans-
ition zone between the sliding and non-sliding area as a_func-
tion of the size of the sliding area for the spaiially periodic
pattern and various area fractions cv.
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Fig. 10. Maximum of fourth power of basal shear stress in the
transition zone between the sliding and non-sliding area as a
Junction of the size of the sliding area for the spatially periodic
pattern and various area fractions cx.
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d’Arolla, Switzerland (Fig. 11). The first run assumed no slid-
ing throughout the length of the profile. This yields the
basal shear traction for full basal coupling In the second
run, some uncoupling at a given section in the lower part of
the profile was introduced. The local non-sliding basal
shear traction was set to zero to simulate perfect sliding.
The stress and velocity fields were then computed by
assuming the mixed basal boundary condition, zero basal
velocity in the non-sliding parts and the reduced shear trac-
tion in the sliding zone.

The stress and velocity fields in the realistic glacier geo-
metry show the same patterns as in the slab solutions (Figs
12 and 13). From the result, it is again clear that a locally
observed variation in surface velocity only reflects the fact
that the sliding velocity has changed somewhere along the
glacier bed. The observed change of the surface velocity
does not straightforwardly indicate the position or the
change in the velocity of sliding,

It is noteworthy that the average T of the basal shear
traction over the entire length of the glacier profile is almost
the same for both cases; 7 = 1.2365 for the non-sliding case

3200 o

3100 Haut Glacier D'Arolla |

n
3000
(m)
2900

2800

2700 |- T -

T
I

2600

2500 ey yeden A
¢} 1000 2000 3000

Fig. 11 Longitudinal section of Haut Glacier d’Arolla. T de-
notes the horizontal distance from the top of the profile in
metres; h is the altitude above sea level.
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Fig. 12. Horizontal velocity component in a longitudinal sec-
tion of Haut Glacier d’Arolla from the top ( left side) to the
tongue of the glacier (right side). The line labelled ns shows
the surface-velocily distribution for the non-sliding case, the
line labelled sl shows the surface velocily for a situation with
a sliding zone where lolal uncoupling is prescribed (see Fig.
13) and the line labelled sb shows the corresponding basal
velocity.
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Fig. 13. Basal shear traction in the longitudinal section of
Haut Glacier d'Arolla_from the top (left side) to the longue
of the glacier (right side). The line labelled ns shows the
shear traction for the non-sliding case, the line labelled sl
shows the shear traction for a situation with a sliding zone
where uncoupling is prescribed as shown by this figure and
the dotled line shows the driving stress. The surface inclination
corresponds to an average over 50m (lwo grideells) in all
calculations.

and 7, = 1.2352 for the case with the sliding arca. The
difference lies in the round-oft error of the computation
due to the specified stopping criterion for the iteration. This
invariant, denoted 74, quantifies the total driving force of
gravity on the ice mass and thus must also correspond to
the average over the bed of the so-called driving stress
74 = pghS’ (Whillans, 1987), where p, g, h and 8" are the
density of'ice, the acceleration of gravity, the local ice thick-
ness and the local surface inclination, respectively. It must
be noted that the above observed invariance of the mean
basal shear traction (averaged over the entire bed) is not
proven rigorously in mathematical terms, although it is phy-
sically obvious (personal communication from H. Rathlis-
berger, 1997). In contrast, the local driving stress deviates
substantially from the local basal shear traction, a fact that
reflects the intimate interaction between shear stress and
normal stress.

1,30 T AammEs

Lo
1.2

(bar) T

128 - =

1151 =

0 100 200 300 400

Ax  (m)
Fig. 14. Effect of grid resolution on the calculated longitudinal
average of the basal shear stress ( solid line) and of the basal
driving stress ( dashed line) for the non-sliding case and the
profile of Haut Glacier d’Arolla. The grid size AT is given in
metres. T he dotted line indicales the exact (i.e. computed for
very small AX ) average of the basal driving stress.
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The average driving stress can be computed from the
given geometry alone, independently of any numerical
solution. For this reason, the longitudinal average of the
basal shear traction yields an accuracy test for the numeri-
cal solutions of the higher-order equations. Figure 14 shows
the average of the basal shear traction 7 for the non-sliding
situation as a function of the grid resolution AZ, together
with the corresponding average of the driving stress 7. For
the specific geometry of Haut Glacier d’Arolla, 7 decreases
almost linearly with increasing Az The model solution, on
the other hand, produces a more constant 7 over the same
range of AZ, and this 7 corresponds within 2% to the 74
for very high resolution, i.e. for very small Az,

3.5. Three-dimensional effects

The three-dimensional dimensionless {orce-balance equa-
tions for a parallel-sided slab are (Blatter, 1995):

oa,. 0o Oz (7
9 s Yy Ty Lz _ ‘
T T Ay 0z L ©)
da O, OT oy OT
ek Yy T xy v _
A e TRl 1)

with the I axis aligned with the steepest surface slope, and
the stress strain-rate relations are

. ol
= 24F7,, (11)
0 -
> APy, (12)
0z
M =
().‘I'
v 5 =
95 = AF6y,, (14)
du v = s
= =2 AT, 15
3y i e (15)
where
F = &.L:zr + &:n-;,g,u + 5»*‘-#‘&!1!.' = %f‘ it -Ffu: i %f';y + fmlzl (16)
constitutes a prescribed flow law for the fluid under consid-

cration. The boundary conditions at the free surface are
Tr:(S) = 7,:(5) = 0; the basal boundary conditions in the
non-sliding parts are u(B) = ©(B) = 0. In the following nu-
merical results, vanishing basal shear traction is prescribed
within the sliding parts and the sliding velocity emerges
from the model computation.

1o study the influence of side drag, three-dimensional
model computations were carried out. The multiple-shoot-
ing Newton iteration scheme in three dimensions requires
large memory and long computation time. Therefore, with
the presently available code only about 20 x 20 gridpoints
can be handled with reasonable performance on worksta-
tions. Better linear algebra, adjusted to the specific form of
the problem, and a [aster way to solve the large lincar sys-
tems of the Newton iteration scheme could substantially re-
duce hardware requirements and computation time. Such
investigations are currently under way (paper in prepara-
tion by J. Colinge ).

The three-dimensional slab is “closed cyclically™ in the
and y directions, i.c. in the direction of steepest slope and
transverse to it. This produces a periodicity in two dimen-
sions similar to the one discussed in section 3.3 for the
plane-flow case. Here, we chose 15 gridpoints in the x direc-
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tion and 15 gridpoints in the y direction, with a grid size of
A& = Ay = 1.0. The length (x dircction) of the rectangu-
lar sliding area was taken as 10 gridpoints, and the trans-
verse size was varied between all 15 gridpoints and three
gridpoints. The first case corresponds exactly to the plane-
strain situation, with areal fraction o = 0.67, and the three-
dimensional computation produced almost exactly the
same result as the plane-slab model. Figure 15 shows the @
components of surface and basal velocity along a longitudi-
nal (x direction) profile through the middle of the sliding
area for different transverse extents of the sliding rectangle.
As expected, with decreasing width of the sliding area. the
influence of side drag increases and the resulting sliding
velocity decreases.

A few computations for infinitely long channel-like slid-
ing arcas were performed to investigate the influence of side
drag alone. The length of the sliding arca was taken as that of
the full 15 point 2 domain and the sliding width was varied
from five to nine gridpoints. For these cases, the sliding
velocities grow very large (comparable to surging velocities),
if the width of the channel exceeds roughly five times the ice
thickness (Fig. 16). For ice streams that are wide compared to
ice thickness, lateral drag exerts a negligible restraint on
sliding velocity. Other limiting factors are a generally larger
basal drag and isolated sticky (i.e. non-sliding | spots within
a mostly uncoupled bed.

The areal average of the basal driving stress in the x di-
rectionis 7, = 1.0 (see also section 3.3) and vanishes in the y
direction. Thus, the areal average of 7,. .y = 1.0 must be
the same for different sliding patterns and correspondingly
Tyeav = 0. In the numerical experiments with a coarse
15 %15 horizontal grid and 12 layers in the vertical, this aver-

age deviated by as much as 10% from unity. This inaccuracy
stems [rom the gridpoints just up- and downstream of the
sliding arcas, where stress peaks are partly truncated in the
numerical computations,

4. DISCUSSION
4.1. Spatial scales and sliding

The sliding velocity can exhibit large spatial and temporal
variations. The patchiness of soft (i.e. sliding) spots seems to
follow the basal drainage system (Harbor and others, 1997)
and its scale length varies from much smaller than ice thick-
ness to several times the ice thickness. This natural unit of
one ice thickness provides a convenient measure for explor-
ing the bridging effect due to normal deviatoric stress. The
results for spatially periodic sliding/non-sliding conditions
in the slab indicate that a distance of 5-10 times the ice
thicknesses is necessary to uncouple the average sliding
velocity over one period from that of adjacent periods. For
typical valley glaciers, 5-10 times the average ice thickness
is comparable to the transverse extent of the glacier tongue
as well as to a considerable fraction of the total length. Such
distances are significantly larger than the observed scale of
basal patchiness; thus, at these scale lengths, a sliding area is
responding to conditions beyond the immediate neighbor-
hood of the sliding region.

Bridging affects sliding in several ways. (1) It limits the
sliding velocity in soft spots by holding the ice between the
non-sliding bridge piers. (2) It makes the sliding velocity
strongly dependent on the size of the soft spot. (3) It reduces
or eliminates the influence of bridged hard spots, effectively
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Fig, 15, Sliding and surface velocities in a three-dimensional
parallel-sided slab with maximum inclination in the direction
of the x axis. Shown are longitudinal profiles of surface and
basal velocity components in the x direction for longitudinal
sliding fraction = 0.67 and various transverse widths of
the sliding veclangles. Horizontal grid size is AF =
Ay = Linunits of slab thickness.

increasing the size and importance of neighboring soft
spots. As a result, sliding in valley glaciers is a demonstrably
non-local process in which the mechanics of bridging plays a
central role. This conclusion also holds in the case of realistic
three-dimensional ice masses that may have complex topo-
graphy, complex basal coupling patterns and spatially vari-
able rheology introduced by varying temperature or water
content. Ice streams seem to have large sliding areas that are
locally interrupted by isolated sticky spots (MacAyeal,
1992), whereas valley glaciers may have a predominantly
rough and resistive hed that is locally decoupled along sub-
glacial drainage pathways (personal communication from
M. Sharp, 1996).

The spatial variability of sliding and the corresponding
basal stress field has consequences for the interpretation of
ficld ohservations and for the experimental determination

500 T T — T T T T T T e M e =
U ///F).B) grid pr:'mf.s‘ ‘\\
400 — / \ =
{/ \
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Fig. 16. Sliding and suyface velocities in a three-dimensional
parallel-sided slab with maximum inclination in the direction
of the @ axis. Shown are transverse profiles of surface and
basal velocity components in the @ direction for a longitudinal
infinite sliding channel and various transverse widths of the
channel. Horizontal grid size is AT = Ay =1 in units of
slab thickness.
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of friction laws, even if the sliding velocity is measured di-
rectly. The major difficulty is the impossibility of measuring
stress components directly. Indirect determination of the
basal shear traction requires accurate measurement of
near-basal strain rates and reliable knowledge of the form
of the flow law and corresponding rheological parameters.
The often-used basal driving stress is a poor approximation
to the basal drag and thus a poor surrogate for basal shear
traction. This is especially true in areas where sliding condi-
tions yield a shear traction that decreases with increasing
sliding velocity, while driving stress remains unaflected.

Furthermore, the validity of proposed flow laws and
their usefulness for indirect determination of stress compo-
nents must be questioned. Basal ice that flows through a
region ol patchy conditions with small spatial scales under-
goes rapid changes in stress; the associated ice-deformation
changes on time-scales of days to hours. The stress changes
are mainly associated with the large gradient of the effective
stress, which leads to large stress rates (rate of change of ef-
fective stress) as well as to changes in the directions of the
principal stresses which rotate at the transition from non-
sliding to sliding and vice versa.

4.2. Sliding in higher-order models

Field experiments that investigate basal sliding and friction
laws need to be complemented by higher-order models of
glacier mechanics. Information on the spatial distribution
of sliding conditions is a necessary model input. In return,
the model results may then supply an approximate stress
ficld and can thus help to constrain friction-law parameters.

The stress and velocity fields in glaciers are determined
by the force equations, mass-continuity equation and the

stress-strain-rate relations (e.g, Hutter, 1993). The boundary
conditions are vanishing shear traction at the free surface
and a combination of the velocity and/or shear traction
along the glacier bed. For non-sliding conditions, the basal
shear traction is unknown and must be determined itera-
tively. Mixed basal boundary conditions may be prescribed,
such as basal (or zero) velocity at some parts of the bed and
basal shear traction at the rest of the bed. Iterative solution
of the equations then vields the basal shear traction and
basal velocity in the respective other parts of the bed. Irom
these considerations, we conclude that for numerical model-
ling the basal shear traction is the appropriate measure of
the basal *drag force”

We now investigate a method for estimating basal
velocity from the basal shear traction that can be supported
by the bed. Our approach is to introduce a local stress re-
duction at the bed, either caused by decoupling between
ice and bed or by dragging a soft deformable layer of mate-
rial beneath the ice, or both, thus reducing the local basal
shear traction 7,405 to a fraction g of the traction 7, jypg in
the non-sliding case
(17)

where 0 < g < 1. Once the basal boundary conditions are

"':Il.hul'l = qTh hard

given (zero velocity in the nonssliding parts and reduced
basal shear traction in the sliding areas) the stress and
velocity fields are well defined. The sliding velocity can then
be computed with a mechanical model which, among other
things, calculates deviatoric stress gradients.

In a numerical implementation of this concept, the cou-
pling factor q characterizes the mechanical coupling for a
grideell centred at the gridpoint under consideration. This
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concept is certainly problematic, as all concepts of sliding
laws are difficult to constrain, and its applicability is re-
stricted to glacier beds that are smooth on scale lengths of
the grid resolution. For complete uncoupling, ¢ =0 and
the upper limit on sliding velocity for given a basal patchi-
ness of soft and hard spots can be estimated. This provides a
realistic control on the range of plausible basal velocities for
given basal patchiness —likely a better one than that
obtained by applying a local friction law with poorly con-
strained coeflicients and exponents.

The nature of basal stress reduction and the parameter-
ization of the relevant physical processes lies beyond the
scope of this paper. It can be anticipated that ¢ is a function
of water pressure. Other factors that may influence g include
basal roughness and stress-enhanced flow around obstacles
(Weertman, 1957), which may make g dependent on the slid-
ing velocity itself, variable thermal conditions, e.g. patchy
cold and temperate sole conditions, and the rheological
properties of the substrate. We cannot expect that the cou-
pling factor q is solely determined by local basal conditions.

4.3. Basal stress and transition to surge

The invariant average of the basal shear traction (see scc-
tions 3.3 and 34) constrains the boundary conditions and
indicates that the completely non-sliding case provides a un-
ique reference. The non-sliding shear traction gives the
lower limit of the traction that must be supported by the
bed to maintain non-sliding. If a given region of the bed
cannot support this minimum traction, then sliding must
oceur at this position, accompanied by a local reduction of
the shear traction and a corresponding increase in the trac-
tion in its neighbourhood.

Sliding can nevertheless occur in places where the shear
traction exceeds the above-defined reference. In an arca of
enhanced shear stress produced by a nearby sliding zone,
the enhanced shear stress acts as new relerence for non-slid-
ing: it the bed cannot support this enhanced shear stress,
then sliding will occur. This makes it necessary to introduce
a threshold which determines whether an enhanced shear
traction can he supported by the bed without giving way to
sliding. If not, sliding must occur at this position. Whether,
and to what extent, the shear traction is then reduced at the
onset of sliding at this place depends on the type of bed and
the corresponding friction law. We can anticipate that this
slip condition, under enhanced stress in the transition zones
between initially sliding and non-sliding areas, is closely
related to the temporal and spatial variability of sliding,

If the neighbouring bed is not able to support this en-
hanced shear traction, the sliding zone must expand into
this region accompanied by a stress reduction. The adjacent
zone with stress enhancement then shifts further away. If the
bed can nowhere support the stress concentrations, this ex-
pansion continues and the ice mass must dynamically desta-
bilize. These considerations open questions about the
propagation and expansion of such sliding areas and the
conditions necessary for surge instability.
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